
A Taxonomy of Enhanced Trapdoor Permutations

Ron Rothblum ∗

September 21, 2010

Abstract

Trapdoor permutations (TDPs) are among the most widely studied building blocks of cryp-
tography. Despite the extensive body of work that has been dedicated to their study, in many
setting and applications (enhanced) trapdoor permutations behave unexpectedly. In particular,
a TDP may become easy to invert when the inverter is given auxiliary information about the
element to be inverted (e.g., the random coins that sampled the element). Enhanced TDPs
were defined in order to address the latter special case, but there are settings in which they
apparently do not suffice (as demonstrated by the introduction of doubly-enhanced TDPs).

We study the hardness of inverting TDP in natural settings, which reflect the security con-
cerns that arise in various applications of TDPs to the construction of complex primitives (e.g.,
Oblivious Transfer and NIZK). For each such setting, we define a corresponding variant of the
notion of an enhanced TDP such that this variant is hard to invert in this setting. This yields
a taxonomy of such variants, which lie between enhanced TDPs and doubly-enhanced TDPs.
This work explores this taxonomy and its relation to various applications.

For example, one of the abstract settings that we consider arises in the standard protocol for
one-out-of-k oblivious transfer, based on enhanced trapdoor permutations. In the case of k > 2,
this protocol provides a natural separation between barely enhanced TDPs and a corresponding
variant (which belongs to the aforementioned taxonomy). We comment that, for the case of
k = 2 the standard protocol is secure as is.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. E-
mail: ron.rothblum@weizmann.ac.il. This research was partially supported by the Israel Science Foundation (grant
No. 1041/08).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 145 (2010)

1 Introduction

A collection of trapdoor permutations is a collection of efficiently computable permutations that
are hard to invert on the average, with the additional property, that each permutation has a
trapdoor that makes the permutation easy to invert. Trapdoor permutations are among the most
fundamental primitives of cryptography and have been used to construct a variety of schemes and
protocols, most notably, public-key encryption [Yao82] and signature schemes [BM92].

Trapdoor permutations were also believed to imply oblivious transfer and (efficient prover) non-
interactive zero-knowledge proofs for NP but it seems that some additional structure is required for
these applications (see, e.g. [Gol04, Gol09]). The point is that in these applications, the adversary
may get auxiliary information such as the randomness used to sample an image of the permutation,
and this auxiliary information may allow inverting the permutation or approximating its hardcore
predicate. The phenomenon was first observed in the context of constructing oblivious transfer (see
[Gol04]) and later in the context of non-interactive zero-knowledge proofs (see [Gol09]). This led
to the introduction of enhanced and doubly-enhanced trapdoor permutations, which suffice for the
construction of oblivious transfer and non-interactive zero-knowledge proofs for NP, respectively.
These phenomena motivate further study of the hardness requirements from enhanced trapdoor
permutations, and on closer examination still more issues arise. For example, while enhanced
trapdoor permutations do suffice for one-out-of-two oblivious transfer, we show that the standard
construction (as in [Gol04]) needs to be adapted in order to obtain one-out-of-k oblivious transfer,
for k ≥ 3. The motivating question behind this work is asking what added features are necessary
and sufficient for applications such as oblivious transfer and non-interactive zero-knowledge proofs
for NP.

Our approach is to define a number of abstract scenarios, where each scenario captures the
type of information available to the adversary and the information that we wish to keep secret.
Each scenario leads to a corresponding notion of an enhanced trapdoor permutations which is hard
to invert in that scenario. We study the relations between these variants of enhanced trapdoor
permutations as well as the relation to the aforementioned applications, while noting that all these
variants of enhanced trapdoor permutations are implied by the doubly-enhanced property.

1.1 Trapdoor Permutations

Loosely speaking, a collection of one-way permutations is a collection of efficiently computable
permutations that are hard to invert on the average, i.e., given a random permutation f from the
collection and a random element x from its domain, it is infeasible to find f−1(x). Each permutation
is represented by an index α and has an associated domain Dα over which it is defined. A natural
domain to consider is {0, 1}|α|; however, this is not necessarily the case in general, and our only
requirement is that it is possible to efficiently sample elements (uniformly) from this domain. We
denote the domain sampler by S, and use the convention that S(α; r) refers to the (deterministic)
output of S on input α and the random string r.

A collection of trapdoor permutations (TDP) is a collection of one-way permutations {fα : Dα →
Dα}α for which, each permutation has an associated trapdoor that makes the permutation easy to
invert. We require an efficient way to generate an index together with the corresponding trapdoor.

Enhanced TDP. Consider an adversary for inverting a TDP that is given not only an element
x but also the random coins that were used to sample x. Goldreich [Gol04] noted that there are

1

TDPs that can be inverted in such a setting (assuming that TDPs exist)1 and showed that this
issue captures a real security concern in the standard protocol for oblivious transfer (which was
believed to work based on any TDP). He therefore defined the notion of an enhanced TDP which
is a TDP that is infeasible to invert even given the random coins that sampled the element to be
inverted. That is, given an index of a permutation α and a random string r it is infeasible to
compute x def= f−1

α (S(α; r)).

Hardcore Predicates. A hardcore predicate of a TDP is an efficiently computable predicate,
defined over the domain of the permutation that is infeasible to approximate, given only the image
of the element. In other words, given α and x it is easy to compute h(x) but given only α
and fα(x) it is infeasible to approximate h(x). Note that since fα is a permutation, h(x) is
information theoretically determined by α, fα(x) and therefore, h(x) is only hard to approximate in
a computational sense. An enhanced hardcore predicate of an enhanced TDP is naturally defined
w.r.t the enhanced security property. That is, based on α and r, it is infeasible to approximate
h(x) where x = f−1

α (S(α; r)). Goldreich and Levin [GL89] showed a hardcore predicate that holds
for (a minor modification of) any TDP. If the TDP is enhanced then the Goldreich-Levin predicate
is an enhanced hardcore predicate.

1.2 Are Enhanced Hardcore Bits Pseudorandom?

Let {fα : Dα → Dα}α be a standard TDP with a hardcore predicate h. Suppose that we are given a
randomly selected index of a permutation α and two random elements from its domain y1, y2 ∈ Dα.
By definition, it is infeasible to compute the hardcore bit of the inverse of any single element (i.e.
h(f−1

α (yj)). Moreover, intuitively it seems as though these two bits are pseudorandom, and in
particular it is infeasible to compute any relationship between these two bits.

A simple argument shows that this is indeed the case. To prove this, assume toward a contra-
diction that there exists an algorithm A that given α, y1 and y2 computes h(f−1

α (y1))⊕h(f−1
α (y2)),

where ⊕ denotes exclusive-or. We use A to construct an adversary A′ for the hardcore predicate h.
Recall that A′ is given α and y1 and needs to compute h(f−1

α (y1)). The key point is that A′ can gen-
erate h(f−1

α (y2)), y2 by itself2 and then invoke A on α, y1, y2 to obtain b = h(f−1
α (y1))⊕h(f−1

α (y2)).
Finally, using h(f−1

α (y2)), the adversary A′ outputs b⊕h(f−1
α (y2)) which indeed equals h(f−1

α (y1)).
Surprisingly perhaps, this argument does not extend to the enhanced setting. Suppose that {fα}

is an enhanced TDP with a domain sampler S and an enhanced hardcore predicate h. Given α, r1
and r2, is it feasible to compute h(x1)⊕h(x2) where xj = f−1

α (S(α; rj))? In fact, this may indeed
be feasible. The key point, which causes the extension of the proof from the standard setting to the
enhanced setting to fail, is that it may not be feasible to generate a sample of the form (h(x2), r2)
without using the trapdoor. In Appendix A we present an enhanced trapdoor permutation based
on quadratic residuosity for which this is the case. In Section 3 we use this property to show that
the standard one-out-of-k oblivious transfer protocol is insecure for k ≥ 3.

Using the equivalence of pseudorandomness and unpredictability, enhanced hardcore bits may
also be predictable in the following sense. Given α, (r1, h(x1)) and r2 it may be feasible to predict
h(x2). The types of scenarios that we consider in this work are generalizations of this attack. That
is, scenarios in which the adversary is given samples (e.g. r1 together with h(x1)) that it may not
be able to generate by itself and is required to execute a task that is infeasible without the samples

1Given any TDP, consider changing its sampling algorithm S to S′(α; r)
def
= fα(S(α; r)). The random coins of S′

always give away the preimage under fα of sampled elements.
2By selecting x← S(α) and outputting h(x), fα(x).

2

(e.g. compute h(x2) based on r2). For each scenario we consider a corresponding variant of an
enhanced trapdoor permutation that is hard in that scenario. We consider connections between
these variants while distinguishing between hardness that holds w.r.t a fixed number of samples
and hardness that holds w.r.t any (polynomial) number of samples.

1.3 Organization

We start in Section 2 by presenting the formal definitions of trapdoor permutations, hardcore
predicates and oblivious transfer. In Section 3, we demonstrate the type of problem encountered
when using enhanced trapdoor permutations by analyzing the standard OT protocol. In Section 4,
we discuss the aforementioned scenarios in which enhanced trapdoor permutations are not hard to
invert or have hardcore predicates that are not hard to predict.

2 Definitions

A function ε : N → [0, 1] is negligible if for every polynomial p(·) and all sufficiently large n ∈ N
it holds that, ε(n) < 1

p(n) . We use neg(n) and poly(n) to respectively denote some unspecified
negligible function and polynomial. Throughout this manuscript all polynomials are assumed to
be positive.

2.1 Collections of Trapdoor Permutations

Formally, we define a collection of trapdoor permutations (TDP) as follows:

Definition 2.1. A TDP is a collection of permutations {fα : Dα → Dα}α together with the
following associated probabilistic polynomial-time algorithms:

1. An index sampler I that given the security parameter 1n, outputs an index of a permutation,
denoted α and a corresponding trapdoor, denoted τ .

2. A domain sampler S that on input α (the index of a permutation), outputs a uniformly
distributed element x ∈ Dα.

3. An evaluation algorithm F (for Forward) that, given α and x, computes the value of the
permutation fα on x, i.e., outputs fα(x).

4. An inverting algorithm B (for Backward) that, given the trapdoor of the permutation τ and
an element x, inverts the permutation on x, i.e., outputs f−1

α (x).

The security requirement is that for every probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)
x←S(α)

[
A(α, x) = f−1

α (x)
]

= neg(n) (2.1)

where the probability is also over the coin tosses of A.

An enhanced TDP is one for which it is infeasible to invert elements even given the random
coins that sampled them:

3

Definition 2.2. A TDP {fα : Dα → Dα} with domain sampler S, is enhanced if it for every
probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)

r←{0,1}poly(n)

[
A(α, r) = f−1

α (S(α; r))
]

= neg(n) (2.2)

where once again, the probability is also over the coin tosses of A.

A hardcore predicate is an efficiently computable predicate defined over the domain of a TDP,
that is infeasible to compute based only on an image of an element:

Definition 2.3. Let {fα : Dα → Dα}α be a TDP. The predicate h, defined over the domain of the
permutations, is a hardcore predicate if it can be computed efficiently and for every probabilistic
polynomial-time algorithm A,

Pr
(α,τ)←I(1n)
x←S(α)

[
A(x) = h(f−1

α (x))
]

=
1
2

+ neg(n) (2.3)

An enhanced hardcore predicate is defined analogously, allowing the adversary access to the
random string that sampled the element:

Definition 2.4. Let {fα : Dα → Dα}α be a TDP with domain sampler S. The hardcore predicate
h is enhanced if for every probabilistic polynomial-time algorithm A,

Pr
(α,τ)←I(1n)

r←{0,1}poly(n)

[
A(r) = h(f−1

α (S(α; r)))
]

=
1
2

+ neg(n) (2.4)

Goldreich and Levin [GL89] showed that if {fα}α is a trapdoor permutation then the trapdoor
permutation gα(x, s) = (fα(x), s) where |x| = |s|, has a hardcore predicate h(x, s) = 〈x, s〉 =∑
xisi mod 2. If {fα}α is an enhanced TDP then h is an enhanced hardcore predicate of {gα}α.

2.2 Oblivious Transfer

One-out-of-k oblivious transfer (OT) is an interactive protocol consisting of two parties, a sender
S and a receiver R. The input of S is composed of k-bits σ1, . . . , σk and the input of R is an
index i ∈ [k]. At the end of the protocol, the receiver, R, should output σi but learn nothing
about the sender’s input other than σi and the sender, S, should learn nothing about the receiver’s
input (i.e., i). These privacy requirements should hold in a computational sense, with respect to a
security parameter n, (which is given to both parties in unary). We restrict our attention to the
“semi-honest” model. In this model, each party acts according to the protocol but may write down
anything it sees. We mention that a protocol in the “semi-honest” model can be compiled to a
protocol that is secure against malicious adversaries by using zero-knowledge proofs (see [Gol04]).

This formulation of OT was introduced by Even et-al [EGL85]. A three-message protocol for
OT based on enhanced trapdoor permutations was given by [EGL85, GMW87]. We refer to this
protocol (or actually to its description in [Gol04]) as the standard OT protocol. The standard OT
protocol uses an enhanced TDP {fα : Dα → Dα}α with corresponding algorithms I, S, F,B (recall
that I is the index/trapdoor sampler, S is the domain sampler, F computes the permutation and
B inverts it using the trapdoor) and an enhanced hardcore predicate h (e.g. the Goldreich-Levin
hardcore predicate [GL89]). The protocol is depicted in Figure 1.

4

S(1n, σ1, . . . , σk) R(1n, i)

α, τ ← I(1n)

xj ← S(α) for all j ∈ [k]

yi = F (α, xi) and yj = xj for j ∈ [k]\{i}

zj = B(τ, yj) for all j ∈ [k]

cj = h(zj)⊕σj

Output ci⊕h(xi)

α

y1, . . . , yk

c1, . . . , ck

Figure 1: One-out-of-k Oblivious Transfer.

To formalize the semi-honest model, we use the notion of the view of each player. The view of
player P with respect to security parameter n is a random variable V iewP (i, (σ1, . . . , σk)) which
consists of everything player P sees in the interaction between R on input i and S on input
σ1, . . . , σk, including its own random coin tosses and the received messages. Using this notion we
define an OT protocol as follows:

Definition 2.5. Let k ≥ 2 be a natural number. (S,R) are a one-out-of-k oblivious transfer (OT)
protocol if S and R are interactive probabilistic polynomial-time algorithms and it holds that:

1. (Correctness) For every σ1, . . . , σk ∈ {0, 1} and i ∈ [k], when R(1n, i) interacts with S(1n, σ1, . . . , σk),
it holds that R outputs σi and S outputs nothing.

2. (Sender Privacy) There exists a probabilistic polynomial-time simulator SimR such that for
every σ1, . . . , σk ∈ {0, 1} and i ∈ [k], the ensembles {SimR(i, σi)}n∈N and {V iewR(i, (σ1, . . . , σk))}n∈N
are computationally indistinguishable.

3. (Receiver Privacy) There exists a probabilistic polynomial-time simulator SimS such that for
every σ1, . . . , σk ∈ {0, 1} and i ∈ [k], the ensembles {SimS(σ1, . . . , σk)}n∈N and {V iewS(i, (σ1, . . . , σk))}n∈N
are computationally indistinguishable.

If the output of SimS (resp. SimR) is identically distributed to the actual view of the sender
(resp. receiver) then we say that the receiver (resp. sender) has perfect privacy.

3 Failure of the one-out-of-k OT Protocol for k ≥ 3

In this section we show that the standard OT protocol fails for k ≥ 3. We start of by proving that
it is indeed correct for k = 2. We then proceed to show the problem that arises when trying to
extend this proof to k = 3, or larger k.

3.1 The Case k = 2

Recall that the standard protocol (Figure 1) is based on an enhanced TDP {fα}α with corresponding
algorithms I, S, F,B and an enhanced hardcore predicate h.

When both parties follow the standard protocol the receiver outputs σi, thus the protocol is
indeed correct. The (prefect) privacy of the receiver (in the semi-honest model) is also immediate

5

and follows from the fact that fα is a permutation. We note that correctness and the privacy of
the receiver hold for any k ≥ 2.

The privacy of the sender is less trivial. For sake of simplicity we assume that i = 1 and consider
an interaction between the receiver, R, and the sender, S given the input σ1, σ2. The view of the
receiver is:

(i = 1, σ1) , (r1, r2) ,
(
α, h(S(α; r1))⊕σ1, h(f−1

α (S(α; r2)))⊕σ2

)
.

To prove that privacy of the sender holds, we need to present a simulator for this view. The
simulator SimR(i = 1, σ1) chooses (α, τ)← I(1n), samples r1, r2 ← {0, 1}poly(n) and outputs:

(i = 1, σ1) , (r1, r2) ,
(
α, h(S(α; r1))⊕σ1, h(f−1

α (S(α; r2)))
)
.

Note that the only difference between the actual view and the output of the simulator is in the last
element. However, using the fact that h is an enhanced hardcore predicate, r2, h(f−1

α (S(α; r2)))
and r2, h(f−1

α (S(α; r2)))⊕σ2 are computationally indistinguishable, which in turn implies that the
actual view is computationally indistinguishable from the output of the simulator.

3.2 The Case k = 3

Consider an attempt to extend the proof for the case k = 2 to the case k = 3. Once again, for
simplicity, we assume i = 1. The natural extension of the proof is to have the simulator output
h(f−1

α (S(α; r2))) and h(f−1
α (S(α; r3))) instead of the actual received message h(f−1

α (S(α; r2)))⊕σ2

and h(f−1
α (S(α; r3)))⊕σ3. The problem is that it may be easy to distinguish the output of the

simulator from the actual received message, using the property described in Section 1.2.
We stress that it is not only the natural extension of the proof to the case k = 3 that fails, and

the protocol is indeed insecure. To see this (again assuming i = 1) recall that R should learn σ1 but
nothing about σ2 and σ3. However, based on the protocol R learns (r2, b2⊕σ2) and (r3, b3⊕σ3)
(where bi = h(f−1

α (S(α; ri)))). Given that R can also compute b2⊕ b3 from r1 and r2, it can easily
compute σ1⊕σ2, contradicting the supposed privacy of the sender.

3.3 Fixing the Protocol

One way to fix the standard OT protocol is by using the well known (simple) reduction from general
k to k = 2. As shown in Section 3.1, one-out-of-two OT can be based on any enhanced TDP, hence,
the following holds:

Theorem 3.1. If there exists an enhanced TDP then for any k ≥ 2, there exists a protocol for
one-out-of-k OT.

An alternate approach, that considers the original protocol, is shown in Section 4.2.2.

4 Problematic Scenarios for Enhanced Trapdoor Permutations

In this section, we discuss different scenarios in which it may be insecure to use enhanced TDPs. We
start by presenting these scenarios and the corresponding TDPs and proceed to show connections
between these variants of enhanced TDPs.

Throughout this section, we consider an enhanced TDP {fα : Dα → Dα}α with correspond-
ing algorithms I, S, F,B and a hardcore predicate h. By α we denote a random index from this
collection (with respect to a security parameter n). For j ∈ N, we use rj to denote uniformly

6

distributed random coins for the sampling algorithm S and xj to denote the inverse of the corre-

sponding sampled element, i.e., xj
def= f−1

α (S (α, rj)). bj denotes the corresponding hardcore bit,

i.e., bj
def= h(xj).

4.1 The Scenarios

The attack we presented on the OT protocol in Section 3 was based on the existence of an enhanced
TDP with the property that given α, r1 and r2, it is feasible to compute b1⊕ b2. This means that
an adversary that is given a sample of the form (r1, b1), can compute the hardcore predicate, i.e.,
given r2 (in addition to α and (r1, b1)) the adversary can compute b2 = h(f−1

α (S(α; r2))). We
generalize this type of attack and consider the following scenarios:

1. Scenario BX: Based on α and i samples of the form (r1, b1), . . . , (ri, bi) it is feasible to invert
the permutation, i.e., from ri+1 compute xi+1 = f−1

α (S(α; ri+1).

2. Scenario BB: Based on α and i samples of the form (r1, b1), . . . , (ri, bi) it is feasible to break
the hardcore predicate, i.e., from ri+1, compute bi+1 = h(xi+1).

3. Scenario XX: Based on α and i samples of the form (r1, x1), . . . , (ri, xi) it is feasible to
invert the permutation, i.e., compute xi+1 as in Scenario 1.

4. Scenario XB: Based on α and i samples of the form (r1, x1), . . . , (ri, xi) it is feasible to
break the hardcore predicate, i.e., compute bi+1 as in Scenario 2.

Scenarios 1-4 are respectively referred to as Scenarios BX, BB, XX, XB, where the convention is
that the first letter represents what the adversary is given (B for hardcore bits and X for preimages)
and the second letter represents the goal of the adversary (B to approximate the hardcore bit and
X to invert the permutation).

A few immediate relations between the scenarios are depicted in Figure 2, where an arrow from
Scenario x to Scenario y means that an adversary in the setting of Scenario x implies an adversary
in Scenario y. These relations follow from the fact that bj can be efficiently computed from xj .
Hardness holds in the opposite direction, that is, an arrow from scenario x to scenario y means
that a TDP that is hard in the setting of scenario y is also hard in the setting of scenario x.

Connection to Doubly-Enhanced TDP Scenario XB is actually the setting of the protocol
for non-interactive zero-knowledge proofs for NP. In this protocol, the verifier is presented with
samples of the form (rj , xj). To prove that the protocol is zero-knowledge, we need to argue that
the verifier cannot compute the hardcore predicate, however, if the TDP is vulnerable to an attack
in the setting of Scenario XB then the hardcore predicate becomes easy to compute. Goldreich
[Gol09], addressed the problem raised there by defining doubly-enhanced TDPs and showing that
they are sufficient. Recall that a doubly-enhanced TDP is defined as follows:

Definition 4.1. Let {fα : Dα → Dα}α be an enhanced TDP with domain sampling algorithm S.
This collection is doubly-enhanced if there exists a probabilistic polynomial-time algorithm that
on input α outputs a pair (r, x) such that r is uniformly distributed as random coins of S and
fα(x) = S(α; r).

Thus, the “doubly-enhanced” property guarantees the ability to generate samples of the form
(rj , xj) (from which can be derived also samples of the form (rj , bj)). This implies, in particular, that
a doubly-enhanced TDP is hard in all the above scenarios w.r.t to polynomially many samples. This

7

Scenario BX
α, (r1, b1), . . . , (ri, bi), ri+1 → xi+1

Scenario XX
α, (r1, x1), . . . , (ri, xi), ri+1 → xi+1

Scenario BB
α, (r1, b1), . . . , (ri, bi), ri+1 → bi+1

Scenario XB
α, (r1, x1), . . . , (ri, xi), ri+1 → bi+1

Figure 2: Attacks on Enhanced Trapdoor Permutations.

follows from the fact that any adversary that requires samples (rj , xj) or (rj , bj) can be converted to
an adversary that does not, by simply generating the necessary samples itself (using the algorithm
guaranteed by Definition 4.1).

4.2 Hardness of Enhanced TDP w.r.t a Fixed Number of Samples

In this section, and the following one, we show connections between the variants of enhanced TDP
that correspond to the scenarios discussed above. We distinguish between hardness that holds for
a fixed number of samples (discussed in this section) and hardness that holds for polynomially may
samples, for any polynomial (discussed in Section 4.3).

The results presented in this section are depicted in Figure 3. Each box represents a TDP that
is hard in one of the scenarios. Arrows represent connections between these primitives. A solid
arrow between from primitive X to Y means that “X is Y ”3 whereas a dotted arrow means that
a transformation is required, that is, if there exists X then there exists Y . Some of the arrows are
labeled with further restrictions, e.g., “GL”, which means that the result holds when using the GL
hardcore predicate. Note that all downward pointing arrows follow from the fact that the hardcore
bit of an element is efficiently computable.

4.2.1 Scenario BX

Recall that in Scenario BX, the adversary needs to invert the permutation based on samples of
the form (rj , bj). We first show that any enhanced TDP with any enhanced hardcore predicate is
hard to invert in Scenario BX if at most logarithmically many samples (rj , bj) are revealed to the
adversary. We proceed by showing that by modifying an enhanced TDP, we can actually obtain
an enhanced TDP that is hard to invert even given polynomially many samples.

Theorem 4.2. Let {fα}α be an enhanced TDP with an enhanced hardcore predicate h. Then, {fα}
is hard to invert in the setting of Scenario BX for i = O(log n) samples.

3We assume that all TDP are by default in the form required for GL. Thus, we do not view the (minor) modification
required for the GL hardcore predicate as a transformation.

8

Doubly-Enhanced TDP
α, r 9 x and
α → (r, x)

Scenario XB
α, (r1, x1), . . . , (ri, xi), ri+1 9 bi+1

Scenario BB
α, (r1, b1), . . . , (ri, bi), ri+1 9 bi+1

Scenario XX
α, (r1, x1), . . . , (ri, xi), ri+1 9 xi+1

Scenario BX
α, (r1, b1), . . . , (ri, bi), ri+1 9 xi+1

Enhanced TDP
α, r 9 x

∀ poly. i
(Thm. 4.3)

i = O(log n)
(Thm. 4.2)

GL, i = O(log n)
(Thm. 4.4)

∀ fixed poly. i
(Thm. 4.6)

Figure 3: Hardness of Enhanced TDP w.r.t a fixed number of samples.

Proof. We use an adversary A for Scenario BX to construct an adversary A′ that inverts the
permutation in the enhanced setting (i.e. an adversary that inverts based on the random string
of the sampling algorithm). The first observation is that A′ can enumerate all possible values for
logarithmically many hardcore bits. For each sequence of values of hardcore bits, A′ runs A to
produce a candidate preimage. The second observation is that it is possible to verify the result;
that is, A′ can check whether a candidate element is indeed the preimage. Details follow.

Assume toward a contradiction that there exists a probabilistic polynomial-time algorithm A
that given α, (r1, b1), . . . , (ri(n), bi(n)), ri(n)+1 outputs xi(n)+1 with non-negligible probability. We
use A to invert the permutation in the enhanced setting, contradicting the assumption that it is
an enhanced trapdoor permutation.

Given α and r we want to find x = f−1
α (S(α; r)) where S is the domain sampling algorithm of

{fα}. To do this, we select r1, . . . , ri(n) as i(n) uniformly distributed random strings of the sampling
algorithm S. We then enumerate over all possible values of hardcore bits of r1, . . . , ri(n) by going
over all c1, . . . , ci(n) ∈ {0, 1}. For each choice of c1, . . . , ci(n) we run A(α, (r1, c1), . . . , (ri(n), ci(n)), r)
and obtain a candidate x′. For each candidate x′, we check whether fα(x′) = S(α; r) and output
x′ if this is the case. Note that after a polynomial number of iterations we will reach the correct
choice of hardcore bits and then A inverts S(α; r) with non-negligible probability.

Theorem 4.2 states that any enhanced TDP is hard to invert based on logarithmically many
samples in Scenario BX. Indeed, this holds for any enhanced TDP and no modification is required.

9

If we allow modifications, then as shown by the following theorem, we can actually obtain an
enhanced TDP that is hard to invert even given polynomially many samples.

Theorem 4.3. Let {fα : Dα → Dα}α be an enhanced TDP with a hardcore predicate hf . The
direct product of {fα} with itself, denoted {gα,β : Dα×Dβ → Dα×Dβ} and defined as gα,β(x, y) =
(fα(x), fβ(y)), is an enhanced TDP with an enhanced hardcore predicate hg(x, y) = hf (y) that is
hard to invert in Scenario BX w.r.t any polynomial i(·).

Proof. We denote the domain sampling algorithm of {fα} (resp. {gα,β}) by Sf (resp. Sg). Note

that Sg((α, β); (r, r′)) def= (Sf (α; r), Sf (β, r′)). We denote the random string of Sg by r′′ = (r, r′)
where r is used to sample the first element (from Dα) and r′ is used for the second one (from Dβ).

Suppose there exists an adversary A that inverts {gα,β} based on a polynomial number of

samples (r′′j , b
′′
j), where r′′j = (rj , r′j) and b′′j = hg

(
g−1
α,β

(
Sg

(
(α, β) ; r′′j

)))
= hf

(
f−1
β (Sf (β; r′))

)
=

b′j . We use A to construct an adversary A′ that inverts {fα}. The key point is that it is possible to
generate the necessary samples for A using only the trapdoor of β. Thus, to invert fα, we generate
β together with the corresponding trapdoor. We use this trapdoor to generate samples (r′′j , b

′′
j)

where b′′j = b′j = hf

(
f−1
β (Sf (β; r′))

)
and invoke A to invert gα,β and in particular fα. Details

follow.
Given α and r, the adversary A′ needs to find x = f−1

α (Sf (α; r)). This is done by first sampling
an index β together with the corresponding trapdoor. Consider the permutation gα,β. For this per-

mutation, it is easy to generate samples (r′′j , b
′′
j), where r′′j = (rj , r′j) and b′′j = hf

(
f−1
β

(
Sf

(
β; r′j

)))
since the hardcore predicate depends only β, which we can invert. Thus, to invert fα, we invoke
A on the index (α, β), i(n) samples (r′′j , bj) and the random coins r′′ = (r, r′) (where r is the
random string given as input and r′ is an independent random string). By our assumption, with
non-negligible probability, the adversary outputs a preimage x′′ = (x, x′) of Sg ((α, β) ; (r, r′)) =
Sf (α; r) , Sf (β; r′). In particular we have x = f−1

α (Sf (α; r)) and so A′ outputs x.

4.2.2 Scenario BB

Recall that Scenario BB is the setting that causes the standard OT protocol to fail for k ≥ 3 (see
Section 3). We show that the Goldreich-Levin (GL) hardcore predicate [GL89], is unpredictable
in this setting as long as at most i = O(log n) samples (rj , bj) are revealed to the adversary.
Thus, when implemented using the GL hardcore predicate, the standard OT protocol is secure for
k = O(log n).

Theorem 4.4. Let {fα : Dα → Dα}α be an enhanced TDP and assume for simplicity that all
elements in Dα are of length n. Let {gα : Dα × {0, 1}n → Dα × {0, 1}n}α be the enhanced TDP

defined as gα(x, s) = fα(x), s where |x| = |s| = n and let h(x, s)
def
= 〈x, s〉 =

∑n
i=1 xisi mod 2 be the

GL hardcore predicate of g. Then h is unpredictable in the setting of Scenario BB for i = O(log n)
samples.

We denote the domain sampling algorithm of {fα} (resp. {gα}) by Sf (resp. Sg). Note that

Sg(α); (r, s)) def= (Sf (α; r), s).
To proof Theorem 4.4, we show that given α and i random strings (r1, s1), . . . , (ri, si) of Sg, the

sampling algorithm of {gα}α, it is infeasible to approximate
⊕

j∈U bj , for any non-empty set U ⊆ [i]
(where bj = h(xj , sj) and xj = f−1

α (S(α; rj))). The theorem follows by applying the computational

10

XOR lemma4 for hardcore functions [Gol01, Lemma 2.5.8], which holds for i = O(log n), and the
equivalence of pseudorandomness and unpredictability. Thus it suffices to prove the following:

Proposition 4.5. Let i
def
= i(n) be a polynomial. For any adversary A, any polynomial p(·), all

sufficiently large n and any non-empty set U ⊆ [i(n)]:

Pr
α,τ←I(1n)

(r1,s1),...,(ri,si)←{0,1}poly(n)×{0,1}poly(n)

A (α, (r1, s1), . . . , (ri, si)) =
⊕
j∈U

bj

 =
1
2

+
1

p(n)
(4.1)

where bj
def
= h(xj , sj) = 〈xj , sj〉 and xj

def
= f−1

α (S(α; rj)).

Proof. Assume toward a contradiction that this is not the case. That is, there exists an infinite
set of n, a set U = {j1, . . . , j`(n)}, and an adversary A that computes

⊕
j∈U bj based on α and

(r1, s1), . . . , (ri, si). The main observation is that
⊕

j∈U bj =
⊕

j∈U 〈xj , sj〉 = 〈xj1 ◦ · · · ◦ xj`(n)
, sj1 ◦

· · · ◦ sj`(n)
〉 where ◦ denotes concatenation.

As a mental experiment, consider the trapdoor permutation {f ′α : D`
α → D`

α} defined as f ′α(x1, . . . , x`(n)) =
(fα(x1), . . . , fα(x`(n))). Using the sampling algorithm Sf ′(α; r1, . . . , r`(n)) = S(α; r1), . . . , S(α, r`(n)),
the collection {f ′α} is in fact an enhanced trapdoor permutation5. If we apply the GL modi-
fication to {f ′α} we obtain the enhanced trapdoor permutation g′α(x1, . . . , x`(n), s1, . . . , s`(n)) =
fα(x1), . . . , fα(x`(n)), s1, . . . , s`(n) with the enhanced hardcore predicate 〈x1◦· · ·◦x`(n), s1◦· · ·◦s`(n)〉.
By definition of an enhanced hardcore predicate, this means that given α, r1, . . . , r`(n), s1, . . . , s`(n)

it is infeasible to approximate 〈x1 ◦ · · · ◦x`(n), s1 ◦ · · · ◦s`(n)〉 in contradiction to our assumption.

4.2.3 Scenario XX

In this scenario, the adversary is given an index α of a permutation, i samples of the form (rj , xj),
and an additional random string ri+1 and needs to invert the permutation on S(α; ri+1), i.e.,
compute xi+1. We show how to transform any enhanced TDP to one that is hard to invert in the
setting of Scenario XX as long as the number of revealed samples is known ahead of time, that is,
first the number of revealed samples is fixed and then we construct a TDP that is hard to invert
w.r.t this number of samples. A disadvantage of our technique is that the length of the index
increases linearly with the number of samples. In fact, we can only construct an enhanced TDP
that is hard to invert given m1−ε samples where m is the length of the new index (for any constant
ε > 0).

Theorem 4.6. If there exists an enhanced TDP, then for every polynomial q(·), there exists an
enhanced TDP that is hard to invert in the setting of Scenario XX with respect to q(n) samples.

Proof. Let {fα}α be an enhanced TDP with corresponding algorithm I, S, F,B.

Construction 4.7. We construct an enhanced TDP f ′ with algorithms I ′, S′, F ′, B′ that is hard
to invert in Scenario XX with q(n) samples:

I ′(1n): Invoke I(1n), the original index sampler, 2q(n) ·n times to obtain a (2q(n)×n)-sized matrix

of indexes α
def
= {αi,j}i∈[2q(n)],j∈[n] and a corresponding (2q(n) × n)-sized matrix of trapdoors

τ = {τi,j}i∈[2q(n)],j∈[n]. Output α as the index and τ as the trapdoor.

4This lemma shows that if it is infeasible to compute the parity of a random subset of logarithmically many
hardcore bits, then they are pseudorandom.

5If from α, r1, . . . , r`(n) it is feasible to compute x1, . . . , x`(n) then it particular it is feasible to compute x1 from
α, r1.

11

S′(α): From each column j ∈ [n] of the matrix α, select at random an entry sj ∈R [2q(n)] and
sample an element from the corresponding permutation’s domain, xj ← S(αsj ,j). Output
(s1, . . . , sn, x1, . . . , xn).

F ′ (α, (s1, . . . , sn, x1, . . . , xn)): For every j ∈ [n], compute the permutation αsj ,j on xj by invoking
yj = F (αsj ,j , xj). Output (s1, . . . , sn, y1, . . . , yn).

B′ (τ , (s1, . . . , sn, y1, . . . , yn)): For every j ∈ [n], invert the permutation αsj ,j on yj by invoking
xj = B(τsj ,j , yj). Output (s1, . . . , sn, x1, . . . , xn).

Using the fact that {fα} is a TDP, {f ′α} forms a collection of permutations and S′ samples
elements uniformly from the domain, as required. Furthermore, using the trapdoor τ , it is easy to
invert f ′α.

We show that an A′ adversary that inverts {f ′α} in the setting of Scenario XX can be used to
construct an adversary A that inverts {fα} in the enhanced setting. Recall that A is given an index
α and a random string r and needs to find x s.t. x = f−1

α (S(α; r)). We first sketch the high-level
idea of the proof and then go into details.

First, A generates an index matrix α together with the corresponding trapdoor matrix τ . Then,
A selects q(n) + 1 random strings for the sampling algorithm S′. Note that each random string
specifies a single permutation from each column of α. The first q(n) random strings will be used
to construct samples for A′, and the last random string will be used (after a modification) as the
challenge for A′.

The key point is that for each column of α, with probability q(n)
2q(n) = 1

2 , there exists an entry
that is not used by any of the first q(n) random strings. Thus, with probability 1− 2−n, one of the
n indexes specified by the last random string was not specified by any of the first q(n) samples.
After finding the coordinate (i, j) of such an index in the matrix α (or halting if it does not exist),
A replaces the j-th block of the last random string by r and the (i, j)-th entry of α by α. Since
none of the first q(n) random strings use α, the adversary A can invert them to obtain the required
q(n) samples for A′. If A′ is successful then in particular it inverts S(α; r), hence obtaining the
required preimage.

We proceed to describe the proof in detail. Assume toward a contradiction that there ex-
ists a probabilistic polynomial-time adversary A′ that inverts {f ′α} with non-negligible proba-
bility based on q(n) samples. Thus, A′ inverts fα based on α and q(n) samples of the form(
s
(k)
1 , . . . , s

(k)
n , x

(k)
1 , . . . , x

(k)
n

)
,
(
r
(k)
1 , . . . , r

(k)
n

)
(for all k ∈ [q(n)]) where x(k)

j is the inverse of the

element sampled by r
(k)
j w.r.t the permutation α

s
(k)
j ,j

. To simplify notation, we denote α(k, j) def=

α
s
(k)
j ,j

. We use A′ to construct an adversary A that on input α and r computes f−1
α (S(α; r)) and

operates as follows:

1. For every k ∈ [q(n)], select s(k)1 , . . . , s
(k)
n ∈R [2q(n)].

2. Select s′1, . . . , s
′
n ∈R [2q(n)].

3. Find t ∈ [n] such that s′t /∈ {s
(1)
t , . . . , s

(q(n))
t }. If no such t exists, halt.

4. Sample an index matrix α = {αi,j}i∈[2q(n)],j∈[n] together with the corresponding trapdoor τ
by invoking I ′(1n). Replace αs′t,t with α (τs′t,t is irrelevant and can be erased).

5. For k ∈ [q(n)]:

12

(a) Select r(k)1 , . . . , r
(k)
q(n) as uniformly distributed random coins for S.

(b) For j ∈ [n], set x(k)
j = f−1

α(k,j)(S(α(k, j); rkj)).

6. Select n uniformly distributed random strings r′1, . . . , r
′
n for S. Replace r′t with r.

7. Invoke A′ on index α, the samples
(
s
(k)
1 , . . . , s

(k)
n , x

(k)
1 , . . . , x

(k)
n

)
,
(
rk1 , . . . , r

(k)
n

)
(for all k ∈

[q(n)]) and the challenge (s′1, . . . , s
′
n, r
′
1, . . . , r

′
n). The output ofA should be (s′1, . . . , s

′
n, x
′
1, . . . , x

′
n),

halt if this is not the case.

8. Output x′t.

We first argue that A is indeed efficient. The only step that appears problematic is inverting in
step 5b however this can be done efficiently since we only invert permutations for which we have
the corresponding trapdoor.

Next, note that A halts in step 3 with probability at most 2−n. This is because the probability
that s′t ∈

{
s
(1)
1 , . . . , s

(q(n))
t

}
is at most q(n)

2q(n) = 1
2 for each t ∈ [n] and therefore the probability this

happens for all t is at most 2−n. This also means that although the distribution of samples that
A is invoked on is not precisely the same distribution on which A is guaranteed to operate, the
two distributions are statistically close. Thus, with non-negligible probability, A outputs x′1, . . . , x

′
n

such that fαs′
j
,j

(x′j) = S(αs′j ,j , r
′
j) for all j ∈ [n]. In particular, fαs′t,t

(x′t) = S(αs′t,t, r
′
t). Since

α = αs′t,t and r = r′t we have that fα(x′t) = S(α, r), i.e., x′t is a preimage as required.

4.3 Hardness of Enhanced TDP w.r.t Polynomially Many Samples

In this section we continue to establish connections between enhanced TDP that are hard to invert
in the different scenarios introduced in Section 4.1. In this section we focus on TDPs that are hard
w.r.t any polynomial number of samples. This is in contrast to Section 4.2 in which we focused on
hardness w.r.t a fixed number of samples.

The results presented in this section are depicted in Figure 4 using the same conventions as in
Figure 3. We re-emphasize that throughout this section (and in particular in Figure 4) we consider
TDP for which hardness (of inverting the permutation or of computing the hardcore predicate)
holds w.r.t any (polynomial) number of samples.

4.3.1 Scenario XX vs. Scenario XB

Recall that in scenarios XX and XB, the adversary is required to invert the permutation or compute
the hardcore predicate based on samples (rj , xj). An appealing aspect of Scenario XX is that it
does not involve a hardcore predicate at all. In the author’s master’s thesis [Rot10, Appendix B],
it is shown that a TDP that is hard to invert in the setting of Scenario XB suffices for the efficient
prover non-interactive zero-knowledge protocol described in [Gol09]. In fact, it is shown that the
only property of the TDP that is used in [Gol09] is hardness to invert in Scenario XB, which is
seemingly a weaker assumption than the existence of doubly-enhanced TDP.

We proceed to show that the GL hardcore predicate of a TDP that is hard to invert in Sce-
nario XX is unpredictable in Scenario XB. Thus, the GL hardcore predicate is hard to approximate
even if the adversary is given polynomially many samples of the form (rj , xj).

Theorem 4.8. Let {fα}α be a TDP that is hard to invert in the setting Scenario XX. Then, the GL
hardcore predicate, h(x, s) = 〈x, s〉, w.r.t the enhanced TDP gα(x, s) = (fα(x), s) (where |x| = |s|),
is hard to approximate in the setting of Scenario XB.

13

Doubly-Enhanced TDP
α, r 9 x and
α → (r, x)

Scenario XB
α, (r1, x1), . . . , (ri, xi), ri+1 9 bi+1

Scenario BB
α, (r1, b1), . . . , (ri, bi), ri+1 9 bi+1

Scenario XX
α, (r1, x1), . . . , (ri, xi), ri+1 9 xi+1

Scenario BX
α, (r1, b1), . . . , (ri, bi), ri+1 9 xi+1

Enhanced TDP
α, r 9 x

GL (Thm. 4.8)

GL (Thm. 4.9)

Specific HC pred.,
not GL (Sec. 4.3.3)

Figure 4: Hardness of Enhanced TDP w.r.t any (polynomial) number of samples.

Proof. The proof that h is an (enhanced) hardcore predicate of {gα} (see [Gol01]), reduces the
problem of inverting {gα} to approximating h. We adapt the proof to show that inverting {gα}
given i samples of the form (rj , xj) reduces to approximating h given i′ samples of the same form,
where i′ is related to i (via the advantage of the approximation).

We denote the domain sampling algorithm of {fα} (resp. {gα}) by Sf (resp. Sg). We use the
convention that random strings of Sf are denoted by r or rj and those of Sg by (r, s) or (rj , sj)

such that Sg(α); (r, s)) def= (Sf (α; r), s).
Let α be an index of a random permutation (w.r.t security parameter n), r a random string for

Sf and x the corresponding preimage, i.e., x = f−1
α (Sf (α; r)). We denote by O(s) a machine that

on input s returns 〈x, s〉 with probability 1
2 + ε. The GL proof, describes an algorithm H that on

input α, r and oracle access to O outputs x with probability 1
poly(n, 1

ε
)
. The number of oracle queries

made by H is q(n, 1
ε), a polynomial in both n and 1

ε .
Assume toward a contradiction that there exists an adversaryA that given α, ((r1, x1)) , . . . , ((ri, xi)) , ri+1, s

computes bi+1 = 〈xi+1, s〉 with advantage ε. We use A to construct an adversary A′ that inverts
{fα} in the setting of Scenario XX using i(n) blocks of q(n, 1

ε) samples. Thus, A′ gets as input
a permutation α, samples (r1, x1), . . . , (ri·q(n, 1

ε
), xi·q(n, 1

ε
) and r′ and find x′ = f−1

α (S(α; r′)). This
is done by invoking H(α, r′). The major issue is how to answer the oracle calls made by H. To
answer the j-th oracle query, O(s(j)), A′ invokes A on α, the j-th block of samples that it is given
as input and (r′, s(j)) and with probability 1

2 + 1
poly(n, 1

ε
)

obtains 〈xi+1, si+1〉.

14

Note that the proof of Theorem 4.8 uses, in an essential way, the fact that {fα}α is hard to
invert given any polynomial number of samples because the number of samples is related to the
advantage of the approximator.

4.3.2 Scenario BX vs. Scenario BB

The proof of Theorem 4.8 can be modified by replacing the (rj , xj) samples with (rj , bj) to prove
the following theorem:

Theorem 4.9. Let {fα}α be a TDP that is hard to invert in the setting of Scenarion BX for any
polynomial i(·). The GL hardcore predicate, h(x, s) = 〈x, s〉, w.r.t the enhanced TDP gα(x, s) =
(fα(x), s) (where |x| = |s|), is unpredictable in the setting of Scenario BB.

4.3.3 Scenario BX

Theorem 4.3 constructs an enhanced TDP that is hard to invert in Scenario BX given any polyno-
mial number of samples, based on any enhanced TDP. Therefore, it is relevant also in this section,
when discussing scenarios in which the adversary is given polynomially many samples.

We stress that Theorem 4.3 constructs an enhanced TDP with a specific hardcore predicate
(that is not the GL hardcore predicate). Therefore, Theorem 4.9 (that holds only for GL) cannot
be applied to the constructed enhanced TDP to produce a TDP that is hard in Scenario BB.

Acknowledgments

I would like to thank my M.Sc. advisor, Oded Goldreich, for suggesting the research area of
enhanced trapdoor permutations and for many helpful discussions and comments regarding this
work.

References

[BM92] Mihir Bellare and Silvio Micali. How to sign given any trapdoor permutation. JACM,
39(1):214–233, 1992.

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptology, 9(3):149–166, 1996.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. CACM: Communications of the ACM, 28, 1985.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string. In IEEE, editor, Proceedings of the 31st Annual Sym-
posium on Foundations of Computer Science, pages 308–317, St. Louis, MS, 1990. IEEE
Computer Society Press.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, pages 25–32. ACM, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

15

[Gol01] Oded Goldreich. Foundations of Cryptography. Volume I: Basic Tools. Cambridge
University Press, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2: Basic Applications. Cam-
bridge University Press, 2004.

[Gol09] Oded Goldreich. Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: The state of the art. http: // www. wisdom. weizmann. ac. il/ ~ oded/

PSBookFrag/ nizk-tdp. ps , November 2008 (revised October 2009).

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the 22th Annual ACM Symposium on Theory of
Computing, STOC 1990, pages 427–437, 1990.

[Rot10] Ron Rothblum. On homomorphic encryption and enhanced trapdoor permutations.
Master’s thesis, submitted to the Feinberg Graduate School, Weizmann Institute of
Science, 2010.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23th
Annual Symposium on Foundations of Computer Science (FOCS ’82), pages 80–91, Los
Alamitos, Ca., USA, November 1982. IEEE Computer Society Press.

A An Enhanced TDP vulnerable in Scenario BB

In this section, we present a variant of the enhanced TDP suggested by Goldreich in [Gol04,
Appendix C.1.]. Our TDP has the interesting property that it is completely vulnerable to an
attack in Scenario BB. For this section we assume familiarity with basic number theory. Sufficient
background is provided in [Gol01, Gol04].

Let N be a Blum integer, QN the set of quadratic residues modulo N and MN the set of all
integers in {1, . . . , bN2 c} with Jacobi symbol 1 modulo N . We define the predicate QRN : Z∗N →
{0, 1} to equal 1 if x is a quadratic residue modulo N and 0 otherwise.

Construction A.1. (A factoring-based enhanced TDP)

I(1n) : Uniformly at random select primes P and Q such that 2n−1 ≤ P,Q ≤ 2n and set N = PQ.
Select a random element y ∈R MN . The index is (N, y) and the trapdoor is (P,Q).

S(N, y) : Select r ∈R Z∗N . Set z = y · r2 mod N . If z ≤ bN2 c output z and otherwise output N − z.

F ((N, y), x) : Set z = x2 mod N . If z ≤ bN2 c output z and otherwise output N − z.

B((N, y), x) : Given the factorization of N it is possible to invert this permutation (for details see
[Gol01, Gol04]).

Note that Construction A.1 differs from one suggested in [Gol04] only in that the index includes
an additional element y and the sampler that now multiplies by y. Indeed, as shown in [Gol04],
FN defines a permutation over MN . The same argument can be applied to show that each element
in MN has exactly four preimages under FN,y, therefore S samples uniformly from MN .

We proceed by showing an enhanced hardcore predicate for the permutation. In particular
this implies that this is an enhanced trapdoor permutation. Consider the predicate hN,y(x) =
QRN (F ((N, y), x)) (i.e., hN,y(x) = 1 if and only if the image of x under FN,y is a quadratic

16

http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps

residue). Given x this predicate is easy to compute6. However, assuming the quadratic residuosity
assumption, we show that this predicate is an enhanced hardcore predicate by showing that given
(N, y), r, it is infeasible to approximate QRN (S(N, y; r)).

The key observation is that multiplying by r2 preserves the quadratic residuosity property
whereas multiplying by −r2 complements it (i.e., y · r2 is a quadratic residue if and only if y
is a quadratic residue and −y · r2 is a residue if and only if y is a non-residue). Thus, given
N, y and r it is easy to check whether y and S(N, y; r) have the same QRN value, i.e. compute
QRN (y)⊕QRN (S(N, y; r)), by checking whether S multiplies y by r2 or by −r2..

The above implies a reduction to the quadratic residuosity problem. Consider an adversary A
that on input (N, y), r, computes QRN (S(N, y; r)) with probability 1

2 +ε. We use A to construct an
adversary A′ to the quadratic residuosity problem as follows. Given N and y, the adversary A′ need
to find QRN (y). This is done by selecting r ∈R Z∗N , computing b = QRN (y)⊕QRN (S(N, y; r)) (as
described in the previous paragraph) and outputting A((N, y), r)⊕ b. With probability 1

2 + ε this

equals QRN (S(N, y; r))⊕
(
QRN (y)⊕QRN (S(N, y; r))

)
which in turn equals QRN (y).

Thus, based on the quadratic residuosity assumption, Construction A.1 is an enhanced TDP.
However, we argue that the enhanced hardcore bits are not pseudorandom. Indeed, the TDP
is completely vulnerable to the attack as in Scenario BB. This follows from the fact that given
N, r1, r2, it is easy to compute:(

QRN (y)⊕QRN (S(N, y; r1))
)
⊕
(
QRN (y)⊕QRN (S(N, y; r2))

)
which equals QRN (S(N, y; r1))⊕QRN (S(N, y; r2)).

6If F ((N, y), x) = x2 mod N , then hN,y(x) = 1. Otherwise it must be that F ((N, y), x) = N − x2 mod N which
implies that hN,y(x) = 0.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

