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Abstract

Let C(x) and K(x) denote plain and prefix Kolmogorov complexity, respectively, and let RC

and RK denote the sets of strings that are “random” according to these measures; both RK and
RC are undecidable. Earlier work has shown that every set in NEXP is in NP relative to both
RK and RC , and that every set in BPP is polynomial-time truth-table reducible to both RK

and RC [ABK06a, BFKL10]. (All of these inclusions hold, no matter which “universal” Turing
machine one uses in the definitions of C(x) and K(x).) Since each machine U gives rise to a
slightly different measure CU or KU , these inclusions can be stated as:

• BPP ⊆ DEC ∩⋂
U{A : A≤p

ttRCU }.
• NEXP ⊆ DEC ∩⋂

U NPRCU .

• BPP ⊆ DEC ∩⋂
U{A : A≤p

ttRKU }.
• NEXP ⊆ DEC ∩⋂

U NPRKU .

(Here, “DEC” denotes the class of decidable sets.)
It remains unknown whether DEC is equal to

⋂
U{A : A≤p

ttRCU }.
In this paper, we present the first upper bounds on the complexity of sets that are efficiently

reducible to RKU . We show:

• BPP ⊆ DEC ∩⋂
U{A : A≤p

ttRKU } ⊆ PSPACE.

• NEXP ⊆ DEC ∩⋂
U NPRKU ⊆ EXPSPACE.

This also provides the first quantitative limits on the applicability of uniform derandomiza-
tion techniques.

∗Supported in part by NSF Grants CCF-0830133 and CCF-0832787.
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1 Introduction

The motivation for the research reported here comes from a body of work that seems to indicate
that the set of “random strings” is quite powerful, where “randomness” is defined in terms of
Kolmogorov complexity:

Notation 1.1 Let C(x) be the Kolmogorov complexity of the string x. Then

RC = {x : C(x) ≥ |x|}.

(More complete definitions of Kolmogorov complexity can be found in Section 2. Each universal
Turing machine U gives rise to a slightly different measure CU , and hence to various closely-related
sets RCU

.)

In particular, consider the following curious inclusions:

Theorem 1.2 The following inclusions hold:

• BPP ⊆ {A : A≤p
ttRC} [BFKL10]

• PSPACE ⊆ PRC [ABK+06b].

• NEXP ⊆ NPRC [ABK06a].

We call these inclusions “curious” because the upper bounds that they provide for the com-
plexity of problems in BPP, PSPACE and NEXP is not even computable; thus at first glance these
inclusions may seem either trivial or nonsensical. However, in spite of the fact that RC is not
computable, it is not straightforward how to make use of RC via an efficient reduction, and hence
Theorem 1.2 does not seem trivial. After the failure of attempts to squeeze larger complexity classes
into NPRC , it was even suggested that it might be possible to characterize complexity classes in
terms of efficient reductions to RC [ABK06a].

What might such a characterization look like? Since PRC contains undecidable problems (such
as RC itself), it would surely be necessary to restrict attention to only decidable sets. Yet this is
not enough, since there are arbitrarily complex decidable sets that are reducible to RC via very
restrictive polynomial-time reductions (polynomial-time disjunctive truth-table reductions, denoted
≤p

dtt) [ABK06a, Theorem 16].
A way out of this trap is provided by the insight that these “arbitrarily complex sets” depend

in a crucial way on the particular choice of the universal Turing machine U that is picked to
provide a formal definition of the Kolmogorov complexity function C(x) (in contrast to the usual
situation in Kolmogorov complexity, where one is able to argue that the choice of universal Turing
machine is irrelevant). Indeed, the choice of universal Turing machine is irrelevant for the inclusions
in Theorem 1.2. If we let DEC denote the class of decidable sets, it was shown that one can
characterize P as DEC ∩ ⋂

U{A : A≤p
dttRCU

}. That is, if the choice of U is “factored out” in this
way, characterizations of complexity classes can be obtained in some cases.

This leads us to the question of whether NEXP is not merely contained in DEC ∩⋂
U NPRCU

(which is known [ABK06a]), but is actually equal to this class. We are not able to answer this
question. Worse, we are not able to say whether or not every decidable problem lies in

⋂
U NPRCU .

Still worse, we cannot disprove that the halting problem is in NPRCU , or in PRCU , or that it is even
≤p

tt -reducible to RCU
for every universal Turing machine U .
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1.1 Statement of the Main Theorem

Instead, we make progress on the analogous question, posed in terms of prefix complexity K(x),
which is the other most-widely-studied variant of Kolmogorov complexity. (See Section 2 for defi-
nitions.) Let RK = {x : K(x) ≥ |x|} (or, when we need to be explicit about the choice of universal
prefix machine U , let RKU

= {x : KU (x) ≥ |x|}). It is known that NEXP ⊆ ⋂
U NPRKU [ABK06a],

and we show that this inclusion is not far from being optimal, in the following sense. EXPSPACE is
the smallest space complexity class that is known to contain NEXP. We show that every decidable
set in

⋂
U NPRKU lies in EXPSPACE.

The proof of Buhrman et al. [BFKL10], showing that BPP ⊆ {A : A≤p
ttRC} also shows that

BPP ⊆ ⋂
U{A : A≤p

ttRKU
}. We show that every decidable set that is in

⋂
U{A : A≤p

ttRKU
} is in

PSPACE (which is the smallest space complexity class that is known to contain BPP). Thus our
result shows that the inclusion of [BFKL10] is not too far from optimal. (Previously, absolutely no
upper bound had been known for the complexity of this class.)

A stronger inclusion is possible for “monotone” truth-table reductions (≤p
mtt). We show that

DEC ∩⋂
U{A : A≤p

mttRKU
} ⊆ coNP.

Our work builds on a construction by Muchnik and Positselsky [MP02]. (See also [AFG10]
for an alternative exposition of their main result that we utilize here.) They showed that there
is an “optimal prefix free entropy function” H such that the halting problem is not truth-table
reducible to the overgraph of H. This is more-or-less equivalent to showing that there is a universal
prefix Turing machine U such that the halting problem is not truth-table reducible to the set
{(x, r) : KU (x) < r}, which in turn immediately implies that the halting problem is not truth-
table reducible to RKU

. This contrasts with the fact that, for every universal Turing machine U ,
the halting problem is truth-table reducible to RCU

[Kum96]. It also contrasts with the fact that
there is a different universal prefix Turing machine U ′ such that the halting problem is truth-table
reducible to RKU′ [ABK06a], leading to the rather uncomfortable situation that the question of
whether or not RK is complete under truth-table reductions depends on the choice of universal
prefix Turing machine that one uses in order to define the prefix Kolmogorov complexity function
K(x). A detailed study of analogous questions that arise when one considers other variants of
Kolmogorov complexity (such as various types of “monotone” Kolmogorov complexity) has been
carried out by Day [Day09].

Until now, it was not at all clear that it was reasonable to consider the class of problems
efficiently reducible to RK to be a complexity class, since it was conceivable that every decidable
problem was efficiently reducible to RK . In contrast, combining our results with prior work we now
have the following:

• BPP ⊆ DEC ∩⋂
U{A : A≤p

ttRKU
} ⊆ PSPACE ⊆ DEC ∩⋂

U PRKU .

• NEXP ⊆ DEC ∩⋂
U NPRKU ⊆ EXPSPACE.

In particular, note that PSPACE is sandwiched in between the classes of decidable problems that
are reducible to RK via truth-table and Turing reductions.

We postpone until Section 4 the discussion of what these results signify. In that section, we also
discuss avenues for future research suggested by this work. We do believe that these results take
us closer to the goal of characterizing complexity classes in terms of efficient reductions to RK .

2 Background and Definitions
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Definition 2.1 If f is a function mapping some domain to the naturals N, then ov(f), the over-
graph of f , is

{(x, y) : f(x) ≤ y}.

The following example gives a familiar overgraph, related to (plain) Kolmogorov complexity:

Example 2.2 Fix a Universal Turing machine U . Let C(x) be the size of the shortest s such that
U(s) = x. Note that

ov(C) = {(x, y) : there is an s, |s| ≤ y such that U(s) = x}.
Note that ov(C) is c.e.

This paper is concerned much more with prefix complexity.

Definition 2.3

1. A prefix Turing machine is a Turing machine M such that, for all x, if M(x) halts then, for
all y 6= λ, M(xy) does not halt. That is, the domain of M is a prefix code.

2. Let M be a prefix Turing machine. Define KM (x) to be the size of the shortest s such that
M(s) = x.

3. A universal prefix Turing machine is a prefix Turing machine U such that, for any prefix
Turing machine M , there is a constant c such that for all x,KU (x) ≤ KM (x) + c.

Example 2.4 Let M be a prefix Turing machine. Note that

ov(KM ) = {(x, y) : there is an s, |s| ≤ y such that M(s) = x}.
Note that ov(KM ) is c.e.

Definition 2.5 We select some universal prefix Turing machine U and call KU (x) the prefix com-
plexity of x. As usual, we delete the subscript in this case, and denote the prefix complexity of
x by K(x). The arbitrary choice of U affects K(x) by at most an additive constant, and in most
instances where prefix complexity is studied, the particular choice of U is deemed to be irrelevant.
Note however, that in this paper it is important to consider KU for various machines U .

The following definition was used implicitly by Muchnik and Positselsky [MP02]:

Definition 2.6 A Prefix Free Entropy Function f is a function from {0, 1}∗ to N such that

• ∑
x∈{0,1}∗ 2−f(x) ≤ 1 and

• ov(f) is c.e.

The canonical example of a prefix free entropy function is K(x). (K can be seen to be a prefix
free entropy function by appeal to the Kraft Inequality; see e.g. [LV08, Theorem 1.11.1].)

Note that if f is a prefix free entropy function, then 2−f is a special case of what Li and Vitányi
call a Lower Semicomputable Discrete Semimeasure [LV08, Definition 4.2.2]. We recall the Coding
Theorem (see [LV08, Theorem 4.3.3]), the proof of which yields the following important relationship
between prefix free entropy functions and prefix complexity.
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Theorem 2.7 Let f be a prefix free entropy function. Given a machine computing f , one can
construct a prefix machine M such that f(x) = KM (x)− 1.

Proof: The Coding Theorem, as stated and proved in [LV08, Theorem 4.3.3], gives only the
inequality f(x) ≤ KM (x) − 3, where 2−f is a lower semicomputable semimeasure. However, since
we are dealing with the special case where f is a prefix free entropy function, we can dispense
with some of the technicalities in the proof of [LV08, Theorem 4.3.3]. In particular (using the
terminology utilized by Li and Vitányi in their proof) we use intervals Ix, and observe that each
Ix contains a binary interval having length (exactly) half the length of Ix. Modifying the proof of
[LV08, Lemma 4.3.3], to give the label of this interval (instead of the label of the entire interval in
the case where Ix is itself a binary interval) yields the desired prefix machine.

We will make use of the following easy propositions.

Proposition 2.8 Let U and U ′ be prefix Turing machines. Then there is a prefix machine U ′′ such
that KU ′′(x) = min(KU (x),KU ′(x)) + 1.

Proof: The domain of U ′′ is {1x : x is in the domain of U} ∪ {0x : x is in the domain of U ′}.

Proposition 2.9 Given any machine U and constant c, there is a machine U ′ such that KU (x) +
c = KU ′(x)

Proof: The domain of U ′ is {0cx : x is in the domain of U}.
In this paper we consider four types of reductions: truth table reductions, monotone truth table

reductions, anti-monotone reductions, and Turing reductions.

• Truth-table reductions. For a complexity class R and languages A and B, we say that A
R-truth-table-reduces to B (A ≤Rtt B) if there is a function q computable in R, such that, on
an input x ∈ {0, 1}∗, q produces an encoding of a circuit λ and a list of queries q1, q2, . . . qm

so that for a1, a2, . . . , am ∈ {0, 1} where ai = B(qi), it holds that x ∈ A if and only if
λ(a1a2 · · · am) = 1. If the function q is polynomial time computable, we say that A polynomial-
time-truth-table-reduces to B (A ≤p

tt B).

• Monotone truth-table reductions. In the scenario above, if the circuit λ computes a mono-
tone function (i.e. changing any input bit of the function from 0 to 1 cannot change the
output of the function from 1 to 0), then we say that A R-monotone-truth-table-reduces to
B (A ≤Rmtt B). If the function q is polynomial time computable, we say that A polynomial-
time-monotone-truth-table-reduces to B (A≤p

mttB).

• Anti-monotone truth-table reductions. In the scenario above, if the circuit λ computes an
anti-monotone function (i.e. ¬λ is monotone), then we say that A R-anti-monotone-truth-
table-reduces to B (A ≤Ramtt B). If the function q is polynomial time computable, we say that
A polynomial-time-anti-monotone-truth-table-reduces to B (A≤p

amttB).

• Turing reductions. We say that A R-Turing reduces to B (A ≤RT B) if there is an oracle
Turing machine in class R that accepts A when given B as an oracle.
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3 Main Results

The proof of the following theorem is a modification of Theorem 2.7 of [MP02] combined with ideas
from [ABK06a]

Theorem 3.1

DEC ∩
⋂

U

{A : A ≤p
tt RKU

} ⊆ PSPACE

Proof:
We will actually prove the statement

DEC ∩
⋂

U

{A : A ≤p
tt ov(KU )} ⊆ PSPACE (1)

The theorem follows, since any query “x ∈ RKU
?” can always be modified to the equivalent query

“(x, |x| − 1) 6∈ ov(KU )?”, so

DEC ∩
⋂

U

{A : A ≤p
tt RKU

} ⊆ DEC ∩
⋂

U

{A : A ≤p
tt ov(KU )}

To prove the statement (1) it suffices to show that

L 6∈ PSPACE ⇒ ∃ a universal prefix machine U s.t. L 6≤p
tt ov(KU ) (2)

Let L 6∈ PSPACE be given. Our strategy will be to use a diagonalization technique to carefully
construct a universal prefix machine U such that L 6≤p

tt ov(KU ). To do this we will use the standard
prefix complexity function K, together with a function F : {0, 1}∗ → N that we will construct, to
form a function H : {0, 1}∗ → N with the following properties.

1. F is a total function and ov(F ) is c.e.

2. H(x) = min(K(x) + 4, F (x) + 2).

3.
∑

x∈{0,1}∗ 2−H(x) ≤ 1
4 .

4. L 6≤p
tt ov(H).

Claim 1: Given the above properties, H = KU ′ for some universal prefix machine U ′ (which by
Property 4 ensures that (2) holds).

Proof: By Property 3 we have that
∑

x∈{0,1}∗ 2−F (x)+2 ≤ 1
4 . Therefore

∑
x∈{0,1}∗ 2−F (x) ≤ 1,

which along with Property 1 means that F is a prefix free entropy function. By Proposition 2.7 we
then have that F +1 is KM for some prefix machine M . By Proposition 2.9 we have that K(x)+3 is
KU ′′ for some universal prefix machine U ′′. Thus, by Lemma 2.8, H(x) = min(K(x)+4, F (x)+2) =
min(K(x) + 3, F (x) + 1) + 1 is KU ′ for some universal prefix machine U ′.
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It remains to show that for a given L 6∈ PSPACE we can always construct an H with the desired
properties. Let us first informally discuss the ideas before providing the formal construction.

Our control over H comes from our freedom in constructing the function F . The construction
will occur in stages – at any given time in the construction there will be a “current” version of F
which we will denote by F ∗. Similarly, there will be a “current” version of K denoted by K∗, which
represents our knowledge of K at a given stage. At all times, H∗, our “current” version of H, will
be defined as min(K∗(x) + 4, F ∗(x) + 2).

Originally we set F ∗(x) = 2|x| + 2 and K∗ as the empty function. At each stage of the
construction we will assume that a new element (x, y) is enumerated into ov(K) according to some
fixed enumeration of ov(K). (This is possible since ov(K) is c.e.) When this occurs K∗ is updated
by setting K∗(x) = min(K∗(x), y). (Since K∗ is a partial function, it is possible that K∗(x) was
previously undefined. In this case we set K∗(x) = y.) Similarly, during the construction at times
we will modify F by enumerating elements into ov(F ). Whenever we enumerate an element (x, y)
into ov(F ), F ∗ is updated by setting F ∗(x) = min(F ∗(x), y).

Let γ1, γ2, . . . be a list of all possible polynomial time truth table reductions from L to ov(H).
This is formed in the usual way: we take a list of all Turing Machines and put a clock of ni + i on
the ith one and we will interpret the output as an encoding of a Boolean circuit on atoms of the
form “(z, r) ∈ ov(H)”.

We need to ensure that L 6≤p
tt ov(H). We break this requirement up into an infinite number of

requirements:

Re : γe is not a polynomial-time tt-reduction of L to ov(H)

At stage e of the construction we will begin to attempt to satisfy the requirement Re. For
a particular input x, let γe(x) be an encoding of a circuit λe,x. The output of the circuit λe,x is
determined by the truth values of the atoms “z ∈ ov(H)” that label the inputs to the circuit. Define
λe,x[H ′] to be the truth value obtained by taking the circuit λe,x and for each atom “(z, r) ∈ ov(H)”
using the truth value of “(z, r) ∈ ov(H ′) in its place. In order to satisfy the requirement Re, we
would like to find some x such that λe,x[H] 6= L(x), where L(x) is the characteristic function of
L. The problem is that at a given stage s we can “guess” at the value of λe,x[H] by computing
λe,x[H∗], but in general we cannot know the value of λe,x[H] for sure, because as H∗ evolves the
value of λe,x[H∗] may change. The main difficulty is that the function K is out of our control and
determining whether (z, r) ∈ ov(K) is in general an uncomputable task.

We do have some influence over the situation though due to our control of F . Indeed, for any
atom “(z, r) ∈ ov(H)”, we can ensure that the truth value of the atom is 1 by enumerating (z, r−2)
into ov(F ). (Note that for all x, the value of H∗(x) can only decrease over time). We have to be
careful about making these types of changes though; if we are too liberal in modifying F we may
violate the condition

∑
x∈{0,1}∗ 2−H(x) ≤ 1/4 in the process. Thus the construction becomes a

balancing act – we will try to use F to satisfy Re while at the same time maintaining the invariant
that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/4 . (In particular, if Fs is the function F ∗ at the beginning of stage s,

for all x we will not want lims→∞ Fs(x) to be very much smaller than K(x)).
As part of our solution, for each Re we will find a suitable witness x and set up a game Ge,x

played between us (making moves by enumerating elements into ov(F )), and K, who makes moves
by enumerating elements into ov(K). (Even though elements are obliviously enumerated into ov(K)
according to some fixed enumeration we will treat K as if it is a willful adversary). The witness
x will be chosen so that we have a winning strategy: as long as K continues to make legal moves
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we can respond with changes to F (our own legal moves) that both assure that Re is satisfied and
that

∑
x∈{0,1}∗ 2−H∗(x) ≤ 1/4.

It is possible that K will cheat by enumerating elements into ov(K) in such a way that it
plays an illegal move. In this case we will simply destroy the game Ge,x and start all over again
with a new game Ge,x′, using a different witness x′. However we will be able to show that if K
cheats infinitely often on games associated with a particular requirement Re, then

∑
x∈{0,1}∗ 2−K(x)

diverges; therefore it can only happen finitely often.
The requirements R1, R2, R3, . . . are listed in priority ordering. If during stage s a move is

played on a game Ge,x, we say that Re is “acting”. In this case for all e < e′ ≤ s, if Ge′,y is the
game associated with Re′ currently being played, we destroy this game and start a new game Ge′,y′

with some new witness y′. When this happens we say that each of the Re′ has been “injured” by
Re. The reason this works in the end is that at some point R1, R2, . . . , Re−1 have stopped acting,
so Re will no longer ever be injured by some higher priority requirement.

3.1 Description of the Game

Before we present the other details of the formal construction, let us describe one of the games Ge,x

in more depth and provide some analysis of the game. Let the inputs to the Boolean circuit λe,x

(encoded by γe(x)) be labeled by the atoms {(z1, r1), . . . , (zk, rk)}. Let Xe = {z1, . . . , zk}. Note
that the queries in this reduction are of the form: “Is H(zi) ≤ ri?”. If H∗(zi) ≤ ri then we already
know H(zi) ≤ ri, so we can replace that input to the circuit with the value TRUE and simplify the
circuit accordingly. Renumber the z’s, rename k to again be the number of questions, and rename
Xe to be the set of all z’s being asked about. When we are done we have {(z1, r1), . . . , (zk, rk)}
and we know that (∀zi ∈ Xe)[H∗(zi) > ri].

We make one more change to Xe. If there exists an element zi such that zi ∈ Xe and zi ∈ Xe′

for some e′ < e, then changing H∗ on the value zi during the game Ge,x could affect the game
associated with the requirement Re′ , which would upset our priority ordering. Hence we will take

Xe = Xe −
⋃

e′<e

Xe′ .

This will ensure that Re cannot injure any Re′ with e′ < e.
Let H∗

e,x be the function H∗ when the game Ge,x is first constructed. Let ε = 2−e−ie−5. (How
ie is determined will be explained later). The game Ge,x is played on a labeled DAG. The label of
each node of the DAG has the following two parts:

1. A function h that maps Xe to N. The function h provides conjectured values for H restricted
to Xe. The function h will be consistent with H∗

e,x in that (∀i)[h(zi) ≤ H∗
e,x(zi)].

2. A truth value VAL, which is the value of λe,x assuming that (∀z ∈ Xe)[H(z) = h(z)]. Note
that this will be either YES or NO indicating that either, under assumption (∀z ∈ Xe)[H(z) =
h(z)], λe,x thinks x ∈ L or thinks x /∈ L.

There is a separate node in the DAG for every possible such function h.
Let us place an upper bound on the size of this DAG. The set Xe contains at most |x|e queries.

For any query zi, H(zi) can take at most 2|zi|+4 values (since it is always bounded by F ∗(zi)+2).
Note also that |zi| ≤ |x|e. Thus there are at most (2|x|e + 4)|x|e possible choices for h. For all
large x this is bounded by 2|x|2e

, so note that we can represent a particular node in the DAG with
|x|2e + 1 bits.

We now describe the start node and how to determine the edges of the DAG.
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1. There is a node (h,VAL) where h = H∗
e,x restricted to Xe. This is the start node and has

indegree 0.

2. There is an edge from (h,VAL) to (h′,VAL′) if for all zi ∈ Xe, h(zi) ≥ h′(zi) (so it is possible
that H∗ could at some point evolve from H∗

e,x to h, and then at a later point evolve from h
to h′.)

The game Ge,x is played between two players, the YES player and the NO player. Each player
has a score, which originally is zero, and represents how much the player has been penalized so far
in the game. (In other words a high score is bad). The game starts with a token placed on the
start node. The YES player goes first (although this choice is arbitrary – one could also have the
first player be the one whose value differs from the value of the start node), after which the players
alternate moves.

On a given turn a player can either leave the token where it is or move the token to a new node
in the DAG. Suppose a player moves the token from a node t to a node t′, where h is the function
labeling t and h′ is the function labeling t′. In this case we add

∑
zi∈Xe

2−h′(zi) − 2−h(zi) to the
player’s score.

A player can legally move the token from node t to t′ if

1. There is an edge from t to t′ in the game DAG.

2. The score of the player after making the move does not exceed ε.

The YES player wins if the token ends up on a node such that VAL = YES, and the NO player
wins if the token ends up on a node such that VAL = NO. Note that because the game is entirely
deterministic, for a given game Ge,x, either the YES player has a winning strategy or the NO player
has a winning strategy. Let val(Ge,x) = 1 if the YES player has a winning strategy on the game
Ge,x and val(Ge,x) = 0 otherwise.

During the actual construction the games will be played between us (the construction) trying to
make the computation go one way, and K (which we do not control) trying to make it go (perhaps)
another way. We will always ensure that we play the side of the player who has the winning strategy
in the game. We will effect our moves by enumerating elements into ov(F ), which changes F ∗ and
hence H∗. (To move the token to a node labeled with the function h, we modify H∗ so that h
equals H∗ restricted to the set Xe) The K moves will occur when a new element is enumerated into
ov(K) at the beginning of each stage, which changes K∗ and hence H∗. (In this case K is moving
the token to the node in the game DAG labeled by the new H∗).

The key is that the players’ scores measure how much the sum
∑

x∈{0,1}∗ 2−H∗(x) has gone up,
which we bound by not allowing a player’s score to exceed ε. (Of course K is oblivious to the rules
of the game and will at times cheat – we take this into account as part of our analysis.) One final
note: it is possible that K will simply stop playing a game in the middle and never make another
move. This will not matter to us in the construction; what is important is that we have a winning
strategy and if K does move we always have a winning response.

3.2 Formal Construction

Stage 0:

• Let F ∗ initially be defined as F ∗(x) = 2|x|+ 2.

9



• Let K be the standard prefix complexity function, and K∗ initially be the empty function.

• At all times throughout the construction, we have that H∗(x) = min(K∗(x) + 4, F ∗(x) + 2).
(In the case where K∗(x) is undefined, let H∗(x) = F ∗(x) + 2). We will denote by Hs the
function H∗ as it is at the beginning of stage s.

• For all e, set ie = 0. In the future ie will be the number of times Re has been injured by the
requirements Re′ , 1 ≤ e′ ≤ e− 1.

• Let HEAP be an object that enumerates strings in the normal lexicographical order. So the
first time that HEAP is called it returns the string ‘0’, the second time it returns ‘1’, then
‘00’, ‘01’, etc.

Stage s (for s ≥ 1):
Let (x′, y′) be the sth element in the fixed enumeration of ov(K). Update K∗ by setting

K∗(x′) = min(K∗(x′), y′). (This automatically updates H∗ as well)
(**) For 1 ≤ e ≤ s we consider requirement Re.
There are two possibilities:

1. There is no game associated with Re in progress. This can occur because either e = s or
because the game associated with Re was destroyed during the last round.

In this case we continue to get strings from HEAP until a string x is found that has the
following property:

• If we define a new game Ge,x using the current H∗, then val(Ge,x) 6= L(x), where L(x)
is the characteristic function of L.

We will later show in Claim 4 that in a finite number of steps we will always find such an x.

Once we have found the string x, construct the game Ge,x in the way described in the previous
section and begin the game. For this game, we will play as the Y ES player if val(Ge,x) = 1,
and as the NO player if val(Ge,x) = 0. (That is, we will always play as the player who has a
winning strategy for the game).

2. The game associated with Re is already in progress (again call this game Ge,x).

There are a few sub-cases to consider.

(a) K has not changed on Xe at all since the last stage. We do nothing.

(b) K on Xe has changed so much that the move K plays causes his score to exceed ε (i.e.
K “cheats”). In this case we destroy the game Ge,x.

(c) It is our turn in Ge,x, either because the token is on the start node of the DAG and we
are the YES player, or because K on Xe has changed in a way that his score does not
exceed ε, so he has played a legal move.
In this case we play the move dictated by our winning strategy (which we can assume
we have stored or which we can recompute each time). This may be to do nothing or it
may involve moving the token to a new node, in which case we change H∗ accordingly
by enumerating elements into ov(F ).
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If either case (b) or (c) occurs, we say that “Re is acting”, in which case for all e′ such that
s ≥ e′ ≥ e + 1: Set ie′ to ie′ + 1 and destroy the game associated with Re′ . Note: ie does not
change in case (b), even though Ge,x is destroyed.

If Re acts then proceed to the next stage. Otherwise return to (**) and process the next e.

END OF CONSTRUCTION

Claim 2: For all e, each Re acts at most finitely often and is satisfied.
Proof of Claim 2:

We prove this by induction on e. Assume that the claim is true for all e′ < e. We show that
the claim holds for e. By the inductive hypothesis there exists a stage s′ such that, for all s ≥ s′,
for all e′ < e, Re′ does not act at stage s.

Let Ge,x be the game associated with Re at stage s. If Ge,x is never destroyed in a later stage,
then (by construction) Re will be satisfied (since for H = lims→∞Hs, our winning strategy ensures
that γe,x[H] evaluates to Y ES if and only if x is not in L).

Suppose that Ge,x is destroyed at some point. Then, since by the inductive hypothesis Re

cannot be injured by higher priority requirements, by the rules of the construction it must be that
the “player” K cheats on the game Ge,x. In doing this, K is adding at least ε = 2−e−ie−5 to∑

x∈Xe
2−K∗(x) and hence to

∑
x∈{0,1}∗ 2−K∗(x).

Once K cheats and destroys the game Ge,x, a new witness x′ is found and a new game Ge,x′

is started during the next stage. Once again if this game is never destroyed then Re will be
satisfied. If this game is also later destroyed, this means that another ε = 2−e−ie−5 is added to∑

x∈{0,1}∗ 2−K∗(x). The crucial observation is that since ie did not change, this is the same ε as
before.

This process keeps repeating. If the games associated with Re continue to be destroyed indef-
initely, then

∑
x∈{0,1}∗ 2−K(x) ≥ ε + ε + · · · so it diverges. This contradicts K being a prefix free

entropy function.
Hence eventually there is some game Ge,x′′ that is played throughout all the rest of the stages.

Since the game DAG for Ge,x′′ is finite, this means that eventually Re stops acting and is satisfied.
End of Proof of Claim 2

Claim 3:
∑

x∈{0,1}∗ 2−H(x) ≤ 1
4 .

Proof of Claim 3:
We have that H = lims→∞Hs, and thus

∑

x∈{0,1}∗
2−H(x) =

∑

x∈{0,1}∗
2−H1(x) +

∑

s≥1

∑

x∈{0,1}∗
(2Hs+1(x) − 2Hs(x)).

That is, we can bound the sum by bounding H1 and by bounding the changes that occur to H over
the lifetime of the construction (some of which are made by K, and some by F ).

Originally H∗(x) = F ∗(x) + 2 = 2|x| + 4 for all x, so
∑

x∈{0,1}∗ 2−H1(x) = 1
16 .

The total contribution that K can make to
∑

x∈{0,1}∗ 2−H(x) is bounded by
∑

x∈{0,1}∗ 2−K(x)+4.
Since K is a prefix free entropy function, this contribution is at most 1/16.

Let us now consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) due to movements
by F on games on which K eventually cheats. On each of these games F contributes less to∑

x∈{0,1}∗ 2−H(x) than K, so from the above we can say that the total contribution that F makes
to

∑
x∈{0,1}∗ 2−H(x) while playing these games is at most 1/16.
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Finally, let us consider the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) due to move-
ments by F on games that are never destroyed, or are destroyed by higher priority requirements.
Consider such games associated with a particular requirement Re. During the first such game
associated with Re, ie = 0, so F can change at most ε = 2−e−ie−5 = 2−e−5. On the second such
game associated with Re, ie = 1, so F can change at most ε = 2−e−6. Generalizing, we see that
the total contribution that F makes to

∑
x∈{0,1}∗ 2−H(x) on such games associated with Re is

∞∑

i=5

2−e−i = 2−e
∞∑

i=5

2−i = 2−e−4

Hence, the total contribution that F makes to
∑

x∈{0,1}∗ 2−H(x) on games that are never destroyed,
or are destroyed by higher priority requirements is at most

∑∞
e=1 2−e−4 = 1

16 .
Putting all this information together we have that

∑

x∈{0,1}∗
2−H(x) ≤ 1

16
+

1
16

+
1
16

+
1
16

≤ 1
4

End of Proof of Claim 3
All that remains is to show that whenever a new game associated with Re is constructed, a

witness x with the appropriate property can be found. Recall that we are searching for an x such
that

• If we define a new game Ge,x using the current H∗, then val(Ge,x) 6= L(x), where L(x) is the
characteristic function of L.

Claim 4: In the above situation, a witness with the desired property can always be found in a finite
number of steps

Proof of Claim 4:
Suppose for contradiction that during some stage s for some e we are not able to find such an x.

Let y be the last string that was taken from HEAP before this endless search for an x began. This
means that for all strings x > y (under the normal lexicographical ordering), when we construct
the game Ge,x, val(Ge,x) = L(x). But this gives a PSPACE algorithm to decide L, which we now
describe.

Hardwire in the value of L(x) for every x ≤ y. Also hardwire in the function H∗ at this moment
in the construction and Xe′ for all e′ ≤ e. (It is possible to hardwire in H∗ because at any given
moment in the construction only finitely many elements have been enumerated into ov(F ) and
ov(K).)

On an input x ≤ y, refer to the lookup table to decide L(x). On an input x > y, use the stored
values of H∗ and the Xe′ ’s to construct Ge,x and output val(Ge,x). As noted previously, for all large
x we can represent a particular node in the DAG of Ge,x with |x|2e + 1 bits. Despite the fact that
there are exponentially many nodes in the graph, an alternating polynomial-time Turing machine
can search for winning strategies on the DAG by merely keeping track of a constant number of
nodes, where each node is specified by H∗ restricted to the set Xe used for Ge,x plus the circuit
λe,x, which requires at most |x|c bits for some constant c. Therefore, we can represent any state of
the game (i.e., the node where the token currently lies, plus the scores of the players) by a number
of bits bounded by a polynomial in |x|. Given the functions h and h′ for any two nodes in the
DAG, along with the scores of each player, it is easy to determine in polynomial time if it is legal
to move from h to h′, and to compute the scores of each player after the move. (It suffices to verify
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that for all z, h(z) ≤ h′(z), and to add up a polynomial number of rationals of the form a/2b where
b = nO(1). The length of any path in the DAG is bounded by a polynomial in n (since the values
of h always decrease). Thus, determining winning strategies is possible in alternating polynomial
time (since this amounts to determining if there exists a move of player 1 such that for all moves
of player 2 there exists a response by player 1 . . . , ending in a winning position of player 1).

Since alternating polynomial time is equal to PSPACE [CKS81], this contradicts the fact that
L 6∈ PSPACE.
End of Proof of Claim 4

Theorem 3.2

DEC ∩
⋂

U

{A : A≤p
mttRKU

} ⊆ coNP ∩ P/poly

Proof: The containment in P/Poly comes from [ABK06a].
Note that a reduction showing L≤p

mttRKU
corresponds to an anti-monotone reduction to ov(KU )

(where the only queries are of the form “Is KU (z) < |z|?”) Thus this same reduction is an anti-
monotone reduction from the complement of L to the complement of RKU

. If we replace each
Boolean function in this anti-monotone reduction with its complement, we obtain a monotone
reduction of L to ov(KU ).

Thus it suffices to show that any set that is ≤p
mtt -reducible to the overgraph ov(KU ) for every

U is in NP.
The proof of this containment is almost identical to the proof of Theorem 3.1. The only

difference is now we consider an arbitrary language L 6∈ NP, and must show that when a game Ge,x

is constructed corresponding to a polynomial time monotone truth table reduction γe, determining
whether val(Ge,x) = 1 can be computed in NP. Note that in the monotone case, the NO player
of the game has no incentive to ever make a move, as doing so could only change the value of the
circuit λe,x from NO to YES. Therefore whether the YES player has a winning strategy in the
game depends solely on whether the YES player can legally move the token from the start node to
a node u in the game DAG labeled by YES. This is an NP question – the certificate is the node u,
which as we have seen can be represented by a polynomial number of bits in |x|.

Theorem 3.3

DEC ∩
⋂

U

NPRKU ⊆ EXPSPACE

Proof: An NP-Turing reduction can be simulated by a truth-table reduction computable in
exponential time, where all queries have length bounded by a polynomial in the input length.
Carrying out the same analysis as in the proof of Theorem 3.1, but changing the time bound on the
truth-table reductions from polynomial to exponential, immediately yields the EXPSPACE upper
bound.
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4 Perspective and Open Problems

How should one interpret the theorems presented here?
Prior to this work, the inclusion NEXP ⊆ NPRK was a mere curiosity, since it was not clear

that it was even meaningful to speak about efficient reductions to an undecidable set. Here, we
show that if we view RK not as merely a single undecidable set, but as a class of closely-related
undecidable sets (differing only by the “insignificant” choice of the universal Turing machine U),
then the decidable sets that are always in NPRK is a complexity class sandwiched between NEXP
and EXPSPACE. The obvious question is whether this class is actually equal to NEXP (or to
EXPSPACE). Any characterization of a complexity class in terms of efficient reductions to a class
of undecidable sets would raise the possibility of applying techniques from computability theory to
questions in complexity theory, where they had seemed inapplicable previously.

One possible objection to the theorems presented here is that they make use of universal Turing
machines U that are far from “natural”. However, we see little to be gained in trying to formulate
a definition of a “natural” universal Turing machine. Even basic questions such as whether there
is a truth-table reduction from the Halting Problem to RK depend on the choice of the universal
Turing machine U , and the only machines for which the answer is known (positive or negative) are
all decidedly “unnatural”. All of the positive results, showing that problems are efficiently reducible
to RK hold using a quite general notion of “universal Turing machine”, and we believe that the
approach used here and in [ABK06a] to “factor out” the idiosyncrasies of individual universal
machines is a more productive route to follow.

It is natural to conjecture that our main theorems hold, even if “DEC∩” is erased from the
statement of the theorems. For instance, if A is in

⋂
U NPRKU , we conjecture that A is decidable.

We also conjecture that all of our main theorems hold if the prefix complexity function K(x) is
replaced everywhere by C(x), although the techniques that we use do not seem sufficient to prove
this.

Is RK just as useful as an oracle as ov(K)? All of the upper bounds that we have on the classes
of sets reducible to RK hold also for the classes of sets reducible to ov(K). However, it seems much
easier to make use of ov(K) than to use RK . For instance, for any decidable set A, there is a
universal prefix machine U such that A≤p

ttov(KU ) (by creating a machine U such that x ∈ A if and
only if KU (x) is odd). (Details will appear in a more complete version of this work.) In contrast,
some of us would conjecture that, for any machine U , if A≤p

ttRKU
, then A ∈ P/poly. (Some partial

results in this direction can be found in [ABK06a]; see also [Hit10].)

4.1 Derandomization from Uniform Hardness Assumptions

Work in derandomization that follows the “hardness vs. randomness” paradigm generally falls
into two categories: those that proceed from uniform hardness assumptions, and those that rely
on nonuniform hardness. The nonuniform approach yields the more general and widely-applicable
tools. For instance, the work of Babai, Fortnow, Nisan, and Wigderson [BFNW93] shows that,
given any function f , one can construct a pseudorandom generator Gf such that, given any test T
that distinguishes the pseudorandom distribution generated by Gf from the uniform distribution,
one can conclude that f has polynomial-size circuits that have access to T as an oracle. (Or, in
terms of the contrapositive, if f does not have small circuits relative to T , then the generator Gf

is secure against T .)
In contrast, there has been much more modest success in providing derandomization tools from

uniform hardness assumptions. The canonical example here comes from Impagliazzo and Wigderson
[IW01] as extended by Trevisan and Vadhan [TV07]. They show that for certain functions in
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PSPACE (including some PSPACE-complete problems), one can build a pseudorandom generator
Gf such that, given any test T that distinguishes the pseudorandom distribution generated by Gf

from the uniform distribution, one can conclude that f can be computed in BPPT . (Or, in terms
of the contrapositive, if f is not in BPPT , then the generator Gf is secure against T .) Trevisan
and Vadhan showed that a completely black-box reduction, such as is used in the nonuniform
setting, can not be used in order to obtain derandomizations from uniform assumptions, but they
did not find any limits on the applicability of this approach. For instance, it can be used for
some PSPACE-complete problems (because some such problems are both downward- and random-
self-reducible), but are there some (special) problems, say, complete for doubly-exponential time
where the technique can be applied? (Only problems in PSPACE can be downward-self-reducible
[Bal90], but it is not known that derandomization from uniform assumptions requires downward-
self-reducibility.)

If we restrict attention to tests T that contain no strings of low (resource-bounded) complexity,
then the BPPT algorithm can be replaced by a ZPPT algorithm [ABK+06b], and thus in particular
one obtains a restricted NPT algorithm. If we consider derandomization from a uniform NPT

hardness assumption, then the domain of applicability of these techniques can be pushed from
PSPACE to NEXP; that is, it is known that for certain problems f in NEXP (including some
NEXP-complete problems), one can build a pseudorandom generator Gf such that, given any test
T that contains many strings and no strings of low (resource-bounded) complexity (and hence is
disjoint from the range of Gf ), one can conclude that f can be computed in NPT [ABK06a]. It is
natural to wonder if NEXP is the limit of this approach, or if it can be pushed even further.

The results in this paper provide the first concrete limits to the reach of derandomization from
uniform hardness assumptions. Any test of the form RKU

will have to be disjoint from the range
of any computable pseudorandom generator, and will thus be an excellent test to distinguish a
pseudorandom distribution from the uniform distribution. Any problem that is not in EXPSPACE
will lie outside of NPRKU for some U . Thus no such problem can be incorporated in this way into
a derandomization argument from a uniform hardness assumption.

In particular, consider doubly-exponential time EEXP; let A be complete for EEXP. The
set of truth-tables of Boolean functions that require oracle circuits of size 2n/2 with oracle A is
complete for EEXP under P/poly reductions [ABK+06b], but is not known to be complete under
NP reductions. Our results show that it cannot be shown to be complete under NP reductions (or
more restrictive reductions) using only the properties that (1) the set contains many strings and
(2) contains no strings of suitably low resource-bounded Kolmogorov complexity, since (a) most
likely EEXP is not contained in EXPSPACE, and (b) in that case, some RKU

is an example of a
set that satisfies conditions (1) and (2), but is not hard for EEXP under NP reductions.

The theorems presented here all relativize. For instance, for any decidable oracle B, if A 6∈
PSPACEB , then there is a universal prefix Turing machine U such that A 6≤PB

tt RKU
. (Note that,

for decidable oracles B, there is no need to “relativize” RKU
. A similar restatement is possible for

noncomputable oracles B, too.) However, it seems quite possible to us that, say, if it were possible
to characterize NEXP in terms of NPRK , that this might proceed via nonrelativizable techniques.
The types of characterizations of complexity classes that we are investigating are quite different
than those that have been studied in the past, and we hope that new insights will result as new
connections are explored.
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