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Abstract

We show that any private-key encryption scheme that is weakly homomorphic with respect to
addition modulo 2, can be transformed into a public-key encryption scheme. The homomorphic
feature referred to is a minimalistic one; that is, the length of a homomorphically generated
encryption should be independent of the number of ciphertexts from which it was created. We
do not require anything else on the distribution of homomorphically generated encryptions (in
particular, we do not require them to be distributed like real ciphertexts). Our resulting public-
key scheme is homomorphic in the following sense. If i+1 repeated applications of homomorphic
operations can be applied to the private-key scheme, then i repeated applications can be applied
to the public-key scheme.
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1 Introduction

Homomorphic encryption is a paradigm that refers to the ability, given encryptions of some mes-
sages, to generate an encryption of a value that is related to the original messages. Specifically,
this ability means that from encryptions of k messages m1, . . . ,mk it is possible to generate an
encryption of m∗ = f(m1, . . . ,mk) for some (efficiently computable) function f . Ideally, one may
want the homomorphically generated encryption of m∗ to be distributed identically (or statistically
close) to a standard encryption of m∗. We call schemes that have this property strongly homomor-
phic. Indeed, some proposed encryption schemes are strongly homomorphic w.r.t some algebraic
operations such as addition or multiplication (e.g. Goldwasser-Micali [GM84], El-Gamal [Gam84]).

For some applications, it seems as though strongly homomorphic encryption is an overkill.
There are weaker notions of homomorphic encryption that might be easier to construct and still
suffice for these applications. The very minimal requirement is that a homomorphically generated
encryption decrypts correctly to the corresponding message. Alas, this weak requirement does not
seem to be useful as is, because it captures schemes that we do not really consider to be homomor-
phic: Actually, any encryption scheme can be slightly modified to satisfy this weak requirement
w.r.t any efficient operation1. A more meaningful notion is obtained by restricting the length
of the homomorphically generated encryption. Specifically, we call an encryption scheme weakly
homomorphic if homomorphically generated encryptions properly decrypt to the correct message
and their lengths depend only on the security parameter and the message length (and not on the
number of input ciphertexts).

1.1 Private-Key vs. Public-Key

When presenting homomorphic encryption, we did not specify whether we consider private-key or
public-key encryption schemes. Indeed, one can define strong/weak homomorphic encryption in
both settings (with only minor differences). The focus of this paper is showing the connection
between public-key and private-key homomorphic encryption.

The easy direction is showing that a public-key homomorphic encryption scheme can be trans-
formed into a private-key homomorphic scheme. This transformation is quite simple and involves
only a minor issue. Intuitively, it seems as though any public-key homomorphic scheme is a private-
key homomorphic scheme. The only problem is that in the public-key setting (in contrast to the
private-key one), the homomorphic evaluation algorithm is also given the encryption-key. A simple
transformation that addresses this issue is to append the encryption-key to each ciphertext. The
resulting private-key scheme clearly retains the homomorphic properties of the public-key scheme
(this holds for both strongly and weakly homomorphic schemes).

The harder direction is showing that a private-key homomorphic encryption scheme implies a
public-key one. This direction will be addressed by our main result, Theorem 3.1, which shows how
to construct a public-key encryption scheme from any private-key scheme that is weakly homomor-
phic w.r.t addition modulo 2. The resulting public-key scheme partially retains the homomorphic
properties of the private-key scheme (see Section 1.2).

We note that it is quite easy to transform a strongly homomorphic private-key scheme into a
strongly homomorphic public-key one. In fact, this transformation was used by Barak [Bar10] in
his exposition of the work of van Dijk et al. [vDGHV10]. For further discussion, see Section 1.3.

1Consider implementing the homomorphic evaluation algorithm as the identity function. That is, given ciphertexts
and a description of an operation, just output both. Then, modify the decryption algorithm to first decrypt all the
ciphertexts and then apply the operation to the decrypted messages. Thus, homomorphic evaluation is delegated to
the decryption algorithm that, using the decryption key, can trivially evaluate the required operation.
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1.2 Homomorphic Properties of the Public-Key Scheme

So far we have described homomorphic evaluation as a one-shot process, however one can con-
sider repeated application of the homomorphic evaluation algorithm. For strongly homomorphic
encryption it is possible to do this because homomorphically generated values are identical (or
statistically close) to real ciphertexts. For weakly homomorphic encryption, the homomorphically
generated values can completely differ from real ciphertexts, hence it is unclear that it is possible to
keep computing on such homomorphically generated data. Gentry et al. [GHV10] called a scheme
that supports i such repeated applications an i-hop homomorphic encryption scheme.

The public-key scheme that we construct is homomorphic in the following sense. If the original
private-key scheme is (i+1)-hop homomorphic w.r.t some set of operations (which must include ad-
dition modulo 2), then the public-key scheme is i-hop homomorphic w.r.t the same set of operations.
That is, we lose one application of the homomorphic operation in the construction.

1.3 Technique

The intuition for how to move from private to public key can be seen in a more straightforward
manner in the case of strongly homomorphic schemes. The following construction was suggested
implicitly in [Bar10].

Let E and D be the respective encryption and decryption algorithm of a private-key encryption
scheme. Suppose that this encryption scheme is strongly homomorphic w.r.t the identity function.
That is, it is possible to “re-randomize”2 ciphertexts. Such a scheme can be used to construct a
public-key bit-encryption scheme3 as follows. The (private) decryption-key is a key k of the private-
key scheme and the (public) encryption-key consists of an encryption of 0 and an encryption of 1
(i.e. Ek(0) and Ek(1)). To encrypt a bit σ just re-randomize the ciphertext corresponding to σ.
To decrypt, apply the private-key decryption algorithm using k (i.e. Dk).

The security of this construction follows from the fact that after re-randomization, all informa-
tion on the original ciphertext, which was re-randomized, is completely lost. Since weakly homo-
morphic encryption does not guarantee this property, this transformation does not work and we
use a more complicated construction, outlined next.

We construct a public-key bit-encryption scheme based on any private-key scheme that is weakly
homomorphic w.r.t addition modulo 2. Our decryption key is also a key k of the private-key scheme
but the public-key is no longer a single encryption of 0 and 1, but rather a sequence of many
encryptions of each. Specifically, the public-key consists of two lists of ciphertexts; the first is a list
of ` encryptions of 0 and the second is a list of ` encryptions of 1. To encrypt a bit σ we choose
a random subset S ⊆ [`] that has parity σ (i.e. |S| ≡ σ mod 2). We use S to select ` ciphertexts
from the public key by selecting the i-th ciphertext from the first list if i /∈ S (and from the second
if i ∈ S). By homomorphically adding the selected ciphertexts modulo 2, we obtain a ciphertext
that correctly decrypts to σ.

Most of this work deals with showing that the construction is indeed semantically-secure. To
prove security we consider, as a mental experiment, setting both lists in the public-key to be
encryptions of 0. Because the mental experiment is computationally indistinguishable from the
actual scheme, proving that the original scheme is secure reduces to showing that when both lists
consist of encryptions of 0, it is essentially impossible to find the parity of the random subset used
in the homomorphic encryption process.

2This means that there exists an algorithm RR such that for any encryption c of a bit b, the output of RR(c) is
distributed identically to Ee(b).

3A bit-encryption scheme is a public-key encryption scheme that only handles single-bit messages. Such schemes
suffice to construct full-fledged public-key encryption schemes (see [Gol04]).
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We prove the latter via an information-theoretic theorem that may be of independent interest:
Let X1, . . . , X` and Y1, . . . , Y` be independent and identically distributed over a finite set Ω and let
S be a random subset of [`]. We consider the list Z, defined as Zi = Xi for i /∈ S and Zi = Yi for
i ∈ S. The theorem states that it is essentially impossible to guess the parity of S based on X, Y
and m bits of information on Z. That is, any such guess will be correct with probability that is
bounded by (roughly) 1

2 + 2`−m. The proof of the information-theoretic theorem makes use of the
Efron-Stein decomposition [ES81], an extension of Fourier analysis for product distributions.

We mention that our construction is secure even if we use a slightly weaker definition of homo-
morphic encryption. Specifically, the length of homomorphically generated encryptions can be a
mildly increasing function of the number of input ciphertexts.

1.4 Application of our Construction to Fully-Homomorphic Encryption

Our generic transformation from private-key to public-key encryption can be used as a general
methodology for constructing (weakly) homomorphic public-key encryption. One application of this
methodology, which actually motivated this work, is to simplify the presentation of the [vDGHV10]
fully-homomorphic encryption scheme.

A fully-homomorphic encryption scheme is an encryption scheme that is homomorphic w.r.t any
(efficiently computable) function. The concept of fully-homomorphic encryption was first proposed
by Rivest et al. [RAD78] in the 70’s, but the first concrete proposal was only made recently in the
breakthrough work of Gentry [Gen09].

Building on the work of Gentry [Gen09], van Dijk et al. [vDGHV10], proposed a simpler
fully-homomorphic public-key scheme. Actually, they propose several variants of the same scheme.
Barak [Bar10] noted that one of these variants is in fact fully-homomorphic in the strong sense, that
is, homomorphically evaluated encryptions are distributed statistically close to actual encryptions.
However, this variant requires a stronger assumption than the other variants that are only weakly
homomorphic.

From a high-level point of view, both the weak and strong variants of the fully homomorphic
scheme are constructed by first proposing a simple private-key homomorphic scheme that is only
“somewhat” homomorphic (that is, homomorphic w.r.t some restricted functions) and then showing
how to modify this scheme into a somewhat homomorphic public-key one. The last step uses the
bootstrapping technique of [Gen09] to transform the somewhat homomorphic scheme into a fully-
homomorphic one.

The aforementioned modification, from private-key to public-key, uses specific properties of the
[vDGHV10] scheme. We suggest to use our transformation as an alternative, where the advan-
tage is that our transformation is generic and does not use specific properties of their scheme.
Our transformation can be applied to both the strong and weak variants of the somewhat ho-
momorphic private-key scheme to obtain a correspondingly strong/weak somewhat homomorphic
public-key scheme. Note that although the somewhat homomorphic public-key scheme produced by
our transformation is slightly different from the one of [vDGHV10], the last step of bootstrapping
(see [Gen09]) and reducing the (multiplicative) depth of the decryption circuit can still be applied
to our construction.

An alternative, and perhaps more intuitive way to present the [vDGHV10] scheme was taken
by Barak [Bar10] for the strongly homomorphic variant of [vDGHV10]. Barak focuses only on
presenting the simpler fully-homomorphic private-key scheme, since the transformation to a public-
key one is easy (as described in Section 1.3). Using our result, it is possible to extend Barak’s
approach to the weakly homomorphiv variant of the [vDGHV10] scheme. Thus, we suggest to
simplify the presentation of the [vDGHV10] scheme by focusing only on showing a (weakly) fully-
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Figure 1: Constructing the weakly homomorphic variant of the [vDGHV10] fully-homomorphic
public-key scheme.

homomorphic private-key scheme and then, using our generic transformation, to obtain a (weak)
fully-homomorphic public-key one. The two approaches to presenting the weakly homomorphic
variant of the [vDGHV10] scheme, that were outlined in this section, are depicted in Figure 1.

2 Preliminaries

For a set S, we denote by x ∈R S a uniformly distributed element x ∈ S. Similarly we denote by
X ⊆R S a uniformly distributed random subset of S.

Non-Standard Notation For every ` ∈ N, random variables X = X1, . . . , X` and Y = Y1, . . . , Y`
and set S ⊆ [`], we denote by XSYS , the random variable Z = Z1, . . . , Z` where Zi = Xi for i /∈ S
and Zi = Yi for i ∈ S.

2.1 Encryption Schemes

We follow notations and definitions of [Gol01, Gol04]. In particular we use their definition of seman-
tically secure encryption schemes, both in the private-key and public-key settings. Throughout this
paper we restrict our attention to bit-encryption schemes, i.e., schemes that encrypt a single bit.
For simplicity, we say public-key (resp. private-key) encryption when we actually mean public-key
(resp. private-key) bit-encryption.

2.2 Homomorphic Encryption

Since we only consider weakly homomorphic encryption, from here on, when we say homomorphic
we always mean in the weak sense as defined next.

Definition 2.1. (G,E,D,H) is a homomorphic private-key encryption scheme with respect to a
set of families of polynomial-sized circuits C if (G,E,D) are a private-key encryption scheme, H
is a probabilistic polynomial-time algorithm and there exists a polynomial m(·) such that for every
circuit family {Ck}k∈N ∈ C, n ∈ N, polynomial `(·), keys (e, d) ← G(1n), and ` = `(n) single bit
messages b1, . . . , b` ∈ {0, 1} the following holds:
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• Correct decryption of homomorphically generated encryptions:

Dd (H (C`, Ee(b1), . . . , Ee(b`))) = C` (b1, . . . , b`) .

• The length of homomorphically generated encryptions is independent of `:

|H (C`, Ee(b1), . . . , Ee(b`))| ≤ m(n).

Homomorphic public-key encryption is defined analogously (with the modification that H gets
the public encryption-key as an additional input).

2.3 i-Hop Homomorphic Encryption

The homomorphic evaluation algorithm in Definition 2.1 is only required to operate on ciphertexts
that were output by the encryption algorithm. The definition does not specify what happens if the
homomorphic evaluation algorithm is applied to its own output. Gentry et al. [GHV10] defined an i-
hop homomorphic encryption scheme as a scheme for which it is possible to apply the homomorphic
evaluation algorithm consecutively i times.

Let G,E,D,H be a homomorphic encryption scheme w.r.t to a set of circuit families C. For a
given encryption key e, we denote by W0(e) the set of all valid ciphertexts of the encryption scheme,
i.e., all possible outputs of the encryption algorithm Ee applied to a single bit message. For j ≥ 1,
we define Wj(e) to be the set of all possible outputs of the homomorphic evaluation algorithm H
when applied to elements in Wj−1(e) and a circuit C ∈ C. We say that elements in Wj(e) are j-th
level ciphertexts.

Definition 2.2. (G,E,D,H) is an i-hop homomorphic private-key encryption scheme with respect
to a set of families of polynomial-sized circuits C if (G,E,D) are a private-key encryption scheme,
H is a probabilistic polynomial-time algorithm and there exists a polynomial m(·) such that for
every circuit family {Ck}k∈N ∈ C, n ∈ N, polynomial `(·), keys (e, d) ← G(1n), 0 ≤ j ≤ i, and
` = `(n), ciphertexts w1, . . . , w` ∈Wj(e) of level j the following holds:

• Correct decryption of homomorphically generated encryptions:

Dd (H (C`, w1, . . . , w`)) = C` (Dd(w1), . . . , Dd(w`)) . (2.1)

• The length of homomorphically generated encryptions is independent of `:

|H (C`, w1, . . . , w`))| ≤ m(n). (2.2)

Homomorphic public-key encryption is defined analogously, with the modification that H re-
ceives the encryption-key as an additional input.

3 Constructing a Public-Key Scheme from a Homomorphic Private-
Key Scheme

In this section we show how to construct a public-key scheme based on any private-key scheme that
is homomorphic w.r.t addition modulo 2.
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Theorem 3.1. Any multiple-message semantically secure private-key encryption scheme that is
homomorphic with respect to addition modulo 2 can be transformed into a semantically secure
public-key encryption scheme. Furthermore, if the private-key scheme is (i+ 1)-hop homomorphic
w.r.t to a set of circuit families, then the constructed public-key scheme is i-hop homomorphic w.r.t
to the same set.

The discussion on the homomorphic properties of the scheme (i.e. the furthermore part) is
presented in Section 5. To prove Theorem 3.1, we assume the existence of a homomorphic private-
key scheme and use it to construct a public-key scheme (Construction 3.2). The main part of the
proof is showing that this public-key scheme is indeed semantically secure.

Construction 3.2. Let (G,E,D,H) be a homomorphic private-key scheme with respect to addition
modulo 2 and let m(·) be the polynomial as in Definition 2.1. We denote by H⊕ the algorithm
H when applied to the circuit family that computes addition modulo 2. The encryption scheme
(G′, E′, D′, H ′) is defined as follows:

Key Generation - G′(1n) : Set ` = 10m(n). Select k ← G(1n), X = (X1, . . . , X`) and Y =
(Y1, . . . , Y`) such that Xi ← Ek(0) and Yi ← Ek(1) (with fresh random coins for each i).
Output X,Y as the public-key and k as the private-key.

Encryption - E′X,Y (σ) : Select a random subset S ⊆R [`] that has size of parity σ (i.e. |S| ≡
σ mod 2) and output H⊕(XSYS) (recall that XSYS is a list of ` ciphertexts that are encryptions
of 1 for coordinates in S and encryptions of 0 elsewhere).

Decryption - D′k(c) : Output Dk(c).

Homomorphic Evalutation - H ′(C, (X,Y ), c0, . . . , c`): Output H(C, c0, . . . , c`).

We start by showing that the decryption algorithm correctly decrypts proper ciphertexts. We
then proceed to the main part of the proof, showing that Construction 3.2 is indeed semantically
secure. In Section 5 we discuss the homomorphic properties of the scheme.

Proposition 3.3. For every n ∈ N, σ ∈ {0, 1} and ((X,Y ) , k)← G′(1n):

D′k
(
E′X,Y (σ)

)
= σ.

Proof. Based on the first property of homomorphic encryption (Definition 2.1),

D′k
(
E′X,Y (σ)

)
= Dk

(
H⊕

(
XSYS

))
=

`
⊕
i=1

Dk(Ci)

where ⊕ denotes addition modulo 2, Ci = Yi for i ∈ S and Ci = Xi otherwise. Since D decrypts
correctly, Dk(Xi) = 0 and Dk(Yi) = 1. Therefore, D′k

(
E′X,Y (σ)

)
= ⊕i∈S 1 = |S| mod 2 = σ.

We proceed to the main part of the proof, showing that Construction 3.2 is semantically secure.

Proposition 3.4. If (G,E,D) is a multiple-message semantically secure private-key scheme then
(G′, E′, D′) is a semantically secure public-key scheme.
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Proof. Assume toward a contradiction that (G′, E′, D′) is not semantically secure. This means
that there exists a probabilistic polynomial-time adversary A′ and a polynomial p(·) such that for
infinitely many n ∈ N:

Pr
(X,Y ),k←G′(1n)

σ∈R{0,1}

[
A′
(
X,Y,E′X,Y (σ)

)
= σ

]
>

1
2

+
1

p(n)
. (3.1)

To derive a contradiction, we consider n from this infinite set and construct a probabilistic polynomial-
time adversaryA for the underlying private-key scheme. A receives 2` ciphertexts (α1, . . . , α`, β1, . . . , β`)
and will be shown to distinguish between the following two cases:

• α1, . . . , α` are encryptions of 0 and β1, . . . , β` are encryptions of 1.

• α1, . . . , α`, β1, . . . , β` are encryptions of 0.

A operates as follows:

1. Set X = (α1, . . . , α`) and Y = (β1, . . . , β`).

2. Select S ⊆R [`].

3. Output 1 if A′(X,Y,H⊕(XSYS)) = |S| mod 2 and 0 otherwise.

Accordingly,

Pr
k←G(1n)
αj ,βj

[A (α1, . . . , α`, β1, . . . , β`) = 1] = Pr
k←G(1n)
X,Y,S

[
A′
(
X,Y,H⊕

(
XSYS

))
= |S| mod 2

]
.

We proceed by analyzing A’s behavior in the two different cases. In the first case, αi = Ek(0) and
βi = Ek(1). Consequently, H⊕(XSYS) is distributed identically to an encryption of a random bit
under E′ and so, by Eq. (3.1), it holds that

Pr
k←G(1n)
X,Y,S

[
A′
(
X,Y,H⊕

(
XSYS

))
= |S| mod 2

]
= Pr

(X,Y ),k←G′(1n)
σ∈R{0,1}

[
A′
(
X,Y,E′X,Y (σ)

)
= σ

]
>

1
2

+
1

p(n)
.

In the second case, αi = βi = Ek(0). We argue that in this case for every n ∈ N and even for an
unbounded adversary A′,

Pr
k←G(1n)
X,Y,S

[
A′
(
X,Y,H⊕

(
XS , YS

))
= |S| mod 2

]
<

1
2

+ 2−0.2`+m(n)+1. (3.2)

Equation (3.2) follows from an information-theoretic theorem (Theorem 3.5) that will be stated
next and proved in Section 4.

Using Theorem 3.5, we conclude that A distinguishes between the two cases with non-negligible
probability, in contradiction to the multiple-message security of (G,E,D),
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Information-Theoretic Theorem. Let Ω be a finite non-empty set and ` ∈ N. Let µ1, . . . , µ`
be distributions over Ω and µ = µ1 × · · · × µ` be a product distribution over Ω`. Let X and Y be
independent random variables identically distributed according to µ over Ω`.

Theorem 3.5. For any `,m ∈ N and any functions h : Ω` → {0, 1}m and g : Ω` × Ω` × {0, 1}m →
{0, 1}, it holds that

Pr
X,Y,S⊆R[`]

[
g
(
X,Y, h(XSYS)

)
= |S| mod 2

]
<

1
2

+ 2−0.2`+m+1.

Equation (3.2) seems to follow immediately from Theorem 3.5 by setting A′ as g, H⊕ as h and
having X and Y distributed as ` independent encryptions of 0 each. However, there is a small
subtlety - Theorem 3.5 addresses g and h that are deterministic functions, in contrast to A′ and
H that are probabilistic algorithms. Additionally, since X and Y are distributed w.r.t to the same
randomly chosen key, they are not product distributions as required by Theorem 3.5.

Both issues are resolved by an averaging argument. If Eq. (3.2) does not hold for some n ∈ N,
then there exist random coins for A′, H and a fixed private key k for which it does not hold. Once
we fix these coins, A′ and H become deterministic functions. Additionally, we set X and Y to
each be distributed as ` encryptions of 0 under the fixed key k, which is in particular a product
distribution. Thus, the hypothesis that Eq. (3.2) does not hold contradicts Theorem 3.5.

4 Proof of Theorem 3.5

Theorem 3.5 considers a game in which a computationally unbounded adversary sees X, Y and m
bits of information on XSYS and needs to decide whether S is of even or odd cardinality. In other
words, the adversary specifies a function h : Ω` → {0, 1}m and based on X,Y, h(XSYS) needs to
find |S| mod 2. Theorem 3.5 states that winning this game with probability noticeably better than
1
2 is impossible as long as m is sufficiently smaller than `. Note that winning the game becomes
easy if m is very large w.r.t `4 (as long as the probability of a collision in each coordinate, i.e.
Pr[Xi = Yi], is sufficiently small). Thus, we are interested in the case m� `.

Organization. The proof of Theorem 3.5 uses the Efron-Stein decomposition, an extension of
Fourier analysis for general product distributions. We begin by presenting this decomposition,
together with the relevant facts. We then turn to the actual proof of Theorem 3.5.

4.1 Efron-Stein Decomposition

Recall that X and Y are independent random variables identically distributed by µ, a product
distribution over Ω`. We consider the inner-product space of functions from Ω` to R, where the
inner product of f and g is 〈f, g〉 def= EX [f(X)g(X)]. We stress that the expectation is over X (which
is distributed according to µ). We use the convention that lowercase x and y refer to elements in
Ω` (in contrast to uppercase X and Y which are random variables over Ω`).

Theorem 4.1 (Efron-Stein Decomposition [ES81]). Any function f : Ω` → R can be decomposed
to f =

∑
S⊆[`] f

S, where fS : Ω` → R satisfy:

1. fS only depends on the coordinates of x that reside in S (i.e. xS).
4If m ≥ ` log(|Ω|) just take h to be the identity function.
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2. For any x ∈ Ω` and S + U it holds that EY [fU (xSYS)] = 0.

Note that if Ω = {±1} it is easy to verify that the Fourier representation of the function is
also its Efron-Stein decomposition (taking fS = f̂(S)χS where χS(x) =

∏
i∈S xi). In our general

setting we denote f̂(S)2 def= 〈fS , fS〉 (indeed, when Ω = {±1} this notation agrees with the standard
interpretation of f̂(S) in Fourier analysis of Boolean functions).

One of the important properties of this decomposition is that it is orthogonal and therefore
Parseval’s Equality holds.

Fact 4.2 (Orthogonality). For any S 6= U , fS and fU are orthogonal.

Proof. Assume without loss of generality that S + U . Since XSYS is identically distributed to X,

〈fS , fU 〉 = E
X

[fS(X)fU (X)] = E
X,Y

[
fS(XSYS)fU (XSYS)

]
.

Based on the fact that fS only depends on coordinates in S, we can replace fS(XSYS) with
fS(XSXS) = fS(X). Thus,

〈fS , fU 〉 = E
X,Y

[
fS(X)fU (XSYS)

]
= E

X

[
fS(X) E

Y

[
fU (XSYS)

]]
.

But by the second property of the decomposition (Theorem 4.1), for every x ∈ Ω`, EY [fU (xSYS)] =
0 and so we have 〈fS , fU 〉 = 0.

Theorem 4.3 (Parseval’s Equality). ∑
S⊆[`]

f̂(S)2 = E
X

[f(X)2].

Proof. ∑
S⊆[`]

f̂(S)2 =
∑
S⊆[`]

〈fS , fS〉 =
∑

S,T⊆[`]

〈fS , fT 〉 = 〈
∑
S⊆[`]

fS ,
∑
T⊆[`]

fT 〉 = 〈f, f〉,

where the second equality follows from orthogonality.

The Efron-Stein decomposition has proved to be extremely useful in giving explicit expressions
for the noise sensitivity of a function or the influence of a subset of its coordinates. We will use
it to express the “stability” of a subset of coordinates, which is in a sense the complement of the
influence for this set. The fact that we use is summarized in Proposition 4.4 (a similar analysis has
been applied previously to give an explicit expression for influence, e.g., in [Bla09]).

Proposition 4.4. If f is Boolean valued (i.e. f : Ω` → {0, 1}), then for every S ⊆ [`] it holds that:

Pr
X,Y

[f(X) = f(XSYS) = 1] =
∑
T⊆S

f̂(T )2.

9



Proof. Using the fact that f is Boolean, the Efron-Stein decomposition, and linearity of expectation
we have:

Pr
X,Y

[
f(X) = f(XSYS) = 1

]
= E

X,Y

[
f(X)f(XSYS)

]
= E

X,Y

∑
T⊆[`]

fT (X)
∑
U⊆[`]

fU (XSYS)


=

∑
U,T⊆[`]

E
X

[
fT (X) E

Y

[
fU (XSYS)

]]
. (4.1)

From the Efron-Stein decomposition we have that if U * S then EY [fU (XSYS)] = 0, whereas if
U ⊆ S then EY [fU (XSYS)] = fU (X). Thus, Eq. (4.1) yields that:

Pr
X,Y

[
f(X) = f(XSYS) = 1

]
=
∑
T⊆[`]

∑
U⊆S

E
X

[fT (X)fU (X)] =
∑
T⊆[`]

∑
U⊆S

〈fT , fU 〉 =
∑
T⊆S

〈fT , fT 〉

where the last equality follows from orthogonality.

4.2 Proof of Theorem 3.5

We would like to show that for a typical γ ∈ {0, 1}m, the number of odd S that map to γ (that is
h(XSYS) = γ) and the number of even such S are roughly the same. This would imply that any
adversary, which sees only X, Y and γ, cannot guess whether γ was produced from an odd or even
S, which is exactly what we are looking to prove. To formalize this, we introduce the following
notation; for γ ∈ {0, 1}m, we define:

Iodd(X,Y, γ) def=
∣∣{T ⊆ [`] : h(XTYT ) = γ and |T | is odd }

∣∣ (4.2)

Ieven(X,Y, γ) def=
∣∣{T ⊆ [`] : h(XTYT ) = γ and |T | is even }

∣∣ (4.3)

Organization. We begin by presenting some basic facts. The proof will be composed of two
lemmas, Lemma 4.7 (which is the main lemma) states that for every γ ∈ {0, 1}m, w.h.p, the
number of odd T that map to γ is fairly close to the number of even T (in absolute terms). Lemma
4.11 states that for a typical γ the total number of T that map to it is very large. Combining these
two lemmas we prove Theorem 3.5.

4.2.1 Basic Facts

We first present two basic facts that follow immediately from the structure of XSYS .

Fact 4.5. For every γ ∈ {0, 1}m, there exists a constant µγ ∈ [0, 1] such that for every S ⊆ [`]:

Pr
X,Y

[
h(XSYS) = γ

]
= µγ .

Proof. Define µγ
def= Pr [h(X) = γ] and note that Pr

[
h(XSYS) = γ

]
= Pr [h(X) = γ] (becauseXSYS

and X are identically distributed).

10



Fact 4.6. For every S, T ⊆ [`] and γ ∈ {0, 1}m,

Pr
X,Y

[
h(XSYS) = h(XTYT ) = γ

]
= Pr

X,Y

[
h(X) = h(XS⊕TYS⊕T ) = γ

]
where S⊕T denotes the symmetric difference of two sets, i.e., S⊕T def

= (S\T ) ∪ (T\S).

Proof. Using the fact that XSYS is identically distributed to X, we can swap YS and XS in the ex-
pression Pr

[
h(XSYS) = h(XTYT )

]
. Hence, XSYS becomes X. For XTYT we use X for coordinates

that are in T\S or in T ∩ S and use Y for coordinates that are in T ∩ S or in T\S. Therefore,
XTYT becomes XS⊕TYS⊕T .

4.2.2 The Main Lemma

Lemma 4.7. For every γ ∈ {0, 1}m, it holds that:

Pr
X,Y

[
|Iodd(X,Y, γ)− Ieven(X,Y, γ)| ≥ 20.6`

]
≤ 2−0.2`.

Throughout the proof of this lemma, in all probabilistic statements, the probability is always
over X and Y . Additionally, since X and Y are clear from the context, we use the shorthand
Iodd(γ) (resp. Ieven(γ)) for Iodd(X,Y, γ) (resp. Ieven(X,Y, γ)).

Foreseeing that we will prove Lemma 4.7 by an application of Chebyshev’s inequality, we proceed
by bounding the expectation and variance of Iodd(γ)− Ieven(γ).

Proposition 4.8. For every γ ∈ {0, 1}m, it holds that:

E[Iodd(γ)− Ieven(γ)] = 0.

Proof. Iodd(γ) can be expressed as a sum of indicator variables: Iodd(γ) =
∑

odd T IT (γ), where
IT (γ) is an indicator for the event h(XTYT ) = γ. Thus,

E [Iodd(γ)] = E

[ ∑
odd T

IT (γ)

]
=
∑

odd T

E [IT (γ)] =
∑

odd T

Pr
[
h(XTYT ) = γ

]
= 2`−1µγ

where the last equality follows from Fact 4.5. Similarly, it is easy to see that E [Ieven(γ)] = 2`−1µγ
and thus E [Iodd(γ)− Ieven(γ)] = 0.

Proposition 4.9. For every γ ∈ {0, 1}m, it holds that

Var[Iodd(γ)− Ieven(γ)] ≤ 2`.

Proof. Recall that Iodd and Ieven can be expressed as the sum of the indicator variables IT (as
defined in the proof of Proposition 4.8). Thus, using Proposition 4.8 and some manipulations we
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have:

Var [Iodd(γ)− Ieven(γ)] = E
[
(Iodd(γ)− Ieven(γ))2

]
= E

[
Iodd(γ)2

]
+ E

[
Ieven(γ)2

]
− 2 E [Iodd(γ)Ieven(γ)]

= E

(∑
odd T

IT (γ)

)2
+ E

( ∑
even T

IT (γ)

)2


− 2 E

[( ∑
odd T

IT (γ)

)( ∑
even T

IT (γ)

)]
=

∑
T,U⊆[`] s.t.
|T |=|U | mod 2

E [IT (γ)IU (γ)]−
∑

T,U⊆[`] s.t.
|T |6=|U | mod 2

E [IT (γ)IU (γ)]

=
∑
T,U

(−1)|T ⊕U |E [IT (γ)IU (γ)]

=
∑
T,U

(−1)|T ⊕U | Pr
[
h(XTYT ) = h(XUYU ) = γ

]
.

Now using Fact 4.6 we have:

Var[Iodd(γ)− Ieven(γ)] =
∑
T,U

(−1)|T ⊕U | Pr
[
h(X) = h(XT ⊕UYT ⊕U ) = γ

]
=
∑
T,U

(−1)|T | Pr
[
h(X) = h(XTYT ) = γ

]
= 2`

∑̀
i=0

(−1)i
∑

T : |T |=i

Pr
[
h(X) = h(XTYT ) = γ

]
.

Let f : Ω` → {0, 1} be the indicator function for h(X) = γ. Clearly, for every T , it holds that
Pr
[
h(X) = h(XTYT ) = γ

]
= Pr

[
f(X) = f(XTYT ) = 1

]
and so by using Proposition 4.4 we derive:

Var[Iodd(γ)− Ieven(γ)] = 2`
∑̀
i=0

(−1)i
∑

T : |T |=i

Pr
[
f(X) = f(XTYT ) = 1

]

= 2`
∑̀
i=0

(−1)i
∑

T : |T |=i

∑
U⊆T

f̂(U)2


= 2`

∑̀
i=0

(−1)i
∑

R : |R|=`−i

∑
U⊆R

f̂(U)2

 .

Note that each f̂(U)2 in the sum appears
(
`−|U |
i

)
times with respect to each i (and this holds even
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when i > `− |U |). Thus:

Var[Iodd(γ)− Ieven(γ)] = 2`
∑̀
i=0

(−1)i
∑
U⊆[`]

(
`− |U |

i

)
f̂(U)2

= 2`
∑
U⊆[`]

f̂(U)2
∑̀
i=0

(−1)i
(
`− |U |

i

)
= 2`

∑
U⊆[`]

f̂(U)2(1− 1)`−|U |

= 2`f̂([`])2.

Finally, using Parseval’s Equality (Theorem 4.3) and the fact that range of f is {0, 1}:

Var[Iodd(γ)− Ieven(γ)] = 2`f̂([`])2 ≤ 2`
∑
S⊆[`]

f̂(S)2 = 2` E
X

[f(X)2] ≤ 2`.

Deriving Lemma 4.7. Applying Chebyshev’s inequality, while using Propositions 4.8 and 4.9, we
get that

Pr
[
|Iodd(γ)− Ieven(γ)| ≥ 20.6`

]
≤ Var[Iodd(γ)− Ieven(γ)]

21.2`
≤ 2`

21.2`
= 2−0.2`.

4.2.3 Completing the Proof

Lemma 4.7 addresses the case where γ is fixed. However, we need to handle γ that are chosen
according to a specific distribution (γ ∼ h(XSYS)). Since we consider such γ, it is convenient to
define:

Ĩeven(X,Y, S) = Ieven

(
X,Y, h(XSYS)

)
(4.4)

Ĩodd(X,Y, S) = Iodd

(
X,Y, h(XSYS)

)
(4.5)

∆X,Y (S) =
∣∣∣Ĩeven(X,Y, S)− Ĩodd(X,Y, S)

∣∣∣ (4.6)

Corollary 4.10.

Pr
X,Y,S⊆R[`]

[
∆X,Y (S) ≥ 20.6`

]
≤ 2−0.2`+m.

Proof. If ∆X,Y (S) ≥ 20.6` then for γ = h(XSYS) it holds that |Iodd(X,Y, γ)− Ieven(X,Y, γ)| ≥ 20.6`.
Thus:

Pr
X,Y,S

[
∆X,Y (S) ≥ 20.6`

]
≤ Pr

X,Y

[
∃ γ ∈ {0, 1}m s.t. |Iodd(X,Y, γ)− Ieven(X,Y, γ)| ≥ 20.6`

]
.

The corollary follows by applying a union bound and Lemma 4.7.

Consider all T ⊆ [`] that map (via h) to the same value as S. Corollary 4.10 bounds the
difference between the number of even and odd such T . However, since it does so only in absolute
terms, it is meaningless if the number of such T is small. Lemma 4.11 shows that for a typical γ,
w.h.p, this is not the case.
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Notation. Recall our convention that lowercase x and y refer to elements in Ω`. For fixed x and
y, we define Ix,y(γ) to be the total number of T ⊆ [`] that h maps to γ, i.e.,

Ix,y(γ) def= Iodd(x, y, γ) + Ieven(x, y, γ) =
∣∣{T ⊆ [`] : h(xT yT ) = γ }

∣∣ . (4.7)

Since we are sometimes interested in typical γ’s, we also define

Ĩx,y(S) def= Ix,y
(
h(xS , yS)

)
. (4.8)

Lemma 4.11. For every x, y ∈ Ω`,

Pr
S

[
Ĩx,y(S) ≤ 20.8`

]
≤ 2−0.2`+m.

Proof.

Pr
S

[
Ĩx,y(S) ≤ 20.8`

]
=

∑
γ∈{0,1}m

Pr
S

[
Ĩx,y(S) ≤ 20.8`

∧
h(xSyS) = γ

]
=

∑
γ∈{0,1}m

Pr
S

[
Ix,y(γ) ≤ 20.8`

∧
h(xSyS) = γ

]
=

∑
γ: Ix,y(γ) ≤ 20.8`

Pr
S

[
h(xSyS) = γ

]
≤ 2m · 20.8`

2`
.

Lemma 4.11 together with Corollary 4.10 imply, that w.h.p, Ĩodd(X,Y, S) and Ĩeven(X,Y, S)
are very close (since their sum is big and their difference is small). Intuitively, this implies that an
adversary that tries to find |S| mod 2 from X,Y and h(XSYS) can not do much better than a fair
coin toss. Proposition 4.12 formalizes this intuitive connection.

Proposition 4.12. For every x, y ∈ Ω`:

Pr
S

[
g
(
x, y, h(xSyS)

)
= |S| mod 2

]
≤ 1

2
+

1
2
·E

[
∆x,y(S)
Ĩx,y(S)

]

where ∆x,y(S) and Ĩx,y(S) are as defined in Eq. (4.6) and Eq. (4.8) respectively.

Proof. Since x and y are fixed, and we quantify over all g and h, we can just consider functions
that depend on x and y. Thus, we denote gx,y(γ) def= g(x, y, γ) and hx,y(S) def= h(xSyS).

Choosing a random subset S ⊆ [`] is equivalent to first choosing γ = hx,y(S) and then choosing
uniformly over all T ⊆ [`] that h maps to γ. Formally, let S be a uniformly distributed subset of
[`] and let TS be distributed uniformly over {T ⊆ [`] : hx,y(T ) = hx,y(S) }. Since S and TS are
identically distributed (by the uniform distribution) it holds that

Pr
S

[gx,y (hx,y(S)) = |S| mod 2] = Pr
S,TS

[gx,y (hx,y(S)) = |TS | mod 2]

= E
S

[
Pr
TS

[gx,y (hx,y(S)) = |TS | mod 2]
]
.
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For fixed S, by definition, PrTS
[gx,y(hx,y(S)) = |TS | mod 2] is just

|{T : (|T | mod 2) = gx,y(hx,y(S)) and hx,y(T ) = hx,y(S) }|
|{T : hx,y(T ) = hx,y(S) }|

.

The numerator of this expression equals the number of T ’s that map to the same value as S whose
size is of some fixed parity (note that gx,y(hx,y(S)) is fixed) and thus is at most max

(
Ĩodd(x, y, S), Ĩeven(x, y, S)

)
.

Likewise, the denominator is exactly Ĩx,y(S) and so we have:

Pr
S

[gx,y (hx,y(S)) = |S| mod 2] ≤ E
S

max
(
Ĩodd(x, y, S), Ĩeven(x, y, S)

)
Ĩx,y(S)


=

1
2

+
1
2
·E
S

[
∆x,y(S)
Ĩx,y(S)

]
.

Deriving Theorem 3.5. Corollary 4.10 and Lemma 4.11 imply that:

Pr
X,Y,S⊆R[`]

[
∆X,Y (S)
ĨX,Y (S)

< 2−0.2`

]
> 1− 2 · 2−0.2`+m.

Therefore,

E
X,Y,S⊆R[`]

[
∆X,Y (S)
ĨX,Y (S)

]
<
(

1− 2−0.2`+m+1
)
· 2−0.2` + 20.2`+m+1 · 1 < 2−0.2`+m+2.

And so, by Proposition 4.12,

Pr
X,Y,S⊆R[`]

[
g
(
X,Y, h(XSYS)

)
= |S| mod 2

]
<

1
2

+ 2−0.2`+m+1.

5 Homomorphic Properties of the Public-Key Scheme

In this section, we discuss the homomorphic properties of the public-key scheme presented in
Construction 3.2. Specifically, we shall show that if the private-key scheme supports i+ 1 repeated
homomorphic operations then the public-key scheme supports i such operations. Intuitively, this
follows by the fact that the public-key encryption algorithm applies a single homomorphic operation
(see Fact 5.2).

Proposition 5.1. Suppose G,E,D,H are an (i + 1)-hop homomorphic private-key scheme w.r.t
to a set of circuit families C that includes addition modulo 2. Then G′, E′, D′, H ′ as defined in
Construction 3.2 are an i-hop homomorphic public-key scheme w.r.t the set C.

Theorem 3.1 shows that (G′, E′, D′, H ′) is indeed a public-key encryption scheme and so, we
only need to show that the scheme supports i repeated evaluations of circuits from C.

Let (X,Y ), k be a pair of encryption/decryption keys of the public scheme (w.r.t to the security
parameter n). We denote the j-th level ciphertexts of the private-key scheme by Wj(k) and the
j-th level ciphertexts of the public-key scheme by W ′j(X,Y ).
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Fact 5.2. For every j ∈ N, W ′j(X,Y ) ⊆Wj+1(k).

Proof. By induction on j.

Let {Ck}k ∈ C, 0 ≤ j ≤ i, ` = `(n) and w1, . . . , w` be j-th level ciphertexts of the public-key
scheme (i.e., in W ′j(X,Y )). We proceed by showing that the first property of Definition 2.2 (Eq. 2.1)
holds. By Fact 5.2, it holds that w1, . . . , w` ∈Wj+1(k) and thus,

H ′(C`, (X,Y ), w1, . . . , w`) = H(C`, w1, . . . , w`)
= C`(Dd(w1), . . . , Dd(w`)) = C`(D′d(w1), . . . , D′d(w`)).

where the first and third equalities follow from the definition of H ′ and D′ respectively and the
second equality follows from the first requirement of Definition 2.2, noting that w1, . . . , w` are
ciphertexts of level j + 1 ≤ i+ 1 of the private-key scheme.

A similar argument shows that the second property of Definition 2.2 (Eq. 2.2) holds. Indeed,
since w1, . . . , w` ∈W ′j(X,Y ) ⊆Wj+1(k) it holds that,

|H ′(C`, (X,Y ), w1, . . . , w`)| = |H(C`, w1, . . . , w`)| ≤ m(n)

for every 0 ≤ j ≤ i.
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