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Abstract
Two-source and affine extractors are two fundamental objects studied in the context of algorithmic

derandomization. Explicit constructions of these two distinct objects seem to be related, at least on a
superficial level. For instance, constructions of both objects for min-entropy rate above half have been
known for quite some time [Chor, Goldreceich, SIAM J. Comp. 1988; Ben-Sasson et al. 2001], and
much of the recent progress on both problems [Barak et al., 2006; Bourgain 2007] has relied on similar
new sum-product theorems from additive combinatorics .

This paper establishes further connections between affine and two-source extractors by construct-
ing two-source extractors for arbitrarily small min-entropy rate in a black-box manner from any affine
extractor with sufficiently good parameters. Two such constructions are presented, and the first part
of our analysis shows that they lead to two-sourcedisperserswhich are weak (but nontrivial) kinds of
two-source extractors, also known as “bipartite Ramsey graphs”. To strengthen this result and obtain
two-source extractors we introduce theapproximate duality conjecture(ADC) and initiate its study. The
ADC leads to a rather general result that can be used to convert a natural class of two-source dispersers
— “low-rank dispersers” — into two-source extractors. Suppose that a boolean two-input function
E ∈ FF

n

2
×F

n

2

2
is a two-source disperser for min-entropy rateρ. Our main observation — which uses the

ADC — is that ifE has rankO(n) overF2 when viewed as a2n × 2n matrix in the natural way, thenE
is a two-source extractor for min-entropy rateρ+ δ (for anyδ > 0) with exponentially small error!

The ADC is a natural conjecture in additive combinatorics soit deserves independent study, further
motivation is provided by two recent applications of it to communication complexity [Ben-Sasson et al.,
FOCS 2012] and to locally decodable codes [Bhowmik et al., ECCC 2012]. Define theduality measure
of a pair of setsA,B ⊂ Fn

2
to be

D(A,B) =

∣

∣

∣

∣

Ea∈A,b∈B

[

(−1)
∑

n

i=1
aibi

]

∣

∣

∣

∣

.

ThenD(A,B) = 1 if and only ifA is contained in an affine shift of the space dual to the span ofB. The
ADC says that every pair(A,B) contains a pair of subsets(A′, B′) that have duality measure exactly1,
and the densities|A′|/|A| and|B′|/|B| increase withD(A,B):

min

{ |A′|
|A| ,

|B′|
|B|

}

≥ exp
(

−c
√

n log(1/D(A,B))
)

for a positive universal constantc.
Our main technical result shows that a weak form of the ADC is implied by thePolynomial Freiman-

Ruzsa Conjecture(PFR) in additive combinatorics (and that ADC also implies aweak but as-of-yet
unknown version of the PFR), and that this version of the ADC is sufficient for obtaining the black-box
construction of two-source extractors mentioned above.
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1 Introduction

The results in this paper can be divided into two parts. In the first part, we show a new connection between
two objects that have been studied in the context of algorithmic derandomization— two-source dispersers
andaffine extractors. That is, we show two constructions that convert in a black-box manner any affine
extractor for min-entropy rate below half into a two-source disperser formin-entropy rate below half. One
of our constructions can reach arbitrarily small min-entropy rate as long asthe affine extractor outputs
sufficiently many output bits, and has sufficiently small error.

In the second part, we present and study a new conjecture in additive combinatorics that we call the
approximate duality conjectureand relate it to the well-knownpolynomial Freiman-Ruzsa conjecture. The
approximate duality conjecture implies in turn that every two-source disperser of rank which is at most linear
in the size of the inputs is also a two-source extractor with exponentially small error for roughly the same
min-entropy. Since our constructions from the first part are two-source dispersers of linear rank, it follows
from the approximate duality conjecture that they are two-source extractors with exponentially small error.

1.1 Extractors and dispersers for affine and two independent sources

Two-source extractors, dispersers and bipartite Ramsey graphs Randomness extractors, or, simply,
extractors, deal with the task of extracting uniformly random bits from weaksources of randomness. (See
the surveyShaltiel[2002] for an introduction to this topic.) The gold-standard measure for the randomness
of a sourceX, i.e., a distribution over{0, 1}n, is its min-entropywhich is defined to be the largestk such
that for everyx ∈ {0, 1}n the probability assigned tox by X is at most2−k. (It is useful to think ofX as
uniformly distributed over an arbitrary subset of{0, 1}n of size precisely2k.)

A function f : {0, 1}n × {0, 1}n → {0, 1}m is said to be atwo-source extractorfor min-entropyk
with error ǫ if for every pair of independent sourcesX,Y that each have min-entropy at leastk, the distance
between the uniform distribution onm bits and the distributionf(X,Y ) is at mostǫ. A two-source disperser
is a one-output-bit (m = 1) two-source extractor with a nontrivial (but possibly large) bound on the error. In
other words, a two-source disperser for min-entropyk is a functionf that is non constant onS×T for every
pair of subsetsS, T of size at least2k. Viewing f as the indicator function of the edge-set of a bipartite
graphGf on vertex sets of size2n, the graphGf is known as a2k-bipartite Ramsey graphbecause the
subgraph induced by any pair of sets of vertices of size at least2k is neither complete, nor empty.

Erdös[1947] inaugurated the use of the probabilistic method in combinatorics and showed among other
things that a random functionf is with high probability a two-source disperser1 for min-entropylogn +
O(1). Probabilistic arguments can also be used to show that such a function is with high probability a two-
source extractor for the same min-entropy. However, up until a few years ago the best known construction of
two-source dispersers (and extractors) required min-entropy at least n/2 [Chor and Goldreich, 1988]. This
lower bound of half on themin-entropy rate— defined as the ratio between the min-entropyk andn — was
first broken byPudĺak and R̈odl [2004] for the case of two-source dispersers. They constructed two-source
dispersers for min-entropy rate12−o(1). Later on, following the work ofBarak, Impagliazzo, and Wigderson
[2006a] which brought tools from additive combinatorics to bear on the construction of extractors,Barak et al.
[2005] reduced the min-entropy for dispersers down toδn for anyδ > 0 . In the meanwhileBourgain[2005]
used more tools from additive combinatorics and constructed a two-sourceextractor for min-entropy rate
1
2 − ǫ0 for some constantǫ0 > 0, and this construction remains to this date the best in terms of its min-
entropy rate. (If thesumof min-entropies of both sources is considered,Raz[2005] showed a construction

1The original statement ofErdös[1947] was in terms of non-bipartite Ramsey graphs, but the proof method holds non-the-less
for the case of bipartite Ramsey graphs, which are equivalent to two-source dispersers.
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that requires one source to have min-entropy rate just above half but theother source can have its min-
entropy be as small asO(log n).) Finally, Barak et al.[2006b] constructed what remains the state of the art
for two-source dispersers, achieving min-entropynδ for anyδ > 0.

Regarding conditional results, ones that depend on unproven conjectures, [Chor and Goldreich, 1988,
Corollary 11] and [Zuckerman, 1991, Section 6.3] showed that the Paley Conjecture from number theory
implies two-source extractors for very small min-entropy rate andTauman Kalai et al.[2009] constructed
two-source extractors based on cryptographic assumptions.

Affine extractors An affine extractorfor min-entropyk is a functiong : Fn
2 → Fm

2 , whereF2 denotes the
two-element finite field, such that for every random variableX distributed uniformly on ak-dimensional
affine subspaceA of Fn

2 , the random variableg(X) is close to being uniformly distributed onFm
2 . A one-

output-bit (m = 1) function that is nonconstant on everyk-dimensional affine subspace is called anaffine
disperserfor min-entropyk.

The probabilistic method can be used to show that affine extractors exist for min-entropy as small as
log n + O(1) but up until recently explicit constructions were known only for min-entropy rate above half
[Ben-Sasson et al., 2001]. This bound was broken byBarak et al.[2005] for the case of dispersers, they
obtained dispersers for min-entropy rateδ for anyδ > 0. Bourgain[2007] used new bounds on exponential
sums resulting from additive-combinatorics to construct affine extractorsfor min-entropyδ for anyδ > 0
that achieve exponentially small error (cf.Yehudayoff[2011], Li [2011] for improvements and alternative
constructions along this line).Gabizon and Raz[2008] showed constructions of affine extractors forX
distributed uniformly on affine spaces of dimension as small as1 when the fieldF2 is replaced with a
sufficiently large fieldF, and the minimal required field-size was reduced byDeVos and Gabizon[2010].
Ben-Sasson and Kopparty[2009] showed constructions of affine dispersers for sublinear min-entropyas
small asn4/5, and some of their constructions are affine extractors for constant min-entropy rate with sub-
exponential error. Finally,Shaltiel[2011] showed affine dispersers for sub-polynomial rate.

1.2 From affine extractors to two-source dispersers

Our first main result shows how to construct two-source dispersers from affine extractors in a black-box
manner. We present two different black-box constructions of two-source dispersers from affine extractors,
and in both families we start with a functionf : Fn

2 → Fm
2 that we assume to be a “good” affine extractor

for min-entropy rateδ (reservingρ for denoting the min-entropy rate of the two-source extractor built from
f ). By a “good” affine extractor we mean that for all affine sourcesX of min-entropyδn the distance
between the distribution of the random variablef(X) and the uniform distribution overFm

2 , measured with
theℓ∞-norm, is at most2−m (The use of this particular error measure is explained in Remark2.3).

Our two-source constructions are obtained as follows. Letf : Fn
2 → Fm

2 be a “good” affine extractor
according to the above explanation. For a stringz ∈ Fm

2 , let f−1(z) denote the set of preimages ofz, and
assume the existence ofz with at least2n−m preimages (suchz exists by the pigeonhole principle).

Concatenated two-source constructionThis construction takes twon-bit inputsx, y and is computed by
(i) concatenatingf(x) to x, (ii) concatenatingf(y) to y and(iii) outputting the binary inner-product
of the two (concatenated) strings. The binary inner-product ofz, z′ ∈ Fk

2 is denoted by〈z, z′〉 and
defined by

∑k
i=1 zi · z′i where all arithmetic operations are inF2.

Preimage two-source constructionLet F be a one-to-one mapping ofFn−m
2 to f−1(z). On a pair of

(n−m)-bit inputsx, y output the inner-product ofF (x) andF (y).
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Special cases of both constructions, which used specific functionsf not necessarily known to be affine
extractors, have been studied in the context of two-source dispersersand extractors —Bourgain[2007] used
certain concatenated constructions andPudĺak and R̈odl [2004] used preimage ones.

Each construction has its advantages. Assumingf is explicit, i.e., can be computed in timenO(1),
inspection reveals that the concatenated construction is also explicit. The preimage one is not necessarily
explicit, becauseF is not necessarily explicit even iff is. It is nonethelesssemi-explicit— it can be
computed in time2n · poly(n), which is quasi-linear2 in the size of the truth-table of the function (which
is 2n). Thus the concatenated construction is more efficient from a computational perspective. On the other
hand, using the preimage construction one can potentially reach smaller min-entropy rate.

It is convenient to express the min-entropy of our two-source dispersers in terms of themin-entropy loss
rate λ = 1 − m

δn of the affine extractor, which measures how much entropy is lost when going fromX to
f(X). To see thatλ does indeed measure entropy loss notice that in the extreme case in whichλ = 0 we
havem = δn which means thatf recovers almost all the entropy ofX. In general, we would likeλ to be as
small as possible.

We prove that the given two constructions are two-source dispersers for min-entropy rates that depend
only on the parameters of the affine extractors mentioned above. For the concatenated one we can show (in
Theorem2.7) it is a two-source disperser for min-entropy rateρconcatenated < 1

2 as long asδ < 1
2 , where

ρconcatenated →λ→0
2
5 . For the preimage one, assumingδ = 1

2 , we show (in Theorem2.9) that it is a
two-source extractor for min-entropy rate at leastρpreimage =

λ
1+λ .

Notice that both constructions easily give dispersers for min-entropy rateat leastρ < 1
2 . As mentioned

above, the preimage construction can potentially reach much smaller min-entropy rate than the concatenated
construction: when the min-entropy loss rateλ approaches zero so does the min-entropy rate of the preimage
construction, but the concatenated construction does not go below min-entropy 2

5 even if we assume thatf
has no min-entropy loss (λ = 0).

Proof overview To prove that our constructions are two-source dispersers considerS, T ⊂ {0, 1}n, |S|, |T | >
2ρn. Note that in both our constructions we first apply a functionh : Fn

2 → Fr
2 to each ofx and y

separately to obtainx′, y′ and then apply a full-rank bilinear map (the binary inner-product function) to
x′, y′. Let h(S) = {h(s) | s ∈ S} and defineh(T ) similarly. Our main observation in this part is that if
dim(span (h(S))) + dim(span (h(T ))) > r + 1, then the functionE(x, y) = 〈h(x), h(y)〉 must be non-
constant onS×T . Therefore in order to show thatE(x, y) is non-constant onS×T it suffices to show that
each ofdim(span (h(S))), dim(span (h(T ))) is greater thanr/2.

We note that in order to apply the argument above one does not necessarily have to use affine extractors.
In particular, an explicit construction of a functionh : Fn

2 → Fr
2, such thatdim(span (h(S))) > r/2

for every subsetS ⊂ {0, 1}n, |S| > 2ρn would suffice. Indeed, this part of our proof is inspired by
[Pudĺak and R̈odl, 2004, Bourgain, 2007] (cf. Rao [2007]) which applied similar reasoning to particular
functions which are not necessarily affine extractors.

To turn our two-source dispersers into two-source extractors we needto get better bounds on the error.
For this purpose we initiate the study of the approximate duality conjecture introduced next, and since we
believe this notion is interesting in its own right we discuss various aspects of itin some detail. Then, in
Section1.4, we return to the study of two-source extractors and explain how approximate duality can be
used to improve error bounds as needed.

2We call a functiont : N → N quasi-linear ift(n) = O(n · poly log n).
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1.3 Additive combinatorics and the approximate duality conjecture

Additive combinatorics is the branch of mathematics that studies the combinatorialestimates associated with
additive properties of subsets of additive groups. As mentioned in Section1.1, additive combinatorics meth-
ods have found in recent years several remarkable applications to the construction of two-source extractors.
We now suggest a new conjecture in additive combinatorics that we call the “approximate duality conjec-
ture” and show an application of this conjecture to the area of randomness extraction. The approximate du-
ality conjecture has recently found additional applications to communication complexity (Ben-Sasson et al.
[2012]) and locally decodable codes (Bhowmick et al.[2012]) thereby adding to its appeal as a natural object
of study.

To state the conjecture we first define theduality measureof a pair of setsA,B ⊆ Fn
2

D(A,B) ,

∣

∣

∣

∣

Ea∈A,b∈B
[

(−1)〈a,b〉
]

∣

∣

∣

∣

. (1)

as an estimate of how “close” this pair is to being dual. The duality measure can be alternatively defined as
the discrepancy of the inner product function on the rectangleA×B (up to a normalization factor of2

n

|A||B| ).
We nevertheless chose to use the term “duality measure” instead of “discrepancy” because of the algebraic
context in which we use it, and on which we elaborate next.

It can be verified that ifD(A,B) = 1 thenA is contained in an affine shift ofB⊥, whereB⊥ denotes
the space dual to the linear span ofB overF2. The question we study is what happens whenD(A,B) is
pretty large though strictly less than1, and we postulate thatA,B contain pretty large subsets that have a
duality measure1. More precisely, we conjecture the following:

Conjecture 1.1(Approximate duality conjecture, ADC). There sexists an absolute positive constantc, such
that ifA,B ⊆ Fn

2 haveD(A,B) ≥ ǫ, then there existA′ ⊆ A andB′ ⊆ B satisfyingD(A′, B′) = 1 and

min
{

|A′|/|A|, |B′|/|B|
}

≥ exp
(

−c
√

n log(1/ǫ)
)

. (2)

To see why the bound on the right hand side of (2) makes sense, we argue that at the very least it
cannot be improved in either parameter. First we show it cannot be improved beyond2−

√
n. To see this

takeA = B =
(

n√
n

)

to be the set of vectors that have at most
√
n ones. The birthday paradox shows

thatD(A,B) is a fixed positive constant, independent ofn (in fact, taking vectors of weightc′
√
n for c′

approaching0 makesǫ approach1). But it can be verified that for any pairA′ ⊂ A andB′ ⊂ B satisfying
D(A′, B′) = 1, the size of one of the sets (wlog,A′) is a2−

√
n fraction of |A|. Such a pair is obtained by

takingA′ (B′ respectively) to contain all vectors supported on the first (last, respectively) n/2 coordinates.
Furthermore, as pointed to us by Shachar Lovett [Personal Communication], this 2−

√
n cannot be improved

even whenA,B are dense inFn
2 : Consider the pair

Â, B̂ ⊂ F3n
2 , Â = Fn

2 ×
(

n√
n

)

× {0n} , B̂ = {0n} ×
(

n√
n

)

× Fn
2 .

Denoting3n by n′ it can be verified that|Â|/2n′

> 2−n′/3 but both the duality measure and the right hand
side of (2) are the same for̂A, B̂ as for the aforementionedA,B.

Next we argue that the dependence onǫ in the right hand side of (2) cannot be improved. TakeA ⊂ Fn
2

to be a linear space of dimension3n/4 and letB be the direct sum of its dualA⊥ and some spaceB′ that is
linearly independent ofA⊥ and of dimensionn/2. BothA andB have size23n/4 andD(A,B) ≥ 2−n/4,
this is the probability thatb ∼ B falls in A⊥ (since any otherb ∈ B has inner product1 with exactly half
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of the elements inA). Clearly anyA′ ⊆ A,B′ ⊆ B satisfyingD(A′, B′) = 1 and of maximal size are dual
linear spaces, hence the left hand side of (2) in this case isexp(−Ω(n)) = exp(−Ω(

√
n ·
√

log 1/ǫ)).
In this paper we restrict our attention to the following weakening of Conjecture1.1in which we allow the

loss in the sizes of the setsA′, B′ to be exponentially small inn, that is, we allow the ratios|A′|/|A|, |B′|/|B|
to be bounded from below by a function of the form2−δn for an arbitrary small constantδ > 0.

Conjecture 1.2(Approximate Duality Conjecture, exponential loss, ADC-exp). For every pair of constants
0 < δ < α < 1 there exists a constantζ > 0 such that the following holds. Suppose thatA,B ⊆ Fn

2 satisfy
D(A,B) ≥ 2−ζn and |A| ≥ 2αn. Then there exist subsetsA′ ⊆ A andB′ ⊆ B such thatD(A′, B′) = 1
and

min
{

|A′|/|A|, |B′|/|B|
}

≥ 2−δn. (3)

It can be verified that the above conjecture is indeed implied by the more general Conjecture1.1 for
a sufficiently large setA. We justify the ADC-exp conjecture by relating it to the well-known polynomial
Freiman-Ruzsa Conjecture (PFR, in short, see more details in the paragraph below) in additive combina-
torics. Namely, we show that the ADC-exp conjecture is implied by the PFR conjecture and also implies a
“weak” form of the PFR conjecture (which we call wPFR) that, although weaker than PFR, is stronger than
what is currently known. We also prove unconditionally a weaker form ofthe ADC-exp conjecture which
applies whenA,B are nearly-dual sets, that is, when the duality measure is of the formD(A,B) > 1 − ǫ
for sufficiently smallǫ > 0 (see Theorem2.10).

The ADC-exp conjecture, although weaker than the general approximateduality conjecture (Conjecture
1.1), has powerful implications to the construction of two-source extractors.Roughly speaking, this conjec-
ture implies that every two-source disperser of rank which is at most linearin the size of the inputsn (see
Section1.4below for a precise definition of the notion of rank), is also a two-source extractor for roughly the
same min-entropy rate, and with exponentially small error. The unconditionalweaker form of the ADC-exp
conjecture for nearly-dual sets implies in turn a weaker unconditional version of the latter statement – that
every such two-source disperser is also a two-source extractor for roughly the same min-entropy rate with
ℓ∞-error bounded by some absolute constant smaller than half. We explain thisimplication in more detail
in the next section, but before we do that we elaborate more on the PFR conjecture and its relation to the
approximate duality conjecture.

The polynomial Freiman Ruzsa conjecture and the approximate duality conjecture. The question
addressed by the Freiman-Ruzsa Theorem [Freiman, 1973, Ruzsa, 1999] is the following3. Start by recalling
thatA is an affine subspace ofFn

2 if and only if A does not expand under addition, by which we mean that
|A + A| = |A| whereA + A = {a+ a′ | a, a′ ∈ A}. Now supposeA ⊂ Fn

2 behaves “approximately” like
a subspace, i.e.,|A + A| ≤ K|A| (think of K ≪ |A|). Can we conclude thatA is “close” to a subspace,
meaning it contains a large subsetA′ that is itself a large fraction of a subspaceH of Fn

2?
The Freiman-Ruzsa theorem gives a positive answer to this question, showing that there exists a sub-

setA′ ⊆ A and a subspaceH ⊆ Fn
2 such that both fractions|A′|/|A| and |A′|/|H| can be bounded

from below by2−poly(K). In a recent breakthrough,Sanders[2010], using new techniques developed by
Croot and Sisask[2010], proved a lower bound on these ratios of the formO(1/ log3K), thus improving
greatly on the previous state of the art lower bound of2−O(

√
logK) which appears inSchoen[2011]. The

polynomial Freiman-Ruzsa conjecture(PFR) postulates that these ratios can be bounded from below by a
polynomial function inK of the formK−O(1).

3We describe the Freiman-Ruzsa Theorem for linear spaces overF2, the case most relevant to our study, whereas the Freiman-
Ruzsa Theorem applies to arbitrary subsets of groups. SeeGreen[2005b] and references within for more information.
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The question of approximate duality has a similar flavor: If two sets behave “approximately” like dual
sets, do they contain large subsets that are strictly dual? Stated this way it seems natural to explore the
connection between approximate duality and PFR, which is what we do later onin the paper.

1.4 From two-source dispersers to two-source extractors via approximate duality

Note that both the concatenated and the preimage constructions presented inSection1.2 are obtained by
first applying a pair of functionshX , hY to the two inputsx andy separately, and then taking the binary
inner-product ofhX(x) andhY (y). This property is not specific to our constructions, and in fact any binary
functionE : Fn

2×Fn
2 → F2 can be computed this way. To see this viewE as a2n×2n matrixME overF2 in

the natural way (the(x, y)-entry ofME isE(x, y)). Denoting the rank ofME overF2 by r, it is well-known
that there exist matricesA,B ∈ F2n×r

2 such thatME = A · B⊤. Therefore, pickinghX to be the function
that mapsx to thex-row of A andhY to mapy to they-row of B, we see thatE(x, y) = 〈hX(x), hY (y)〉.
To simplify our exposition, when henceforth we mention the “rank” of a two-input function we refer to the
rank overF2 of its associated matrix.

Even though every two-input function is an “inner-product” function asexplained above, there is some-
thing special about the pair of constructions we describe: Their rank is very small, in both cases it is linear
in n, whereas the rank of a general function can be as large as2n. This simple observation is crucial be-
cause our next result says that any two-source disperser for min-entropy rateρ which has rankn/ν, also has
bounded error on sources of min-entropy rateρ+γ for anyγ > 0, and the bound on the error decreases asγ
grows larger. We give two bounds on the error in this case. The first one bounds theℓ∞-error by a non-trivial
constantγ′ < 1

2 whereγ′ depends only onγ andν. This result is stated in Lemma2.15and Theorem2.16,
and is based on the weaker form of conjecture ADC-exp for nearly-dual sets (Theorem2.10). The second
bound says that the error is at most2−ζn for an absolute constantζ > 0 which depends only onγ, ν andρ
(see Lemma2.17and Theorem2.18). The latter bound assumes the ADC-exp conjecture (Conjecture1.2).

To see how approximate duality comes up in the analysis of the error of two-source extractors, suppose
that the constructionE(x, y) = 〈h1(x), h2(y)〉 is known to be a rankr two-source disperser for min-entropy
rateρ, assumingh1, h2 mapFn

2 to Fr
2. To prove thatE is an extractor assume by way of contradiction that

there existS, T ⊂ Fn
2 , |S|, |T | > 2(ρ+γ)n on whichE is very biased. Letting̃S ⊆ Fm

2 be the set̃S = h1(S)
and definingT̃ = h2(T ), our assumption is thatD(S̃, T̃ ) is very large. Approximate duality statements like
Theorem2.10and the Conjecture1.2imply the existence of large setŝS ⊆ S̃ andT̂ ⊆ T̃ that have a duality
measure of1 and this implies thatE is constant on the pair of large setsS′ = h

(−1)
1 (Ŝ), T ′ = h

(−1)
2 (T̂ )

which contradicts our assumption thatE is a two-source disperser.

1.5 Open questions

Constructing “good” affine extractors So far most work on affine extractors and dispersers has focused
on reducing the min-entropy rate and significant progress has been madealong this line, as surveyed in the
Section1.1. But the question of minimizing the min-entropy loss rate and theℓ∞-error of affine extractors
has received much less attention. Our work shows that at least as far astwo-source constructions are con-
cerned, it is the min-entropy loss rate and theℓ∞-error that should be minimized while the min-entropy rate
can be set to be a pretty large constant, like1

2 . It would be interesting to see if, for instance, affine extractors
for small min-entropy rate and the tools used to analyze them could be converted into constructions for large
min-entropy rate (like12 ) but with small min-entropy loss rate, and smallℓ∞-error.
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The approximate duality conjecture (ADC) We find this conjecture interesting both because its con-
nection to the PFR conjecture and because its possible application to the task ofconstructing two-source
extractors. Interesting avenues for future research are to pin down the exact versions of PFR and ADC that
are equivalent (assuming they exist) and to study the ADC and the ADC-expas a means to obtain a possibly
weaker, though better than currently known, version of PFR. We have shown here that the ADC and even
the weaker ADC-exp would imply better two-source extractors, and the wPFR implied by ADC-exp could
be sufficient for some of the other applications of the PFR (seeGreen[2005a] for a survey of some of them).
Indeed, in the subsequent worksBen-Sasson et al.[2012], Bhowmick et al.[2012] new applications of the
approximate duality conjecture were found to communication complexity and locallydecodable codes.

From two-source to affine extractors The question of possible connections between two-source and
affine extractors was first raised byBarak et al.[2005] (see Section 1.4 there) Our results address this ques-
tion only in one direction, that of constructing two-source extractors out of affine ones. The reverse direction,
that of constructing in a black-box manner affine extractors from two-source ones, remains wide open. This
is somewhat perplexing because we would have guessed that the two-source-to-affine part should be easier.
Counting the set of distinct sources that are uniformly distributed over setsof size2ρn we see there are
(

2n

2ρn

)2 ≈ 2n·2
ρn

of them, and this is much larger than the size of the set of affine sources, ofwhich there are

at most2n
2
. All things considered it should be easier to go from extractors that workagainst a large set of

sources to ones that work against a smaller set, adding to the mystery.

2 Main results

2.1 Extractors and dispersers for affine and two independent sources

We start by defining the main objects of study in this paper — affine and two-source extractors (and dis-
persers) — and to do so introduce a bit of notation. We identify{0, 1} with the two-element fieldF2 and
{0, 1}n with Fn

2 . Givenx = (x1, . . . , xn) ∈ Fn
2 andx′ = (x′1, . . . , x

′
m) ∈ Fm

2 let (x ◦ x′) denote their
concatenation, i.e.,(x ◦ x′) = (x1, . . . , xn, x

′
1, . . . , x

′
m). For two sequencesx, y ∈ Fk

2 let 〈x, y〉 denote the
F2-bilinear form〈x, y〉 =∑k

i=1 xi ·yi , commonly referred to as theinner-product function. ForA ⊂ Fn
2 let

A⊥ denote the space that is dual tospan (A), i.e.,A⊥ = {b ∈ Fn
2 | 〈a, b〉 = 0 for all a ∈ A} . For x ∈ Fn

2

we letx + A := {x + a|a ∈ A}. For a functionf : Fn
2 → Fm

2 , we denote byf−1(z) the set of preim-
ages of the stringz under the functionf . ForA ⊆ Fn

2 we denote byf(A) the image ofA underf , i.e.,
f(A) = {f(a) | a ∈ A}.

A sourceovern bits is a distributionX overFn
2 . Themin-entropyof X is denoted byH∞(X) and the

min-entropy rateof X is h∞(X) = H∞(X)/n. If X is distributed uniformly over an affine subspace ofFn
2

of dimensiond we callX a d-dimensionalaffine source. Throughout the paper we reserve the letterE to
denote various extractors, andE denotes expectation.

Definition 2.1. [Extractors and dispersers] LetS be a set ofN -bit sources. A[N,m,S, ǫ]-extractor is a
functionf : FN

2 → Fm
2 satisfying for every sourceS ∈ S that the distance between the random variable

f(S) and the uniform distribution overFm
2 , measured with theℓ∞-norm, is at mostǫ. Namely, for every

sourceS ∈ S andy ∈ Fm
2 we require that

∣

∣Pr[f(S) = y]− 2−m
∣

∣ ≤ ǫ.

The functionf is called an[N,m,S]-disperserif f is nonconstant on every sourceS ∈ S. An alternative
definition is to say that the support of the random variablef(S) is larger than1 for everyS ∈ S. We call
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N thesource length, m is theoutput length, andǫ is theℓ∞-error, or simply theerror, of the extractor. We
shall be interested in extractors for two special kinds of sources:

• Two-source extractors and dispersers:WhenN = 2n andS is the set of product distributions
S = X×Y where bothX andY have min-entropy rate greater thanρ, we refer tof : Fn

2 ×Fn
2 → Fm

2

as a[n,m, ρ, ǫ]-two source extractor, or [n,m, ρ]-two source disperser.

• Affine extractors and dispersers:WhenS is the set of uniform distributions on affine subspaces of
FN
2 of dimension greater thanρN , we refer tof as an[N,m, ρ, ǫ]-affine extractor, or [N,m, ρ]-affine

disperser.

When comparing the min-entropy of a sourceS to that off(S), it will be convenient for us to use the
entropy loss rateparameter defined us

λ = max
S∈S

1− H∞(f(S))

H∞(S)
. (4)

Intuitively, the loss rate measures how much (relative) min-entropy is lost when applyingf to a sourceS in
S. Smaller lossλ corresponds to better extractors, ones that retain a larger min-entropy rate.

We end this part with two remarks on non-standard definitions:

Remark2.2. [Dispersers] A more standard definition of a disperser, as appearing in, say,Shaltiel [2002],
requires that for every sourceS ∈ S, the support of the random variablef(S) equals the full range ofFm

2 .
Notice that for the case ofm = 1 the two definitions match, and our discussion of dispersers (but not of
extractors!) will be limited tom = 1.

Remark2.3. [ℓ∞-error] Typically, the error of the extractor is measured with theℓ1-norm, and is defined to
be the statistical distance betweenf(S) and the uniform distribution overFm

2 . We chose to measure the error
with the ℓ∞-norm, and henceforth the term “error” will refer to theℓ∞-error unless stated otherwise. The
reason for this is that it will be relatively easy to analyze our constructionsusing this measure. For instance,
we shall argue (in Section6 ) that existing affine extractors [Bourgain, 2007, Ben-Sasson and Kopparty,
2009, Li , 2011, Gabizon and Raz, 2008, DeVos and Gabizon, 2010], which are typically stated as one-output
bit extractors, can be easily converted intom-output bit extractors with a relatively small loss in theℓ∞-error.
For example, the original statement inBourgain[2007] gives a family of[n, 1, δ, 2−Ω(n)]-affine extractors,
i.e., the output length is1. It is nonetheless rather straightforward to obtain a linear number of output bits
with essentially the sameℓ∞-error (cf. Lemma6.1). Moreover, standard probabilistic methods (the Chernoff
bound) can be used to show that a random functionf : Fn

2 → Fm
2 with m = δn − O(logn) is, with high

probability, an affine extractor for min-entropyδn with ℓ∞-error at most2−m.

Theorem2.4. [Bourgain’s affine extractor] For everyδ > 0 there existsλδ < 1 that depends only onδ such
that there exists an explicit family of[n,m = (1− λδ)δn, δ, 2

−m]-affine extractors.

Notice that the min-entropy loss rate of the construction above isλδ+(δn)−1 = λδ+o(1). Using similar
reasoning we will also show how to get multi-output bit two-source extractors out of our constructions (cf.
Lemma2.19). Notice that iff is an extractor with output lengthm andℓ∞-error ǫ thenf has “standard”
error (i.e., itsℓ1 distance from uniform is) at mostǫ2m.
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2.2 From affine extractors to two-source dispersers

All results stated in this section refer to the following two candidate constructions of two-source dispersers.

Definition 2.5. [Concatenated construction] Given functionsf, g : Fn
2 → Fm

2 , the (f, g)-concatenated
constructionis the functionEc

f,g : Fn
2 × Fn

2 → F2 defined forx, y ∈ Fn
2 by

Ec
f,g(x, y) = 〈(x ◦ f(x)), (y ◦ g(y))〉. (5)

Definition 2.6. [Preimage construction] Given functionsf, g : Fn
2 → Fm

2 let n′ = n −m. Let z, z′ ∈ Fm
2

satisfy|f−1(z)| ≥ 2n
′

and|g−1(z′)| ≥ 2n
′

. Let F : Fn′

2 → f−1(z) andG : Fn′

2 → g−1(z′) be injective.
The(F,G)-preimage constructionis the functionEp

F,G : Fn′

2 × Fn′

2 → F2 defined forx, y ∈ Fn′

2 by

Ep
F,G(x, y) = 〈F (x), G(y)〉. (6)

Our main result in this section is that both the concatenated and preimage constructions are two-source
dispersers, or bipartite Ramsey graphs, for min-entropy rate below half.The preimage construction can
reach arbitrarily small min-entropy rate provided the entropy loss of the affine extractor, together with its
ℓ∞-error, are sufficiently small. Forf : Fn

2 → Fm
2 andm′ ≤ m, them′-bit projectionof f is obtained by

taking the firstm′ bits off(x). Formally, iff(x) = (y1, . . . , ym) whereyi ∈ F2 thenf ′(x) = (y1, . . . , ym′).
To better understand the selection of parameters in the following theorem we point out that iff is an[n,m =
(1 − λ)δn, δ, 2−m]-affine extractor, then for anym′ ≤ m them′-bit projection off is an[n,m′, δ, 2−m′

]-
affine extractor.

Theorem 2.7. [Concatenated two-source disperser from affine extractor] Supposef and g are [n,m =
(1 − λ)δn, δ, 2−m]-affine extractors forδ < 1

2 andλ < 1. Letλ′ = max
{

λ, 53 − 1
3δ

}

(noticingλ′ < 1)

andρ = 1−δ(1−λ′)
2 (noticingρ < 1

2 ). Setm′ = ⌊δ(1− λ′)n⌋ − 2 and letf ′, g′ bem′-bit projections off, g
respectively. ThenEc

f ′,g′ is a [n, 1, ρ]-two-source disperser.

The above theorem is proved in Section3. Plugging Bourgain’s affine extractor from Theorem2.4 for
min-entropy rate15 in the previous theorem, and noticing that for rate1

5 we haveλ′ = λ we get:

Corollary 2.8. [A two-source disperser for min entropy rate below half] Takef = g to be Bourgain’s
[n,m = (1 − λ 1

5
)n/5, 15 , 2

−m]-affine extractor, with min-entropy loss rateλ 1
5
< 1. Then the concatenated

constructionEc
f,f is a [n, 1, ρ]-two source disperser for min-entropy rateρ = 2

5 +
λ 1

5
10 < 1

2 .

Inspecting Theorem2.7 we see that, even if we assume minimal lossλ = 0 and a min-entropy rate
δ = 1

5 for the affine extractor which maximizes the min-entropy rate of the resulting concatenated two-
source extractor, we end up with a two-source extractor for min-entropyrate 2

5 (the proof appears in Section
4). This min-entropy rate barrier can be broken by the preimage construction.

Theorem 2.9. [Preimage two-source disperser from affine extractor] Iff andg are[n,m = (1−λ)n/2, 12 , 2
−m]-

affine extractors andF,G are as in Definition2.6, thenEp
F,G is a [n′ = 1+λ

2 n, 1, λ
1+λ ]-two-source disperser.

2.3 The approximate duality conjecture

In this section we study the approximate duality conjecture with exponential loss(Conjecture1.2). For
convenience, we restate this conjecture below:
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Conjecture 1.2 - Approximate Duality Conjecture, exponential loss, ADC-exp(restated). For every
pair of constants0 < δ < α < 1 there exists a constantζ > 0 such that the following holds. Suppose that
A,B ⊆ Fn

2 satisfyD(A,B) ≥ 2−ζn and|A| ≥ 2αn. Then there exist subsetsA′ ⊆ A, |A′| ≥ 2−δn|A| and
B′ ⊆ B, |B′| ≥ 2−δn|B| such thatD(A′, B′) = 1.

Our first result in this section is a weakening of the above conjecture whichapplies when the duality
measure is of the formD(A,B) ≥ 1− ǫ for a sufficiently small consentǫ, i.e. A andB have to be “nearly
dual”.

Theorem 2.10(Approximate duality for nearly-dual sets). For everyδ > 0 there exists a constantǫ > 0
that depends only onδ, such that ifA,B ⊆ Fn

2 satisfyD(A,B) ≥ 1 − ǫ then there exist subsetsA′ ⊆
A, |A′| ≥ 1

4 |A| andB′ ⊆ B, |B′| ≥ 2−δn|B|, such thatD(A′, B′) = 1.

We prove the above Theorem in Section5.1. Our second set of results relates Conjecture1.2to the PFR
conjecture.

Conjecture 2.11(Polynomial Freiman-Ruzsa conjecture, PFR). There exists an integerr such that ifA ⊂
Fn
2 has |A + A| ≤ K|A|, thenA may be covered by at mostKr cosets of some subspace of size at most

K|A|.

In Section5 we prove that the above PFR conjecture implies the ADC-exp conjecture (Conjecture1.2).
To prove this implication it is crucial to us that the exponentr in the PFR conjecture be close to 1, i.e.,
that thepolynomial in the “polynomial Freiman Ruzsa” conjecture be nearly-linear. To achievethis, we

are willing to assume not only that2A is small but even thatℓA =
{

∑ℓ
i=1 ai | ai ∈ A

}

is small for some

constantℓ > 2. In other words, to prove the ADC-exp what we really need is theNearly-linear Freiman
Ruzsa (NLFR) conjecture:

Conjecture 2.12(Nearly-linear Freiman-Ruzsa (NLFR)). For everyρ > 0 there exists an integerℓ which
depends only onρ, such that ifA ⊂ Fn

2 has|ℓA| ≤ K|A|, thenA may be covered by at mostKρ cosets of
some subspace of size at mostK|A|.

In Section5 we show that the NLFR and PFR are equivalent. (The implication NLFR⇒ PFR is rel-
atively easy but the other direction is nontrivial.) We also show that NLFR⇒ ADC-exp. Regarding the
reverse direction, we show that the1.2 implies the following weaker form of PFR:

Conjecture 2.13(Weak PFR, wPFR). For everyδ′ > 0, there exists an integerr which depends only on
δ′, such that ifA ⊂ Fn

2 has|A + A| ≤ K|A|, thenA may be covered by at most2δ
′n ·Kr cosets of some

subspace of size at mostK|A|.

The above conjecture differs from the standard PFR conjecture in that the number of cosets are multi-
plied by an exponential factor. However, this exponential factor can set to be arbitrarily small, at the cost of
enlargingr. The relation between all conjectures mentioned above can be summarized by:

(PFR⇔ NLFR) ⇒ ADC-exp⇒ wPFR

2.4 From two-source dispersers to two-source extractors via approximate duality

Our last set of main results uses the results on approximate duality from the previous section to show that
two-source dispersers of rank which is at most linear in the size of the inputs are also two-source extractors.
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Since the constructions of two-source dispersers from affine extractors presented in Section2.2are of linear
rank, as a corollary we obtain that these constructions are also two-source extractors. We start with the
formal definition of rank of a binary function.

Definition 2.14 (Rank of a binary function). The rank of a functionE(x, y) : Fn
2 × Fn

2 → F2 is the least
integerr such that there exist functionsh1, h2 : Fn

2 → Fr
2, satitfyingE(x, y) = 〈h1(x), h2(y)〉 for all

x, y ∈ Fn
2 . Equivalently, this is the rank overF2 of the2n × 2n matrix whose(x, y)-entry isE(x, y).

We give two bounds on the error of the two-source extractors. The first one bounds the error by a
constant and it relies on the version of approximate duality for nearly-dual sets (Theorem2.10). The second
bound shows that the error is exponentially small inn and it relies on the ADC-exp conjecture (Conjecture
1.2). We start with the first bound.

Lemma 2.15(Constant bound on the error of two-source dispersers of linear rank). For everyγ, ν > 0 there
existsγ′ < 1/2 such that the following holds for sufficiently largen. Every[n, 1, ρ]-two-source disperser of
rank n

ν is a [n, 1, ρ+ γ, γ′]-two source extractor.

The proof of the above lemma also appears in Section4.1. Combining this lemma with Theorems2.7
and2.9gives the following corollary.

Theorem 2.16(Constant bound on disperser error). For all γ, λ > 0 there existsγ′ < 1/2, depending only
onγ andλ such that the following holds.

1. If f, g are [n,m = (1 − λ)δn, δn, 2−m]-affine extractors, thenEc
f ′,g′ defined in Theorem2.7 is a

[n, 1, ρ+ γ, γ′]-two source extractor forρ as defined in the same theorem.

2. If f, g are [n,m = (1−λ)n/2, 12 , 2
−m]-affine extractors andF,G are as in Definition2.6, thenEp

F,G

is a [n′ = 1+λ
2 n, 1, λ

1+λ + γ, γ′]-two source extractor.

Next we give exponentially small bounds on the error of linear-rank two-source dispersers based on the
ADC-exp conjecture (Conjecture1.2).

Lemma 2.17(Exponentially small bound on the error of two-source dispersers of linear rank). Assuming
ADC-exp (Conjecture1.2), for everyγ, ν, ρ > 0 there existsζ > 0 such that the following holds: Every
[n, 1, ρ]-two source disperser of ranknν is a [n, 1, ρ+ γ, 2−ζn]-two-source extractor.

Theorem 2.18(Exponentially small bound on disperser error). Assuming ADC-exp, for everyδ, λ, γ > 0
there existsζ > 0 such that the following holds for sufficiently largen.

1. If f, g are[n,m = (1−λ)δn, δ, 2−m]-affine extractors thenEc
f ′,g′ defined in Theorem2.7is a[n, 1, ρ+

γ, 2−ζn]-two source extractor forρ defined in that theorem.

2. If f, g are [n,m = (1−λ)n/2, 12 , 2
−m]-affine extractors andF,G are as in Definition2.6, thenEp

F,G

is a [n′ = 1+λ
2 n, 1, λ

1+λ + γ, 2−ζn]-two source extractor.

We end by pointing out that since our constructions arelinear invariantof rankΩ(n), we can use the
following lemma to increase their number of output bits to a number linear inn, while maintaining the same
ℓ∞-error.

Let h1, h2 : Fn
2 → Fr

2. In what follows call a[n, 1, ρ, ǫ]-two source extractorE(x, y) = 〈h1(x), h2(y)〉
linear invariant with respect toh1, h2 if for every full rank matrixM ∈ Fr×r

2 , E(x, y) = 〈h1(x),Mh2(y)〉
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is also a[n, 1, ρ, ǫ]-two source extractor. Inspection of the proofs of Theorems2.7, 2.9, 2.16, 2.18reveals
that both our constructions are linear invariant with respect to the functions h1, h2 with which they were
defined (since in Theorems2.7, 2.9we only use the fact that the setsh1(S), h2(T ) have large span, while in
Theorems2.16, 2.18we only use the fact thath1(S), h2(T ) are large enough subsets of{0, 1}r).

Call a set of matricesM1, . . . ,Mr ∈ Fr×r
2 independentif they satisfy the following property: For every

v1, . . . , vr ∈ F2 not all zero, the matrix
∑

i viMi has full rank. In Section6 we explain how a collection of
independent matrices can be obtained. There we also prove the following statement.

Lemma 2.19. [Multi-output extractors] Leth1, h2 : Fn
2 → Fr

2 be such that the rankr function

E(x, y) = 〈h1(x), h2(y)〉

is a [n, 1, ρ, ǫ]-two source extractor which is linear invariant with respect toh1, h2. Then fort ≤ r, and
independent matricesM1, . . . ,Mt ∈ Fr×r

2 , the functionE : Fn
2 × Fn

2 → Ft
2 defined by

E(x, y) = (〈h1(x),M1h2(y)〉, . . . , 〈h1(x),Mth2(y)〉)

is a [n, t, ρ, ǫ]-two source extractor.

2.5 Organization of the rest of the paper

In the next section we prove that the black box constructions presented inSection2.2 are two-source dis-
persers. In Section4 we use the results on approximate duality to show that two-source dispersers of low
rank are also two-source extractors for roughly the same min-entropy rate. In Section5 we discuss the re-
lation between PFR, NLFR and ADC-exp in more detail. Finally, in Section6 we analyze theℓ∞-error and
the number of output bits of existing affine extractors and multi-output bit two-source extractors.

3 From affine extractors to two-source dispersers

In this section we prove that plugging an affine extractor with sufficiently good parameters into our two-
source constructions results in a two-source disperser for min-entropyrate that is related to the parameters
of the affine extractor. Our proofs in this section rely on the following elementary lemma, whose proof we
bring here for completeness. ForS ⊆ Fn

2 we denote bydim(S) the dimension ofspan (S).

Lemma 3.1. LetA,B be subsets ofFn
2 such that

dim(A) + dim(B) > n+ 1.

Then the binary inner product functionIP (x, y) = 〈x, y〉 is non-constant onA×B.

Proof. Suppose in contradiction thatIP (A,B) is constant. Then there are two cases. The first case is when
IP (A,B) = 0. In this caseA is contained inB⊥, which implies in turn thatdim(A) + dim(B) ≤ n, a
contradiction. The second case is whenIP (A,B) = 1. In this case leta ∈ A. Then for any other element
a′ ∈ A we have that〈a′ − a, b〉 = 〈a, b〉 − 〈a′, b〉 = 0. It follows that the setA− a is contained inB⊥, and
thereforedim(A− a) + dim(B) ≤ n. This in turn implies thatdim(A) + dim(B) ≤ n+ 1, which is again
a contradiction.
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3.1 Concatenated two-source disperser — Proof of Theorem2.7

The main step in the proof is the following lemma. Before proving the lemma we show how it implies
Theorem2.7.

Lemma 3.2. [Affine extractors lead to dimension expansion] Supposef is an[n,m, δ, 2−m]-affine extractor.
Then for everyS ⊆ Fn

2 of size greater than2m+δn, denoting

S = {(x ◦ f(x))|x ∈ S},

we have
dim(S) ≥ ⌊log |S|⌋+m− 1.

Proof of Theorem2.7. Our choice ofρ = 1−δ(1−λ′)
2 andλ′ ≥ 5

3 − 1
3δ implies that

ρ ≥ δ(2− λ′). (7)

Given twon-bit sourcesX,Y of min-entropy rate greater thanρ let S, T ⊆ Fn
2 denote their respective

supports. Recallingm′ = δ(1− λ′)n− 2 we conclude from (7) that

|S|, |T | > 2ρn ≥ 2δn+m′

.

LettingS = {(x ◦ f ′(x))|x ∈ S} andT = {(y ◦ g′(y))|y ∈ T}, Lemma3.2 implies

dim(S), dim(T ) > ρn+m′ − 1 ≥ n+m′

2
.

The last inequality follows becauseρn = 1−δ(1−λ′)
2 n > n−m′

2 + 1. We conclude thatdim(S) + dim(T ) >
m′ + n + 1. Lemma3.1 then implies thatEc

f ′,g′(x, y) is non-constant onS × T , thereby completing the
proof.

And now we give the proof of Lemma3.2.

Proof of Lemma3.2. Denotedim(S) by d, noticingd ≥ m+ δn. To prove the lemma we will show

d ≥ ⌊log |S|⌋+m− 1.

Let π1 : F
n+m
2 → Fn

2 be the linear operator which projectsFn+m
2 onto the firstn bits4 and letπ2 : F

n+m
2 →

Fm
2 be the projection onto the lastm bits.

Start with a basisv1, . . . , vd for span
(

S
)

. Without loss of generality suppose that its lastr vectors
are such thatπ2(vd−r+1), . . . , π2(vd) form a basis toπ2(span

(

S
)

) (noticing that0 < r ≤ m). Use
Gaussian elimination to make the firstd− r elements in this basis have their support in the firstn bits. Let
V1 := span ({π1(v1), . . . , π1(vd−r)}), andV2 := span ({π2(vd−r+1), . . . , π2(vd)}).

First we note thatf(S) ⊆ V2, which implies that| f(S) |≤ 2r. Our goal will be to show that for
every stringz ∈ f(S) the number of preimages ofz underf in the setS is at most2d−r−m+1, that is,
|f−1(z) ∩ S| ≤ 2d−r−m+1. This will conclude the proof of the lemma as this will imply that

|S| =
∑

z∈f(S)
|f−1(z) ∩ S| ≤

∑

z∈f(S)
2d−r−m+1 ≤ 2r · 2d−r−m+1 ≤ 2d−m+1

4Formally, letting
{

e
(t)
1 , . . . , e

(t)
t

}

denote the standard basis forFt
2 and representing elements ofFn+m

2 in this basis fort =

n+m, we defineπ1(
∑n+m

i=1 aie
(n+m)
i ) =

∑n
j=1 aje

(n)
j andπ2(

∑n+m
i=1 aie

(n+m)
i ) =

∑n+m
j=n+1 aje

(m)
j−n.
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and the proof is completed by taking logarithm of both sides.
Let z ∈ f(S). Our main observation that will allow us to bound the size off−1(z)∩S is thatf−1(z)∩S

is contained in an affine shift ofV1 by some vectorw ∈ Fn
2 . Assuming that this is true, and noticing that the

dimension ofV1 is d− r ≥ (m+ δn)−m = δn, the fact thatf is an[n,m, δ, 2−m]-affine extractor implies
thatz cannot have too many preimages underf in the setS. In particular,

|f (−1)(z) ∩ S| ≤ |f (−1)(z) ∩ (w + V1)| ≤ 2d−r · 2−m+1 = 2d−r−m+1

It remains to show thatf−1(z) ∩ S is contained in an affine shift ofV1. Sincez ∈ f(S) ⊆ V2, and
since the vectorsπ2(vd−r+1), . . . , π2(vd) form a basis forV2, we conclude that there exists a unique vector
y ∈ span ({vd−r+1, . . . , vd}) such thatπ2(y) = z. We argue thatf−1(z) ∩ S ⊆ π1(y) + V1. Indeed,
suppose thats ∈ f−1(z) ∩ S. Then from the uniqueness ofy, and since the basis vectorsv1, . . . , vd−r have
their support in the firstn bits, we have that(s, f(s)) = (s, z) = x+ y, wherex ∈ span ({v1, . . . , vd−r}).
But this implies in turn thats = π1(x) + π1(y), whereπ1(x) ∈ V1, and hences ∈ π1(y) + V1, which
concludes the proof of the lemma.

3.2 Preimage two-source dispersers — Proof of Theorem2.9

Proof of Theorem2.9. Let m = 1−λ
2 n and recalln′ = n − m = 1+λ

2 n. Let z, z′ ∈ Fm
2 be the strings

from Definition2.6, such thatF is an injective mapping ofFn′

2 into f−1(z) andG is an injective mapping
of Fn′

2 into g(−1)(z′). Given twon′-bit sourcesX,Y of min-entropy rate greater thanλ1+λ let S, T ⊆ Fn
2

denote the respective supports ofF (X), G(Y ), noticing |S|, |T | > 2
λ

1+λ
n′

= 2
λ
2
n. We shall show that

dim(S), dim(T ) > n
2 , thereby completing our proof due to Lemma3.1.

By symmetry it suffices to prove the claim only forS. We will prove thatS is not contained in any affine
space of dimensionn/2. LetA be such a space. By Definition2.1we get

|A ∩ S| ≤ |A ∩ f−1(z)| ≤ 2 · 2− 1−λ
2

n · 2n
2 = 2

λ
2
n < |S|.

where the last inequality is true for sufficiently largen due to the fact thatλ < 1. We conclude thatS * A
and since this holds for all affine spaces of dimensionn/2 our proof is complete.

4 From two-source dispersers to two-source extractors via approximate du-
ality

4.1 Constant bounds on error by approximate duality for nearly-dual sets

In this Section we prove Lemma2.15which shows that any two-source disperser of rank which is at most
linear in the size of the inputs is actually a two-source extractor with a nontrivial, alas large, bound on the
error. This result is implied by the approximate duality theorem for nearly-dual sets (Theorem2.10).

Proof of Lemma2.15. Let δ = (1/ν + 2)−1γ and setγ′ = 1−ǫ
2 whereǫ = ǫ(δ) > 0 is the constant

guaranteed by Theorem2.10. We argue by way of contradiction. LetX andY be two sources of min-
entropy rate> ρ+ γ which we assume without loss of generality to be uniformly distributed over setsA,B
respectively, each of size greater than2(ρ+γ)n, and for which the error ofE(X,Y ) is greater thanγ′.

AssumingE has rankn/ν there exist functionsh1, h2 : Fn
2 → Fn/ν

2 such thatE(x, y) =〈h1(x), h2(y)〉.
For our purposes we needh1 andh2 to be bijective. For this end we let̃h1, h̃2 : Fn

2 → Fn/ν+2n
2 be the

16



functions defined bỹh1(x) = (h1(x) ◦ x ◦ 0n) and h̃2(y) = (h2(y) ◦ 0n ◦ y), where0n denotes the
all-zeros vector of lengthn. One can check that̃h1, h̃2 are bijective functions, while it still holds that
E(x, y) = 〈h̃1(x), h̃2(y)〉.

Let A = {h̃1(a)|a ∈ A} andB = {h̃2(b)|b ∈ B}. Assuming theℓ∞-error ofE(X,Y ) is greater
than 1−ǫ

2 , is equivalent to sayingD(A,B) > 1 − ǫ . Consequently, Theorem2.10implies the existence of

subsetsA′ ⊆ A, |A′| ≥ 1
2 |A| andB′ ⊆ B, |B′| ≥ 2−γ(1/ν+2)−1(n/ν+2n)|B| = 2−γn|B| ≥ 2ρn such that

D(A′, B′) = 1. Let Â := h̃
(−1)
1 (A′), B̂ := h̃

(−1)
2 (B′). ThenÂ andB̂ are sets of size at least2ρn each, such

that|E(Â, B̂)| = 1, contradiction.

4.2 Exponentially small bounds on error using the approximate duality conjecture

We now show that, assuming ADC-exp, our two-source dispersers are extractors with exponentially small
error.

Proof of Lemma2.17. Let E : Fn
2 × Fn

2 → F2 be the[n, 1, ρ] two-source disperser of rankn/ν which is

defined byE(x, y) = 〈h1(x), h2(y)〉. Let h̃1, h̃2 : Fn
2 → Fn/ν+2n

2 be the functions defined bỹh1(x) =
(h1(x)◦x◦0n) andh̃2(y) = (h2(y)◦0n◦y), where0n denotes the all-zeros vector of lengthn. Letζ ′ be the
constant guaranteed by Conjecture1.2for the constantsα = (ρ+γ)(1/ν+2)−1 andδ = γ(1/ν+2)−1, and
let ζ = ζ ′(1/ν + 2). Our proof goes by way of contradiction, along the lines of the proof of Lemma2.15.

Let X andY be twon-bit sources of min-entropy rate> ρ + γ, we assume without loss of generality
these sources to be uniform distributions over setsA,B respectively, each of size greater than2(ρ+γ)n. Let

A =
{

h̃1(a) | a ∈ A
}

andB =
{

h̃2(b) | b ∈ B
}

. NoticeA,B ⊆ Fn/ν+2n
2 and |A|, |B| ≥ 2(ρ+γ)n =

2α(n/ν+2n). Assume by way of contradiction that the error ofE(X,Y ), which equals12D(A,B) , is greater
than2−ζn = 2−ζ′(n/ν+2n). Applying ADC-exp toA,B we conclude the existence of subsetsA′ ⊆ A,B′ ⊆
B such thatD(A′, B′) = 1 andA′, B′ are quite large,

|A′| ≥ |A|
2δ(n/ν+2n)

>
2(ρ+γ)n

2γ(1/ν+2)−1(n/ν+2n)
=

2(ρ+γ)n

2γn
> 2ρn

and similarly, |B′| > 2ρn. But sinceh̃1, h̃2 are injective we deduce thatX ′, Y ′, which are uniformly

distributed over̃h(−1)
1 (A′) andh̃(−1)

2 (B′), are a pair ofn-bit sources of min-entropy rate greater thanρ on
whichE is constant, contradiction.

5 The approximate duality conjecture

In what follows, we study the ADC-exp conjecture and its relations to the PFRconjecture. We start by
proving the unconditional version of the ADC-exp conjecture for nearly-dual sets (Theorem2.10) in Section
5.1. We then turn our attention to the study of the relation between the PFR, NLFR, and ADC-exp. We shall
prove the following relations between these conjectures:

(PFR⇔ NLFR) ⇒ ADC-exp⇒ wPFR

In Sections5.2 and5.3 we show the equivalence between PFR and NLFR. Then, in Section5.4 we
move to the rightmost implication. We end in Section5.5 with the most complicated proof, that of the
middle implication (NLFR⇒ ADC-exp).
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5.1 Approximate duality for nearly-dual sets – Proof of Theorem2.10

For the proof of Theorem2.10 we shall need the notion of thespectrumof a set which we take from
[Tau and Vu, 2006, Chapter 4]. This concept will be used also in proofs that appear later on.

Definition 5.1. [Spectrum] For a setB ⊆ Fn
2 andα ∈ [0, 1] let theα-spectrum ofB be the set

specα(B) :=
{

x ∈ Fn
2 | Eb∈B

[

(−1)〈x,b〉
]

≥ α
}

.

Proof of Theorem2.10. We assume without loss of generality thatEa∈A,b∈B
[

(−1)〈a,b〉
]

> 0, the proof for
the case in whichEa∈A,b∈B

[

(−1)〈a,b〉
]

< 0 is similar. LetA′ = A ∩ spec1−2ǫ(B). The assumption
D(A,B) ≥ 1− ǫ together with Markov’s inequality shows|A′| ≥ 1

2 |A|.
Let a1, . . . , ad ∈ A′ form a basis forspan (A′). The elementsa1, a2, . . . , ad partitionFn

2 into 2d sets,
where each set is an affine coset of{a1, a2, . . . , ad}⊥ = A′⊥. For a vectorx ∈ Fn

2 let w(x) denote the
fraction of zeros in the set{〈x, ai〉 | i ∈ {1, 2, . . . , d}}, i.e.,

w(x) =
|{〈x, ai〉 | 〈x, ai〉 = 0, i ∈ {1, . . . , d}}|

d

Note that in every affine coset ofA′⊥ all elements have the same valuew(x). Moreover, for every0 ≤ t ≤ d,
there are precisely

(

d
t

)

cosetsH of A′⊥ such thatw(x) = 1− t
d for everyx ∈ H.

Our main observation is that sinceA′ ⊆ spec1−2ǫ(B), a large fraction of elementsb ∈ B have large
valuew(b). Consequently they cannot participate in too many different affine cosetsof A′⊥, and in particular
there exists one such affine coset which contains a large fraction ofb’s in B. If we letB′ denote the set which
contains all elements that lie in this coset, then we obtain a large subsetB′ ⊆ B, such thatB′ lies in an
affine shift ofA′⊥, and this almost gives the desired setB′. Details follow.

In what follows letH : (0, 1) → (0, 1) denote the binary entropy function given by:

H(p) = p log
1

p
+ (1− p) log

1

1− p

Choose0 < ǫ ≤ 1
8 such thatH(

√
2ǫ) < δ. Letα = d

n denote the fractional dimension ofspan (A′).
Sincea1, . . . , ad are all contained inspec1−2ǫ(B) we haveEb∈B [w(b)] ≥ 1 − 2ǫ. From Markov’s

inequality, this implies that at least
(

1−
√
2ǫ
)

-fraction ofb’s in B satisfyw(b) ≥ 1−
√
2ǫ. We letB̃ denote

the subset ofB which contains all elements inB which satisfyw(b) ≥ 1 −
√
2ǫ. We are forced to pick̃B

from affine cosetsH of A′⊥ such thatw(x) ≥ 1 −
√
2ǫ for everyx ∈ H. The number of such cosets is at

most:

∑

0≤t≤
√
2ǫαn

(

αn

t

)

≤ 1 +
√
2ǫαn ·

(

αn√
2ǫαn

)

= 2(H(
√
2ǫ)+o(1))αn ≤ 2(H(

√
2ǫ)+o(1))n,

where the first inequality is due to our choice ofǫ ≤ 1
8 , which implies

√
2ǫαn ≤ 1

2αn.

This in turn implies the existence of an affine coset ofA′⊥ which contains at least a2−(H(
√
2ǫ)+o(1))n-

fraction ofb’s in B̃. LetB′ denote the subset of̃B which is contained in this affine coset. Recalling we set
δ > H(

√
2ǫ) we get for sufficiently largen

|B′| ≥ 2−(H(
√
2ǫ)+o(1))n · |B̃| ≥ 2−(H(

√
2ǫ)+o(1))n · |B| ≥ 2−δn|B|.
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We have almost concluded the proof. We have at hand a pretty large setB′ that is contained inx+A′⊥

for somex ∈ Fn
2 . PartitionA′ into A′

0 = {a ∈ A′ | 〈x, a〉 = 0} andA′
1 = {a ∈ A′ | 〈x, a〉 = 1}. To

complete the proof of the lemma takeA′ to be the larger ofA′
0, A

′
1 and notice|B′| ≥ 2−δn|B|, |A′| ≥ 1

4 |A|
andD(B′, A′) = 1.

5.2 The nearly-linear polynomial Freiman Ruzsa conjecture implies the polynomial one

The implication NLFR⇒ PFR is a relatively easy consequence of the following inequality ofPlunnecke
[1969], a new proof of which was found byRuzsa[1989]:

Theorem 5.2. [Plunnecke’s inequality] LetA, B, be finite sets in a commutative group, and suppose that
|A+B| ≤ K|A|. Then for arbitrary nonnegative integersm,n we have:

|mB − nB| ≤ Km+n|A|

To show NLFR⇒ PFR chooseρ = 1 in Conjecture2.12(NLFR), and letℓ be the integer guaranteed by
this conjecture forρ = 1. Assuming|A + A| ≤ K|A|, Theorem5.2 implies that|ℓA| ≤ Kℓ|A|. So NLFR
(Conjecture2.12) implies thatA may be covered by at mostKℓ cosets of some subspaceL of size at most
Kℓ|A|. In other words, there exists a subsetX ⊆ Fn

2 of size at mostKℓ such thatA may be covered by all
cosets of the formx+ L wherex ∈ X. If we writeL as a direct sum of subspacesL′ andL′′, whereL′′ is
a subspace of sizeKℓ−1, and letX ′ = X + L′′, we get thatA may be covered by at mostK2ℓ−1 cosets of
the subspaceL′, where|L′| ≤ K|A| (the cosets are of the formx′ + L′ wherex′ ∈ X ′). This shows NLFR
⇒ PFR.

5.3 The polynomial Freiman Ruzsa conjecture implies the nearly-linear one

For this implication, as well as for proofs that appear later on, we will need Ruzsa’s covering lemma,
appearing in [Tau and Vu, 2006] as Lemma 2.14.

Lemma 5.3. [Ruzsa’s covering lemma] LetA,B be subsets of an abelian group such that|A+B| ≤ K|A|.
Then there is a setX ⊆ B, |X| ≤ K, such thatB ⊆ A−A+X.

This powerful lemma has a short and elegant proof, which we bring herefor the sake of completeness.

Proof of Lemma5.3. Pick a maximal setX ⊆ B such that the setsA + x, x ∈ X, are pairwise disjoint.
Since

⋃

x∈X(A + x) ⊆ A + B, we have that|A||X| ≤ K|A|, which implies that|X| ≤ K. Suppose that
b ∈ B. By maximality there must be somex ∈ X such that(A + b) ∩ (A + x) 6= ∅, which means that
b ∈ A−A+X.

To show PFR⇒ NLFR let ρ > 0 be the constant stated in NLFR (Conjecture2.12) and letr be the
constant guaranteed by PFR (Conjecture2.11). Choose the integerℓ referred to in NLFR to be the smallest
power of2 satisfying

(

1

1 + ρ/(4r)

)log(ℓ)

≤ ρ

r
. (8)

We say that a setB expands under addition with respect toA if

|B +B|
|A| ≥

(

|B|
|A|

)1+ρ/(4r)

. (9)
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The idea of the proof is the following: for every integer1 ≤ t ≤ log(ℓ) we check whetherBt := 2tA
expands under addition with respect toA. The proof splits into two cases. The first is the case in whichBt

expands under addition with respect toA for all t, namely the size ofBt+1 = Bt +Bt is large compared to
the size ofBt for all t. In this case we shall see that the size ofB1 = 2A is very small compared to the size
of Blog(ℓ) = ℓA. Applying PFR to the setA we conclude that it can be covered by a few cosets of a small
subspace. The second case is the case in which there exists some integert for whichBt does not expand
under addition with respect toA. In this case we have thatBt+1 = Bt +Bt is not too large compared to the
size ofBt. Applying PFR to the setBt together with Ruzsa’s covering lemma we conclude that in this case
tooA can be covered by a few cosets of a small subspace. Details follow.

Case I — All setsBt expand under addition with respect toA: Equation (9) applied tot = 1 . . . log ℓ
gives

|B1|
|A| ≤

(

|B2|
|A|

) 1
1+ρ/(4r)

≤
(

|B3|
|A|

)

(

1
1+ρ/(4r)

)2

≤ . . . ≤
(

|Blog(ℓ)|
|A|

)

(

1
1+ρ/(4r)

)log(ℓ)

The assumption|ℓA| ≤ K|A| gives

|2A|
|A| ≤

(

|ℓA|
|A|

)

(

1
1+ρ/(4r)

)log(ℓ)

≤ K

(

1
1+ρ/(4r)

)log(ℓ)

≤ Kρ/r

where the last inequality is due to our choice ofℓ in Equation (8).
We conclude that in this case|2A| ≤ Kρ/r|A|. Applying PFR (Conjecture2.11) we conclude thatA

may be covered byKρ cosets of some subspace of size at mostKρ/r|A|, and this shows PFR⇒ NLFR with
even better parameters than stated in NLFR (Conjecture2.12).

Case II — There existsBt which does not expand under addition with respect toA: For thist we
have

|Bt +Bt| ≤
(

|Bt|
|A|

)ρ/(4r)

|Bt| (10)

Applying PFR (Conjecture2.11) to the setBt we conclude that it may be covered by
(

|Bt|
|A|

)ρ/4
cosets

of a subspaceL of size at most

(

|Bt|
|A|

)ρ/4

|Bt|. By the pigeonhole principle there exists a subsetÃ ⊆ Bt

which is contained in an affine shift ofL — denote this shift bya+ L — such that

|Ã| ≥
(

|Bt|
|A|

)−ρ/4

|Bt| (11)

and

|L| ≤
(

|Bt|
|A|

)ρ/4

|Bt| ≤
(

|Blog(ℓ)|
|A|

)1+ρ/4

|A| =
(

|ℓA|
|A|

)1+ρ/4

|A| ≤ K1+ρ/4|A|. (12)
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The last inequality follows from our assumption that|ℓA| ≤ K|A|. We shall apply Ruzsa’s Covering
Lemma5.3with the setsA andÃ, so we compute

|A+ Ã| ≤ |A+Bt| (sinceÃ ⊆ Bt)

≤ |Bt+1| (sinceA ⊆ a+Bt for somea ∈ Fn
2 )

≤
(

|Bt|
|A|

)ρ/(4r)

|Bt| (by Equation (10))

≤
(

|Bt|
|A|

)ρ/(4r)(

|Bt|
|A|

)ρ/4

|Ã| (by Equation (11))

≤
(

|Bt|
|A|

)ρ/2

|Ã|

≤
(

|ℓA|
|A|

)ρ/2

|Ã|

≤ Kρ/2|Ã| (by the assumption|ℓA| ≤ K|A|)

Ruzsa’s covering lemma (Lemma5.3) now implies the existence of a setX ⊆ A of size at mostKρ/2

such that
A ⊆ X + Ã− Ã ⊆ X + (a+ L)− (a+ L) = X + L

Concluding, in this case we have thatA may be covered by at mostKρ/2 cosets of the subspaceL,
where|L| ≤ K1+ρ/4|A| (Equation (12)). Finally, if we writeL as a direct sum of subspacesL′ andL′′,
whereL′′ is a subspace of sizeKρ/4, and letX ′ = X+L′′, we get thatA may be covered by at mostK3ρ/4

cosets of the subspaceL′, where|L′| ≤ K|A| (the cosets are of the formx′ + L′ wherex′ ∈ X ′).

5.4 The ADC-exp conjecture implies the weak polynomial Freiman Ruzsa conjecture

To prove this implication we need to recall the definition of the spectrum of a setgiven in Definition5.1.
Our proof uses the following lemma fromTau and Vu[2006] (appearing there as Lemma 4.38) which shows
that a set having a small sum set must have large spectrum:

Lemma 5.4. [Small sumset forces large spectrum] Let A be a subset of a finite abelian groupZ, and let
0 < ǫ ≤ 1. Then we have the following lower bound on the sum set:

|A−A| ≥ |A||Z|
|A||specǫ(A)|+ |Z|ǫ2

We shall also need the following easy consequence of Ruzsa’s Covering lemma (Lemma5.3):

Lemma 5.5. [Covering] Suppose thatA ⊂ Fn
2 is a subset with the property that|A+A| ≤ K|A|. Suppose

furthermore that there exists a subsetA′ of A of size at least1K1
|A|, such that|span (A′) | ≤ K2|A|. Then

A may be covered by at mostKK1 cosets of a subspace of size at mostK2|A|.
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Proof. We apply Ruzsa’s covering lemma to the setsA′ andA:

|A+A′| ≤ |A+A| ≤ K|A| ≤ KK1|A′|

Hence Ruzsa’s covering lemma implies the existence of a subsetX of size at mostKK1 such thatA ⊆
X + A′ − A′. The proof is completed by noticing thatA′ − A′ is contained in a subspace of size at most
K2|A|.

The idea of the proof of ADC-exp⇒ wPFR is as follows. Lemma5.5 implies that it is enough to
prove that ifA has a small sumset then there exists a large subsetA′ of A which has small span. Suppose
that A has a small sum set. Then Lemma5.4 implies thatA has large spectrum, denote the spectrum
set byB. Assuming the approximate duality conjecture, we have thatA andB contain large subsetsA′, B′

respectively which lie in affine shifts of dual subspaces. But this implies in turn thatdim(A′) ≤ n−dim(B′),
i.e. A′ has a small span, and setting the parameters correctly we arrive at the desired result.

Let ζ be the constant guaranteed by Conjecture1.2for the constantsα = 1
4 andδ = min

{

δ′/2, 18
}

. Our
goal will be to show thatA may be covered by at most2δ

′n ·Kr cosets of a subspace of size at mostK|A|,
wherer := max

{

1
ζ , 8
}

.

First we observe that without loss of generality we may assume that

K ≤ min
{

2n/8, 2ζn
}

(13)

since otherwise from our choice ofr we have thatKr ≥ 2n, and hence the desired conclusion holds trivially.
Next, in Lemma5.4setǫ = 1/K. Then from the lemma and the assumption that|A + A| ≤ K|A| we

have:

K|A| ≥ |A−A| ≥ |A|2n
|A||spec1/K(A)|+ 2nK−2

And rearranging we obtain:

|spec1/K(A)| ≥ 2n

|A|K
K − 1

K
≥ 2n

|A|K2
(14)

We would like to apply ADC-exp (Conjecture1.2) to the setsA andspec1/K(A). Obviously,

D(A, spec1/K(A)) ≥ 1/K,

where1/K ≥ 2−ζn (Equation (13)). Also, our assumption thatK ≤ 2n/8 in (13) together with Equation
(14) imply that

|spec1/K(A)| ≥ 2n

|A|K2
≥ 23n/4

|A| .

Thus, we either have thatA is of size at least2n/2 ≥ 2αn or that|spec1/K(A)| ≥ 2n/4 ≥ 2αn. Hence
ADC-exp (Conjecture1.2) implies the existence of subsetsA′ ⊆ A, B′ ⊆ spec1/K(A) which lie in affine
shifts of dual spaces such that

|A′| ≥ |A|
2−δ′n/2

, |B′| ≥
|spec1/K(A)|

2δ′n/2
.
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But this implies in turn thatdim(A′) + dim(B′) ≤ n, and consequently

|span
(

A′) | ≤ 2n

|B′| ≤
2δ

′n/2 · 2n
|spec1/K(A)| ≤ 2δ

′n/2K2|A|

where the last inequality is due to Equation (14).
Concluding, we have that|span (A′) | ≤ 2δ

′n/2K2|A| whereA′ is a subset ofA of size at least
|A|/2δ′n/2. Using Lemma5.5we concludeA can be covered by≤ 2δ

′n/2 ·K cosets ofspan (A′) which is
of size≤ 2δ

′n/2K2|A|. In other words, there exists a subsetX ⊆ Fn
2 , |X| ≤ 2δ

′n/2 · K, such thatA can
be covered by all cosets of the formx+ span (A′) wherex ∈ X. Finally, If we writespan (A′) as a direct
sum of subspacesL′ andL′′, whereL′′ is a subspace of size2δ

′n/2K, and letX ′ = X + L′′, we get thatA
may be covered by at most2δ

′nK2 cosets of the subspaceL′, where|L′| ≤ K|A| (the cosets are of the form
x′ + L′ wherex′ ∈ X ′), and this completes the proof of ADC-exp⇒ wPFR.

5.5 The polynomial Freiman Ruzsa conjecture implies the ADC-exp conjecture

Our proof of the implication PFR⇒ ADC-exp uses the following lemma, which shows that whenever
A ⊆ specǫ(B) for sufficiently largeǫ, and assuming the PFR conjecture, we can find a large setA′ ⊂ A and

a setB′ ⊂ B such thatD(A,B′) = 1 and, most importantly, the size ofB′ is proportional to|span(A
′)|

|span(A)| . This

last property is important because it allows us to make the following iterative argument: Eitherspan (A′) is
large relatively tospan (A) in which caseB′ is also large and we have proved the ADC-exp, orspan (A′)
is small relatively tospan (A) and then we apply the lemma again withA′ instead ofA. We prove that this
process terminates eventually, and that when it terminates the setsA andB′ are the desired sets we need.

Lemma 5.6. [ADC-exp as function of span] For every constants1 > δ′ > 0, 1 > α′ > 0 there exist a
constantζ ′ > 0 and an integerk, both depend only onδ′, α′, such that the following holds for sufficiently
largen assuming the PFR conjecture. IfA,B ⊆ Fn

2 satisfy|A| ≥ 2α
′n andA ⊆ specǫ(B) for ǫ ≥ 2−ζ′n,

then there exist subsetsA′ ⊆ A andB′ ⊆ B satisfying

1. |A′| ≥ |A|1−δ′ .

2. |B′| ≥ ǫ2k |span(A′)|
|span(A)| |A|−δ′ |B|.

3. D(A,B′) = 1.

The proof of the above lemma is deferred to the next subsection. To provethe implication PFR⇒
ADC-exp we need to set a few parameters that will be used later on. Choose δ′ < δ2/4 andα′ < α − δ in
Lemma5.6, and letζ ′ > 0 andk be the constant and the integer guaranteed by this lemma for the constants
δ′, α′. Suppose thatǫ ≥ 4 · 2−ζn, whereζ = min{ζ ′, δ/4k}. We assumeEa∈A,b∈B

[

(−1)〈a,b〉
]

is positive,
the proof for the negative case is similar.

Now we describe the iterative process. Start with the setA0 := A ∩ specǫ/2(B), which, by Markov’s
inequality is of size at least|A|/2. For i = 0, 1, . . . let A′

i ⊆ Ai, B
′
i ⊆ B be the subsets guaranteed by

Lemma5.6with respect toAi, B. Let

σi =
|span (A′

i) |
|span (Ai) |

|Ai|−δ′ . (15)
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While σi ≤ 2−(δ/2)n we setAi+1 := A′
i. Let t be the first timeσt > 2−(δ/2)n. We argue that such at

exists and that in factt < 4/δ. Indeed, ifσi ≤ 2−(δ/2)n we have that

|span
(

A′
i

)

| ≤ 2−(δ/2)n|Ai|δ
′ |span (Ai) | ≤ 2−(δ/2−δ′)n|span (Ai) | ≤ 2−(δ/4)n|span (Ai) | (16)

where the last inequality is due to our choice ofδ′ < δ2/4. Since1 ≤ |span (A′
i) | and|span (Ai) | ≤ 2n,

the above equation implies thatt ≤ 4/δ.
We next show that the setAt is of pretty large size. The first bullet of Corollary5.6 implies that for all

i ≤ t
|A′

i| ≥ |Ai|1−δ′ ≥ 2−δ′n|Ai| ≥ 2−(δ2/4)|Ai|
where the last inequality is again due to our choice ofδ′ < δ2/4. Consequently, our assumption that
|A| ≥ 2αn together with the fact thatt ≤ 4/δ imply for sufficiently largen that

|At| ≥ 2−δn|A|/2 ≥ 2(α−δ)n−1 ≥ 2α
′n

where the last inequality is due to our choice ofα′ < α− δ.
Applying Lemma5.6one final time withAt andB and using the assumptionσt > 2−(δ/2)n we conclude

the existence ofB′ ⊆ B, |B′| >
(

ǫ
2

)2k
2−(δ/2)n|B| ≥ 2−δn|B| (the last inequality is due to our choice of

ǫ > 4 · 2−(δ/4k)n) such thatD(At, B
′) = 1. SoAt andB′ are the two sets promised by ADC-exp and this

shows PFR⇒ ADC-exp.

5.6 Proof of main technical lemma

In this section we prove the main technical lemma used in the proof of PFR⇒ ADC-exp, Lemma5.6. The
proof breaks down to two lemmas ( Lemmas5.7 and5.8) stated next. The first lemma can be seen as a
version of the ADC-exp which applies when|span (A) | is not much larger than|A|.

Lemma 5.7(Approximate duality for sets with small span). GivenB ⊆ Fn
2 andA ⊆ specǫ(B), there exist

subsetsA′ ⊆ A,B′ ⊆ B, |A′| ≥ 1
2 |A|, |B′| ≥ ǫ2 |A|

|span(A)| |B| such thatD(A′, B′) = 1.

The second main step in the proof is to show that ifA ⊆ specǫ(B), then assuming the PFR conjecture,
Ã := specǫk/2(B) ∩ span (A) ia large for some constantk. By showing this we will be able to apply the

above lemma also to sets that have large span relative to their size, by applyingit to the setsÃ andB. A
lower bound on the on the size of̃A is given by the following lemma:

Lemma 5.8. For every1 > δ′ > 0, 1 > α′ > 0, there exist a constantζ ′ > 0 and an integerk, both depend
only onδ′, α′, such that the following holds for sufficiently largen, assuming the PFR conjecture holds.
GivenB ⊆ Fn

2 andA ⊆ specǫ(B), |A| ≥ 2α
′n whereǫ ≥ 2−ζ′n, there exists a subsetA′ ofA of size at least

|A|1−δ′ such that
|span

(

A′) ||A|−δ′ ≤ |span (A) ∩ specǫk/2(B)|. (17)

Given these two lemmas we can complete the proof of Lemma5.6. Then we prove the two lemmas.

Proof of Lemma5.6. Noticing the assumptions of Lemma5.6 and Lemma5.8 are the same, letA′ be the
subset ofA which is of size at least|A|1−δ′ and satisfies Equation (17). NoticeA′ satisfies bullet 1 of
Lemma5.6.
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Let Ã := span (A) ∩ specǫk/2(B). Apply Lemma5.7 to Ã, B and conclude the existence of̂A ⊆
Ã, B′ ⊆ B such thatD(Ã, B′) = 1, and which satisfies|Â| ≥ 1

2 |Ã|, and

|B′| ≥ ǫ2k
|Ã|

∣

∣

∣span
(

Ã
)∣

∣

∣

· |B| ≥ ǫ2k
|span (A′) ||A|−δ′

∣

∣

∣span
(

Ã
)∣

∣

∣

· |B|.

The last inequality above uses Equation (17). To show thatB′ satisfies bullets 2 and 3 of Lemma5.6

notice Ã ⊇ A becauseA ⊆ specǫ(B) ⊆ specǫk(B) which impliesspan
(

Ã
)

= span (A) and, also,

D(A,B′) = D(Ã, B). This completes the proof.

For the proof of Lemma5.7we shall use Fourier analysis and recall the standard notations for it. Fora
functionf : Fn

2 → C andα ∈ Fn
2 we denote byf̂(α) theα-coefficient of the Fourier expansion off over

Fn
2 , defined by

f̂(α) = Eβ∈Fn
2

[

f(β)(−1)〈β,α〉
]

.

We shall need Parseval’s equality which says that for a functionf : Fn
2 → C,

∑

α∈Fn
2

(f̂(α))2 = 2−n
∑

β∈Fn
2

(f(β))2. (18)

Proof of Lemma5.7. Let d := dim(A) and choose an arbitrary basisa1, a2, . . . , ad of A. For every vector
β = (β1, β2, . . . , βd) ∈ Fd

2, we denote bySβ the following coset ofA⊥:

Sβ = {γ ∈ Fn
2 |〈ai, γ〉 = βi for all i = 1, 2, . . . , d}

For everyβ ∈ Fd
2 we denote the relative weight ofB insideSβ by:

w(β) = Prb∈B[b ∈ Sβ ] =
|B ∩ Sβ |

|B|

Our goal will be to show the existenceβ ∈ Fd
2 such thatw(β) ≥ ǫ2 |A|

|span(A)| , since in this caseB′ :=

B ∩ Sβ is a subset ofB of size at leastǫ2 |A|
|span(A)| |B| which is contained in an affine coset ofA⊥ of the

form x + A⊥. PartitionA into A0 = {a ∈ A | 〈x, a〉 = 0} andA1 = {a ∈ A | 〈x, a〉 = 1}. To complete
the proof of the lemma takeA′ to be the larger ofA0, A1 and notice|B′| ≥ ǫ2 |A|

|span(A)| |B|, |A′| ≥ 1
2 |A|, and

D(A′, B′) = 1.
Our main observation is that for everya ∈ A, if we write a =

∑d
i=1 αiai, α = (α1, α2, . . . , αd), then

we have

ŵ(α) = Eβ∈Fd
2

[

w(β)(−1)〈β,α〉
]

= 2−d
∑

β∈Fd
2

w(β)(−1)〈β,α〉 = 2−dEb∈B
[

(−1)〈a,b〉
]

(19)

The equality above allows us to prove the lemma by bounding the sum
∑

α∈Ã(ŵ(α))
2 from above and

from below, where:

Ã =

{

α = (α1, α2, . . . , αd) ∈ Fd
2|

d
∑

i=1

αiai ∈ A

}
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For obtaining the lower bound we use Equation (19) together with our assumption thatD(A,B) ≥ ǫ,
while for the upper bound we use Parseval’s equality together with the factthatw is a distribution, i.e.,
∑

β∈Fd
2
w(β) = 1. We start with bounding the sum

∑

α∈Ã(ŵ(α))
2 from below

∑

α∈ Ã

(ŵ(α))2 ≥ |Ã|
(

Eα∈Ã[ŵ(α)]

)2

(by convexity)

= |Ã|
(

2−dEa∈AEb∈B
[

(−1)〈a,b〉
]

)2

(by (19))

= |A|2−2d
(

D(A,B)
)2 ≥ |A|2−2dǫ2 (20)

Next we bound the sum
∑

α∈Ã(ŵ(α))
2 from above:

∑

α∈Ã

(ŵ(α))2 ≤
∑

α∈Fd
2

(ŵ(α))2 (21)

= 2−d
∑

β∈Fd
2

(w(β))2 (by Parseval’s Equality)

≤ 2−dmax
β∈Fd

2

w(β)
∑

β∈Fd
2

w(β)

= 2−dmax
β∈Fd

2

w(β) (
∑

β∈Fd
2
w(β) = 1) (22)

Finally, the combination of equations (20) and (22) implies the existence ofβ ∈ Fd
2 such that

w(β) ≥ |A|2−dǫ2 = ǫ2
|A|

|span (A) |

which finishes the proof of the lemma.

For the proof of Lemma5.8, which follows next, we shall apply the NLFR conjecture, together with
an analogous nearly-linear version of the Balog-Szemerédi-Gowers (BSG) theorem. The BSG theorem
[Balog and Szemerédi, 1994, Gowers, 1998] says that ifA is a subset of an abelian additive group which
satisfiesPra,a′∈A[a + a′ ∈ S] > 1/K for |S| ≤ C|A|, then one can find a subsetA′ ⊆ A, such that
|A′| ≥ |A|/f(K,C), and|A′ +A′| ≤ g(K,C)|A|, wheref(K,C) andg(K,C) are polynomials with fixed
degrees inK andC.

For our purposes we need that the exponents in the polynomialsf(K,C) andg(K,C) would be as
small as possible, in particular we would be interested in a bound of the formCδKd for some small constant
δ > 0, and an integerd. As was the case with the NLFR conjecture, to achieve this, we are willing to assume
not only thatPra,a′∈A[a + a′ ∈ S] is large but even thatPra1,a2,...,ak∈A[a1 + a2 + . . . + ak ∈ S] is large
for some constantk > 2. For this we need a nearly-linear version of the BSG theorem. Fortunately,such a
theorem was proved byCroot and Borenstein[2011].

Theorem 5.9. [Nearly-linear BSG Theorem,Croot and Borenstein[2011]] For every 1 > ǫ > 0 andc > 1,
there exist a constantη, and an integerk, both depend only onǫ, c, whereζ is monotonically decreasing in
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c andk is monotonically increasing inc, such that the following holds. IfA is a sufficiently large subset of
an additive abelian group which satisfies:

Pra1∈A,a2∈A,...,ak∈A

[ k
∑

i=1

ai ∈ S

]

≥ |A|−ζ , |S| ≤ |A|c

then there exists a subsetA′ ofA of size at least|A|1−ǫ such that:

|ℓA′| ≤ |A′|c(1+ǫℓ)

.

The combination of the above theorem with the NLFR conjecture gives the following corollary:

Corollary 5.10. [Nearly-linear BSG + NLFR] For every1 > δ > 0 andc > 1, there exist a constantζ > 0
and an integerk, both depend only onδ, c, whereζ is monotonically decreasing inc andk is monotonically
increasing inc, and such that the following holds assuming the PFR conjecture. IfA is a sufficiently large
subset of an additive abelian group which satisfies:

Pra1∈A,a2∈A,...,ak∈A

[ k
∑

i=1

ai ∈ S

]

≥ |A|−ζ , |S| ≤ |A|c

then there exists a subsetA′ ofA of size at least|A|1−δ such that:

|span
(

A′) | ≤ |A|c+δ

Proof. Let ρ ≤ δ/(4c), and letℓ be the integer guaranteed by Conjecture2.12 for the constantρ. Let
ǫ ≤ δ/(2cℓ), and letk andζ be the integer and the constant guaranteed by Theorem5.9 for the constantsc
andǫ.

Noticing that the assumptions in Theorem5.9and Corollary5.10are the same, we have that there exists
a subsetA′ ⊆ A of size at least|A|1−ǫ such that|ℓA′| ≤ |A′|c(1+ǫℓ). Applying Conjecture2.12with the
setA′ andK ≤ |A′|c(1+ǫℓ)−1 we get that there exists a subsetA′′ ⊆ A′ of size at leastK−ρ|A′| such that
|span (A′′) | ≤ K1+ρ|A′|. To conclude the proof we compute the sizes ofA′′ andspan (A′′):

|A′′| ≥ K−ρ|A′|
≥ |A′|−ρc(1+ǫℓ)|A′| (K ≤ |A′|c(1+ǫℓ))

≥ |A′|−δ/4(1+1)|A′| ( ρ ≤ δ/(4c), ǫ ≤ 1/ℓ)

= |A′|1−δ/2

≥ |A|(1−δ/2)(1−ǫ) ( |A′| ≥ |A|1−ǫ)

≥ |A|(1−δ/2)2 ( ǫ ≤ δ/2)

≥ |A|1−δ
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|span
(

A′′) | ≤ K1+ρ|A′|
≤ |A′|c(1+ǫℓ)+ρc(1+ǫℓ) ( K ≤ |A′|c(1+ǫℓ)−1)

≤ |A′|c(1+ǫℓ)+δ/2 (ρ ≤ δ/(4c), ǫ ≤ 1/ℓ)

≤ |A′|c+δ ( ǫ ≤ δ/(2cℓ))

≤ |A|c+δ ( A′ ⊆ A)

So we have that|A′′| ≥ |A|1−δ and|span (A′′) | ≤ |A|c+δ which concludes the proof of the corollary.

We now proceed to the proof of Lemma5.8:

Proof of Lemma5.8. Let δ := δ′, andc = 1/α′. Let ζ > 0 andk be the constant and the integer guaranteed
by Corollary5.10for the constantsδ andc.

We may assume thatk is even (ifk is odd replace it byk + 1 and the proof goes through). From our
assumption thatA ⊆ specǫ(B) and using convexity we get

ǫk ≤
(

Eb∈BEa∈A

[

(−1)〈a,b〉
])k

≤ Eb∈B

(

Ea∈A

[

(−1)〈a,b〉
])k

= Eb∈BEa1∈A,a2∈A,...,ak∈A

[

(−1)〈
∑k

i=1 ai,b〉
]

Markov’s inequality implies

Pra1∈A,a2∈A,...,ak∈A

[ k
∑

i=1

ai ∈ specǫk/2(B) ∩ span (A)

]

≥ ǫk

2

Let S := specǫk/2(B) ∩ span (A), and letc′ = log |S|
log |A| . From our assumptions thatA ⊆ specǫ(B), and

|A| ≥ 2α
′n we have that1 ≤ c′ ≤ 1/α′. Since in Corollary5.10k is monotonically increasing inc, and

ζ is monotonically decreasing inc, we may apply this corollary with the constantc′ instead ofc without
changing the values ofk andζ.

Let ζ ′ = α′

k ζ, and suppose thatǫ ≥ 2−ζ′n. From our choice ofǫ and the assumption that|A| ≥ 2α
′n we

have
ǫk ≥ 2−ζ′kn ≥ 2−

α′

k
ζkn ≥ |A|−ζ

We conclude that

Pra1∈A,a2∈A,...,ak∈A

[ k
∑

i=1

ai ∈ S

]

≥ 1

2
|A|−ζ

and in addition
|S| = |A|c′
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Corollary5.10applies, and we conclude that there exists a subsetA′ of A of size at least|A|1−δ′ such
that

|span
(

A′) | ≤ |A|c′+δ′ = |S||A|δ′

This completes the proof of the lemma.

6 On the ℓ∞-error of multi-output bit affine and two-source extractors

In this section we explain our use ofℓ∞ as the measure of error in the definition of extractors (Definition2.1).
In a nutshell, it yields cleaner and tighter analysis than we would have obtained using statistical distance as
our measure of error. And it allows us to construct affine and (in Section6.2) two-source extractors with
multiple output bits with essentially no loss inℓ∞-error. Details follow.

6.1 On theℓ∞-error of existing affine extractors

All known affine extractors, i.e., those ofBourgain[2007], Yehudayoff[2011], Ben-Sasson and Kopparty
[2009], Li [2011], Gabizon and Raz[2008], DeVos and Gabizon[2010] have the following property. Each
of them is defined as evaluating a certainr-variate polynomialP over a finite fieldF2m , wheren = r·m. The
n-input bits are viewed as describing an inputβ = (β1, . . . , βr) ∈ Fr

2m . And each of these constructions
shows a bound on the error of any nontrivial character applied toP (β). Recall that a nontrivial additive
characterχα : F2m → {−1, 1} of F2m is a function of the form

χα(x) = (−1)
∑m

j=1 αj ·xj ,

where(x1, . . . , xm) is the representation ofx according to an arbitrary fixedF2-basis forF2m . In other
words, for each of the known constructions of affine extractors we have a result of the following form. For
every nontrivial characterχα as above, and everyF2-affine subspaceA of (F2m)

r of dimension at leastd,
we have

|Ex∈A [χα(P (x))]| ≤ ǫ.

We point out that Vazirani’s “XOR-lemma” shows that extractors with errorbounds as above are also
ǫ ·2m/2-close to uniform in statistical distance. This can be converted back to a bound on theℓ∞-error of the
form ǫ · 2m/2. But using the lemma below we can deduce that theℓ∞-error is merelyǫ, i.e., we lose literally
nothing from outputtingm bits instead of a single bit.

Lemma 6.1. [Multi-output extractors] Letζ be a distribution onFm
2 satisfying for every nontrivial additive

character
|E[χα(x)]| ≤ ǫ, (23)

wherex is distributed according toζ. Then for any linearly independentα1, . . . , αt ∈ Fm
2 and any

b1, . . . , bt ∈ F2, denoting bySb the affine space

Sb = {x ∈ Fm
2 | 〈α1, x〉 = b1, . . . , 〈αt, x〉 = bt} ,

we have
2−t − ǫ < ζ(Sb) < 2−t + ǫ.

Consequently, takingt = m andα1, α2, . . . , αm to be the standard basis and noticing that in this case we
haveζ(Sb) = PrX∼ζ [X = b] we conclude theℓ∞-distance betweenζ and the uniform distribution is at
mostǫ.
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Proof of Lemma6.1. Consider a vectorα of the formα =
∑t

i=1 aiαi whereai ∈ F2. Let a denote the
vector(a1, . . . , at). We have that

〈α, x〉 =
t
∑

i=1

ai · 〈αi, x〉.

Thus, forc = (c1, . . . , ct) ∈ Ft
2 andx ∈ Sc we have〈α, x〉 = 〈a, c〉 which implies

E[χα(x)] =
∑

c∈Ft
2,〈c,a〉=0

ζ(Sc)−
∑

c∈Ft
2,〈c,a〉=1

ζ(Sc) (24)

which, by (23), implies that for anyα ∈ span (α1, . . . , αt) \ {0} andβ ∈ F2 we have

−ǫ ≤
∑

c∈Ft
2,〈c,a〉=β

ζ(Sc)−
∑

c∈Ft
2,〈c,a〉=1−β

ζ(Sc) ≤ ǫ. (25)

Forα = 0 we get from (24)
∑

c∈Ft
2

ζ(Sc) = 1, (26)

because everyc satisfies〈0, c〉 = 0. Setβa = 〈b, a〉. Consider the following sum:

∑

a∈Ft
2





∑

c∈Ft
2,〈c,a〉=βa

ζ(Sc)−
∑

c∈Ft
2,〈c,a〉=1−βa

ζ(Sc)



 . (27)

Using (25) and (26) we bound (27) from above by1 + (2t − 1) · ǫ (the first summand comes fromα = 0
via (26) and the remaining ones come fromα 6= 0 via (25)). Similarly, (27) is bounded from below by
1 − (2t − 1) · ǫ. Finally, we observe that (27) is equal to2t · ζ(Sb). The reason for this is that we have
by definition〈b, a〉 = βa for all a ∈ Ft

2, whereas for any fixedc 6= b we have〈c, a〉 = βa if and only if
〈c, a〉 = 〈b, a〉 which happens iff〈c− b, a〉 = 0. Sincec 6= b (and bothb andc are fixed) this latter event
happens for precisely half of thea’s and thus the summandζ(Sc) appears in (27) equally often positively as
negatively and gets canceled.

We have shown that
1− (2t − 1) · ǫ ≤ 2t · ζ(Sb) ≤ 1 + (2t − 1) · ǫ,

and dividing this inequality by2t completes the proof.

6.2 Increasing the output length of our two-source extractors

In this section we prove Lemma2.19and show how to obtain two source extractors with multiple output
bits. Before doing so we briefly explain how a so-called collection of independent matrices can be obtained.

Let F2r denote the finite field with2r elements. It is well-known that elements of this field form aF2-
linear space of dimensionr. Let β1, . . . , βr ∈ F2r be a basis for this space. Note that multiplication by any
β ∈ Fr

2 \ 0 is an invertibleF2-linear transformation, and letMi be the matrix representing multiplication by
βi in our basis. It is now rather straightforward to verify thatM1, . . . ,Mr are independent according to our
definition.

We now proceed to prove Lemma2.19.
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Proof of Lemma2.19. Let χα : Ft
2 → [−1, 1] be a nontrivial additive character. We have

χα(E(x, y)) = (−1)
∑t

i=1 αi〈h1(x),Mih2(y)〉 = (−1)〈h1(x),Mh2(y)〉

whereM =
∑t

i=1 αiMi. SinceM has full rank andE(x, y) is a [n, 1, ρ, ǫ]-two source extractor which is
linear invariant with respect toh1, h2, we see that

|EX,Y [χα(E(X,Y ))]| ≤ ǫ.

Applying Lemma6.1completes the proof.
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William Timothy Gowers. A new proof of Szemerèdi’s theorem for arithmetic progressions of length four.
Geom. Funct. Anal., 8(3):529–551, 1998.

Ben Green. Finite field models in additive combinatorics. InLondon Mathematical Society Lecture Note
Series, volume 324. Cambridge University Press, 2005a.

Ben Green. Finite field models in additive combinatorics. In Bridget S. Webb,editor, Surveys in Com-
binatorics, number 327 in London Mathematical Society Lecture Note Series, pages 1–27. Cambridge
University press, 2005b.

Xin Li. A new approach to affine extractors and dispersers. InIEEE Conference
on Computational Complexity, pages 137–147. IEEE Computer Society, 2011. URL
http://dx.doi.org/10.1109/CCC.2011.27.

H. Plunnecke. Eigenschaften und abschatzungen von wirkingsfunktionen.BMwF-GMD22 Gesellschaft fur
Mathematik und Datenverarbeitung, 1969.
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