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Abstract

Two-source and affine extractors are two fundamental abgtaidied in the context of algorithmic
derandomization. Explicit constructions of these twoidigtobjects seem to be related, at least on a
superficial level. For instance, constructions of both cisjéor min-entropy rate above half have been
known for quite some time [Chor, Goldreceich, SIAM J. Com@®88; Ben-Sasson et al. 2001], and
much of the recent progress on both problems [Barak et @6;2Bourgain 2007] has relied on similar
new sum-product theorems from additive combinatorics .

This paper establishes further connections between affideveo-source extractors by construct-
ing two-source extractors for arbitrarily small min-emyorate in a black-box manner from any affine
extractor with sufficiently good parameters. Two such cwmsions are presented, and the first part
of our analysis shows that they lead to two-soulmersersvhich are weak (but nontrivial) kinds of
two-source extractors, also known as “bipartite Ramseplga To strengthen this result and obtain
two-source extractors we introduce tgproximate duality conjectu@DC) and initiate its study. The
ADC leads to a rather general result that can be used to damwvetural class of two-source dispersers
— “low-rank dispersers” — into two-source extractors. Sog that a boolean two-input function
FE e IE‘EQXF; is a two-source disperser for min-entropy rateOur main observation — which uses the
ADC — is that if E has rankO(n) overF; when viewed as @" x 2™ matrix in the natural way, thef
is a two-source extractor for min-entropy rate- ¢ (for any¢é > 0) with exponentially small error!

The ADC is a natural conjecture in additive combinatoricst steserves independent study, further
motivation is provided by two recent applications of it taox@munication complexity [Ben-Sasson et al.,
FOCS 2012] and to locally decodable codes [Bhowmik et alCEQ012]. Define theuality measure
of a pair of setA, B C F¥ to be

D(A,B) =

]EaeA,beB [(—1) =1 aibi} ’

ThenD(A, B) = 1ifand only if A is contained in an affine shift of the space dual to the spds. athe
ADC says that every paitd, B) contains a pair of subsetsl’, B’) that have duality measure exactly
and the densitiegA’| /| A| and|B’|/|B| increase withD(A, B):

win { EL I > exp (—e/miog(17D0a 57)

for a positive universal constant

Our main technical result shows that a weak form of the AD@niglied by thePolynomial Freiman-
Ruzsa Conjectur¢PFR) in additive combinatorics (and that ADC also implieweak but as-of-yet
unknown version of the PFR), and that this version of the ABGufficient for obtaining the black-box
construction of two-source extractors mentioned above.

“Department of Computer Science, Technion — Israel Institute of Tdoby,  Haifa, Israel.
eli,nogaz@s.technion.ac.il. The research leading to these results has received funding from tieezn
Community’s Seventh Framework Programme (FP7/2007-2013) @ndet agreement number 240258.

ISSN 1433-8092



Contents

1

Introduction

1.1 Extractors and dispersers for affine and two independent source . . . . . . ... ...
1.2 From affine extractors to two-source dispersers . . . . . . . . .. ...
1.3 Additive combinatorics and the approximate duality conjecture. . . . . . ... ... ..
1.4 From two-source dispersers to two-source extractors via appriexduality . . . . . . . .

1.5 Openquestions . . . . . . . .

Main results

2.1 Extractors and dispersers for affine and two independent source . . . . . .. .. ...
2.2 From affine extractors to two-source diSpersers . . . . . . . . . . ...
2.3 The approximate duality conjecture . . . . . . . . . . . ... .
2.4 From two-source dispersers to two-source extractors via apprexduaality . . . . . . . .
2.5 Organization of therestofthepaper. . . . . . . . . .. .. ... .. .. .. .. ...,

From affine extractors to two-source dispersers
3.1 Concatenated two-source disperser — Proof of Theorem.2.7. . . . . . . .. .. .. ..
3.2 Preimage two-source dispersers — Proof of Theorem?2.9 . . . . . ... ... ... ..

From two-source dispersers to two-source extractors via agpximate duality
4.1 Constant bounds on error by approximate duality for nearly-dtalse. . . . . .. .. ..
4.2 Exponentially small bounds on error using the approximate duality corgectu. . . . . .

The approximate duality conjecture

5.1 Approximate duality for nearly-dual sets — Proof of Theorem2.10. . . . . . .. .. ..
5.2 The nearly-linear polynomial Freiman Ruzsa conjecture implies the polyhonga . . . .
5.3 The polynomial Freiman Ruzsa conjecture implies the nearly-linear.one . . . . . . ..
5.4 The ADC-exp conjecture implies the weak polynomial Freiman Ruzsa ¢orgec. . . . .
5.5 The polynomial Freiman Ruzsa conjecture implies the ADC-exp conjecture . . . . . .
5.6 Proof of maintechnicallemma. . . . . . .. ... ... ... ... L

On the /.-error of multi-output bit affine and two-source extractors
6.1 Onthely-error of existing affine extractors . . . . . .. ... ... ... ... ......
6.2 Increasing the output length of our two-source extractors. . . . . . ... ... .. ...

14
15
16

16
16
17

17
18
19
19
21
23
24

29

30



1 Introduction

The results in this paper can be divided into two parts. In the first parthew a new connection between
two objects that have been studied in the context of algorithmic derandomizatiaro-source dispersers
and affine extractors That is, we show two constructions that convert in a black-box marmeatiine
extractor for min-entropy rate below half into a two-source dispersanforentropy rate below half. One
of our constructions can reach arbitrarily small min-entropy rate as lortgeasaffine extractor outputs
sufficiently many output bits, and has sufficiently small error.

In the second part, we present and study a new conjecture in additivieirtatorics that we call the
approximate duality conjecturend relate it to the well-knowpolynomial Freiman-Ruzsa conjecturéhe
approximate duality conjecture implies in turn that every two-source disparsenk which is at most linear
in the size of the inputs is also a two-source extractor with exponentially smatlfer roughly the same
min-entropy. Since our constructions from the first part are two-sodispersers of linear rank, it follows
from the approximate duality conjecture that they are two-source extsagttir exponentially small error.

1.1 Extractors and dispersers for affine and two independentaurces

Two-source extractors, dispersers and bipartite Ramsey graph Randomness extractgrer, simply,
extractors, deal with the task of extracting uniformly random bits from vemakces of randomness. (See
the surveyShaltiel[2007 for an introduction to this topic.) The gold-standard measure for the randes
of asourceX, i.e., a distribution ovef0, 1}", is its min-entropywhich is defined to be the largestsuch
that for everyz € {0, 1}" the probability assigned te by X is at mos2~*. (It is useful to think ofX as
uniformly distributed over an arbitrary subset{of, 11" of size precisely*.)

A function f : {0,1}" x {0,1}" — {0,1}" is said to be @wo-source extractofor min-entropyk
with error ¢ if for every pair of independent sourcé&s Y that each have min-entropy at leasthe distance
between the uniform distribution on bits and the distributiorf (X, Y') is at most. A two-source disperser
is a one-output-bitrp = 1) two-source extractor with a nontrivial (but possibly large) bound erettor. In
other words, a two-source disperser for min-entrbjya functionf that is non constant ofi x 7" for every
pair of subsetss, T' of size at leas2”. Viewing f as the indicator function of the edge-set of a bipartite
graphG on vertex sets of size”, the graphG's is known as &@"-bipartite Ramsey graphbecause the
subgraph induced by any pair of sets of vertices of size at #¥dstneither complete, nor empty.

Erdds[1947 inaugurated the use of the probabilistic method in combinatorics and shamateother
things that a random functiofi is with high probability a two-source dispersefor min-entropylog n +
O(1). Probabilistic arguments can also be used to show that such a function isgtitprbbability a two-
source extractor for the same min-entropy. However, up until a fevsysgr the best known construction of
two-source dispersers (and extractors) required min-entropy atdgagChor and Goldreich1988. This
lower bound of half on thenin-entropy rate— defined as the ratio between the min-entré@ndn — was
first broken byPudBk and RdI [2004 for the case of two-source dispersers. They constructed tw@sour
dispersers for min-entropy ra%eLo(l). Later on, following the work oBarak, Impagliazzo, and Wigderson
[2006d@ which brought tools from additive combinatorics to bear on the construofiextractorsBarak et al.
[2009 reduced the min-entropy for dispersers downador anyd > 0 . In the meanwhil@ourgain[2005
used more tools from additive combinatorics and constructed a two-sexti@etor for min-entropy rate
1

5 — €o for some constanty > 0, and this construction remains to this date the best in terms of its min-

entropy rate. (If thesumof min-entropies of both sources is considerRedz[2009 showed a construction

The original statement d&rdds[1947 was in terms of non-bipartite Ramsey graphs, but the proof method hola-the-less
for the case of bipartite Ramsey graphs, which are equivalent to twieesdispersers.
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that requires one source to have min-entropy rate just above half bothbe source can have its min-
entropy be as small a&(logn).) Finally, Barak et al[2006H constructed what remains the state of the art
for two-source dispersers, achieving min-entrapyfor any s > 0.

Regarding conditional results, ones that depend on unproven cameigcfbhor and Goldreich1988
Corollary 11] and Zuckerman 1991, Section 6.3] showed that the Paley Conjecture from number theory
implies two-source extractors for very small min-entropy rate &gman Kalai et al[2009 constructed
two-source extractors based on cryptographic assumptions.

Affine extractors An affine extractorfor min-entropyk is a functiong : Fy — F5*, wherelF; denotes the
two-element finite field, such that for every random variallaistributed uniformly on &-dimensional
affine subspacel of F, the random variable(X) is close to being uniformly distributed dfi*. A one-
output-bit ¢n» = 1) function that is nonconstant on everydimensional affine subspace is calledadfine
disperserfor min-entropyk.

The probabilistic method can be used to show that affine extractors existifieentropy as small as
logn + O(1) but up until recently explicit constructions were known only for min-engrogée above half
[Ben-Sasson et al200]. This bound was broken bBarak et al.[2003 for the case of dispersers, they
obtained dispersers for min-entropy rater anyd > 0. Bourgain[2007 used new bounds on exponential
sums resulting from additive-combinatorics to construct affine extratormin-entropys for anyé > 0
that achieve exponentially small error (&fehudayoff[2011], Li [201]] for improvements and alternative
constructions along this line)Gabizon and Ra§200§ showed constructions of affine extractors f&r
distributed uniformly on affine spaces of dimension as small agen the fieldF; is replaced with a
sufficiently large fieldF, and the minimal required field-size was reducedd®vos and Gabizof201Q.
Ben-Sasson and Kopparf2009 showed constructions of affine dispersers for sublinear min-entagpy
small asn*/5, and some of their constructions are affine extractors for constantmtiopy rate with sub-
exponential error. Finallyghaltiel[201] showed affine dispersers for sub-polynomial rate.

1.2 From affine extractors to two-source dispersers

Our first main result shows how to construct two-source dispersens &ffine extractors in a black-box
manner. We present two different black-box constructions of tweesodispersers from affine extractors,
and in both families we start with a functigh: F5 — 7' that we assume to be a “good” affine extractor
for min-entropy rate (reservingop for denoting the min-entropy rate of the two-source extractor built from
f). By a “good” affine extractor we mean that for all affine souréeéof min-entropydn the distance
between the distribution of the random varialfleX') and the uniform distribution ovéfy*, measured with
the/..-norm, is at mos2~"" (The use of this particular error measure is explained in Re&k

Our two-source constructions are obtained as follows. fLeft; — F5* be a “good” affine extractor
according to the above explanation. For a string F7*, let f~!(z) denote the set of preimages gfand
assume the existence ofvith at leas™ "™ preimages (such exists by the pigeonhole principle).

Concatenated two-source constructionThis construction takes twe-bit inputsz, y and is computed by
() concatenating (z) to x, (ii) concatenating (y) to y and(iii) outputting the binary inner-product
of the two (concatenated) strings. The binary inner-product of € F% is denoted by(z, 2’) and
defined bny:1 z; - z, where all arithmetic operations arelih.

Preimage two-source constructionLet ' be a one-to-one mapping &%, " to f~!(z). On a pair of
(n — m)-bit inputsz, y output the inner-product of (z) and F'(y).



Special cases of both constructions, which used specific funcfioms necessarily known to be affine
extractors, have been studied in the context of two-source disparsgextractors —Bourgain[2007 used
certain concatenated constructions &udlbk and Rdl [2004 used preimage ones.

Each construction has its advantages. Assunfirig explicit, i.e., can be computed in time®(®),
inspection reveals that the concatenated construction is also explicit. @ineage one is not necessarily
explicit, becauser' is not necessarily explicit even if is. It is nonethelessemi-explicit— it can be
computed in time" - poly(n), which is quasi-lineaf in the size of the truth-table of the function (which
is 2™). Thus the concatenated construction is more efficient from a computigtierspective. On the other
hand, using the preimage construction one can potentially reach smaller tropyerate.

It is convenient to express the min-entropy of our two-source dispeirséerms of thenin-entropy loss
rate A = 1 — 5> of the affine extractor, which measures how much entropy is lost wheg §mm X to
f(X). To see that does indeed measure entropy loss notice that in the extreme case inwhichwe
havem = dn which means thaf recovers almost all the entropy &f. In general, we would like\ to be as
small as possible.

We prove that the given two constructions are two-source dispersensifi-entropy rates that depend
only on the parameters of the affine extractors mentioned above. Forritbatenated one we can show (in
Theorem2.7) it is a two-source disperser for min-entropy ratencatenated < % as long as) < % where
Peoncatenated —A—s0 % For the preimage one, assumifig= % we show (in Theoren2.9) that it is a
two-source extractor for min-entropy rate at legstimage = IJ%A

Notice that both constructions easily give dispersers for min-entrop\até¢asty < % As mentioned
above, the preimage construction can potentially reach much smaller minyerdgtephan the concatenated
construction: when the min-entropy loss ratepproaches zero so does the min-entropy rate of the preimage
construction, but the concatenated construction does not go below milpyeé even if we assume that
has no min-entropy loss\(= 0).

Proof overview To prove that our constructions are two-source dispersers cosidler {0,1}",|S|,|T| >
2™, Note that in both our constructions we first apply a function F5 — [ to each ofz andy
separately to obtain’, v’ and then apply a full-rank bilinear map (the binary inner-product fungtion
2,y Leth(S) = {h(s) | s € S} and defineh(T") similarly. Our main observation in this part is that if
dim(span (h(S))) + dim(span (h(T"))) > r + 1, then the function®(x,y) = (h(x), h(y)) must be non-
constant ort x T'. Therefore in order to show thai(x, y) is non-constant o x 7' it suffices to show that
each ofdim(span (h(S5))), dim(span (h(T))) is greater tham /2.

We note that in order to apply the argument above one does not nelgessee to use affine extractors.
In particular, an explicit construction of a functidn: Fy — F%, such thatdim(span (h(S))) > r/2
for every subsetS ¢ {0,1}",|S| > 2™ would suffice. Indeed, this part of our proof is inspired by
[PudBk and Rdl, 2004 Bourgain 2007 (cf. Rao[2007) which applied similar reasoning to particular
functions which are not necessarily affine extractors.

To turn our two-source dispersers into two-source extractors wetoeget better bounds on the error.
For this purpose we initiate the study of the approximate duality conjecture irtieddhext, and since we
believe this notion is interesting in its own right we discuss various aspectsno$ame detail. Then, in
Sectionl.4, we return to the study of two-source extractors and explain how ajppate duality can be
used to improve error bounds as needed.

2We call a functiort : N — N quasi-linear ift(n) = O(n - poly logn).



1.3 Additive combinatorics and the approximate duality conpecture

Additive combinatorics is the branch of mathematics that studies the combinagiimaates associated with
additive properties of subsets of additive groups. As mentioned in Sdctipadditive combinatorics meth-
ods have found in recent years several remarkable applications torte&uction of two-source extractors.
We now suggest a new conjecture in additive combinatorics that we calafigrdximate duality conjec-
ture” and show an application of this conjecture to the area of randomxieasten. The approximate du-
ality conjecture has recently found additional applications to communicationlegityBen-Sasson et al.
[2017) and locally decodable codeBlifowmick et al]2013) thereby adding to its appeal as a natural object
of study.

To state the conjecture we first define theality measuref a pair of setsA, B C Fy

D(A,B) &

Eacaben [(_1)<a’b>} ' 1)

as an estimate of how “close” this pair is to being dual. The duality measureecaltebnatively defined as
the discrepancy of the inner product function on the rectaAgteB (up to a normalization factor q%).
We nevertheless chose to use the term “duality measure” instead of fohecng because of the algebraic
context in which we use it, and on which we elaborate next.

It can be verified that ifD(A, B) = 1 then A is contained in an affine shift d8+, where B+ denotes
the space dual to the linear spani®foverF,. The question we study is what happens wii&m, B) is
pretty large though strictly less thdn and we postulate that, B contain pretty large subsets that have a
duality measuré. More precisely, we conjecture the following:

Conjecture 1.1(Approximate duality conjecture, ADC) here sexists an absolute positive constastich
that if A, B C F} haveD(A, B) > ¢, then there existt’ C A and B’ C B satisfyingD(A’, B') = 1 and

min {|4'|/|AL,|B'|/|Bl} = exp (~cy/nlog(1/e) ) )

To see why the bound on the right hand side 2)f thakes sense, we argue that at the very least it
cannot be improved in either parameter. First we show it cannot be implmeyond2—v". To see this
takeA = B = (\777) to be the set of vectors that have at mgst ones. The birthday paradox shows
that D(A, B) is a fixed positive constant, independentofin fact, taking vectors of weight'\/n for ¢/
approaching) makesc approachl). But it can be verified that for any pait’ ¢ A andB’ C B satisfying
D(A’, B') = 1, the size of one of the sets (wlog!) is a2~V" fraction of|A|. Such a pair is obtained by
taking A’ (B’ respectively) to contain all vectors supported on the first (last, résplg /2 coordinates.
Furthermore, as pointed to us by Shachar Lovett [Personal Communig#tis2—v™ cannot be improved
even whemd, B are dense ifi';;: Consider the pair

ABcFr, A= Sx(\;ﬁ)x{on}, B—{O”}x(\}%)xlﬁ‘g.

Denoting3n by »’ it can be verified thatd|/2" > 2-"'/3 but both the duality measure and the right hand
side of @) are the same fad, B as for the aforementioned, B.

Next we argue that the dependence:an the right hand side of2) cannot be improved. Také C Fy
to be a linear space of dimensidn/4 and letB be the direct sum of its dual- and some spacB’ that is
linearly independent ofi and of dimensiom,/2. Both A and B have size2*"/* andD(A, B) > 27"/4,
this is the probability that ~ B falls in A+ (since any otheb € B has inner product with exactly half
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of the elements im). Clearly anyA’ C A, B’ C B satisfyingD(A’, B’) = 1 and of maximal size are dual
linear spaces, hence the left hand sidepfrf this case igxp(—Q(n)) = exp(—Q(y/n - \/log 1/¢)).

In this paper we restrict our attention to the following weakening of Conjedtdrin which we allow the
loss in the sizes of the set, B’ to be exponentially small in, thatis, we allow the ratiosd’| /| A|, | B'| /| B|
to be bounded from below by a function of the fo2m’” for an arbitrary small constaat> 0.

Conjecture 1.2(Approximate Duality Conjecture, exponential loss, ADC-ex@)r every pair of constants
0 < < a < 1there exists a constagt> 0 such that the following holds. Suppose tHatB C [ satisfy
D(A,B) > 27" and|A| > 2°". Then there exist subsetd C A and B’ C B such thatD(A’, B') = 1
and

min {|A'|/|A],|B|/|B|} > 27" 3)

It can be verified that the above conjecture is indeed implied by the moreajjéb@mjecturel.l for
a sufficiently large sefl. We justify the ADC-exp conjecture by relating it to the well-known polynomial
Freiman-Ruzsa Conjecture (PFR, in short, see more details in the pdrdggiaw) in additive combina-
torics. Namely, we show that the ADC-exp conjecture is implied by the PFR congeand also implies a
“weak” form of the PFR conjecture (which we call wPFR) that, althoughkee than PFR, is stronger than
what is currently known. We also prove unconditionally a weaker formefADC-exp conjecture which
applies whem4, B are nearly-dual sets, that is, when the duality measure is of thefitm B) > 1 — ¢
for sufficiently smalle > 0 (see Theorer2.10).

The ADC-exp conjecture, although weaker than the general approxituali¢y conjecture (Conjecture
1.1), has powerful implications to the construction of two-source extracRwaghly speaking, this conjec-
ture implies that every two-source disperser of rank which is at most linghe size of the inputa (see
Sectionl.4below for a precise definition of the notion of rank), is also a two-souxtraetor for roughly the
same min-entropy rate, and with exponentially small error. The unconditicaeter form of the ADC-exp
conjecture for nearly-dual sets implies in turn a weaker unconditionaloreof the latter statement — that
every such two-source disperser is also a two-source extractasighly the same min-entropy rate with
{so-error bounded by some absolute constant smaller than half. We explaimphisation in more detail
in the next section, but before we do that we elaborate more on the Piétoa and its relation to the
approximate duality conjecture.

The polynomial Freiman Ruzsa conjecture and the approximate dulity conjecture. The question
addressed by the Freiman-Ruzsa Theoréraiinan 1973 Ruzsa1999 is the following®. Start by recalling
that A is an affine subspace &%, if and only if A does not expand under addition, by which we mean that
|A+ Al = |AlwhereA + A= {a+d |a,a € A}. Now supposed C F} behaves “approximately” like

a subspace, i.elA + A| < K|A| (think of K < |A]). Can we conclude that is “close” to a subspace,
meaning it contains a large subs#tthat is itself a large fraction of a subspalieof F};?

The Freiman-Ruzsa theorem gives a positive answer to this questiamnghihat there exists a sub-
setA” C A and a subspac& C F?% such that both fractiongd’|/|A| and |A’|/|H| can be bounded
from below by2P¥(K) |n a recent breakthrougl$anderg201(, using new techniques developed by
Croot and Sisask201(, proved a lower bound on these ratios of the fairfl / log® K), thus improving
greatly on the previous state of the art lower boun@of(VIes K) which appears irschoen2011. The
polynomial Freiman-Ruzsa conjectufieFR) postulates that these ratios can be bounded from below by a
polynomial function inK of the form K —©(1),

3We describe the Freiman-Ruzsa Theorem for linear spacesoytte case most relevant to our study, whereas the Freiman-
Ruzsa Theorem applies to arbitrary subsets of groupsG8een[20058 and references within for more information.



The question of approximate duality has a similar flavor: If two sets behgmdaimately” like dual
sets, do they contain large subsets that are strictly dual? Stated this wayn@ satural to explore the
connection between approximate duality and PFR, which is what we do latetlo& paper.

1.4 From two-source dispersers to two-source extractors aiapproximate duality

Note that both the concatenated and the preimage constructions preseStdiim1.2 are obtained by
first applying a pair of function& x, hy to the two inputsr andy separately, and then taking the binary
inner-product of x () andhy (y). This property is not specific to our constructions, and in fact any pinar
functionE : Fy xFy — [F, can be computed this way. To see this vievas a2™ x 2" matrix Mg overFs in

the natural way (théx, y)-entry of Mg is E(x, y)). Denoting the rank o/ overF, by r, it is well-known
that there exist matriced, B € IF%"XT such thatM/z = A - BT. Therefore, pickind.x to be the function
that mapse to thez-row of A andhy to mapy to they-row of B, we see that(z,y) = (hx(x), hy (v)).

To simplify our exposition, when henceforth we mention the “rank” of a twadtrfunction we refer to the
rank overlFy of its associated matrix.

Even though every two-input function is an “inner-product” functiorgglained above, there is some-
thing special about the pair of constructions we describe: Their rardryssmall, in both cases it is linear
in n, whereas the rank of a general function can be as lar@&.a$his simple observation is crucial be-
cause our next result says that any two-source disperser for rmpgmatep which has rank: /v, also has
bounded error on sources of min-entropy rate~ for any~ > 0, and the bound on the error decreasesg as
grows larger. We give two bounds on the error in this case. The fiesboands thé,.-error by a non-trivial
constanty’ < % where~’ depends only oy andv. This result is stated in Lemnfal5and Theoren2.16
and is based on the weaker form of conjecture ADC-exp for neady-skts (Theorer?.10. The second
bound says that the error is at mast” for an absolute constagt> 0 which depends only on, v andp
(see Lemma&.17and Theoren2.18). The latter bound assumes the ADC-exp conjecture (ConjettBre

To see how approximate duality comes up in the analysis of the error of tweaesextractors, suppose
that the constructio®(z, y) = (hi(x), ha(y)) is known to be a rank two-source disperser for min-entropy
ratep, assumingh, ho maplFy to F;. To prove thatE is an extractor assume by way of contradiction that
there existS, T" C F3, |S|, |T'| > 2 f’“) on which E is very biased. Letting C Fi* be the seS = h;(55)
and definingl’ = hy(T'), our assumption is thad (S, T') is very large. Approxmate duality statements like
Theoren2.10and the Conjectur&.2imply the existence of large se$sC S andT C T that have a duality
measure ofl and this implies thafF is constant on the pair of large sef§ = 1 )(S),T’ = hé_l)(T)
which contradicts our assumption thiatis a two-source disperser.

1.5 Open questions

Constructing “good” affine extractors So far most work on affine extractors and dispersers has focused
on reducing the min-entropy rate and significant progress has beenataadethis line, as surveyed in the
Sectionl.1 But the question of minimizing the min-entropy loss rate and/theerror of affine extractors

has received much less attention. Our work shows that at least astf@o-asurce constructions are con-
cerned, it is the min-entropy loss rate and theerror that should be minimized while the min-entropy rate
can be set to be a pretty large constant, gkdat would be interesting to see if, for instance, affine extractors
for small min-entropy rate and the tools used to analyze them could be teshirgio constructions for large
min-entropy rate (Iike}) but with small min-entropy loss rate, and small-error.



The approximate duality conjecture (ADC) We find this conjecture interesting both because its con-
nection to the PFR conjecture and because its possible application to the taskstiicting two-source
extractors. Interesting avenues for future research are to pin denex#tt versions of PFR and ADC that
are equivalent (assuming they exist) and to study the ADC and the AD@s=xmeans to obtain a possibly
weaker, though better than currently known, version of PFR. We Hasershere that the ADC and even
the weaker ADC-exp would imply better two-source extractors, and theRwiplied by ADC-exp could

be sufficient for some of the other applications of the PFR Green[20054 for a survey of some of them).
Indeed, in the subsequent worken-Sasson et 2017, Bhowmick et al.[2019 new applications of the
approximate duality conjecture were found to communication complexity and latedlydable codes.

From two-source to affine extractors The question of possible connections between two-source and
affine extractors was first raised Byrak et al[2009 (see Section 1.4 there) Our results address this ques-
tion only in one direction, that of constructing two-source extractorsfaffioe ones. The reverse direction,
that of constructing in a black-box manner affine extractors from twwmesoones, remains wide open. This

is somewhat perplexing because we would have guessed that the twee-soaffine part should be easier.
Counting the set of distinct sources that are uniformly distributed overoetize 27 we see there are

(22;)2 ~ 22" of them, and this is much larger than the size of the set of affine sourcehjaif there are

at most2™”. All things considered it should be easier to go from extractors that agalinst a large set of
sources to ones that work against a smaller set, adding to the mystery.

2 Main results

2.1 Extractors and dispersers for affine and two independentaurces

We start by defining the main objects of study in this paper — affine and tws@xtractors (and dis-
persers) — and to do so introduce a bit of notation. We idedtifyl } with the two-element field, and
{0,1}" with F3. Givenz = (z1,...,xy,) € FY anda’ = (2,...,2],) € FJ let (z o 2’) denote their
concatenation, i.e(x o ') = (21,...,on, 2}, ..., x,,). For two sequences y € F5 let (x,y) denote the
Fo-bilinear form(z, y) = Zle x; -y; , commonly referred to as thener-product functionFor A C F3 let
At denote the space that is dualsiean (A), i.e., A = {b € F} | (a,b) = 0foralla € A}. Forz € F}
we letz + A := {z + ala € A}. For a functionf : F} — F3*, we denote byf~!(z) the set of preim-
ages of the string under the functiorf. For A C F% we denote byf(A) the image of4 underf, i.e.,
F(A) = {/(a) | a € A}.

A sourceovern bits is a distributionX overF4. Themin-entropyof X is denoted by (X) and the
min-entropy ratef X is hoo (X ) = Hoo(X)/n. If X is distributed uniformly over an affine subspacefgf
of dimensiond we call X a d-dimensionakffine source Throughout the paper we reserve the lefieto

denote various extractors, aficdenotes expectation.

Definition 2.1. [Extractors and dispersers] L&tbe a set ofV-bit sources. AN, m, S, e]-extractor is a
function f : F)Y — FJ* satisfying for every sourcé € S that the distance between the random variable
f(S) and the uniform distribution ovef3*, measured with thé,.-norm, is at most. Namely, for every
sourceS € S andy € [F5* we require that

|Pr[f(S) =y] —27™"| <
The functionf is called an N, m, S|-disperseiif f is nonconstant on every sourSec S. An alternative
definition is to say that the support of the random varighil€) is larger thanl for everyS € S. We call
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N thesource lengthm is theoutput lengthande is the/,-error, or simply theerror, of the extractor. We
shall be interested in extractors for two special kinds of sources:

e Two-source extractors and dispersers:When N = 2n andS is the set of product distributions
S = X xY where bothX andY have min-entropy rate greater thaywe refer tof : Fy x Fy — Fy?
as aln, m, p, €|-two source extractqror [n, m, p]-two source disperser

e Affine extractors and dispersers:Whens is the set of uniform distributions on affine subspaces of
5 of dimension greater thgmV, we refer tof as an[N, m, p, ¢]-affine extractoyor [N, m, p-affine
disperser

When comparing the min-entropy of a sourg¢o that of f(S), it will be convenient for us to use the
entropy loss ratgparameter defined us

/\:maxl—w.

Ses Hy(S) @

Intuitively, the loss rate measures how much (relative) min-entropy is losbwapplyingf to a sources in
S. Smaller loss\ corresponds to better extractors, ones that retain a larger min-enatepy r

We end this part with two remarks on non-standard definitions:

Remark2.2. [Dispersers] A more standard definition of a disperser, as appearisgyrShaltiel[2007,
requires that for every source € S, the support of the random variabfé¢S) equals the full range df5".
Notice that for the case ofi = 1 the two definitions match, and our discussion of dispersers (but not of
extractors!) will be limited ton = 1.

Remark2.3. [/-error] Typically, the error of the extractor is measured with&h@orm, and is defined to
be the statistical distance betwegt) and the uniform distribution ovét;’. We chose to measure the error
with the /..-norm, and henceforth the term “error” will refer to the -error unless stated otherwise. The
reason for this is that it will be relatively easy to analyze our constructisimg this measure. For instance,
we shall argue (in Sectiof ) that existing affine extractor8purgain 2007, Ben-Sasson and Koppayty
2009 Li, 2011, Gabizon and Rg2008 DeVos and Gabizqr201d, which are typically stated as one-output
bit extractors, can be easily converted inteoutput bit extractors with a relatively small loss in theg-error.
For example, the original statementBourgain[2007 gives a family of[n, 1, , 2~2(")]-affine extractors,
i.e., the output length i%. It is nonetheless rather straightforward to obtain a linear number of Dhitjsu
with essentially the sanfg,-error (cf. Lemmab.1). Moreover, standard probabilistic methods (the Chernoff
bound) can be used to show that a random funcfiorFy — F3* with m = én — O(logn) is, with high
probability, an affine extractor for min-entropy with ¢..-error at mosg—"".

TheorenR.4. [Bourgain’s affine extractor] For every > 0 there exists\s < 1 that depends only ofisuch
that there exists an explicit family ¢f, m = (1 — \s)dn, 6, 2~™]-affine extractors.

Notice that the min-entropy loss rate of the construction aboxgis(6n) ! = A\s+o(1). Using similar
reasoning we will also show how to get multi-output bit two-source extraauot of our constructions (cf.
Lemma2.19. Notice that if f is an extractor with output lengtth and/..-errore then f has “standard”
error (i.e., itsfy distance from uniform is) at mos2".
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2.2 From affine extractors to two-source dispersers

All results stated in this section refer to the following two candidate constriectibtwo-source dispersers.

Definition 2.5. [Concatenated construction] Given functiofiyy : F5 — 3, the (f, g)-concatenated
constructionis the functiont5 | : ¥y x Fy — [, defined forz, y € F by

Efo(x,y) = ((xo f(2)), (y o 9(y)))- (5)

Definition 2.6. [Preimage construction] Given functiorfsg : Fy — F2* letn’ = n —m. Letz, 2’ € FJ
satisfy|f~'(z)| > 2" and|g~ ()| > 2%. Let F : F} — f~'(z) andG : F§ — ¢g~'(%') be injective.
The (F, G)-preimage constructiois the functionE”. ., : F5' x F3' — Ty defined forz,y € F3' by

R (e.y) = (F(x),G(y)). ©)

Our main result in this section is that both the concatenated and preimageuctiosss are two-source
dispersers, or bipartite Ramsey graphs, for min-entropy rate below Tha#. preimage construction can
reach arbitrarily small min-entropy rate provided the entropy loss of theeaéfktractor, together with its
l~.-error, are sufficiently small. Fof : F} — F7* andm’ < m, them/-bit projectionof f is obtained by
taking the firstn’ bits of f(x). Formally, if f (z) = (y1, - . ., ym) Wherey; € Fothenf'(z) = (y1,. .., Ym/)-
To better understand the selection of parameters in the following theoremimept that if f is an[n, m =
(1 — \)dn, 8, 2-™]-affine extractor, then for any.’ < m the m/-bit projection of f is an[n, m’, §,2~™']-
affine extractor.

Theorem 2.7. [Concatenated two-source disperser from affine extractor] Supgoaed g are [n,m =
(1 — X\)dn, 6,27 ™]-affine extractors fos < 1 andX < 1. LetX = max {), 5 — &} (noticing X" < 1)
andp = % (noticingp < %). Setm’ = [6(1 — N)n| — 2 and letf’, ¢’ bem/-bit projections off, g
respectively. Thevs, g isaln, 1, p]-two-source disperser.

The above theorem is proved in Sect®nPlugging Bourgain’s affine extractor from Theor@m for
min-entropy rat% in the previous theorem, and noticing that for réte/e have\’ = \ we get:

Corollary 2.8. [A two-source disperser for min entropy rate below half] Tgke= ¢ to be Bourgain’s
[n,m = (1 — A1)n/5, 1,27 ™]-affine extractor, with min-entropy loss rale < 1. Then the concatenated
5 5
A1
constructionE’; , is a[n, 1, p]-two source disperser for min-entropy rate= % + 15 < %

Inspecting Theoren2.7 we see that, even if we assume minimal ldss= 0 and a min-entropy rate

o = % for the affine extractor which maximizes the min-entropy rate of the resultingatenated two-
source extractor, we end up with a two-source extractor for min-entmp§ (the proof appears in Section

4). This min-entropy rate barrier can be broken by the preimage constiuctio

Theorem 2.9. [Preimage two-source disperser from affine extractoy] Endg are [n, m = (1-\)n/2, £, 27™]-

59
affine extractors and’, G are as in Definitior2.6, thenEf;G isa[n’ = %n, 1, 1+AA]-'[wo-source disperser.

2.3 The approximate duality conjecture

In this section we study the approximate duality conjecture with exponential Gsgecturel.2). For
convenience, we restate this conjecture below:
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Conjecture 1.2 - Approximate Duality Conjecture, exponential loss, ADC-exp(restated). For every
pair of constantd < § < a < 1 there exists a constagt> 0 such that the following holds. Suppose that
A, B C T} satisfyD(A, B) > 27" and|A| > 2°™. Then there exist subset$ C A, |A’| > 279"|A| and
B' C B, |B'| > 27°"|B| such thatD(A’, B') = 1.

Our first result in this section is a weakening of the above conjecture vagphies when the duality
measure is of the forfb (A, B) > 1 — ¢ for a sufficiently small consent i.e. A and B have to be “nearly
dual”.

Theorem 2.10(Approximate duality for nearly-dual setsffor every§ > 0 there exists a constamat> 0
that depends only of, such that ifA, B C F% satisfyD(A, B) > 1 — e then there exist subsetf C
A,|A'| > 1|A|and B’ C B,|B'| > 27°"|B|, such thatD(A’, B') = 1.

We prove the above Theorem in Sectmd. Our second set of results relates Conjeciugdo the PFR
conjecture.

Conjecture 2.11(Polynomial Freiman-Ruzsa conjecture, PFRhere exists an integersuch that ifA C
F7 has|A + A| < K|A|, thenA may be covered by at mo&i” cosets of some subspace of size at most
K|A|.

In Section5 we prove that the above PFR conjecture implies the ADC-exp conjecturgge@orel.2).
To prove this implication it is crucial to us that the exponerni the PFR conjecture be close to 1, i.e.,
that thepolynomialin the “polynomial Freiman Ruzsa” conjecture be nearly-linear. To achiage we

are willing to assume not only thatd is small but even thatA = {Zle a; | a; € A} is small for some

constant? > 2. In other words, to prove the ADC-exp what we really need isNearly-linear Freiman
Ruzsa (NLFR) conjecture

Conjecture 2.12(Nearly-linear Freiman-Ruzsa (NLFR)For everyp > 0 there exists an integetwhich
depends only op, such that ifA C F% has|¢A| < K|A|, thenA may be covered by at ma&t” cosets of
some subspace of size at maStA|.

In Section5 we show that the NLFR and PFR are equivalent. (The implication NEFRFR s rel-
atively easy but the other direction is nontrivial.) We also show that NEFRRDC-exp. Regarding the
reverse direction, we show that the? implies the following weaker form of PFR:

Conjecture 2.13(Weak PFR, wPFR)For everyd’ > 0, there exists an integer which depends only on
&', such that ifA C F4 has|A + A| < K|A|, thenA may be covered by at maat” - K7 cosets of some
subspace of size at mast| A|.

The above conjecture differs from the standard PFR conjecture in gatutmber of cosets are multi-
plied by an exponential factor. However, this exponential factor catodee arbitrarily small, at the cost of
enlargingr. The relation between all conjectures mentioned above can be summarized by

(PFR< NLFR) = ADC-exp= WPFR

2.4 From two-source dispersers to two-source extractors &iapproximate duality

Our last set of main results uses the results on approximate duality fromeieys section to show that
two-source dispersers of rank which is at most linear in the size of thésiape also two-source extractors.
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Since the constructions of two-source dispersers from affine extsgmtesented in Sectié¢h2are of linear
rank, as a corollary we obtain that these constructions are also twoesextractors. We start with the
formal definition of rank of a binary function.

Definition 2.14 (Rank of a binary function) Therank of a functionE(z,y) : Fy x F} — Fs is the least
integerr such that there exist functioris , he : Fy — F5, satitfying E(x,y) = (hi(x), ha(y)) for all
z,y € FJ. Equivalently, this is the rank ové, of the2™ x 2" matrix whose(z, y)-entry isE(x, y).

We give two bounds on the error of the two-source extractors. Thieoiirs bounds the error by a
constant and it relies on the version of approximate duality for nearlysdts (Theoren2.10. The second
bound shows that the error is exponentially smalbiand it relies on the ADC-exp conjecture (Conjecture
1.2). We start with the first bound.

Lemma 2.15(Constant bound on the error of two-source dispersers of lineky.r&ar everyy, v > 0 there
existsy’ < 1/2 such that the following holds for sufficiently large Every[n, 1, p]-two-source disperser of
rank 2 isa[n, 1, p + v, ~']-two source extractor.

The proof of the above lemma also appears in Secetian Combining this lemma with Theorens?
and2.9gives the following corollary.

Theorem 2.16(Constant bound on disperser errofpr all v, A > 0 there existsy’ < 1/2, depending only
on~ and A such that the following holds.

1. If f,g are[n,m = (1 — A)dn,én,27™"]-affine extractors, thetk, , defined in Theorer2.7is a
[n, 1, p+ v,7']-two source extractor fop as defined in the same theorem.

2. If f,gare[n,m = (1— \)n/2, 3,2-™]-affine extractors and’, G are as in Definitior2.6, thenEp

i r_ 1+)\
isaln/ = n,1, 1+/\ + v,7']-two source extractor.

Next we give exponentially small bounds on the error of linear-rankgauarce dispersers based on the
ADC-exp conjecture (Conjectute?).

Lemma 2.17(Exponentially small bound on the error of two-source dispersers ddrirenk) Assuming
ADC-exp (Conjecturd..?), for everyv,v, p > 0 there exists] > 0 such that the following holds: Every
[n, 1, p]-two source disperser of rankis a[n, 1, p + 7, 27¢"]-two-source extractor.

Theorem 2.18(Exponentially small bound on disperser errafssuming ADC-exp, for evebty\,~v > 0
there existg > 0 such that the following holds for sufficiently large

1. If f,gare[n,m = (1-X\)dn, J, 2~ ™]-affine extractors theE}%, o definedin Theore®.7isan, 1, p+
7, 27¢"]-two source extractor fop defined in that theorem.

2. Iff,gare[n,m = (1-\n/2,3 3,27 "™]-affine extractors and’, G are as in Definitior2.6, thenEY,
isan = l“n, 1, 1H + v, 27¢"]-two source extractor.

We end by pointing out that since our constructionslarear invariantof rank2(n), we can use the
following lemma to increase their number of output bits to a number linearivhile maintaining the same
{~o-€rror.

Let hy, hy : Fy — 5. In what follows call an, 1, p, €]-two source extractoE (x, y) =
linear invariant with respect té, hs if for every full rank matrixA/ € F,*", E(z,y) = (h

(h1(x), ha(y))
1(z), Mha(y))
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is also a[n, 1, p, €]-two source extractor. Inspection of the proofs of Theor@n7s2.9, 2.16 2.18reveals
that both our constructions are linear invariant with respect to the fursckipri, with which they were
defined (since in Theoren2s7, 2.9we only use the fact that the séts(.S), ho(1") have large span, while in
Theorem2.16 2.18we only use the fact thdt; (S), ho(T) are large enough subsets{of 1}").

Call a set of matriced/,, ..., M, € F;*" independenif they satisfy the following property: For every
v1,...,v, € Fo notall zero, the matri® _, v; M; has full rank. In Sectio® we explain how a collection of
independent matrices can be obtained. There we also prove the follaategent.

Lemma 2.19. [Multi-output extractors] Lethy, ho : F5 — F% be such that the rank function

E(l‘, y) - <h1(.%'), h2<y)>

is a[n, 1, p, e]-two source extractor which is linear invariant with respect/tg he. Then fort < r, and
independent matrice®/y, ..., M; € F,*", the functionF : F} x F} — FY defined by

E(z,y) = ((hi(z), Mih2(y)), . . ., (h1(x), Miha(y)))

is an,t, p, €]-two source extractor.

2.5 Organization of the rest of the paper

In the next section we prove that the black box constructions presentettion2.2 are two-source dis-
persers. In Sectiod we use the results on approximate duality to show that two-source dispefdew
rank are also two-source extractors for roughly the same min-entrogylraSectiorb we discuss the re-
lation between PFR, NLFR and ADC-exp in more detail. Finally, in Sediare analyze thé..-error and
the number of output bits of existing affine extractors and multi-output bitdawrce extractors.

3 From affine extractors to two-source dispersers

In this section we prove that plugging an affine extractor with sufficientlydgearameters into our two-
source constructions results in a two-source disperser for min-entatgyhat is related to the parameters
of the affine extractor. Our proofs in this section rely on the following eldargdemma, whose proof we
bring here for completeness. F8rC F5 we denote bylim(S) the dimension ofpan (.5).

Lemma 3.1. Let A, B be subsets df?; such that
dim(A) + dim(B) > n + 1.
Then the binary inner product functidiP(z, y) = (z,y) is non-constant ol x B.

Proof. Suppose in contradiction thaP (A, B) is constant. Then there are two cases. The first case is when
IP(A,B) = 0. In this case4 is contained inB~+, which implies in turn thatlim(A4) + dim(B) < n, a
contradiction. The second case is whHdn(A, B) = 1. In this case let. € A. Then for any other element

a' € Awe have thata’ — a,b) = (a,b) — (a’,b) = 0. It follows that the sed — a is contained in3-+, and
thereforedim(A — a) + dim(B) < n. This in turn implies thaflim(A) 4+ dim(B) < n + 1, which is again

a contradiction. O
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3.1 Concatenated two-source disperser — Proof of Theoreh7

The main step in the proof is the following lemma. Before proving the lemma we sbawitimplies
Theoren2.7.

Lemma 3.2. [Affine extractors lead to dimension expansion] Suppbsean(n, m, 4, 2~™]-affine extractor.
Then for evenys C 7 of size greater thag@™ ", denoting

S={(zo f(x))z e S},

we have

dim(S) > [log|S|| +m — 1.

Proof of Theoren2.7. Our choice ofp = %

andX > 2 — J- implies that
p>06(2-X). (7)

Given twon-bit sourcesX, Y of min-entropy rate greater thanlet S, 7" C F5 denote their respective
supports. Recalling:’ = (1 — \)n — 2 we conclude from7) that

1], |T| > 2°7 > 2o+,

Letting S = {(x o f'(z))|x € S} andT = {(y o ¢'(y))|y € T}, Lemma3.2implies

/
dim(3), dim(T) > pn+m' — 1> 2 2™

The last inequality follows becauge = *=20=2);, > n=m’ 4 1 we conclude thatim(S) + dim(T) >
m’ + n + 1. Lemma3.1then implies thaiEC,’g, (z,y) is non-constant o' x 7', thereby completing the
proof. O

And now we give the proof of Lemma.2
Proof of Lemm&.2. Denotedim(S) by d, noticingd > m + dn. To prove the lemma we will show
d > [log|S|| +m —1.

Letr : F3 ™™ — F2 be the linear operator which proje@®4 ™ onto the first: bits* and letr, : 5" —
3" be the projection onto the last bits.

Start with a basisy, . .., v, for span (S). Without loss of generality suppose that its lastectors
are such thatry(vg_r41), ..., m2(vq) form a basis tors(span (S)) (noticing that0 < r < m). Use
Gaussian elimination to make the first- » elements in this basis have their support in the firbits. Let
Vi :=span ({m1(v1),...,m1(vg—)}), @andVs := span ({m2(vg—rs1), ..., m2(vq)}).

First we note thatf(S) C Va, which implies thaf f(S) |< 2. Our goal will be to show that for
every stringz € f(S) the number of preimages efunder f in the setS is at most2?~"~"+1  that is,
|f~1(z) N S| < 2¢="=m+1 This will conclude the proof of the lemma as this will imply that

|S| — Z \f_l(z) N S| < Z 2d—r—m+1 < 97 . 2d—r—m+1 < 2d—m+1
)

2€f(S z€f(S5)
“Formally, Ietting{ef), cee eﬁ”} denote the standard basis ff and representing elementsi8§*™ in this basis for =
n+m, we definer: (577" ase{™ ™) = Y0, azel™ andma (X0 ase" ) = SI ajel™).
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and the proof is completed by taking logarithm of both sides.

Letz € f(S). Our main observation that will allow us to bound the sizg¢ of ()N Sisthatf~1(z)N.S
is contained in an affine shift af; by some vectow € 5. Assuming that this is true, and noticing that the
dimension oft; isd — r > (m + dn) —m = dn, the fact thatf is an[n, m, ¢, 2~"|-affine extractor implies
thatz cannot have too many preimages ungdén the setS. In particular,

|f(_1)(2) N S| < |f(_1)(2) N (U) + ‘/l)| < 2d—r . 2—m+1 — 2d—r—m+1

It remains to show thaf~!(z) N S is contained in an affine shift df;. Sincez € f(S) C V4, and
since the vectorsy(vg—r11), - - ., m2(vq) form a basis follz, we conclude that there exists a unique vector
y € span ({vg_r41,...,vq}) SUch thatra(y) = 2. We argue thaff ~1(2) NS C m1(y) + Vi. Indeed,
suppose that € f~1(2) N S. Then from the uniqueness gf and since the basis vectars . . ., vy, have
their support in the first bits, we have thats, f(s)) = (s, 2) = z + y, wherez € span ({vi,...,v4-+}).

But this implies in turn that = () + m1(y), wherem(z) € Vi, and hence € mi(y) + Vi, which
concludes the proof of the lemma. O

3.2 Preimage two-source dispersers — Proof of Theore@9

Proof of Theoren2.9. Letm = 5*n and recall’ = n —m = 2n. Letz,2' € F}* be the strings
from Definition 2.6, such that¥' is an injective mapping df%" into f~!(z) andG is an injective mapping
of Fg' into g(_l)(z’). Given twon’-bit sourcesX, Y of min-entropy rate greater thai% let S, T C Fy
denote the respective supports6fX), G(Y'), noticing |S|, |T'| > 23" = 23" We shall show that
dim(S),dim(7") > %, thereby completing our proof due to Lemi3d.

By symmetry it suffices to prove the claim only f8r We will prove thatS is not contained in any affine
space of dimension/2. Let A be such a space. By Definiti¢hl we get

-

IANS| < |ANfl(z)| <2-272 .25 =227 < [9].

where the last inequality is true for sufficiently largelue to the fact thak < 1. We conclude thaf ¢ A
and since this holds for all affine spaces of dimensig? our proof is complete. O

4 From two-source dispersers to two-source extractors via approximate du-
ality

4.1 Constant bounds on error by approximate duality for neaty-dual sets

In this Section we prove Lemntal5which shows that any two-source disperser of rank which is at most
linear in the size of the inputs is actually a two-source extractor with a nonjralas large, bound on the
error. This result is implied by the approximate duality theorem for nearal-skets (Theorer.10).

Proof of Lemm&.15 Let§ = (1/v + 2)~ 1y and sety’ = ;¢ wheree = ¢(§) > 0 is the constant
guaranteed by Theoreth1Q We argue by way of contradiction. Léf andY be two sources of min-
entropy rate> p + v which we assume without loss of generality to be uniformly distributed overséts
respectively, each of size greater thafi )", and for which the error of (X, Y) is greater than/.
AssumingE has rank:/v there exist functionss , hy : F2 — F3/” such thatf(z, y) =(hy(z), ha(y)).
For our purposes we neéd andhs, to be bijective. For this end we lét;, hy : F} — FQ””" be the
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functions defined by:; (z) = (hi(x) o 0 0,) andha(y) = (ha(y) o 0, o y), where0,, denotes the
all-zeros vector of lengt. One can check thdty, h, are bijective functions, while it still holds that
E(z,y) = (hi(z), ha(y)). L

Let A = {hi(a)la € A} andB = {ha(b)|b € B}. Assuming the/,.-error of E(X,Y") is greater
than%, is equivalent to sayin@) (A, B) > 1 — e . Consequently, Theoreth10implies the existence of
subsetsA’ C 4, |A’| > 1[A| and B’ C B,|B'| > 2~ 7(1/v+2) " (n/v+20)|B| = 2-7B| > 2" such that
D(A',B') = 1. LetA .= h{"V(A"), B .= bV (B'). ThenA andB are sets of size at lea@t” each, such
that|E(A, B)| = 1, contradiction.

O

4.2 Exponentially small bounds on error using the approximaé duality conjecture

We now show that, assuming ADC-exp, our two-source disperserscaeet®rs with exponentially small
error.

Proof of Lemm&.17. Let E : F4 x Fy — [Fy be the[n, 1, p| two-source disperser of rank/v which is
defined byE(z,y) = (hi(z), ha(y)). Lethy, hy : F2 — F2/*T2" be the functions defined by, (z) =

(hi(x)ox00,) andha(y) = (ha(y)o0,oy), where0,, denotes the all-zeros vector of lengthLet¢’ be the
constant guaranteed by Conjectarfor the constants: = (p++)(1/v+2)"!tands = v(1/v+2)~!, and
let{ = ¢'(1/v + 2). Our proof goes by way of contradiction, along the lines of the proofeshina2.15

Let X andY be twon-bit sources of min-entropy rate p + ~, we assume without loss of generality

these sources to be uniform distributions over sef8 respectively, each of size greater tHafi™)". Let
A= {ﬁl(a) lae A} andB = {EQ(b) 1be B}. Notice 4, B C F%/"**" and[A4|, [B| > 20+ )n =
22(n/v+2n) - Assume by way of contradiction that the errorfofX, Y'), which equals; D(A, B) , is greater
than2—¢" = 2-¢'(n/v+2n) - Applying ADC-exp toA, B we conclude the existence of subsdts” A, B’ C
B such thatD(A’, B') = 1 andA’, B’ are quite large,
A 9(ptv)n 9(ptv)n

| > > 1 =

926(n/v+2n) 2v7(1/v+2)~t(n/v+2n) 2

A’ > 2P"
and similarly, |B’| > 2°". But sincehy, hy are injective we deduce that’,Y”, which are uniformly

distributed ovelﬁgfl)(A’) andﬁéﬁl)(B’), are a pair ofe-bit sources of min-entropy rate greater thaon
which E is constant, contradiction. O

5 The approximate duality conjecture

In what follows, we study the ADC-exp conjecture and its relations to the €dffecture. We start by
proving the unconditional version of the ADC-exp conjecture for nedusl sets (Theorei®.10 in Section
5.1 We then turn our attention to the study of the relation between the PFR, NnERARC-exp. We shall
prove the following relations between these conjectures:

(PFR< NLFR) = ADC-exp=- WPFR

In Sections5.2 and5.3 we show the equivalence between PFR and NLFR. Then, in Sestfowe
move to the rightmost implication. We end in Secti®® with the most complicated proof, that of the
middle implication (NLFR=- ADC-exp).
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5.1 Approximate duality for nearly-dual sets — Proof of Theoem 2.10

For the proof of Theoren2.10 we shall need the notion of thepectrumof a set which we take from
[Tau and V2006 Chapter 4]. This concept will be used also in proofs that appear later o

Definition 5.1. [Spectrum] For a seB C F4 anda € [0, 1] let thea-spectrum ofB be the set
spec,, (B) = {:U € Fy | Epep [(—1)<x’b>] > a} .

Proof of Theoren2.10 We assume without loss of generality tiaf 4 ye 5 [(—1)(**] > 0, the proof for
the case in WhictEqc 4 pep[(—1)(%] < 0 is similar. LetA’ = A N spec;_, (B). The assumption
D(A, B) > 1 — e together with Markov's inequality showsl’| > £|A|.

Letay,...,aq € A’ form a basis fospan (4’). The elements, as, . . ., ag partitionF} into 2¢ sets,
where each set is an affine coset{of,, as,...,aq}" = A"L. For a vectorz € F? let w(z) denote the
fraction of zeros in the s€t(z, a;) | i € {1,2,...,d}}, i.e.,

w(z) = H{(z,a;) | (x,a;) :do, ie{l,...,d}}]

Note that in every affine coset df all elements have the same vatlugr). Moreover, for every) <t < d,
there are premsel{ﬂ cosetsH of A'* such thatw(z) = 1 — £ for everyz € H.

Our main observation is that sinc€ C spec;_,.(B), a Iarge fraction of elements ¢ B have large
valuew(b). Consequently they cannot participate in too many different affine cokdts, and in particular
there exists one such affine coset which contains a large fractidmiofB. If we let B’ denote the set which
contains all elements that lie in this coset, then we obtain a large sBbset B, such thatB’ lies in an
affine shift of A%, and this almost gives the desired &t Details follow.

In what follows letH : (0,1) — (0, 1) denote the binary entropy function given by:

1
H(p) :ploggﬂl—p)logl_

Choose) < € < & such that (v/2¢) < 4. Leta = £ denote the fractional dimension gfan (A’).

Sinceay, ..., aq are all contained ispec;_o.(B) we haveEycp [w(b)] > 1 — 2e. From Markov’s
inequality, this implies that at leaét — \/2¢)-fraction oft’s in B satisfyw(b) > 1 —v/2e. We let 3 denote
the subset of3 which contains all elements i which satisfyw(b) > 1 — /2¢. We are forced to pick3
from affine cosetd? of A’ such thatw(z) > 1 — V/2¢ for everyx € H. The number of such cosets is at
most:

5, (32 () s s

0<t<v/2ean

where the first inequality is due to our choicecof é which impliesy/2ean < %om.

This in turn implies the existence of an affine cosetl6f which contains at leastzr (2(v2€)+e()n.
fraction ofb’s in B. Let B’ denote the subset d@ which is contained in this affine coset. Recalling we set
§ > H(+/2¢) we get for sufficiently large:

B 2 27 (102 o) by o= (1)) B > 2707 .
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We have almost concluded the proof. We have at hand a pretty larg# gt is contained in + A’
for somex € F3. Partition A’ into A = {a € A’ | (x,a) =0} and A = {a € A" | (z,a) =1}. To
complete the proof of the lemma také to be the larger ofi)), A} and noticg B’| > 2°"|B|, |A’| > 1| A
andD(B', A") = 1. O

5.2 The nearly-linear polynomial Freiman Ruzsa conjecturemplies the polynomial one

The implication NLFR=- PFR is a relatively easy consequence of the following inequalitylofnecke
[1969, a new proof of which was found bguzsg[ 1989

Theorem 5.2. [Plunnecke’s inequality] Letd, B, be finite sets in a commutative group, and suppose that
|A + B| < K|A|. Then for arbitrary nonnegative integens,n we have:

ImB —nB| < K™ | Al

To show NLFR=- PFR choose = 1 in Conjecture2.12(NLFR), and let’ be the integer guaranteed by
this conjecture fop = 1. Assuming|A + A| < K|A|, Theorenb.2implies that|¢A| < K*|A|. So NLFR
(Conjecture2.12) implies that4 may be covered by at most‘ cosets of some subspafeof size at most
K*|Al|. In other words, there exists a sub$etC F of size at mos#* such that4 may be covered by all
cosets of the formr + L wherex € X. If we write L as a direct sum of subspackEsand ", whereL” is
a subspace of siz&€*~!, and letX’ = X + L”, we get thatd may be covered by at mosf2‘~! cosets of
the subspacé’, where|L’| < K|A]| (the cosets are of the formd + L’ wherez’ € X’). This shows NLFR
= PFR.

5.3 The polynomial Freiman Ruzsa conjecture implies the nedy-linear one

For this implication, as well as for proofs that appear later on, we will neezs&s covering lemma,
appearing inTau and Vi 2004 as Lemma 2.14.

Lemma 5.3. [Ruzsa’s covering lemma] Let, B be subsets of an abelian group such thét- B| < K|A].
ThenthereisaseX C B, |X| < K,suchthatB C A — A+ X.

This powerful lemma has a short and elegant proof, which we bringfbetke sake of completeness.

Proof of Lemm&.3. Pick a maximal seX C B such that the setd + x, = € X, are pairwise disjoint.
SincelJ,c x (A + ) C A+ B, we have thatA|| X | < K|A|, which implies that X| < K. Suppose that
b € B. By maximality there must be somee X such that(A + b) N (A + x) # 0, which means that
be A— A+ X. O

To show PFR= NLFR let p > 0 be the constant stated in NLFR (Conject@r&2 and letr be the
constant guaranteed by PFR (Conjectu®l). Choose the integétreferred to in NLFR to be the smallest
power of2 satisfying

1 log(¢) )
_— <= 8
<1+p/(47‘)> o ®
We say that a seéB expands under addition with respectAaif
1+p/(4r
B+ B N 1B p/( ). ©
Al 4]
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The idea of the proof is the following: for every integer< ¢ < log(¢) we check whetheB; := 2 A
expands under addition with respect4o The proof splits into two cases. The first is the case in witigh
expands under addition with respectddor all ¢, namely the size oB;., = B, + B; is large compared to
the size ofB; for all ¢. In this case we shall see that the sizeBpf= 2 A is very small compared to the size
of Biog(ry = LA. Applying PFR to the setl we conclude that it can be covered by a few cosets of a small
subspace. The second case is the case in which there exists sometititegenich B, does not expand
under addition with respect td. In this case we have th#&, ., = B, + B; is not too large compared to the
size of B;. Applying PFR to the seB; together with Ruzsa’s covering lemma we conclude that in this case
too A can be covered by a few cosets of a small subspace. Details follow.

Case | — All setsB; expand under addition with respect toA: Equation Q) applied tot = 1...log¢
1 )log(f)

gives
2
B B\ T B () Bo (b
[Bil _ (|B2 < [ 1Bl - log()
Al =\ 4] —\ 4] - | A

The assumptiofY A| < K|A| gives

)log(f)

1
(vrram log(£)
%ﬁﬁoﬁg <x(mm) " <o

where the last inequality is due to our choic& @i Equation 8).

We conclude that in this cag@A| < K#/"|A|. Applying PFR (Conjectur@.11) we conclude thatd
may be covered bk ” cosets of some subspace of size at nfo&t’| A|, and this shows PFR- NLFR with
even better parameters than stated in NLFR (Conje@ir@.

Case Il — There exists B; which does not expand under addition with respect toA: For thist we
have

p/(4r)
B
B+ B < ('At|'> 1B (10)

. . . /4
Applying PFR (Conjectur@.11]) to the setB; we conclude that it may be covered @%')p cosets
p/4
of a subspacé. of size at mos ||BT” |B;|. By the pigeonhole principle there exists a subet B;

which is contained in an affine shift @ — denote this shift by, + I — such that

—p/4
~ B
Al > (‘,AD B (1)

p/4 1+p/4 14+p/4
B |Blo L ‘ LA
|M§O£>y&m(|j) A = MH Al < KAL)

and
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The last inequality follows from our assumption thé#| < K|A|. We shall apply Ruzsa’s Covering
Lemmab.3with the setsA and A, so we compute

|A 4 A |A+ B;| (sinceA C By)

|Bry1|  (sinceA C a + B; for somea € Fy)

VANVAN

B p/(4r)
<|At’> |B;| (by Equation {0))

p/(4r) p/4
B B ~ .
< <‘|At’|> <’|At|> |A|  (by Equation 1))
/2
B _
< (‘,A,‘) Al
p/2
(A ~
< <'|A') Al

< KP?|A| (bythe assumptiot?A] < K|A|)

Ruzsa’s covering lemma (Lemn3a3) now implies the existence of a s&t C A of size at mostx*/2
such that o
ACX+A-ACX+(a+L)—(a+L)=X+1L
Concluding, in this case we have thatmay be covered by at mog*/2? cosets of the subspade
where|L| < K'tr/4|A| (Equation (2)). Finally, if we write L as a direct sum of subspacBsand L"),

whereL” is a subspace of siz&”/*, and letX’ = X + L”, we get thatd may be covered by at mo&t*#/*
cosets of the subspadé, where|L'| < K|A| (the cosets are of the formd + L' wherez’ € X').

5.4 The ADC-exp conjecture implies the weak polynomial Freiran Ruzsa conjecture

To prove this implication we need to recall the definition of the spectrum of gigen in Definition5.1
Our proof uses the following lemma frofau and VU 2004 (appearing there as Lemma 4.38) which shows
that a set having a small sum set must have large spectrum:

Lemma 5.4. [Small sumset forces large spectrum] Let A be a subset of a finite abgiaup 7, and let
0 < € < 1. Then we have the following lower bound on the sum set:

Al Z]
|Al|spec(A)| + |Z]e

A—Al>

We shall also need the following easy consequence of Ruzsa’s Cgvenima (Lemm&.3):

Lemma 5.5. [Covering] Suppose thatl C F4 is a subset with the property thpt + A| < K|A|. Suppose
furthermore that there exists a subs&tof A of size at Ieastfg—l]A], such thafspan (A’) | < K3|A|. Then
A may be covered by at moAtK; cosets of a subspace of size at migstA|.
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Proof. We apply Ruzsa'’s covering lemma to the sétsand A:
A+ A'| <|A+ A] < K|A| < KK |A|

Hence Ruzsa’s covering lemma implies the existence of a subs#tsize at most K such thatd C
X + A" — A’. The proof is completed by noticing that — A’ is contained in a subspace of size at most
Ks|Al. O

The idea of the proof of ADC-exp>- WPFR is as follows. Lemma&.5 implies that it is enough to
prove that ifA has a small sumset then there exists a large subisett A which has small span. Suppose
that A has a small sum set. Then Lemrhal implies thatA has large spectrum, denote the spectrum
set byB. Assuming the approximate duality conjecture, we have thahd B contain large subset$’, B’
respectively which lie in affine shifts of dual subspaces. But this impliegimthatdim(A4’) < n—dim(B’),

i.e. A’ has a small span, and setting the parameters correctly we arrive at itegl desult.

Let ¢ be the constant guaranteed by Conjecfudor the constanta = % andd = min {(5’/2, %} Our
goal will be to show that! may be covered by at mogt™ - K" cosets of a subspace of size at MBSH |,
wherer := max {%, 8}.

First we observe that without loss of generality we may assume that

K < min {2"/8, 24”} (13)

since otherwise from our choice nfve have thalk” > 2", and hence the desired conclusion holds trivially.
Next, in Lemmab.4sete = 1/K. Then from the lemma and the assumption that- A| < K|A| we

have:
|Al2"

|Allspecyx (A)] + 2" K2

K|A| > |A— A >

And rearranging we obtain:

2 K -1 2n

3 > >

We would like to apply ADC-exp (Conjectute?) to the setsA andspec ;i (A). Obviously,
D(AaSPecl/K(A)) > 1/K,

wherel/K > 27¢" (Equation (3)). Also, our assumption tha’ < 2/8 in (13) together with Equation
(14) imply that
A on 23n/4
> >
’Specl/K( )‘ = ‘A‘Kz = |A’

Thus, we either have that is of size at leas2”/? > 2°" or that|spec, i (A)| > 2"/* > 2°". Hence
ADC-exp (Conjecturel.2) implies the existence of subsets C A, B’ C spec, /x (A) which lie in affine
shifts of dual spaces such that

/ |A| ,  Ispecy g (A)]
A > 5=z’ |B'| > T oemjz
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But this implies in turn thatlim(A’) + dim(B’) < n, and consequently

on 2(5’77,/2 .on
<
[B'| ~ Ispecy i (A)

where the last inequality is due to Equatidsdl),

Concluding, we have thdspan (A’)| < 20"/2K?|A| where A’ is a subset ofd of size at least
|A|/20'7/2. Using Lemmaeb.5we concluded can be covered by 29/2 . K cosets ofpan (A’) which is
of size< 29"/2 2| A|. In other words, there exists a subséetC F%, | X| < 29/2 . K, such that4 can
be covered by all cosets of the formi- span (A’) wherex € X. Finally, If we writespan (A’) as a direct
sum of subspaces’ andL”, whereL” is a subspace of siz€ /2K, and letX’ = X + L”, we get thatd
may be covered by at mogt " K2 cosets of the subspadé, where|L'| < K |A| (the cosets are of the form
2’ + L' wherex’ € X'), and this completes the proof of ADC-exp wPFR.

|span (4) | < < 22 2| A

5.5 The polynomial Freiman Ruzsa conjecture implies the ADGxp conjecture

Our proof of the implication PFR=> ADC-exp uses the following lemma, which shows that whenever
A C spec,(B) for sufficiently largee, and assuming the PFR conjecture, we can find a largéd’setA and

asetB’ C BsuchthatD(A, B') = 1 and, most importantly, the size 8 is proportional t ‘lss‘;?;((%)". This
last property is important because it allows us to make the following iteraiinereent: Eithespan (A') is
large relatively taspan (A) in which caseB’ is also large and we have proved the ADC-expsiem (A’)
is small relatively taspan (A) and then we apply the lemma again withinstead ofA. We prove that this

process terminates eventually, and that when it terminates thd setd B’ are the desired sets we need.

Lemma 5.6. [ADC-exp as function of span] For every constaiits- ¢’ > 0, 1 > o' > 0 there exist a
constant’ > 0 and an integetk, both depend only o, o/, such that the following holds for sufficiently
large n assuming the PFR conjecture. Af B C F} satisfy|A| > 2¢"" and A C spec,(B) for e > 2-¢'",
then there exist subsets C A and B’ C B satisfying

1. |4 > |A7

span(A’ Y
2. |B/| > 62k ||s};)an((A))|| |A’ o |B‘

3. D(A,B') = 1.

The proof of the above lemma is deferred to the next subsection. To purevienplication PFR=
ADC-exp we need to set a few parameters that will be used later on. Eoess?/4 anda’/ < o — d in
Lemmab.6, and let¢’ > 0 andk be the constant and the integer guaranteed by this lemma for the constants
&',a’. Suppose that > 4 - 27", where¢ = min{(’,5/4k}. We assum&,c 4 4 [(—1){*?] is positive,
the proof for the negative case is similar.

Now we describe the iterative process. Start with thedset= A N spec, /5(B), which, by Markov’s
inequality is of size at leasgtd|/2. Fori = 0,1,... let A, C A;, B, C B be the subsets guaranteed by
Lemmab.6with respect ta4;, B. Let

lspan (A7) |, _s
|span (4;) | |Ai (15)
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While o; < 270/ we setd;,; := Al. Lett be the first timer;, > 27(9/2)». We argue that suchta
exists and that in fagt < 4/4. Indeed, ifo; < 2~(%/2)" we have that

|span (Aj) | < 270/2"| 4, |span (4;) | < 27279 |span (4;) | < 27O/D"|span (4;)|  (16)

where the last inequality is due to our choicesbk §2/4. Sincel < [span (A})| and|span (A;)] < 27,
the above equation implies thiak 4/4.
We next show that the set; is of pretty large size. The first bullet of Corollaby6 implies that for all
1<t
A7 2 |4 2 27 4] 2 274

where the last inequality is again due to our choiceYof< §%/4. Consequently, our assumption that
|A| > 2" together with the fact that< 4/6 imply for sufficiently largen that

’At‘ > 275n|A|/2 > 2(0176)7171 > 2a’n

where the last inequality is due to our choicendf< o — ¢.

Applying Lemma5.60ne final time with4, and B and using the assumptien > 2~(9/2" we conclude
the existence oB’ C B, |B'| > (£)*"2-(/2n|B| > 2-9n| B| (the last inequality is due to our choice of
e > 4.2700/4%)ny sych thatD(A,, B') = 1. S0 A, andB’ are the two sets promised by ADC-exp and this
shows PFR=- ADC-exp.

5.6 Proof of main technical lemma

In this section we prove the main technical lemma used in the proof of-PHDC-exp, Lemmab.6. The
proof breaks down to two lemmas ( Lemna§ and5.8) stated next. The first lemma can be seen as a
version of the ADC-exp which applies whépan (A) | is not much larger thajy|.

Lemma 5.7 (Approximate duality for sets with small spar(ivenB C % and A C spec,(B), there exist

subsetsd’ C A, B' C B, |A'| > L|A|, |B'| > AL _|B| such thatD(A’, B') = 1.
2 [span(A)]

The second main step in the proof is to show that i spec (B), then assuming the PFR conjecture,
A= SpeCek/2<B) N span (A) ia large for some constait By showing this we will be able to apply the
above lemma also to sets that have large span relative to their size, by apptginige sets4 and B. A
lower bound on the on the size dfis given by the following lemma:

Lemma 5.8. For everyl > §' > 0,1 > o’ > 0, there exist a constat > 0 and an integek, both depend
only oné’, o, such that the following holds for sufficiently large assuming the PFR conjecture holds.
GivenB C F} and A C spec,(B), |A| > 2%™ wheree > 2-¢'", there exists a subsef of A of size at least
|A|'~% such that

jspan (A') ||A|~%" < |span (A) Nspec,r o (B)]. (17)

Given these two lemmas we can complete the proof of Lefu@arhen we prove the two lemmas.

Proof of Lemm&.6. Noticing the assumptions of Lemnia6 and Lemmzb.8 are the same, led’ be the
subset ofA which is of size at leastd|'~% and satisfies Equatiori]). Notice A’ satisfies bullet 1 of
Lemmab.6.
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Let A := span (A) N spec.x »(B). Apply Lemma5.7to A, B and conclude the existence df C
A, B' C Bsuch thatD(A, B') = 1, and which satisfiegd| > 1|A], and

A / -4

s e AL alspan (A)]1A

’span (A) ‘span (A) }
The last inequality above uses Equatidf)( To show thatB’ satisfies bullets 2 and 3 of Lemn%a6
notice A O A becaused C spec (B) C spec.(B) which impliesspan (fl) = span (A) and, also,
D(A, B') = D(A, B). This completes the proof. O

1Bl

For the proof of Lemm&.7 we shall use Fourier analysis and recall the standard notations for i For
function f : F3 — C anda € F3 we denote b)f(a) the a-coefficient of the Fourier expansion gfover
3, defined by )
f(@) = Bgexy [£(B)(=1)¥].

We shall need Parseval’'s equality which says that for a fungtioy, — C,

Y (f@)y>=27" ) (F(8)* (18)
aElFy BEFL
Proof of Lemm&.7. Letd := dim(A) and choose an arbitrary basig as, ..., a4 Of A. For every vector

B = (B1,B2,...,B4) € F, we denote bys; the following coset ofd-:
Sg ={y € F5|{a;,y) = B foralli =1,2,...,d}
For everys € F4 we denote the relative weight & inside S by:

|B N S

ZU([R) = })TbGZB[b € é;ﬁ] = |£;

Our goal will be to show the existengec F¢ such thatw(3) > 62% since in this cas®’ :=
B N Sg is a subset of3 of size at IeastQ‘ ‘A|A)| | B| which is contained in an affine coset gf- of the
form z + A+, PartitionA into Ay = {a € A| (z,a) =0} andA; = {a € A ] (x a) = 1}. To complete

the proof of the lemma takd’ to be the larger ofly, A; and noticg B’| > €2 ‘|B| |A’| > 1]4], and

|span

DA, B') = 1.
Our main observation is that for evetye A, if we write a = Zle aa;, o = (a1, aa,...,04), then
we have
w(a) = Egepg [w(B)(~1 =273 " w(B) (1) = 27 By g [(—1) (Y] (19)

BeFS

The equality above allows us to prove the lemma by bounding the)sym; (@ («))? from above and
from below, where:

d
A= {04: (a1, a9,y .. . 0q) EF%|ZO¢¢(M S A}
i=1



For obtaining the lower bound we use Equati@8)(together with our assumption thaéx(A, B) > e,
while for the upper bound we use Parseval’s equality together with thehfact is a distribution, i.e.,
Zﬁewg w(3) = 1. We start with bounding the subt_ (i (c))* from below

(]
B
2
o
%

2
|A| <Eaeg[w(a)]> (by convexity)

2
= \A|<2dEaeAEbeB[(—1)<a’b>]> (by (19)
= |A]27%(D(4, B))? > A2~ % (20)

Next we bound the suiy  ; (@ (a))? from above:

Yo @(@)? < Y (o(w)? (21)

acA aelﬁ‘g

= 2743 " (w(B))* (by Parseval's Equality)
BeFS

2 " maxw(B) Y w(B)

BeEFd Berd
2

= 2% maxw(f) (Cpepsw(B) =1) (22)

BeFY

IN

Finally, the combination of equation2@) and @2) implies the existence ¢f € F$ such that

Al
w(p) > A2_d62:€2’7
= span (4)|

which finishes the proof of the lemma. O]

For the proof of Lemm&.8, which follows next, we shall apply the NLFR conjecture, together with
an analogous nearly-linear version of the Balog-SzédieGowers (BSG) theorem. The BSG theorem
[Balog and Szemeédi, 1994 Gowers 1999 says that ifA is a subset of an abelian additive group which
satisfiesPr, grcala + o' € S] > 1/K for |S| < C|A|, then one can find a subsdt C A, such that
|A"| > |A|/f(K,C),and| A"+ A'| < g(K,C)|Al|, wheref (K, C) andg(K, C) are polynomials with fixed
degrees ik andC.

For our purposes we need that the exponents in the polynori&lsC') and g(K, C') would be as
small as possible, in particular we would be interested in a bound of thedé#f for some small constant
0 > 0, and an integed. As was the case with the NLFR conjecture, to achieve this, we are willing tioness
not only thatPr, cala + o’ € S] is large but even thar,, 4, . accalar + a2 + ...+ a; € S]is large
for some constant > 2. For this we need a nearly-linear version of the BSG theorem. Fortunsiely,a
theorem was proved b@root and Borensteif2017].

Theorem 5.9.[Nearly-linear BSG Theoren€root and Borensteif2011]] For every 1 > ¢ > 0 andc > 1,
there exist a constant, and an integek, both depend only oa ¢, where( is monotonically decreasing in
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c and k is monotonically increasing in, such that the following holds. H is a sufficiently large subset of
an additive abelian group which satisfies:

k
PrajeAaeA,..aneA {Zaz € S] > A7, |8 < |Af
i=1

then there exists a subsét of A of size at leastA|'~¢ such that:

MA/’ < |A/|c(1+6€)

The combination of the above theorem with the NLFR conjecture gives thevfaticcorollary:

Corollary 5.10. [Nearly-linear BSG + NLFR] For every > § > 0 andc > 1, there exist a constaqt > 0
and an integet, both depend only o, ¢, where( is monotonically decreasing inandk is monotonically
increasing inc, and such that the following holds assuming the PFR conjecturé.idfa sufficiently large
subset of an additive abelian group which satisfies:

k
PrajeAazeA,...aned [Za € S] > A7, |8 < |Af°

i=1
then there exists a subsét of A of size at leastA|'~? such that:
jspan (4') | < |A[**?

Proof. Let p < 0/(4c), and let/ be the integer guaranteed by Conject@r&2 for the constanp. Let
e < §/(2¢l), and letk and( be the integer and the constant guaranteed by Thebr@for the constants
ande.

Noticing that the assumptions in Theor&® and Corollary5.10are the same, we have that there exists
a subsetd’ C A of size at leastA|'~¢ such thatifA’| < |4’|<0+<0) Applying Conjecture2.12with the
setA’ and K < |A’|c0+<)-1 we get that there exists a subsgt C A’ of size at leasf | A’| such that
|span (A”)| < K1*r|A’|. To conclude the proof we compute the sizest6fandspan (A”):

A = KA
> |A/‘—pc(1+€€)|A/‘ (K < |A/‘C(1+€£))
> |A[AIEDIA (p <6/ (4e), € < 1/0)
_ |A/|1—6/2
> AU (147 > A1)
> [A|07 (e<6/2)
2 |A’176
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|span(A”)| < K'r|A|
< |A/|c(1+ee)+pc(1+ee) (K < |A/|c(1+ee)—1)
< JAFDT (< §/(4c), € < 1/0)
< AT (e < 6/(2¢0))
< JA[TT (A C A)

So we have thatd”| > |A|'~% and|span (A”) | < |A|*® which concludes the proof of the corollary.
O

We now proceed to the proof of LemrbzB;

Proof of Lemm&.8. Letd :=¢’, andc = 1/¢/. Let{ > 0 andk be the constant and the integer guaranteed
by Corollary5.10for the constants andc.

We may assume thatis even (ifk is odd replace it by: + 1 and the proof goes through). From our
assumption thatl C spec,(B) and using convexity we get

< (EbeBEaeA [(_1)(%1))])’“
< Ewen (EaEA [(—1)<a’b>] > k

k .
= EpepFoichmen.. apen [(_1)@1_1 al,b>:|

Markov's inequality implies

i k

€

Pr@lEA,azGA,...,akEA[ g a; € Specek/g(B) N span (A)] > 5
i=1

Let S := speck j»(B) Nspan (A4), and letc’ = 1122@ From our assumptions that C spec (B), and

|A| > 2¢/n \we have thatl < ¢ < 1/a’. Since in Corollary5.10 k£ is monotonically increasing in, and
¢ is monotonically decreasing i we may apply this corollary with the constatitinstead ofc without
changing the values df and(.

Let(’ = %’g, and suppose that> 2-¢"". From our choice of and the assumption thad| > 2% we
have

Ek > 2_</k:n > 2—%(kn > |A|—§

We conclude that .

1,
PraleA,ageA,...,akeA |:Zla’b S S:| 2 §‘A| ¢
1=

and in addition
|S| = |Al°
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Corollary5.10applies, and we conclude that there exists a sulisef A of size at IeastA|1—5' such
that
[span (A') | < [A]°F = |5]|A)

This completes the proof of the lemma.

6 Onthe /. -error of multi-output bit affine and two-source extractors

In this section we explain our use 6f, as the measure of error in the definition of extractors (DefinRidh

In a nutshell, it yields cleaner and tighter analysis than we would have obitagieg statistical distance as
our measure of error. And it allows us to construct affine and (in Seétigntwo-source extractors with
multiple output bits with essentially no lossfig,-error. Details follow.

6.1 Onthe/-error of existing affine extractors

All known affine extractors, i.e., those Bourgain[2007, Yehudayoff[201]], Ben-Sasson and Kopparty
[2009, Li [2011], Gabizon and Ra2009, DeVos and Gabizof201q have the following property. Each
of them is defined as evaluating a certaivariate polynomialP over a finite fieldFym, wheren = r-m. The
n-input bits are viewed as describing an input= (51, ..., 3,) € F5.. And each of these constructions
shows a bound on the error of any nontrivial character appliefl(19). Recall that a nontrivial additive
charactery, : Fom — {—1,1} of Fom is a function of the form

Xa(x) = (~1)Z5= %,

where(x1,...,x,,) is the representation af according to an arbitrary fixeHs-basis forFam. In other
words, for each of the known constructions of affine extractors we haesult of the following form. For
every nontrivial charactey,, as above, and eveff,-affine subspacel of (Fom )" of dimension at least,
we have

[Evea [xa(P(2))]] < e.

We point out that Vazirani's “XOR-lemma” shows that extractors with ebmunds as above are also
¢-2m/2_close to uniform in statistical distance. This can be converted back torallwouthe/. -error of the
form e - 2/2, But using the lemma below we can deduce that'theerror is merely, i.e., we lose literally
nothing from outputtingn bits instead of a single bit.

Lemma 6.1. [Multi-output extractors] Let, be a distribution or¥5* satisfying for every nontrivial additive
character

[Elxa(z)]] <, (23)
where z is distributed according ta;. Then for any linearly independent;,...,a; € F3' and any
bi,...,b; € Fg, denoting byS, the affine space

Sy ={x € Fy" | (an, ) = b1,...,{ap,x) = b},
we have
27— e < ((Sy) <27 +e

Consequently, taking= m andaq, as, . .., a,, to be the standard basis and noticing that in this case we
have((Sy) = Prx.¢[X = b] we conclude thé..-distance betweeq and the uniform distribution is at
moste.
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Proof of Lemm&.1 Consider a vectow of the forma = 2521 a;a; Wherea; € Fy. Let a denote the
vector(ay, ..., a;). We have that

(o, x) = Zai (o, ).
i=1

Thus, forc = (c1, ..., ¢;) € F andz € S, we have(a, x) = (a, ¢) which implies
Exa(@)]= D (8- D <(S) (24)
ceFL (c,a)=0 c€lFt (c,a)=1

which, by @3), implies that for anyy € span (a1, ...,a:) \ {0} andg € F, we have

—e< > LS - Y l(S)<e (25)
ceF (c,a)=P celb (c,a)=1-p
Fora = 0 we get from 24)
D> ¢S =1, (26)
ceF}

because everysatisfies0, c) = 0. Set3, = (b, a). Consider the following sum:

Z( YoooS) - >, <<Sc>). 27)

acFh \ceFh (c,a)=PBa celFt (c,a)=1—P4

Using 25) and @6) we bound 27) from above byl + (2! — 1) - € (the first summand comes from= 0
via (26) and the remaining ones come fram#£ 0 via (25)). Similarly, (27) is bounded from below by
1 — (2 — 1) - e. Finally, we observe tha®() is equal to2! - {(S;). The reason for this is that we have
by definition (b,a) = 3, for all a € F%, whereas for any fixed # b we have(c,a) = £, if and only if
(c,a) = (b, a) which happens iffc — b,a) = 0. Sincec # b (and bothb andc are fixed) this latter event
happens for precisely half of theés and thus the summand.S.) appears inZ7) equally often positively as
negatively and gets canceled.

We have shown that

I—(2=1)-e<2'-¢(S) <1+ (28— 1) ¢

and dividing this inequality bg! completes the proof. O

6.2 Increasing the output length of our two-source extractcs

In this section we prove Lemntal19and show how to obtain two source extractors with multiple output
bits. Before doing so we briefly explain how a so-called collection of inddpet matrices can be obtained.

Let Fo» denote the finite field witl2" elements. It is well-known that elements of this field for-a
linear space of dimension Let 3y, . .., 3, € For be a basis for this space. Note that multiplication by any
B € F5\ 0is an invertibleF,-linear transformation, and lét/; be the matrix representing multiplication by
B; in our basis. It is now rather straightforward to verify thidt, . . . , M, are independent according to our
definition.

We now proceed to prove Lemn2al9
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Proof of Lemm&.19 Let y,, : F}, — [—1, 1] be a nontrivial additive character. We have
Ya(E(z,y)) = (_1)25:1 ai(h1(2),Mih2(y)) — (_1)(h1(2),Mh2(y))

whereM = Ele a; M;. SinceM has full rank and®(z, y) is a[n, 1, p, €]-two source extractor which is
linear invariant with respect th;, ho, we see that

Exy [Xa(E(X,Y))]] <e

Applying Lemma6.1 completes the proof. O]
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