
Time-Space Efficient Simulations of Quantum Computations

Dieter van Melkebeek∗ Thomas Watson†

September 19, 2010

Abstract

We give two time- and space-efficient simulations of quantum computations with intermediate
measurements, one by classical randomized computations with unbounded error and the other
by quantum computations that use an arbitrary fixed universal set of gates. Specifically, our
simulations show that every language solvable by a bounded-error quantum algorithm running in
time t and space s is also solvable by an unbounded-error randomized algorithm running in time
O(t · log t) and space O(s + log t), as well as by a bounded-error quantum algorithm restricted
to use an arbitrary universal set and running in time O(t · polylog t) and space O(s + log t),
provided the universal set is closed under adjoint. We also develop a quantum model that is
particularly suitable for the study of general computations with simultaneous time and space
bounds.

As an application of our randomized simulation, we obtain the first nontrivial lower bound
for general quantum algorithms solving problems related to satisfiability. Our bound applies
to MajSAT and MajMajSAT, which are the problems of determining the truth value of a
given Boolean formula whose variables are fully quantified by one or two majority quantifiers,
respectively. We prove that for every real d and every positive real δ there exists a real c > 1
such that either

• MajMajSAT does not have a bounded-error quantum algorithm running in time O(nc), or

• MajSAT does not have a bounded-error quantum algorithm running in time O(nd) and
space O(n1−δ).

In particular, MajMajSAT does not have a bounded-error quantum algorithm running in time
O(n1+o(1)) and space O(n1−δ) for any δ > 0. Our lower bounds hold for any reasonable uniform
model of quantum computation, in particular for the model we develop.

1 Introduction

Motivated by an application to time-space lower bounds, we establish two efficient simulations of
quantum computations with simultaneous time and space bounds. Our first result shows how to
simulate quantum computations with intermediate measurements by classical randomized compu-
tations with unbounded error in a way that is both time- and space-efficient. For bounded-error

∗Department of Computer Sciences, University of Wisconsin - Madison. Partially supported by NSF awards
CCF-0523680 and CCF-0728809, and by the Humboldt Foundation.

†Computer Science Division, University of California, Berkeley. Part of the research was performed while at
the University of Wisconsin - Madison. Partially supported by a Computer Science Department Summer Research
Fellowship and a Barry M. Goldwater Scholarship while at the University of Wisconsin - Madison; supported by a
National Science Foundation Graduate Research Fellowship while at the University of California, Berkeley.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 147 (2010)

quantum computations our simulation only incurs a logarithmic factor overhead in time and a con-
stant factor overhead in space. Modulo some minor technicalities, this simulation subsumes and
improves all previously known simulations of bounded-error quantum computations by unbounded-
error randomized computations.

Theorem 1 (Randomized Simulation). Every language solvable by a bounded-error quantum
algorithm running in time t ≥ log n and space s ≥ log n with algebraic transition amplitudes is
also solvable by an unbounded-error randomized algorithm running in time O(t · log t) and space
O(s+log t), provided t and s are constructible by a deterministic algorithm with the latter time and
space bounds.

In fact, Theorem 1 holds more generally for transition amplitudes that satisfy a certain mild
approximability condition (see Theorem 4 and Theorem 5 in Section 3.1, and Definition 1 and
Definition 2 in Section 2.3.2).

Our second simulation deals with the quantum compiling problem: given a quantum computer
implementation that has a fixed universal library of unitary gates, and given a quantum algorithm
with an arbitrary library specified by the algorithm designer, compile the algorithm into a form
that can run on the available computer. We show how to do this in a way that is both time- and
space-efficient as long as the universal set is closed under adjoint. For bounded-error quantum
computations our simulation only incurs a polylogarithmic factor overhead in time and a constant
factor overhead in space. This is the first rigorous result on quantum compiling in a model of
computation with finite-precision arithmetic, and it strengthens the well-known Solovay-Kitaev
Theorem [22] by optimizing the space bound.

Theorem 2 (Quantum Simulation). For every universal set S of unitary gates with algebraic
entries that is closed under adjoint, every language solvable by a bounded-error quantum algorithm
running in time t and space s with algebraic transition amplitudes is also solvable by a bounded-
error quantum algorithm running in time O(t · polylog t) and space O(s + log t) whose library of
gates is S, provided t is constructible by a deterministic algorithm with the latter time and space
bounds.

Like Theorem 1, Theorem 2 holds more generally under a mild approximability condition on the
transition amplitudes and the entries of the gates in S (see Theorem 6 in Section 4.1 and Definition
1 in Section 2.3.2).

For such fine-grained simulations to be meaningful, we need a model of quantum computation
that allows us to accurately measure time and space complexity simultaneously. Another contri-
bution of this paper is the development of such a model. The existing models give rise to various
issues. For example, intermediate measurements are needed for time-space efficient simulations of
randomized computations by quantum computations. Several of the known models only allow mea-
surements at the end of the computation but not during the computation. As another example, the
known time-space lower bounds for classical algorithms (see [25] for a survey) hold for models with
random access to the input and memory. This makes the lower bounds more meaningful as they
do not exploit artifacts due to sequential access. Extending the standard quantum Turing machine
model [7] to accommodate random access leads to complications that make the model inconvenient
to work with. In Section 2 we discuss these and other issues, survey the known models from the
literature, and present a model that addresses all issues and is capable of efficiently simulating all
other uniform models that may be physically realizable in the foreseeable future.

2

We point out that our arguments for Theorem 1 and Theorem 2 are very robust with respect
to the details of the model. However, our results are more meaningful for models that accurately
reflect time and space, which our model does.

The starting point for the construction in Theorem 1 is a simulation due to Adleman et al.
[1] (as streamlined by Fortnow and Rogers [16]), which is the only previously known time-efficient
simulation. That simulation does not deal with intermediate measurements in a space-efficient
way, and it incurs a polylogarithmic factor overhead in running time. We show how to handle
intermediate measurements with only a constant factor overhead in space, moreover using only a
logarithmic factor overhead in time. Reducing the space involves modifying the techniques of [16]
to ensure that each bit of the sequence of coin flips is only referenced once (and thus no space needs
to be used to remember it). We reduce the time by directly handling nonunitary approximations to
the library gates, rather than appealing to unitary approximations (which incur a polylogarithmic
factor time overhead). Also, our construction handles computations in which the sequence of local
quantum operations can depend on previous measurement outcomes; such computations are more
powerful than uniform quantum circuits. This result is developed in Section 3, where we also give
a detailed comparison with earlier simulations.

The main component in the proof of Theorem 2 is a strengthening of the classic Solovay-Kitaev
Theorem [22]. The latter theorem shows how to approximate any unitary quantum gate within ǫ
using a sequence of at most polylog(1/ǫ) gates from an arbitrary universal set (provided the set
is closed under adjoint). To prove Theorem 2, we need a deterministic algorithm for computing
such a sequence in time polylog(1/ǫ) and space O(log(1/ǫ)), in a standard finite-precision model of
computation in which every bit counts toward the complexity. If we allow space polylog(1/ǫ) then
such an algorithm can be gleaned from the proof of the Solovay-Kitaev Theorem by analyzing the
precision needed for the numerical calculations. More ideas are needed to bring the space complexity
down to the optimal O(log(1/ǫ)) while maintaining a polylog(1/ǫ) running time. There are two
main aspects. First, we modify the algorithm’s numerical core to combat the accumulation of error
that is inherent in the conditioning. We make use of a known result from matrix theory. We also
use an idea due to Nagy [26] which allows us to bypass the need for certain numerical calculations
that would require too much precision when dealing with multi-qubit gates. Second, we modify
the algorithm’s overall architecture to save space. The simulation in Theorem 2 is then mostly
a matter of applying our space-efficient algorithm to each unitary gate in the original quantum
computation.1 In Section 4 we explain the ideas behind our improvement of the Solovay-Kitaev
Theorem, give the formal proof, and derive Theorem 2.

As an application of Theorem 1, we obtain the first nontrivial time-space lower bounds for
quantum algorithms solving problems related to satisfiability, the seminal NP-complete problem.
We show how to transfer the time-space lower bounds of Allender et al. [2] from classical unbounded-
error randomized algorithms to bounded-error quantum algorithms. The lower bounds apply to
analogues of satisfiability in the first two levels of the counting hierarchy, namely MajSAT and
MajMajSAT (see [4] for an introduction to the counting hierarchy). MajSAT, short for majority-
satisfiability, denotes the problem of deciding whether the majority of the assignments to a given
Boolean formula satisfy the formula. Similarly, an instance of MajMajSAT asks whether a given
Boolean formula depending on two sets of variables y and z has the property that for at least half
of the assignments to y, at least half of the assignments to z satisfy the formula.

1In particular, the space overhead in the simulation is only in classical bits, not qubits, since the simulation
essentially just overlays some deterministic computation on the original quantum computation.

3

Theorem 3. For every real d and every positive real δ there exists a real c > 1 such that either

• MajMajSAT does not have a bounded-error quantum algorithm running in time O(nc) with
algebraic transition amplitudes, or

• MajSAT does not have a bounded-error quantum algorithm running in time O(nd) and space
O(n1−δ) with algebraic transition amplitudes.

In particular, Theorem 3 implies the following time-space lower bound for MajMajSAT.

Corollary 1. MajMajSAT does not have a bounded-error quantum algorithm running in time
O(n1+o(1)) and space O(n1−δ) with algebraic transition amplitudes, for any δ > 0.

The quantitative strength of our lower bounds for MajSAT and MajMajSAT derives from [2];
thanks to the efficiency of Theorem 1, the translation does not induce any weakening. In contrast,
none of the previously known simulations of bounded-error quantum computations by unbounded-
error randomized computations are strong enough to yield nontrivial quantum lower bounds for
problems related to satisfiability. In Section 5 we provide some more background on time-space
lower bounds, derive Theorem 3, and present some directions for further research.

2 Models of Quantum Computation

In this section we develop the model that we use for the exposition of our arguments. Although
we consider the development of such a model as a significant contribution of our paper, the crux
of our main results can be understood at an abstract level. As such, a reader who would like to
quickly get to the heart of our paper can skim Section 2.3 and then continue with Section 3 or with
Section 4.

In Section 2.1 we discuss the issues that arise in choosing a model of quantum computation
that accurately reflects time and space complexity. Section 2.2 describes how previously studied
models fit into our taxonomy, and it can be skipped without loss of continuity. We motivate and
precisely define our chosen model in Section 2.3.

2.1 Issues

Our model should capture the notion of a quantum algorithm as viewed by the computer science
and physics communities and allow us to accurately measure the resources of time and space. For
example, the model should allow us to express important quantum algorithms such as Shor’s [30]
and Grover’s [18] in a way that is natural and faithfully represents their complexities. This forms
the overarching issue in choosing a model. Below we discuss eight specific aspects of quantum
computation models and describe how the corresponding issues are handled in the classical setting.

Sublinear space bounds. Many algorithms have the property that the amount of work space needed
is less than the size of the input. Models such as one-tape Turing machines do not allow us to
accurately measure the space usage of such algorithms because they charge for the space required
to store the input. In the deterministic and randomized settings, sublinear space bounds are
accommodated by considering Turing machines with a read-only input tape that does not count

4

toward the space bound and read-write work tapes that do. In the quantum setting, we need a
model with an analogous capability.

Random access to the input and memory. In order to accurately reflect the complexity of compu-
tational problems, our model should include a mechanism for random access, i.e., the ability to
access any part of the input or memory in a negligible amount of time (say, linear in the length
of the address). For example, there is a trivial algorithm for the language of palindromes running
in quasilinear time and logarithmic space on standard models with random access, but the time-
space product of any traditional sequential-access Turing machine deciding palindromes is at least
quadratic. The latter result does not reflect the complexity of deciding palindromes, but rather
exploits the fact that sequential-access machines may have to waste a lot of time moving their tape
heads back and forth. Classical Turing machines can be augmented with a mechanism to support
random access; our quantum model should also have such a mechanism.

Intermediate measurements. Unlike the previous two issues, intermediate measurements are specific
to the quantum setting. In time-bounded quantum computations, it is customary to assume that
all measurements occur at the end. This is because intermediate measurements can be postponed
by introducing ancilla qubits to store what would be the result of the measurement, thus preventing
computation paths with different measurement outcomes from interfering with each other. However,
this has a high cost in space — a computation running in time t may make up to t measurements,
so the space overhead could be as large as t, which could be exponential in the original space
bound. Hence, to handle small space bounds our model should allow intermediate measurements.
This is crucial for our model to meet the expectation of being at least as strong as randomized
algorithms with comparable efficiency parameters; the standard way to “flip a coin” in the quantum
setting is to apply a Hadamard gate to a qubit in a basis state and then measure it. Also, many
quantum algorithms, such as Shor’s factoring algorithm, are naturally described using intermediate
measurements.

We also need to decide which measurements to allow. Projective measurements in the com-
putational basis are the most natural choice. Should we allow projective measurements in other
bases? How about fully general measurements (see Section 2.2.3 in [27]), where the measurement
operators need not be projections? General measurements can be performed by introducing ancilla
qubits (at a cost in space), performing a change of basis (at a cost in time), and doing a projec-
tive measurement in the computational basis, one qubit at a time. It is reasonable to charge the
complexity of these operations to the algorithm designer, so we are satisfied with allowing only
single-qubit measurements in the computational basis.

Obliviousness to the computation history. Computations proceed by applying a sequence of local
operations to data. We call a computation nonoblivious if at each step, which local operation to use
and which operands to apply it to may depend on the computation history. A generic deterministic
Turing machine computation is nonoblivious. We can view each state as defining an operation on a
fixed number of tape cells, where the operands are given by the tape head locations. In each step,
the outcome of the applied operation affects the next state and tape head locations, so both the
operation and the operands can depend on the computation history. In contrast, a classical circuit
computation is oblivious because neither the operation (gate) nor the operands (wires connected
to the gate inputs) depend on the computation history (values carried on the wires).

In the randomized and quantum settings, the notion of a computation history becomes more
complicated because there can be many computation paths. In the randomized setting, applying

5

a randomized operation to a configuration may split it into a distribution over configurations, and
the randomized Turing machine model allows the next state and tape head locations to depend
on which computation path was taken. In the quantum setting, applying a quantum operation to
a basis state may split it into a superposition over several basis states, and general nonoblivious
behavior would allow the next operation and operands to depend on which computation path was
taken. However, it is unclear whether such behavior is physically realizable, as currently envisioned
technologies all select quantum operations classically. An intermediate notion of nonobliviousness,
where the operations and operands may depend on previous measurement outcomes but not on the
quantum computation path, does seem physically realistic.

Classical control. There is a wide spectrum of degrees of interaction between a quantum compu-
tation and its classical control. On the one hand, one can imagine a quantum computation that
is entirely “self-sufficient”, other than the interaction needed to provide the input and observe
the output. On the other hand, one can imagine a quantum computation that is guided classi-
cally every step of the way. Self-sufficiency is inherent to computations that are nonoblivious to the
quantum computation path, whereas measurements are inherently classically controlled operations.
Incorporating intermediate measurements into computations that are nonoblivious to the quantum
computation path would require some sort of global coordination among the quantum computation
paths to determine when a measurement should take place.

Syntax. Our model should be syntactic, meaning that identifying valid programs in the model
is decidable. If we are interested in bounded-error computations, then we cannot hope to decid-
ably distinguish programs satisfying the bounded-error promise from those that do not. However,
we should be able to distinguish programs that evolve according to the postulates of quantum
mechanics from those that do not. Allowing nonobliviousness to the quantum computation path
complicates this syntax check. If different components of the superposition can undergo different
unitary operations then the overall operation is not automatically unitary, due to interference.
Extra conditions on the transition function are needed to guarantee unitarity.

Complexity of the transition amplitudes. Care should be taken in specifying the allowable transition
amplitudes. In the randomized setting, it is possible to solve undecidable languages by encoding the
characteristic sequences of these languages in the transition probabilities. This problem is usually
handled by using a certain universal set of elementary randomized operations, e.g., an unbiased coin
flip. In the quantum setting, the same problem arises with unrestricted amplitudes. Again, one can
solve the problem by restricting the elementary quantum operations to a universal set. However,
unlike in the randomized setting, there is no single standard universal set like the unbiased coin flip
with which all quantum algorithms are easy to describe. Algorithm designers should be allowed to
use arbitrary local operations provided they do not smuggle hard-to-compute information into the
amplitudes.

Absolute halting. In order to measure time complexity, we should use a model that naturally allows
any algorithm to halt absolutely within some time bound t. In the randomized setting, one can
design algorithms whose running times are random variables and may actually run forever. We can
handle such algorithms by clocking them, so that they are forced to halt within some fixed number
of time steps. Our quantum model should provide a similar mechanism.

6

2.2 Earlier Models

Now that we have spelled out the relevant issues and criteria, we consider several previously studied
models as candidates.

2.2.1 Models with Quantum Control

Bernstein and Vazirani [7] laid the foundations for studying quantum complexity theory using
quantum Turing machines. Their model uses a single tape and therefore cannot handle sublinear
space bounds. Like classical one-tape Turing machines, their model is sequential-access. It does
not allow intermediate measurements. On the other hand, their model is fully nonoblivious: the
transition function produces a superposition over basis configurations, and the state and tape head
location may be different for different components of the superposition. Their model represents the
self-sufficient extreme of the classical control spectrum. In their paper, Bernstein and Vazirani prove
that their model is syntactic by giving a few orthogonality constraints on the entries of the transition
function table that are necessary and sufficient for the overall evolution to be unitary. These
conditions are somewhat unnatural, and can be traced back to the possibility of nonobliviousness
to the quantum computation path. Bernstein and Vazirani restrict the transition amplitudes by
requiring that the first k bits of each amplitude are computable deterministically in time poly(k).
Their model is nontrivial to clock; they require that the transition function be designed in such
a way that the machine always halts, meaning that it reaches a superposition in which all non-
halting basis configurations have zero amplitude. Bernstein and Vazirani detail how to design such
mechanisms.

In [33] Watrous considers a model similar to Bernstein and Vazirani’s, but with one read-
write work tape and a read-only input tape not counting toward the space bound. The model
naturally allows for sublinear space bounds, but it is still sequential-access. It allows intermediate
measurements but only for the halting mechanism: a special register is measured after each time
step, with the outcome indicating “halt and output 1”, “halt and output 0”, or “continue”. The
model is nonoblivious like the Bernstein-Vazirani model. It has more classical interaction due to
the halting mechanism, but this is arguably not “classical control”. The syntax conditions on the
transition function are similar to those for the Bernstein-Vazirani model. The results in [33] require
the transition amplitudes to be rational, which is somewhat unappealing since one may often wish
to use Hadamard gates, which have irrational amplitudes. Similar to the Bernstein-Vazirani model,
the model is nontrivial to clock. In fact, the results in [33] rely on counting an infinite computation
as a rejection.

The main issue with the above models for our purposes is their sequential-access nature. It is
possible to handle this problem by imposing a random-access mechanism. However, the conditions
on the entries of the transition function table characterizing unitary evolution become more com-
plicated and unnatural, making the model inconvenient to work with. Again, the culprit is the
nonobliviousness to the quantum computation path. Since this behavior does not appear to be
physically realizable in the foreseeable future anyway, the complications arising from it are in some
sense unjustified.

2.2.2 Models with Classical Control

In [32] Watrous considers a different model of space-bounded quantum computation. This model
is essentially a classical Turing machine with an additional quantum work tape and a fixed-size

7

quantum register. Sublinear space bounds are handled by charging for the space of the classical work
tape and the quantum work tape but not the input tape. All three tape heads move sequentially.
This model handles intermediate measurements. It is oblivious to the quantum computation path;
the state and tape head locations cannot be in superposition with the contents of the quantum work
tape. However, the computation is nonoblivious to the classical computation history, including the
measurement outcomes. The finite control is classical; in each step it selects a quantum operation
and applies it to the combination of the qubit under the quantum work tape head together with
the fixed-size register. The register is needed because there is only one head on the quantum
work tape, but a quantum operation needs to act on multiple qubits to create entanglement. The
allowed operations come from the so-called quantum operations formalism (see Chapter 8 of [27]),
which encompasses unitary operations and general measurements, as well as interaction with an
external environment. Each quantum operation produces an output from a finite alphabet — the
measurement outcome in the case of a measurement. This outcome influences the next (classical)
transition. This model is syntactic just like classical Turing machines, with the additional step of
testing that each quantum operation satisfies the definition of a valid quantum operation. For his
constructions, Watrous needs the transition amplitudes to be algebraic. This model is trivial to
clock, since all the control is done classically and thus the machine can halt in a fixed number of
steps, just as in the classical setting.

Perdrix and Jorrand [28] study a model they dub a “classically-controlled quantum Turing ma-
chine”. Their model is like a classical multitape Turing machine, but where the cells are quantum;
in each step, classical machinery dictates the quantum operation that is applied to the cells under
the tape heads. The model handles neither sublinear-space algorithms nor random access to mem-
ory. The authors allow intermediate measurements, and they consider two variations: one where
the local operations come from the quantum operations formalism, and one where only projective
measurements are allowed. The model is oblivious to the quantum computation path but nonobliv-
ious to the intermediate measurement outcomes. Like Watrous’s model from [32], the control is
classical, so syntax and absolute halting are not a problem. The issue of the complexity of the
transition amplitudes is not addressed in [28].

These two models are convenient to work with since the essence of the quantum aspects of a
computation are isolated into local operations that are chosen classically and applied to a simple
quantum register. This reflects the currently envisioned realizations of quantum computers. Wa-
trous’s model from [32] is the most suitable as a starting point for the exposition of our results,
but we need to make some modifications to it in order to address the following issues.

We want our model to have random access to emphasize the fact that our time-space lower
bound does not exploit any model artifacts due to sequential access. We can make the model from
[32] random-access by allowing each of the tape heads to jump in unit time to a location whose
address we have classically computed, just as can be done for deterministic and randomized Turing
machines.

The quantum operations used in the model from [32] are more general than we need to consider.
The quantum operations formalism models the evolution of open systems, which is of information-
theoretic rather than computational concern. We choose to restrict the set of allowed operations
to unitary operations and projective measurements in the computational basis. This is without
loss of generality since an operation from the quantum operations formalism can be simulated by
introducing an additional “environment” system with a constant number of qubits, performing a
unitary operation, and then measuring the environment qubits in the computational basis. Using

8

nonobliviousness to measurement outcomes, we can then reset the environment qubits for use in
simulating the next quantum operation.

Algorithms like Grover’s require quantum access to the input, i.e., an operation that allows
different basis states in a superposition to access different bits of the input simultaneously. On
inputs of length n, this is done with a query gate that effects the transformation |i〉|b〉 7→ |i〉|b⊕xi〉
where i ∈ {0, 1}⌈log2 n⌉, b ∈ {0, 1}, and xi is the ith bit of the input. The model from [32] does
not have such an operation and thus cannot express algorithms like Grover’s. While this operation
seems no more physically realistic than nonobliviousness to the quantum computation path if we
view the input as stored in a classical memory, it does make sense when the input is actually the
output of another computation. For these reasons, we include such an operation in our model.

Finally, our restriction on the transition amplitudes is similar to the one assumed by Bernstein
and Vazirani, and is more general than algebraic numbers.

2.3 Our Model

For concreteness, we now describe and motivate the particular model we use for the exposition of
our arguments. Our model addresses all the issues listed in Section 2.1 and is an adaptation of
Watrous’s model from [32], as described at the end of Section 2.2.

In a nutshell, our model of a quantum algorithm running in time t and space s consists of a
classically controlled machine that applies t local operations to s bits and qubits, and which supports
random access to the input and memory and can be influenced by intermediate measurement
outcomes. We more formally define our model in Section 2.3.1 and then discuss the complexity
measures for our model in Section 2.3.2.

2.3.1 Model Definition

We define a quantum algorithm as follows. There are three semi-infinite tapes: the input tape, the
classical work tape, and the quantum work tape. Each cell on the input tape holds one bit or a
blank symbol. Each cell on the classical work tape holds one bit. Each cell on the quantum work
tape holds one qubit. The input tape contains the input, a string in {0, 1}n, followed by blanks,
and the classical and quantum work tapes are initialized to all 0’s. There are a fixed number of
tape heads, each of which is restricted to one of the three tapes. There may be multiple heads
moving independently on the same tape.

The finite control, the head movements on all tapes, and the operations on the classical work
tape are all classical; each operation on the quantum work tape can be either a unitary operator or
a single-qubit projective measurement in the computational basis. In each step of the computation,
the finite control of the algorithm is in one of a finite number of states. Each state has an associated
classical function, which is applied to the contents of the cells under the heads on the classical work
tape, and an associated quantum operation, which is applied to the contents of the cells under the
heads on the quantum work tape. The next state of the finite control and the head movements are
determined by the current state, the contents of the cells under the input tape heads and classical
work tape heads at the beginning of the computation step, and the measurement outcome if the
quantum operation was a measurement.

Each head moves left one cell, moves right one cell, stays where it is, or jumps to a new location
at a precomputed address that is written on the classical work tape between two of the classical
work tape heads. The latter type of move is classical random access. We also allow “quantum

9

random access” to the input by optionally performing a query that effects the transformation
|i〉|b〉 7→ |i〉|b ⊕ xi〉 on the qubits between two of the quantum work tape heads, where i ∈ {0, 1}∗

is an address located on the quantum work tape, b ∈ {0, 1}, and xi is the ith bit of the input of
length n or 0 if i > n.

Among the states of the finite control are an “accept” state and a “reject” state, which cause the
algorithm to halt. Although not needed in this paper, the algorithm can be augmented with a one-
way sequential-access write-only classical output tape in order to compute non-Boolean functions.

Let us motivate our model definition. In terms of physical computing systems, the input tape
corresponds to an external input source, the classical work tape corresponds to classical memory,
and the quantum work tape corresponds to quantum memory. The bits and qubits under the heads
correspond to the data being operated on in the CPU.

We use multiple heads on each tape for several reasons. One reason is that creating entanglement
requires multiple-qubit operations and hence multiple quantum work tape heads. Another reason
is that having multiple heads offers a convenient way of formalizing random access. Since we are
studying how algorithm performance scales with the input size, addresses have non-constant length
and thus cannot fit under the tape heads all at once. A number of mechanisms are possible for
indicating where an address is stored for random access. The one we have chosen, namely that the
address is delimited by two tape heads, is artificial and is chosen only for convenience because it
makes the model simple and clean. Another possible mechanism is to associate with each head a
special index tape used for writing addresses; see [25] for a discussion of this type of model.

A minor issue arises with our multiple head approach: an operation on a work tape may not
be well-defined if two of the heads are over the same cell. Rather than requiring programs to avoid
this situation, which would make the model non-syntactic, we can just assume that no operation
is performed on the violating work tape when this situation arises.

We allow the heads to move sequentially because if we only allowed random access, then con-
structing an address would require storing a pointer to the location where that address is stored.
The pointer would have nonconstant size, so we would need a pointer to that pointer, and so on.
This chicken-and-egg problem does not appear in physical computing systems, and we explicitly
avoid it by allowing sequential traversal of memory without having to “remember” where the head
is.

2.3.2 Complexity Measures

We say that a quantum algorithm M runs in time t(n) if for all input lengths n, all inputs x of
length n, and all computation paths of M on input x, M halts in at most t(n) steps. We say that a
quantum algorithm M runs in space s(n) if for all input lengths n, all inputs x of length n, and all
computation paths of M on input x, the largest address of a classical work tape head or quantum
work tape head during the computation of M on input x is at most s(n). Either the time or the
space may be infinite. Note that we consider all computation paths, even ones that occur with
probability 0 due to destructive interference.

The above definition of space usage allows the space to be exponential in the running time,
since in time t an algorithm can write an address that is exponential in t and move a head to
that location using the random-access mechanism. However, the space usage can be reduced to at
most the running time with at most a polylogarithmic factor increase in the latter by compressing

10

the data and using an appropriate data structure to store (old address, new address) pairs. (See
Section 2.3.1 of [25] for a similar construction.)

We say that a quantum algorithm M solves a language L with error ǫ(n) if M has finite running
time and for all input lengths n and all inputs x of length n, Pr

(
M(x) 6= L(x)

)
≤ ǫ(n). We say

the error is bounded if ǫ(n) ≤ 1/3 for all n and unbounded if ǫ(n) < 1/2 for all n.
For a unitary operator U , we let A(U) denote the set of absolute values of both the real and

imaginary parts of each matrix entry of U in the computational basis. For a set S of unitary
operators, we let A(S) =

⋃
U∈S A(U). Each quantum algorithm M has a library of q-qubit unitary

operators it can use (other than measurement gates and quantum query gates, which every quantum
algorithm can use), where q is the number of quantum work tape heads; we define A(M) to be A(S)
where S is the set of library gates of M . We use the following definitions to limit the complexity
of the numbers in A(M). (The first definition is used for both Theorem 1 and Theorem 2, while
the second definition is only used for Theorem 1.)

Definition 1. We say a deterministic algorithm A is a (t, s)-approximator for r ∈ [0, 1] if given a
positive integer precision parameter p, A runs in time t(p) and space s(p) and outputs a nonnegative
integer r̂ in binary such that

∣∣r − r̂/2p
∣∣ ≤ 1/2p.

Definition 2. We say a nondeterministic algorithm G is a (t, s)-generator for r ∈ [0, 1] if given a
positive integer precision parameter p, G runs in time t(p) and space s(p) and generates r̂ accepting
computation paths such that

∣∣r − r̂/2p
∣∣ ≤ 1/2p.

For a complex matrix A, we let ‖A‖ denote the operator norm ‖A‖ = supv 6=0 ‖Av‖/‖v‖ where
‖ · ‖ on the right side denotes the 2-norm for vectors. Throughout this paper, we freely use the fact
that for all d × d complex matrices A and B, if ‖A − B‖ ≤ ǫ then each of the 2d2 real numbers
comprising A is within ǫ of the corresponding real number in B, and conversely, if each of the 2d2

real numbers comprising A is within ǫ of the corresponding real number in B, then ‖A−B‖ ≤ 2dǫ.
As evidence in support of our model of choice, we note that the following results hold in our

model.

• Every language solvable by a bounded-error randomized algorithm M running in time t and
space s is also solvable by a bounded-error quantum algorithm running in time O(t) and space
s+1 that directly simulates M and produces unbiased coin flips by applying a Hadamard gate
to one qubit and then measuring it. This qubit can be reused to generate as many random
bits as needed.

• Grover’s algorithm [18] shows that OR (the problem of computing the disjunction of the
n input bits) is solvable by a bounded-error quantum algorithm running in time O(n1/2 ·
polylog n) and space O(log n).

• Shor’s algorithm [30] shows that a nontrivial factor of an integer of bit length n can be
computed in time O(n3 · polylog n) and space O(n) with error probability at most 1/3.

3 Randomized Simulation

In this section we prove Theorem 1. In Section 3.1 we state our simulation result in full generality
and give several instantiations. We discuss the relationship of our result and its proof to previous
simulations in Section 3.2. In Section 3.3 we prove our general simulation result, and we conclude
in Section 3.4 with some remarks on the proof.

11

3.1 General Result and Instantiations

We now state our general randomized simulation result.

Theorem 4. Suppose language L is solvable by a quantum algorithm M running in time t ≥ log n
and space s ≥ log n with error ǫ < 1/2 having q quantum work tape heads, and such that each number
in A(M) has a (t′, s′)-approximator. Then L is also solvable by an unbounded-error randomized
algorithm running in time O

(
t · p+ t′(p)

)
and space O

(
s+log t+ p+ s′(p)

)
for any integer function

p ≥ log2
5t·2q+1

1/2−ǫ , provided t, s, and p are constructible by a deterministic algorithm with the latter
time and space bounds.

The function p in Theorem 4 represents the precision parameter on which the simulation invokes
the approximators for the numbers in A(M). Regarding the conditions in Theorem 4 (and Theorem
1), we assume t and s are at least logarithmic so that they dominate any logarithmic terms arising
from indexed access to the input. The constructibility constraints are satisfied by all “ordinary”
functions, which is sufficient for obtaining our lower bound, Theorem 3. Theorem 4 is a corollary
of the following even more general simulation.

Theorem 5 (Main Randomized Simulation). Suppose language L is solvable by a quantum
algorithm M running in time t ≥ log n and space s ≥ log n with error ǫ < 1/2 having q quantum
work tape heads, and such that each number in A(M) has a (t′, s′)-generator. Then L is also
solvable by an unbounded-error randomized algorithm running in time O

(
t · t′(p)

)
and space O

(
s+

log t+ s′(p)
)

for any integer function p ≥ log2
5t·2q+1

1/2−ǫ , provided t, s, p, and t′(p) are constructible
by a deterministic algorithm with the latter time and space bounds. Moreover, the randomized
algorithm uses the (t′, s′)-generators only as black boxes.

The proof of Theorem 5 is given in Section 3.3. We now show how Theorem 5 implies Theorem
4 and Theorem 1.

Proof of Theorem 4. The randomized algorithm for L first runs the approximator for each number
r ∈ A(M) and stores the result r̂, then runs the simulation from Theorem 5 using

(
O(p), O(p)

)
-

generators that nondeterministically guess a (p+ 1)-bit nonnegative integer and accept iff it is less
than r̂. Note that the numbers in A(M) might not have actual

(
O(p), O(p)

)
-generators according

to Definition 2, but they have such generators relative to the precomputed values r̂. Since the
simulation from Theorem 5 only invokes the generators as black boxes, this is good enough.

Proof of Theorem 1. If M has algebraic transition amplitudes, then each number in A(M) has a(
poly(p), O(p)

)
-approximator (by Newton’s method, with a little care taken to ensure the linear

space bound). Theorem 1 follows by setting ǫ = 1/3 and p =
⌈
log2(30t · 2

q+1)
⌉

and applying
Theorem 4.

Theorem 1 deals with the standard setting of bounded error. To handle unbounded error,
applying Theorem 4 or Theorem 5 requires an upper bound on the precision p and hence a bound
on how close the error ǫ can be to 1/2. In the case of rational transition amplitudes, a simple bound
yields the following corollary to Theorem 5.

Corollary 2. Every language solvable by an unbounded-error quantum algorithm running in time
t ≥ log n and space s ≥ log n with rational transition amplitudes is also solvable by an unbounded-
error randomized algorithm running in time O(t2) and space O(s + log t), provided t and s are
constructible by a deterministic algorithm with the latter time and space bounds.

12

Proof. The acceptance probability of any quantum algorithm running in time t on a fixed input
equals a multivariate polynomial of total degree at most 2t with integer coefficients and whose
variables are evaluated at the numbers inA(M).2 Thus in the case of rational transition amplitudes,
the acceptance probability can be expressed as a rational number where the denominator is the
product of the denominators of the numbers in A(M) raised to the power 2t. This implies that
if ǫ < 1/2, then in fact ǫ ≤ 1/2 − 2−O(t). Using the fact that each rational number in [0, 1] has a
trivial

(
O(p), O(log p)

)
-generator, Theorem 5 yields the result.

We conjecture that, in general, whenever a quantum algorithm solves a language in time t with
error ǫ < 1/2, then in fact ǫ ≤ 1/2 − 2−O(t). Under this conjecture, we get a version of Corollary
2 for arbitrary transition amplitudes, where the simulation runs in time O

(
t · t′(O(t))

)
and space

O
(
s+ log t+ s′(O(t))

)
assuming the numbers in A(M) have (t′, s′)-generators.

3.2 Intuition and Relationship to Previous Work

There are three previously known simulations of quantum algorithms by unbounded-error random-
ized algorithms: a time-efficient one [1, 16] and two space-efficient ones [33, 32]. Modulo some
minor technicalities, our simulation subsumes and improves all three for bounded-error quantum
algorithms, and it subsumes and improves the simulations of [1, 16] and [33] for unbounded-error
quantum algorithms. We now give a detailed comparison of our results and our proof techniques
with these previous simulations.

The inclusion BQP ⊆ PP was first proved by Adleman et al. [1], and the proof was later
rephrased using counting complexity tools by Fortnow and Rogers [16]. Under the assumption that
the elementary quantum operations have been discretized in some unitary way, this simulation
incurs a constant factor overhead in running time. However, the fastest general method for unitary
discretization is the Solovay-Kitaev algorithm [22, 9], which incurs a polylog t factor overhead in
running time for bounded-error quantum computations. Also, the simulation of [1, 16] does not
preserve the space bound when intermediate measurements are allowed. Theorem 4 subsumes and
improves the result of [1, 16] by improving both the time and space overheads. Strictly speaking,
the simulation of [1, 16] actually assumes a quantum model that is nonoblivious to the quantum
computation path (see Section 2) and is thus not immediately captured by the statement of Theorem
4; however, with some technical work our proof extends to such models (see the remark in Section
3.4).

The proof of Theorem 5 uses the technique in [16] as a starting point. The basic idea of the
latter simulation is to write the final amplitude of a basis state as a simple linear combination of #P
functions, where each #P function counts the number of quantum computation paths leading to
that state with a certain path amplitude. Assuming the elementary quantum operations come from
an appropriate discrete universal set, simple algebraic manipulations can be used to express the
probability of acceptance as the difference between two #P functions, up to a simple common scaling
factor. This leads to a time- and space-efficient simulation by an unbounded-error randomized
algorithm, assuming there is only a final measurement and no intermediate measurements.

Intermediate measurements can be eliminated by instead copying the measurement results into
ancilla qubits. This could blow up the space bound to t, which could be exponential in s. We handle
intermediate measurements directly by first adapting the approach from the previous paragraph
to capture the probability of observing any particular sequence of measurement outcomes. The

2This can be seen, for example, using the postponed measurement framework discussed in Section 3.3.2.

13

acceptance probability can then be expressed as a sum over all sequences of measurement outcomes
that lead to acceptance, where each term is the scaled difference of two #P functions. We can
combine those terms into a single one using the closure of #P under uniform exponential sums.
However, the usual way of doing this — nondeterministically guess and store a sequence and then
run the computation corresponding to that sequence — is too space-inefficient. To address this
problem, we note that the crux of the construction corresponds to multiplying two #P functions on
related inputs. The standard approach runs the two computations in sequence, accepting iff both
accept. We argue that we can run these two computations in parallel and keep them in synch so
that they access each bit of the guessed sequence at the same time, allowing us to reference each
bit only once. We can then guess each bit when needed during the final simulation and overwrite
it with the next guess bit, allowing us to meet the space constraint.

Since the standard Solovay-Kitaev algorithm for unitary discretization (adapted to work with
finite precision) takes time and space polylog t for bounded-error quantum computations, this
approach leads to a simulation running in time O(t · polylog t) and space O(s + polylog t). The
space bound could be reduced to O(s+log t) using our space-efficient simulation with a universal set
(Theorem 2), but to also bring the running time down to O(t · log t) we eschew the Solovay-Kitaev
algorithm altogether and directly use nonunitary discretizations, which can be obtained by simply
approximating each matrix entry with O(log t) bits. Then using the technique from the previous
paragraph, we can approximate the probability of each sequence of measurement outcomes using
a scaled difference of #P functions. A bit of care is needed to ensure that the total error in the
probability estimate, over these exponentially many classical computation paths, is small enough.

Watrous [33] shows how to simulate unbounded-error quantum algorithms running in space s
with rational amplitudes by unbounded-error randomized algorithms running in space O(s). His
technique is genuinely different than ours; he first gives an O(s)-space reduction to the problem of
comparing the determinants of two 2O(s) × 2O(s) integer matrices to see which is larger, and then
uses a logarithmic space unbounded-error randomized algorithm for this problem due to Allender
and Ogihara [3].

In [33], Watrous allows nonobliviousness to the quantum computation path, but as with [1, 16],
this is not a genuine obstacle. Another technicality is that he allows t 6≤ 2O(s) while still achieving
an O(s) space simulation. In fact, he allows space-bounded quantum algorithms to run forever,
counting an infinite computation as a rejection, which we consider to be unrealistic. However, in
our general model, if a quantum algorithm runs in time t 6≤ 2O(s) then for infinitely many input
lengths, it cannot even keep track of its own running time, and for t = polyn it cannot even write
down an address into the input and so it must exploit sequential access in order to do something
nontrivial. In the normal case when t ≤ 2O(s), the result from [33] is subsumed and improved by
Corollary 2.

In another paper, Watrous [32] shows again how to simulate unbounded-error quantum al-
gorithms running in space s by unbounded-error randomized algorithms running in space O(s),
assuming a different model of quantum computation which allows algebraic transition amplitudes.
He first shows how to approximate arbitrary algebraic numbers using ratios of GapL functions,
then he space-efficiently reduces the quantum computation to the problem of computing the sign
of a particular entry in a certain infinite series of matrices, and finally he gives a logarithmic space
unbounded-error randomized algorithm for the latter problem. As in [33], he allows t 6≤ 2O(s),
which does not represent general computations. He uses the quantum operations formalism with
algebraic amplitudes, but this can be simulated in our model (see the discussion in Section 2.2.2).

14

In the normal case when t ≤ 2O(s), the result from [32], restricted to bounded-error quantum algo-
rithms, is subsumed and improved by Theorem 1. It remains an open problem to match the space
bound of [32] for the simulation of unbounded-error quantum computations using our technique.

3.3 Proof of Theorem 5

Our simulation relies on a description of the computation in terms of mixed states and uses classical
algorithms to guess paths down a computation tree. An equivalent alternative formulation involves
describing the computation in terms of density operators and using classical algorithms to guess
paths through products of matrices. We elaborate on the latter in the remarks in Section 3.4.

Suppose language L is solvable by a quantum algorithm M running in time t ≥ log n and space
s ≥ log n with error ǫ < 1/2 having q quantum work tape heads, and such that each number in

A(M) has a (t′, s′)-generator. Let p ≥ log2
5t·2q+1

1/2−ǫ be an integer function. Basically, this bound on
the precision parameter p comes from the need to approximate M ’s acceptance probability within
1/2 − ǫ, which necessitates approximating the unitary operator applied in each computation step

within 1/2−ǫ
5t , which necessitates approximating the numbers in A(M) within 1/2−ǫ

5t·2q+1 .
We fix an arbitrary input x, and for simplicity of notation we let p = p(|x|) and assume that

on input x, M uses exactly s qubits and always applies exactly t quantum gates, exactly m of
which are measurements, regardless of the observed sequence of measurement outcomes. This can
be achieved by padding the computation with gates that do not affect the accept/reject decision
of M . Note that whether a particular run of M on input x accepts is uniquely determined by the
observed sequence of measurement outcomes µ ∈ {0, 1}m. This reflects our model’s obliviousness to
the quantum computation path but nonobliviousness to the intermediate measurement outcomes.

In Section 3.3.1 we describe a certain tree representing the computation of M on input x, state
a key structural property of this tree, and give the final simulation. Then in Section 3.3.2 we prove
the key structural property.

3.3.1 Algorithm Construction

PP can be characterized as the class of languages consisting of inputs for which the difference of
two #P functions exceeds a certain polynomial-time computable threshold. Thus, we would like
to approximate the acceptance probability of M on input x as the ratio of the difference of two
#P functions over some polynomial-time computable scaling factor. To facilitate the argument, we
model the computation of M on input x as a tree, analogous to the usual computation trees one
associates with randomized or nondeterministic computations. We would then like to approximate
the final amplitude of a basis state with a linear combination of #P functions, where each #P
function counts the number of root-to-leaf paths that lead to that basis state and have a particular
path amplitude. (The coefficients in this linear combination are the path amplitudes, which are
the products of the transition amplitudes along the paths.) To accomplish this, we discretize
the elementary quantum operations using rational numbers, which are obtained via the (t′, s′)-
generators. These rational numbers have a common denominator that can be factored out and
absorbed into the scaling factor, leaving Gaussian integers, which can be expressed using #P
functions.

We formally define the computation tree for our fixed input x as follows. It has depth t. Each
level τ = 0, . . . , t represents the state of the quantum tape after the τth gate is applied and before
the (τ + 1)st gate is applied. Each node v has four labels.

15

• τ(v) ∈ {0, . . . , t}, representing the level of v

• µ(v) ∈ {0, 1}≤m, representing the sequence of measurement outcomes that leads to v

• σ(v) ∈ {0, 1}s, representing the computational basis state at v

• α(v) ∈ {1, i,−1,−i}, representing the numerator of the amplitude of v

Our construction of the tree will guarantee that the path amplitude associated with v is a fourth
root of unity divided by 2τ(v)p, which justifies the restriction on α(v) in the fourth bullet. Labels
of nodes across a given level need not be unique; if τ(v) = τ(u) and µ(v) = µ(u) and σ(v) = σ(u),
then v and u represent interference.

We now define the tree inductively as follows. The root node v, representing the initial state,
has τ(v) = 0, µ(v) = λ, σ(v) = 0s, and α(v) = 1. Now consider an arbitrary node v. If τ(v) = t
then v is a leaf. Otherwise, v has children that depend on the type and operands of the (τ(v)+1)st
gate applied given that µ(v) is observed (which will always be well-defined). There are three cases,
corresponding to the three types of gates M can use (library gates, measurement gates, and query
gates).

• Suppose the gate is a unitary operator U from M ’s library, applied to qubits j1, . . . , jq ∈

{1, . . . , s}. Let
(
a0s + b0si, . . . , a1s + b1si

)T
denote the σ(v)j1,...,jq column of U in the

computational basis. Then v has 2 · 2q groups of children, corresponding to each of the
real numbers that make up this column. The children corresponding to a0s are as follows
(the other groups are similar). There are r̂ identical children, where r̂ is the number of
accepting computation paths generated by the hypothesized (t′, s′)-generator for |a0s | on
precision parameter p. Each of these children u satisfies τ(u) = τ(v) + 1, µ(u) = µ(v), σ(u)
equals σ(v) with bits j1, . . . , jq set to 0, and α(u) = α(v) sgn(a0s).

• Suppose the gate is a single-qubit projective measurement of the jth qubit in the computa-
tional basis. Then v has 2p identical children u, each with τ(u) = τ(v)+1, µ(u) = µ(v)σ(v)j ,
σ(u) = σ(v), and α(u) = α(v).

• Suppose the gate is a quantum query gate, and suppose σ(v) and the operands of the query
gate are such that xi is to be XORed into the jth qubit. Then v has 2p identical children u,
each with τ(u) = τ(v) + 1, µ(u) = µ(v), σ(u) equals σ(v) with σ(v)j replaced by σ(v)j ⊕ xi,
and α(u) = α(v).

The reason the latter two cases use 2p children is so that every internal node has an implicit denom-
inator of 2p in the transition amplitude, which allows us to factor out this common denominator
across each level.

In order to describe how the computation tree reflects the evolution of the quantum tape, we
introduce the following notation.

• Vτ,µ,σ,α = {v : τ(v) = τ, µ(v) = µ, σ(v) = σ, α(v) = α}

• Vτ,µ,σ =
⋃

α Vτ,µ,σ,α

• Vτ,µ =
⋃

σ Vτ,µ,σ

• Vτ =
⋃

µ Vτ,µ

16

Suppose we run M but do not renormalize state vectors after measurements. Then after τ gates
have been applied, we have a vector for each sequence of measurement outcomes µ that could
have occurred during the first τ steps. The nodes in Vτ,µ together with their amplitudes α(v)/2τp

approximately give the vector for µ, since these are exactly the nodes whose computation paths are
consistent with the measurement outcomes µ1 · · ·µ|µ|. In other words, the vector for µ is approxi-
mately

∑
v∈Vτ,µ

(
α(v)/2τp

)∣∣σ(v)
〉

and thus the squared 2-norm of the latter vector is approximately
the probability of observing µ. This suggests that at the end of the computation, when τ = t, the
sum of these squared 2-norms over all µ causing M to accept should approximately equal the prob-
ability M accepts. Lemma 1 below confirms this. Care is needed in the formal proof, however,
for two reasons. First, the approximations used to generate the children of a node when a library
gate is applied are not generally consistent with any unitary evolution. Second, there can be ex-
ponentially many sequences µ that cause M to accept, and just summing simple error estimates
over all these sequences does not work since under our target efficiency parameters, we cannot
guarantee exponentially good approximations in the probabilities of observing every individual µ.
We handle this by instead arguing that in a certain sense, these probabilities are approximated well
“on average”, using the fact that the approximation errors are relative to the probability weights
of the paths. This is good enough for our purpose.

Lemma 1.
∣∣∣∣∣Pr(M accepts)−

1

22tp

∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∑

α∈{1,i,−1,−i}

(∣∣Vt,µ,σ,α

∣∣2−
∣∣Vt,µ,σ,α

∣∣ ·
∣∣Vt,µ,σ,−α

∣∣
)∣∣∣∣∣ < 1/2− ǫ

We prove Lemma 1 in Section 3.3.2 below. With Lemma 1 in hand, we now show how to
construct a randomized algorithm N running in time O

(
t · t′(p)

)
and space O

(
s+log t+s′(p)

)
such

that

• if Pr(M accepts) ≥ 1− ǫ then Pr(N accepts) > 1/2, and

• if Pr(M accepts) ≤ ǫ then Pr(N accepts) < 1/2.

This suffices to prove Theorem 5.
We first construct a nondeterministic algorithm N ′ taking as input a tuple (x, µ, σ, α) where

µ ∈ {0, 1}m, σ ∈ {0, 1}s, and α ∈ {1, i,−1,−i}, whose number of accepting computation paths
satisfies #N ′ = |Vt,µ,σ,α|. This is straightforward: have N ′ nondeterministically guess a root-to-leaf
path in the computation tree. The only information about the current node v it needs to keep
track of is σ(v) and α(v), taking space O(s). It keeps a pointer into µ, taking space O(log t). It
determines the correct sequence of gates by simulating the classical part of M , taking O(t) time and
O(s) space. When processing a library gate, N ′ nondeterministically guesses one of the 2 ·2q groups
of children, then runs the appropriate (t′, s′)-generator on input p to nondeterministically pick one
of the children in that group. When processing a measurement gate, N ′ checks that applying the
measurement to the current σ(v) yields the next bit of µ. It rejects if not and otherwise continues
by using that bit of µ as the measurement outcome and generating 2p nondeterministic branches.
Processing a quantum query gate is trivial. When it reaches a leaf v, N ′ checks that σ(v) = σ and
α(v) = α (it already knows that µ(v) = µ having made it this far) and accepts if so and rejects
otherwise. As constructed, N ′ has the desired behavior, and it runs in time O

(
t · t′(p)

)
and space

O
(
s+ log t+ s′(p)

)
(with respect to n = |x|).

17

We next construct nondeterministic algorithms N+ and N− such that on input x,

#N+ =
∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∑

α∈{1,i,−1,−i}

∣∣Vt,µ,σ,α

∣∣2

and
#N− =

∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∑

α∈{1,i,−1,−i}

∣∣Vt,µ,σ,α

∣∣ ·
∣∣Vt,µ,σ,−α

∣∣.

Since they are similar, we just describe N+.
By the closure of #P functions under multiplication and under uniform exponential sums, we

can generate the desired number of accepting computation paths by nondeterministically guessing
µ ∈ {0, 1}m, σ ∈ {0, 1}s, and α ∈ {1, i,−1,−i}, then running two independent copies of N ′ on
input (x, µ, σ, α) and accepting iff both accept and µ causes M to accept. (Since every accepting
execution of N ′ follows an execution of M with measurement outcomes µ, we know at the end
whether µ causes M to accept.) However, this standard method runs in space O

(
t+ s′(p)

)
due to

the need to store µ of length m, which could be as large as t. (Storing σ and α is not problematic.)
We bring the space usage of N+ down to O

(
s + log t + s′(p)

)
as follows. We run the two copies

of N ′ in parallel, keeping them in synch so that they access each bit of µ at the same time. (Note
that since N+ can reject after seeing a single disagreement with µ, the two copies being run will
apply the same sequence of gates and thus access each bit of µ at the same time.) It follows that
N+ only needs to reference each bit of µ once. This implies that rather than guessing and storing
µ at the beginning, N+ can guess each bit of µ only when needed by the two copies and overwrite
the previous bit of µ. As constructed, N+ runs in time O

(
t · t′(p)

)
and space O

(
s + log t+ s′(p)

)

and generates the desired number of accepting computation paths.
By Lemma 1, ∣∣∣∣Pr(M accepts)−

1

22tp

(
#N+ −#N−

)∣∣∣∣ < 1/2− ǫ.

Thus,

• if Pr(M accepts) ≥ 1− ǫ then #N+ −#N− > 22tp−1, and

• if Pr(M accepts) ≤ ǫ then #N+ −#N− < 22tp−1.

We can now use a standard technique to obtain the final randomized simulation N . Since t and t′(p)
are constructible, we can assume without loss of generality that N+ and N− are constructed so as
to have exactly 2g computation paths for some constructible function g ≤ O

(
t · t′(p)

)
. This allows

us to compare numbers of accepting paths to numbers of rejecting paths. By nondeterministically
picking N+ or N− to run, and flipping the answer if N− was chosen, we get

(
#N+ −#N−

)
+ 2g

accepting computation paths. We can generate an additional 2g+1 dummy computation paths,
exactly 2g + 22tp−1 of which reject, to shift the critical number of accepting paths to exactly half
the total number of paths. This can be done without dominating the time or space efficiency, by
the constructibility condition.

As constructed, N runs in time O
(
t · t′(p)

)
and space O

(
s + log t + s′(p)

)
and accepts x with

probability greater than 1/2 if x ∈ L and with probability less than 1/2 if x 6∈ L. This finishes the
proof of Theorem 5.

18

3.3.2 Postponing Measurements

In this section we prove Lemma 1. We start by describing a framework for analyzing quantum al-
gorithms with intermediate measurements by implicitly postponing the measurements and tracking
the unitary evolution of the resulting purification. We stress that we are doing so for reasons of
analysis only; our actual simulations do not involve postponing measurements.

Recall that we are assuming for simplicity of notation that on our fixed input x, M uses exactly s
qubits and always applies exactly t quantum gates, exactly m of which are measurements, regardless
of the observed sequence of measurement outcomes. We conceptually postpone the measurements
in the computation by

(1) introducing m ancilla qubits initialized to all 0’s,

(2) replacing the ith measurement on each classical computation path by an operation that
entangles the ith ancilla qubit with the qubit being measured (by applying a CNOT to the
ancilla qubit with the measured qubit as the control), and

(3) measuring the m ancilla qubits at the end.

In the τth step of the simulation, we apply a unitary operator Uτ on a system of s + m
qubits, where Uτ acts independently on each of the subspaces corresponding to distinct sequences
of measurement outcomes that can be observed before time step τ . More precisely, consider the
set of µ ∈ {0, 1}≤m such that given that µ is observed, the τth gate is applied after µ is observed
but not after the (|µ| + 1)st measurement gate is applied. Let Uτ be the set of these µ such that
the τth gate is unitary, and let Mτ be the set of these µ such that the τth gate is a measurement.
For ν ∈ {0, 1}m, let Pν denote the projection on the state space of the ancilla qubits to the one-
dimensional subspace spanned by |ν〉.

For µ ∈ Uτ , let Gτ,µ denote the unitary operator on the state space of s qubits induced by the
τth gate applied given that µ is observed. Then Uτ acts as Gτ,µ⊗I on the range of I⊗Pµ0m−|µ| . For

each µ ∈Mτ , Uτ applies an entangling operator Eτ,µ that acts only on the range of I⊗
(
Pµ0m−|µ| +

Pµ10m−1−|µ|

)
. We arbitrarily set the behavior of Uτ on the remaining subspaces to the identity

operator. Thus,

Uτ =

(∑

µ∈Uτ

Gτ,µ ⊗ Pµ0m−|µ|

)
+

(∑

µ∈Mτ

Eτ,µ

)
+R,

where R is a term that expresses the behavior on the remaining subspaces.
It is well-known, and can be verified from first principles, that the probability of observing any

sequence of measurement outcomes µ ∈ {0, 1}m when M is run equals the probability of observing
µ after the evolution U = UtUt−1 · · ·U2U1 with all of the ancilla qubits initialized to 0. That is,

Pr(µ observed) =
∥∥(I ⊗ Pµ)U |0s+m〉

∥∥2
. It follows that Pr(M accepts) =

∥∥PU |0s+m〉
∥∥2

, where P
denotes the sum of I ⊗ Pµ over all µ causing M to accept.

Now for each µ ∈ Uτ , if Gτ,µ comes from a library gate then let Ĝτ,µ be an operator analogous to
Gτ,µ but where each real and imaginary part of the matrix in the computational basis is replaced
by a number with the same sign whose absolute value is r̂/2p, where r̂ is the value from the
appropriate (t′, s′)-generator on precision parameter p. If Gτ,µ comes from a quantum query gate

19

then let Ĝτ,µ = Gτ,µ. Naturally, we define

Ûτ =

(∑

µ∈Uτ

Ĝτ,µ ⊗ Pµ0m−|µ|

)
+

(∑

µ∈Mτ

Eτ,µ

)
+R

and Û = Ût · · · Û1.
Lemma 1 now follows from the following two claims.3

Claim 1.
∣∣∣
∥∥PÛ |0s+m〉

∥∥2
−
∥∥PU |0s+m〉

∥∥2
∣∣∣ < 1/2 − ǫ

Claim 2.

∥∥PÛ |0s+m〉
∥∥2

=
1

22tp

∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∑

α∈{1,i,−1,−i}

(∣∣Vt,µ,σ,α

∣∣2 −
∣∣Vt,µ,σ,α

∣∣ ·
∣∣Vt,µ,σ,−α

∣∣
)

Proof of Claim 1. Suppose Vτ,µ is the q-qubit unitary operator corresponding to Gτ,µ (assuming

the latter represents the application of a library gate), and let V̂τ,µ be similar but where the real
and imaginary parts are replaced by their approximations. Since each of these approximations is
within 1/2p of the correct value, we have

∥∥V̂τ,µ−Vτ,µ

∥∥ ≤ 2q+1/2p ≤ (1/2−ǫ)/5t. Tensoring with the

identity does not change the 2-norm of an operator, so we also have
∥∥Ĝτ,µ −Gτ,µ

∥∥ ≤ (1/2− ǫ)/5t.

We claim that this implies that
∥∥Ûτ − Uτ

∥∥ ≤ (1/2 − ǫ)/5t for all τ ; this holds since for every unit
vector |ψ〉 in the state space of s+m qubits, we have

∥∥∥
(
Ûτ − Uτ

)
|ψ〉
∥∥∥

2
=

∥∥∥∥∥
∑

µ∈Uτ

((
Ĝτ,µ ⊗ Pµ0m−|µ|

)
−
(
Gτ,µ ⊗ Pµ0m−|µ|

))
|ψ〉

∥∥∥∥∥

2

=
∑

µ∈Uτ

∥∥∥
((
Ĝτ,µ −Gτ,µ

)
⊗ I
)(
I ⊗ Pµ0m−|µ|

)
|ψ〉
∥∥∥

2

≤
∑

µ∈Uτ

(1/2− ǫ

5t

)2∥∥∥
(
I ⊗ Pµ0m−|µ|

)
|ψ〉
∥∥∥

2

≤
(1/2 − ǫ

5t

)2
.

Now we claim that for all τ = 0, . . . , t,

∥∥∥Ûτ · · · Û1 − Uτ · · ·U1

∥∥∥ ≤
(

1 +
1/2− ǫ

5t

)τ

− 1.

3A result very similar to Claim 1 is needed in Section 4.1 for deriving Theorem 6 from Theorem 7. Specifically, if
each bGτ,µ is unitary and approximates Gτ,µ within ǫ′ then in the statement of Claim 1 we can replace < 1/2 − ǫ by

≤ 2tǫ′, and we have that
‚‚P bU |0s+m〉

‚‚2
equals the probability of acceptance of the modified quantum computation.

Further, if the approximations are only up to global phase factors, then we can change the definition of bU to counteract
the global phase, and then

‚‚P bU |0s+m〉
‚‚2

still equals the probability of acceptance.

20

We prove this by induction on τ . The base case τ = 0 is trivial since Û0 · · · Û1 = U0 · · ·U1 = I.
For the induction step, we assume the claim holds for τ − 1 and prove it for τ . By the triangle
inequality, it suffices to show the following two inequalities.

∥∥∥Ûτ

(
Ûτ−1 · · · Û1

)
− Uτ

(
Ûτ−1 · · · Û1

)∥∥∥ ≤ 1/2− ǫ

5t
·

(
1 +

1/2 − ǫ

5t

)τ−1

(1)

∥∥∥Uτ

(
Ûτ−1 · · · Û1

)
− Uτ

(
Uτ−1 · · ·U1

)∥∥∥ ≤
(

1 +
1/2 − ǫ

5t

)τ−1

− 1 (2)

Inequality (1) follows from the facts that

∥∥Ûτ − Uτ

∥∥ ≤ 1/2 − ǫ

5t

and
∥∥Ûτ−1 · · · Û1

∥∥ ≤
(

1 +
1/2 − ǫ

5t

)τ−1

(the latter following from the induction hypothesis and the fact that ‖Uτ−1 · · ·U1‖ = 1). Inequality
(2) follows from the induction hypothesis and the fact that ‖Uτ‖ = 1. This finishes the induction.
It follows that

∥∥Û − U
∥∥ ≤

(
1 +

1/2 − ǫ

5t

)t

− 1 ≤ e(1/2−ǫ)/5 − 1 ≤
(
1 + 2 ·

1/2 − ǫ

5

)
− 1 = 0.4

(
1/2− ǫ

)
.

Finally, defining |∆〉 =
(
Û − U

)
|0s+m〉, we have

∣∣∣
∥∥PÛ |0s+m〉

∥∥2
−
∥∥PU |0s+m〉

∥∥2
∣∣∣ =

∣∣∣〈0s+m|Û †P |∆〉+ 〈∆|PU |0s+m〉
∣∣∣

≤
∥∥Û †

∥∥ ·
∥∥|∆〉

∥∥+
∥∥|∆〉

∥∥

≤
(
1 + 0.4

(
1/2 − ǫ

))
· 0.4

(
1/2− ǫ

)
+ 0.4

(
1/2− ǫ

)

< 1/2− ǫ,

where the third line follows by the facts that
∥∥Û −U

∥∥ ≤ 0.4(1/2− ǫ) and ‖U‖ = 1. This completes
the proof of Claim 1.

Proof of Claim 2. For each node v, define

∣∣ψ(v)
〉

=
α(v)

2τ(v)p

∣∣σ(v)µ(v)0m−|µ(v)|
〉
.

Note that
∣∣ψ(v)

〉
is the basis state of v multiplied by its amplitude, with the ancilla qubits set to

indicate the sequence of measurement outcomes that leads to v. It follows from the definition of
the tree that for each internal node v,

Ûτ(v)+1

∣∣ψ(v)
〉

=
∑

children u of v

∣∣ψ(u)
〉
.

21

Thus since
∣∣ψ(v)

〉
= |0s+m〉 when v is the root, by induction on τ we have

Ûτ · · · Û1|0
s+m〉 =

∑

v∈Vτ

∣∣ψ(v)
〉

for all τ = 0, . . . , t. It follows that

∥∥PÛ |0s+m〉
∥∥2

=

∥∥∥∥∥P
∑

v∈Vt

∣∣ψ(v)
〉
∥∥∥∥∥

2

=

∥∥∥∥∥
∑

µ∈{0,1}m

causing M
to accept

∑

v∈Vt,µ

∣∣ψ(v)
〉
∥∥∥∥∥

2

=
∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∥∥∥∥∥
∑

v∈Vt,µ,σ

∣∣ψ(v)
〉
∥∥∥∥∥

2

=
∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∣∣∣∣∣
∑

v∈Vt,µ,σ

α(v)

2tp

∣∣∣∣∣

2

=
1

22tp

∑

µ∈{0,1}m

causing M
to accept

∑

σ∈{0,1}s

∑

α∈{1,i,−1,−i}

(∣∣Vt,µ,σ,α

∣∣2 −
∣∣Vt,µ,σ,α

∣∣ ·
∣∣Vt,µ,σ,−α

∣∣
)
.

This completes the proof of Claim 2 and the proof of Lemma 1.

3.4 Remarks

We make two remarks concerning our main randomized simulation, Theorem 5.

Handling nonobliviousness to the quantum computation path. Nothing prevents our proof of The-
orem 5 from carrying over to any reasonable model of quantum computation that is nonoblivious
to the quantum computation path. In this case, the sequence of gates leading to a node v in the
computation tree does not depend only on µ(v), but this does not present a significant problem for
our proof. However, the proof becomes more technical due to the (limited) interactions between
the local operations applied on different quantum computation paths. These complications arise
for the same reason as the unnatural conditions on the transition function in the models from [7]
and [33]. We feel that working out the details of such a result would not be well-motivated since the
currently envisioned realizations of quantum computers do not support such nonoblivious behavior.

Alternate proof using the density operator formalism. The proof of Theorem 5 can be rephrased in
the language of density operators. We now briefly sketch how to do this. After each time step, the

22

mixed state of the quantum tape can be expressed as an operator on s qubits, called the density
operator, which captures all the observable information. The density operator of the initial state is
|0s〉〈0s|. Suppose the first operation applied is a unitary gate, and let U denote the corresponding
unitary operator on the entire state space. Then the density operator after step 1 is U |0s〉〈0s|U †.
Suppose the next operation applied is a measurement, and let M0 and M1 be the corresponding
projection operators. Then the density operator after step 2 is

∑
µ∈{0,1}MµU |0

s〉〈0s|U †M †
µ. Now

the next operation can depend on the measurement outcome µ; suppose it is unitary U0 if µ = 0 or
unitary U1 if µ = 1. Since M0U |0

s〉〈0s|U †M †
0 represents the unnormalized state given µ = 0, the

subsequent unnormalized state is represented by U0M0U |0
s〉〈0s|U †M †

0U
†
0 , and similarly for µ = 1.

Thus the density operator after step 3 is
∑

µ∈{0,1} UµMµU |0
s〉〈0s|U †M †

µU
†
µ. Continuing in this way,

we find that the mixed state at the end is

∑

µ∈{0,1}m

Lt,µ · · ·L1,µ|0
s〉〈0s|L†

1,µ · · ·L
†
t,µ

where Lτ,µ are some linear operators. The probability of acceptance is the trace of

∑

µ∈{0,1}m

causing M
to accept

Lt,µ · · ·L1,µ|0
s〉〈0s|L†

1,µ · · ·L
†
t,µ.

If we approximate each real and imaginary part of each Lτ,µ as a rational number with denominator
2p (using the (t′, s′)-generators) then the trace of the resulting sum is approximately the probability
of acceptance. (This can be proved by translating to the postponed measurement framework and
using the argument from Claim 1. We do not know of a clean way to directly phrase this argument
in terms of density operators.) Factoring out 1/22tp yields a sum of products of Gaussian integer
matrices, and we just need to express the trace of this sum using a difference of #P functions.
This involves guessing σ ∈ {0, 1}s (summing over the diagonal entries), guessing a µ that leads to
acceptance, and guessing a path through the matrix product to generate the (σ, σ) entry of the
product (and guessing whether to take the real or imaginary part of each entry). One of the two #P
functions sums the positive terms in the expression, while the other sums the negative terms. The
key for preserving the space bound is to guess the path starting in the middle and simultaneously
guessing two paths outward. That way, each bit of µ only needs to be accessed once and can
be guessed at that time and later overwritten. The unbounded-error randomized simulation then
follows as before by combining the two #P functions and generating dummy computation paths to
shift the critical fraction of paths to exactly 1/2.

4 Quantum Simulation

In this section we prove Theorem 2. In Section 4.1 we state our simulation result in full generality
and discuss its relationship to previous work. In Section 4.2 we describe the intuition and new
ideas behind the main component of the proof (Theorem 7 below), and then in Section 4.3 we give
the full proof of Theorem 7.

23

4.1 Overview

We start with our precise definition of a universal set.4

Definition 3. A finite set S of unitary quantum gates is universal if there exists a q0 such that
for all q ≥ q0 the following holds. For every q-qubit unitary operator U and every ǫ > 0 there exist
q-qubit unitary operators U1, . . . , Uk, each of which is a gate from S applied to some of the q qubits,
and there exists a global phase factor eiθ, such that

∥∥U − eiθUk · · ·U1

∥∥ ≤ ǫ.

There is a long line of research on constructing universal sets [10, 13, 5, 24, 11, 6, 22, 8, 29].5

Examples of universal sets include the Toffoli gate together with the Hadamard gate [29], and
the CNOT gate together with any single-qubit unitary gate whose square does not preserve the
computational basis [29].

Our quantum simulation result basically states that every quantum algorithm can be simulated
with only a small overhead in time and space by another quantum algorithm whose library is an
arbitrary universal set S, provided S is closed under adjoint. Recall that in our terminology, the
library gates of a quantum algorithm all act on q qubits, where q is the number of work tape heads.
Since S may contain gates acting on different numbers of qubits, when we say the library is S we
allow tensoring with the identity so that all gates act on the same number of qubits (we also allow
rearranging the qubits, so a gate from S can be applied to any subset of the quantum work tape
head locations). We now state the general form of our simulation result.

Theorem 6. For every universal set S with parameter q0 such that S is closed under adjoint and
each number in A(S) has a (t′, s′)-approximator, the following holds. Suppose language L is solvable
by a quantum algorithm M running in time t and space s with error ǫ < 1/2 having q ≥ q0 quantum
work tape heads, and such that each number in A(M) has a (t′, s′)-approximator. Then L is also
solvable by a quantum algorithm with library S running in time O

(
t ·polylog(1/ǫ′)+t′(p)

)
and space

O
(
s+log(1/ǫ′)+ s′(p)

)
with error ǫ+2tǫ′, where ǫ′ is any function constructible by a deterministic

algorithm with the latter time and space bounds, and p is a certain function in Θq

(
log(1/ǫ′)

)
.

The function p in Theorem 6 represents the precision parameter on which the simulation invokes
the approximators for the numbers in A(M) ∪ A(S). The bulk of the proof of Theorem 6 is the
following result. Let U(d) denote the set of unitary operators on C

d.

Theorem 7 (Space-Efficient Version of the Solovay-Kitaev Theorem). For each constant
integer d ≥ 2 the following holds. Suppose S ⊆ U(d) is a finite set closed under adjoint such that
for every U ∈ U(d) and every ǫ > 0 there exists a sequence U1, . . . , Uk ∈ S and a global phase
factor eiθ such that

∥∥U − eiθUk · · ·U1

∥∥ ≤ ǫ. Then for every U ∈ U(d) and every ǫ > 0 there
exists a sequence U1, . . . , Uk ∈ S with k ≤ polylog(1/ǫ) and a global phase factor eiθ such that∥∥U − eiθUk · · ·U1

∥∥ ≤ ǫ. Moreover, such a sequence can be computed by a deterministic algorithm
running in time polylog(1/ǫ) and space O(log(1/ǫ)), given as input ǫ and matrices that are at
distance at most f(ǫ) from U and the gates in S, where f is a certain polynomial depending on d.

4Some notions of universality allow ancilla qubits; however, as far as we know, all such results have been subsumed
by results that do not need ancilla qubits.

5For these results, the global phase factor eiθ does not need to depend on ǫ, but this does not matter for our
purposes.

24

Note that the algorithm in Theorem 7 runs in space O(log(1/ǫ)) while outputting a list of
polylog(1/ǫ) gates. This means that it outputs the labels of the gates on the fly, in the order they
are to be applied, and the output list does not count toward the space bound. Also, the algorithm
needs some hardcoded information about S, and the constant factors in the efficiency parameters
depend on S. Finally, the global phase factor eiθ in the conclusion of the theorem is not generally
the same as the one in the hypothesis for the same U and ǫ, and it may depend on ǫ even if the
global phase factors in the hypothesis do not.

In Section 4.2 we explain the intuition and new ideas behind Theorem 7, and then in Section 4.3
we give the formal proof. We do not attempt to optimize the degree of the polylog in the running
time; this can likely be done with a complicated analysis and rearrangement of the ingredients in
the proof. However, we do mention a few simple optimizations in Section 4.3.4.

Proof of Theorem 6. Assume without loss of generality that every operator in S acts on q qubits.
First, compute ǫ′ and p =

⌈
log2

2q+1

f(ǫ′)

⌉
where f is the polynomial from Theorem 7 for d = 2q. Then

run the (t′, s′)-approximators on precision parameter p to obtain matrices that approximate the
gates in S and in M ’s library within f(ǫ′). Then start simulating M , and every time it applies a
library gate U , run the algorithm from Theorem 7 with ǫ′ as the ǫ-parameter to find a sequence of
gates from S whose product ǫ′-approximates U up to a global phase factor, and apply those gates
instead. Note that the algorithm from Theorem 7 needs to be rerun at every step since we do not
have enough space to store the approximating sequences for M ’s library gates. The time and space
complexities of the new algorithm are immediate. We just need to verify that the probability any
input is accepted changes by at most 2tǫ′; we omit the argument as a nearly identical one appears
in Section 3.3.2. (The differences are that in that proof, nonunitary approximations are allowed
and global phase factors do not appear in the approximations.)

Proof of Theorem 2. Let ǫ = 1/3 and let ǫ′ ≈ 1/20t be a constructible function. Apply Theorem 6,
using the fact that each number in A(M) ∪A(S) has a

(
poly(p), O(p)

)
-approximator (as noted in

the proof of Theorem 1). Then use amplification to bring the error down to 1/3.

Theorem 7 is a strengthening of the well-known Solovay-Kitaev Theorem [22]. The latter
theorem states that there exists an appropriate sequence of gates as in Theorem 7.6 Moreover, the
proof gives a deterministic algorithm for computing such a sequence in time and space polylog(1/ǫ),
in a highly idealized model of computation in which exact numerical calculations (including matrix
diagonalization, which is impossible using just +,−,×,÷ and kth roots) can be performed at
unit cost each (see [9], Appendix 3 of [27], or Section 8.3 of [23]). However, we cannot do exact
calculations, since the entries of our matrices may require infinitely many bits to specify and we
are charged for the space to store numbers and the time to compute with them. The complexity
of the algorithm in a standard finite-precision model has not been studied in the literature, other
than a few unsubstantiated remarks in [23]. A careful analysis shows that approximating the
matrix entries of U and the gates in S with precision parameter p = polylog(1/ǫ) yields sufficiently
good approximations to all matrices involved, leading to an algorithm running in time and space
polylog(1/ǫ). The difficulty in Theorem 7 is in getting the space complexity down to O(log(1/ǫ)),
which also necessitates getting the precision parameter down to O(log(1/ǫ)), while maintaining a
polylog(1/ǫ) running time.

6There is actually a minor but slightly nontrivial argument needed to obtain the Solovay-Kitaev Theorem for
arbitrary universal sets in U(d), which we could not find mentioned in the literature but seems to have been implicitly
assumed in the literature. This point is discussed in Section 4.3.

25

Other results on quantum compiling are known. While in the standard proof of the Solovay-
Kitaev Theorem [9, 27] the length of the approximating sequence of gates is O(log3.97(1/ǫ)), Sec-
tion 8.3 of [23] presents a slightly more technical proof that gets the sequence length down to
O(log3+δ(1/ǫ)) for any constant δ > 0. Section 13.7 of [23] describes a different approach that
gets the sequence length down to O

(
log2(1/ǫ) log log(1/ǫ)

)
but does not work for every universal

set. Harrow, Recht, and Chuang [19] present yet a different approach that gets the sequence length
down to O(log(1/ǫ)) (which is optimal up to constant factors) but does not work for every universal
set and is not even constructive.

4.2 Intuition

We now give the intuition behind the proof of Theorem 7, focusing on the new ideas. In Section 4.2.1
we give a quick overview of the standard Solovay-Kitaev algorithm [9]. In the subsequent sections
we motivate and develop our improvement by discussing three primary issues, in a particular order.

4.2.1 Overview of the Standard Algorithm

The standard version of the algorithm takes as input a unitary operator U and an integer ℓ ≥ 0
and returns a sequence of gates from S whose product Ũ ǫℓ-approximates7 U , where ǫ0 > 0 is a
certain small constant and ǫℓ ≤ O(ǫ1.5

ℓ−1) ≪ ǫℓ−1 for ℓ > 0. We suppress the dependence of Ũ on
ℓ in order to declutter the notation later on. The algorithm is recursive in ℓ. For the base case
ℓ = 0, by our assumption on S we can use brute force to find an ǫ0-approximation using a constant
number of gates from S. The induction consists of a bootstrapping argument: given the ability
to make recursive calls that find ǫℓ−1-approximations using gates from S, we would like to find
ǫℓ-approximations using gates from S. The key that makes this possible is the following remarkable
fact, whose proof is inspired by Lie theory.

Fact 1 (Key Fact, Informal Version). If U is ǫℓ−1-close to the identity I, then it is possible to

find unitary operators V and W such that for any unitary operators Ṽ and W̃ that ǫℓ−1-approximate
V and W respectively, the group commutator Ṽ W̃ Ṽ †W̃ † ǫℓ-approximates U .

This can be turned into a recursive algorithm as follows. First we must “translate” U to the
neighborhood of I in order to apply the key fact. To do this, we make a recursive call on U to
obtain a sequence of gates from S whose product ǫℓ−1-approximates U . We define Υ = U and let
Υ̃ denote this product. The notation U and Ũ is always with respect to our arbitrary level ℓ, while
Υ and Υ̃ are with respect to level ℓ − 1. The purpose of this nonstandard notation is to simplify
the notation later on. Now UΥ̃† is ǫℓ−1-close to I, so we can apply the key fact to it. What good
is this? Note that since U = UΥ̃†Υ̃, we have that for any unitary operator that ǫℓ-approximates
UΥ̃†, multiplying it on the right by Υ̃ yields a unitary operator that ǫℓ-approximates U . Thus, if
we can find a sequence of gates whose product ǫℓ-approximates UΥ̃†, then we can append it to the
sequence we have for Υ̃ to get a sequence whose product ǫℓ-approximates U .8 The key fact helps
us achieve the former. Specifically, we compute V and W from UΥ̃†, and then we recursively find
a sequence of gates from S whose product Ṽ is ǫℓ−1-close to V , and we recursively find a similar
sequence for W . The key fact tells us that Ṽ W̃ Ṽ †W̃ † is ǫℓ-close to UΥ̃†. Thus we can just string

7We ignore the issue of global phase factors throughout Section 4.2; this issue is treated carefully in Section 4.3.
8Note that the sequence for eΥ comes first in the sequence order, since eΥ is the right multiplicand of

`
U eΥ†

´eΥ.

26

together four sequences of gates from S whose products equal Ṽ , W̃ , Ṽ †, and W̃ † to get a sequence
whose product ǫℓ-approximates UΥ̃†. We already have sequences for Ṽ and W̃ , by the recursive
calls. To obtain a sequence whose product equals Ṽ †, just take the sequence for Ṽ , reverse the
order of the gates, and invert each gate. (This is where we need the assumption that S is closed

under adjoint.) A sequence for W̃ † is obtained similarly. Declaring Ũ = Ṽ W̃ Ṽ †W̃ †Υ̃, we have that
Ũ is ǫℓ-close to U , and we have found a sequence whose product equals Ũ .

If we seek an ǫ-approximation to U , we can just pick L to be the smallest value such that ǫL ≤ ǫ
and run the algorithm on U and ℓ = L. In particular, L = Θ(log log(1/ǫ)) levels of recursion suffice.
Since the base case always produces a sequence whose length is at most a constant, say m, and
at each level the maximum length of the approximating sequence gets multiplied by 5, a sequence
produced at the ℓth level has length at most 5ℓm. Using L = Θ(log log(1/ǫ)) levels, the sequence
has length at most polylog(1/ǫ).

The algorithm sketched above runs in time polylog(1/ǫ), in a highly idealized model of com-
putation in which exact numerical calculations can be performed at unit cost each. However, we
need to work in the standard model of computation, in which we are charged for the space to store
numbers and the time to compute with them. By some technical analysis and tweaking of numerical
methods, it is possible to make the above algorithm work in the standard model, running in time
polylog(1/ǫ). Our improvement (Theorem 7) is an algorithm that runs in space O(log(1/ǫ)) while
still running in time polylog(1/ǫ). We now discuss the obstacles to obtaining such a space-efficient
algorithm and how we overcome them.

4.2.2 The Numerical Precision Problem

Since the operators we deal with may require infinitely many bits to specify, we need to work with
finite-precision approximations to them. That is, if the “intended” operator is U , we instead take
as input a (not necessarily unitary) matrix Û guaranteed to be close to U and for which we have an
exact binary representation.9 At level ℓ, when we are seeking an ǫℓ-approximation to U , we assume
that Û is within some δℓ of U . Thus, given Û , our goal is to output a sequence of gates from S
whose product Ũ is ǫℓ-close to U . Since we only know Û and not U , we must ensure Ũ is ǫℓ-close
to every unitary operator U that is within δℓ of Û . Note that this requires δℓ ≤ ǫℓ since otherwise
there might not exist an operator that simultaneously ǫℓ-approximates every U that is within δℓ
of Û . However, δℓ may need to be much smaller than ǫℓ. Let us consider how small δℓ needs to
be. For the base case ℓ = 0, constant δ0-approximations suffice. Suppose that δℓ ≥ Ω(δα

ℓ−1) suffices
for the reduction from level ℓ to level ℓ − 1, where α is some constant. Since ǫℓ ≤ O(ǫ1.5

ℓ−1), the
above observation shows that we must have α ≥ 1.5. Since the root of the recursion tree is at level
L, the output is a sequence of gates whose product is only guaranteed to approximate U within

ǫL =
(
Θ(ǫ0)

)1.5L

, while we need an approximation to the intended input U within δL =
(
Θ(δ0)

)αL

.
Hence, log(1/ǫ) ≤ log(1/ǫL) ≤ O(1.5L), while just writing down a sufficiently good approximation
to the intended input takes Ω(log(1/δL)) ≥ Ω(αL) ≥ Ω

(
loglog1.5 α(1/ǫL)

)
≥ Ω

(
loglog1.5 α(1/ǫ)

)

bits. As we mention below, it turns out that we cannot avoid writing down and storing such
approximations. Thus, to have any hope of getting a logarithmic space algorithm, we must achieve
α = 1.5. We now explain how to do this and why it is not trivial.

9It turns out that using floating point numbers does not asymptotically improve the efficiency since it is always
the case that a constant fraction of the bits past the radix point are potentially nonzero. Thus we always work with
fixed point numbers and with absolute errors.

27

Consider an arbitrary node at level ℓ > 0 in the recursion tree, and pretend for simplicity that
the intended input U is already ǫℓ−1-close to I, so we can apply the key fact directly to U without
having to deal with the translation step.

The proof of the key fact in the infinite-precision model prescribes a “desired” input/output
relationship from the intended input U of this node to the intended inputs V,W of its two chil-
dren. In our finite-precision model we need to replace this relationship by a different input/output
relationship, such that when the input matrix has a finite binary representation, the two output
matrices have finite binary representations computable by a time-space efficient algorithm. The
goal is that when the input Û is within δℓ of the intended input U , the outputs V̂ , Ŵ are within
δℓ−1 of the intended outputs V,W . In each step of the computation the absolute error may increase,
partly because this is inherent in the conditioning (e.g., square-rooting a number can square-root
the error in the worst case), and partly because of the time-space efficiency requirement (e.g.,
roundoff errors, or the use of iterative rather than direct methods). Unfortunately, these errors
seem to prevent us from accomplishing the above goal10 with α = 1.5.

To circumvent the problem, we revise our goal for the new input/output relationship: when

the input Û is within δℓ of the intended input U , we now only require that the outputs V̂ , Ŵ are
within δℓ−1 of some V,W which are the “desired” outputs corresponding to some unitary operator
U ′ that is within O(ǫℓ) of U .11 This is good enough, because then U ′ is O(ǫℓ−1)-close to I, and

the key fact shows that if Ṽ , W̃ are unitary operators that ǫℓ−1-approximate V,W , then Ṽ W̃ Ṽ †W̃ †

is O(ǫℓ)-close to U ′ and hence O(ǫℓ)-close to U . This gives us what we wanted, using a small
adjustment in parameters to absorb the constant factor.

We now sketch how we accomplish the revised goal with α = 1.5 in the case where d = 2. For
that we need to take a closer look at the proof of the key fact. It uses a correspondence between
unitary operators and skew-hermitian operators via the logarithm/exponential maps. Given U ,
it first converts to the skew-hermitian domain, then finds the desired operators in this domain,
then converts back to the unitary domain to get V,W . Let F be the skew-hermitian matrix logU .
Given Û within δℓ of U , it turns out we can obtain a matrix F̂ that is within O(δℓ) of F in time
polylog(1/ǫ) and space O(log(1/ǫ)) (see Section 4.3.2). As we mentioned in the above discussion
of the original goal, this is not close enough for computing the desired V,W corresponding to U
within δℓ−1 when α = 1.5. The key for achieving the revised goal is the following fact.

Every skew-hermitian operator corresponds exactly to some unitary operator, and
nearby skew-hermitian operators correspond to nearby unitary operators.

For α = 1.5 we can ensure that F̂ is within O(ǫℓ) of F . Thus, given F̂ , if we could find some
(finite-precision) skew-hermitian matrix F ′ within O(ǫℓ) of F̂ and hence within O(ǫℓ) of F , then
the corresponding unitary operator U ′ = expF ′ would be within O(ǫℓ) of U , and we could pro-
ceed to compute the desired V,W corresponding to U ′ within δℓ−1 since we would have an exact
representation of F ′. To find F ′, we can take F̂ and perturb it in a natural way to make it skew-
hermitian; then using the fact that F̂ is O(ǫℓ)-close to some skew-hermitian operator (namely F),
it can be shown that F ′ is within O(ǫℓ) of F̂ . This is the basic idea for accomplishing the revised
goal in the case where d = 2. A technical problem arises when d > 2; the workaround uses an idea
due to Nagy [26] and is presented in Section 4.3.5.

10See Section 4.3.2 for more details. In fact, the square roots inherent in the proof of the key fact seem to impose
α ≥ 2, though it is conceivable α could be reduced somewhat by case analysis.

11This is related to the notion of backward stability from numerical analysis.

28

In the end, we set δℓ = ǫℓ/c for some large constant c. Since all the matrices at level ℓ only
need to approximate their intended operators within O(δℓ), we can always assume they only take
up O(log(1/δℓ)) space. At the top level, this comes out to O(log(1/ǫ)) space, which is necessary
but not sufficient for achieving the desired space bound. Since the constants in the big O’s do not
depend on ℓ, the space for storing a matrix goes down by a constant factor at each level as we go
down the recursion tree. Thus, if we can get by with storing only a constant number of matrices
at each node along the current path to the root, then the total space usage will be a geometric
sum dominated by O(log(1/δL)) ≤ O(log(1/ǫ)), giving us the desired space bound. We follow this
general approach, but there are a number of obstacles to getting it to work.

4.2.3 Reducing the Space in the Overall Architecture

Let us quickly rehash the notation for the algorithm as described so far. For our arbitrary node
at level ℓ, we have U, Û , Ũ which denote the intended input, the input, and the product of the
sequence of gates output by our algorithm, which ǫℓ-approximates U . For the first child, we have
Υ, Υ̂, Υ̃ where Υ = U , Υ̂ is a truncation of Û , and Υ̃ ǫℓ−1-approximates Υ. For the remaining
two children, we have V, V̂ , Ṽ and W,Ŵ , W̃ . However, in order to compute V̂ and Ŵ , we need to

somehow obtain a matrix ÛΥ̃† that is sufficiently close to UΥ̃†. We discuss this issue in Section
4.2.4 below; for now, let us assume that such a matrix is magically provided to us.

In this section we address the following issue. The algorithm as described in Section 4.2.1
recursively finds the sequences corresponding to Ṽ and W̃ , and it stores these two sequences since
they both need to be used twice in the returned sequence (once as is, and once in reverse order
with each gate inverted). However, we do not have enough space to store the sequences.

The standard approach for avoiding the space overhead of storing intermediate results in a
computation is to recompute the intermediate results whenever they are needed. However, in our
case this would increase the running time to at least 2Ω(L2) (since the sequence for a node at level
ℓ has length 2Ω(ℓ) and thus the degree of the node would increase to at least 2Ω(ℓ)), which would
defeat our goal of maintaining a polylog(1/ǫ) running time.12

We must ask each recursive call to output its sequence on the fly, in the order the gates are
to be applied, rather than returning the sequence for us to manipulate. To generate the sequence
corresponding to Ũ = Ṽ W̃ Ṽ †W̃ †Υ̃, we can make a call on Υ̂ to generate the prefix corresponding
to Υ̃, and calls on Ŵ then V̂ to generate the suffix corresponding to Ṽ W̃ . We just need to worry
about generating the middle part corresponding to Ṽ †W̃ †. Note that we cannot just make calls on
Ŵ † then V̂ †, since a call on Ŵ † would output some sequence whose product approximates W † but is
not guaranteed to be the inverse of W̃ , as required for the mathematics behind the algorithm to go
through. The correct idea is to augment the procedure with an additional input indicating whether
the sequence corresponding to Ũ should be output “forward” or “inverse” (the latter meaning that
the order is reversed and each gate is inverted). Then to obtain the sequence corresponding to Ũ ,

we can make a forward call on Υ̂, then inverse calls on Ŵ then V̂ , then forward calls on Ŵ then
V̂ . Unless, of course, the current call is in inverse mode, in which case we should make inverse calls
on V̂ then Ŵ , then forward calls on V̂ then Ŵ , then an inverse call on Υ̂.

12One might naively think that this technique could still be interesting since it might lead to a o(log(1/ǫ)) space
algorithm (if we do not care about the running time) by avoiding even writing down the intermediate matrices.

However, this does not work: it turns out that because of the need to recompute
d
U eΥ†, just the recordkeeping for all

the backtracking would already take ω(log(1/ǫ)) space. This is why we say the O(log(1/ǫ)) space bound is optimal.

29

Now, the notation Ũ refers to the product of the gates that would be output if the call is in
forward mode.

4.2.4 Obtaining the Matrix ÛΥ̃†

If we had a matrix
̂̃
Υ within δℓ of Υ̃, then we could multiply Û with

̂̃
Υ

†

to obtain a matrix within

3δℓ of UΥ̃†, which is good enough for the computation of V̂ , Ŵ . But how do we obtain
̂̃
Υ? Note

that Υ̃ can be represented exactly as a sequence of gates from S. However, what we need is
(good approximations to) the entries of the matrix Υ̃, which we must obtain by multiplying (good
approximations to) the matrices corresponding to the gates in the sequence that comprises Υ̃.

A relatively simple way of obtaining
̂̃
Υ is as follows (see Section 4.3.4 for some more streamlined

ways). Before making the five regular recursive calls, we make a forward call on Υ̂ but use a flag
to indicate that no actual output should be produced; the algorithm should just “go through the

motions” for the purpose of finding
̂̃
Υ. Now at a leaf, there may be several calls on the path to

the root that indicated that no output should be produced. If there are any such calls, then the
leaf should not produce any actual output. Note that we cannot simply ask the dummy call to

return
̂̃
Υ, since then the current call might be a similar dummy call that needs to return a matrix

approximating Ũ within δℓ+1, and we would not have enough information to do that.
If we hypothetically made a call on Υ̂ in forward mode with the output flag on, there would

be 5ℓ−1 leaves in Υ’s subtree that produced actual output (i.e., were called with the output flag
on). Let Υ1, . . . ,Υ5ℓ−1 and Υ̂1, . . . , Υ̂5ℓ−1 denote the intended and actual inputs to these leaves.

Then Υ̃ = Υ̃
mode

5ℓ−1

5ℓ−1 · · · Υ̃mode1

1 , where Υ̃i denotes the product of the sequence of gates that would
be output at Υi’s leaf if it were hypothetically called in forward mode with the output flag on (so
Υ̃i ǫ0-approximates Υi), and modei represents either † (if the leaf is in inverse mode) or nothing (if
the leaf is in forward mode).

The basic idea is to obtain
̂̃
Υ by multiplying together

̂̃
Υ

mode
5ℓ−1

5ℓ−1 · · ·
̂̃
Υ

mode1

1 , where
̂̃
Υi approxi-

mates Υ̃i within roughly δℓ/5
ℓ−1 and takes space O(log(5ℓ−1/δℓ)) ≤ O(log(1/δℓ)). However, doing

this multiplication exactly would take space O(5ℓ−1 · log(1/δℓ)), which is too large since ℓ is super-
constant in general. To keep the space down, we truncate the current matrix to O(log(1/δℓ)) bits
after each matrix is multiplied on. See Section 4.3.3 for the calculation proving that the approxi-
mation error does not grow too large. When we are at Υi’s node, we need to immediately multiply
̂̃
Υ

modei

i onto the current matrix (then truncate), and therefore the current matrix needs to have
been passed down through the recursion to Υi’s node.13 The updated matrix must be returned up
so that it can then be passed down to Υi+1’s node.

For any given leaf with input Û , there may be many nodes along the path to the root that
are “interested” in Ũ , at different levels of precision (namely, those nodes that are in the midst
of their dummy call, and such that if that dummy call were hypothetically made with the output
flag on, then the current leaf would also have the output flag on). We must pass around a list of
matrices, one for each such node. The space taken up by this list is a geometric sum dominated
by O(log(1/ǫ)), and we only need to maintain one copy of the list throughout the algorithm (since
when the list is passed to a recursive call, the caller does not need to retain a copy). Thus the
overall space bound is O(log(1/ǫ)).

13Alternatively, we could keep it in U ’s “stack frame” and directly modify it there.

30

4.3 Proof of Theorem 7

The essence of Theorem 7 is extracted in the following theorem. Let SU(d) denote the set of
unitary operators on C

d with determinant 1.

Theorem 8. For each constant integer d ≥ 2 there exists an ǫ∗ > 0 such that the following holds.
Suppose m is a positive integer and S ⊆ SU(d) is a finite set closed under adjoint such that for every
U ∈ SU(d) there exists a sequence U1, . . . , Uk ∈ S with k ≤ m such that

∥∥U−Uk · · ·U1

∥∥ ≤ ǫ∗. Then
for every U ∈ SU(d) and every ǫ > 0 there exists a sequence U1, . . . , Uk ∈ S with k ≤ polylog(1/ǫ)
such that

∥∥U − Uk · · ·U1

∥∥ ≤ ǫ. Moreover, such a sequence can be computed by a deterministic
algorithm running in time polylog(1/ǫ) and space O(log(1/ǫ)), given as input ǫ and matrices that
are at distance at most f(ǫ) from U and the gates in S, where f is a certain polynomial depending
on d.

The difference between Theorem 7 and Theorem 8 is that in Theorem 8, everything takes
place in SU(d) and global phase shifts are not allowed in the approximation guarantees; also, S
is only required to be able to approximate an arbitrary U within some fixed ǫ∗, but the length
of the approximating sequence must have an upper bound that is independent of U . Also, the
f -polynomials in the two theorems are not the same. In both theorems, the finite-precision input
matrices are required to approximate the intended unitary operators without global phase factors.

As we show in Section 4.3.1, Theorem 7 follows from Theorem 8. The main part of the reduction
deals with the problem that in Theorem 7, S can approximate every U up to global phase factors,
whereas in Theorem 8, global phase factors are not allowed. Resolving this issue is easy but not
trivial. Although this part of the reduction appears to be necessary for obtaining the Solovay-Kitaev
Theorem for arbitrary universal sets, we could not find it in the literature. The remaining part of
the reduction is just a technical argument showing that given a finite-precision approximation to
an operator in U(d), we can efficiently obtain finite-precision approximations to each global phase
shift of the operator that lies in SU(d). This involves using Taylor series and taking some care to
ensure the logarithmic space bound.

In Section 4.3.2 and Section 4.3.3 we give the proof of Theorem 8 for the case d = 2, to avoid
some technical issues that crop up in the general case. Although we do not attempt to optimize the
degree of the polylog in the running time, we mention a few ways to reduce this degree in Section
4.3.4. In Section 4.3.5 we explain how to modify the proof to work for arbitrary d.

We break up the proof of Theorem 8 for d = 2 into two parts. The first part, given in Section
4.3.2, is a lemma that forms the kernel of the algorithm. This lemma basically says that given any
U ∈ SU(2) such that ‖U−I‖ ≤ ǫ, we can produce V,W ∈ SU(2) such that for every Ṽ , W̃ ∈ SU(2)

with
∥∥V − Ṽ

∥∥,
∥∥W − W̃

∥∥ ≤ ǫ, we have
∥∥U − Ṽ W̃ Ṽ †W̃ †

∥∥ ≤ O(ǫ1.5). Moreover, we can do it with
essentially the minimum possible precision — less precision than a naive analysis of the standard
Solovay-Kitaev argument would yield. The second part, given in Section 4.3.3, constructs the full
algorithm using this key tool as the building block.

Before diving into the formal proof, we discuss two simple but relevant points regarding nu-
merical calculations. First, note that whenever a real number is guaranteed to be δ-close to some
intended real number, we can assume it has at most

⌈
log2(1/δ)

⌉
+ 1 bits past the radix point,

since with a slight change in parameters, we can guarantee that it is δ/2-close to the intended
number, and then truncate it while increasing the distance by at most δ/2. A similar statement
holds for matrices. Thus, throughout the whole proof, we tacitly assume that every matrix that is
δ-close to some intended matrix only takes up space O(log(1/δ)). Second, we need to do arithmetic

31

calculations on real numbers represented exactly in binary. We use the fact that addition, subtrac-
tion, and multiplication of such numbers can be performed by deterministic algorithms running in
polynomial time and linear space, and that division and square roots can be computed up to p bits
past the radix point by deterministic algorithms running in time polynomial in the input length
and p, and space linear in the input length and p.

4.3.1 Reduction from Theorem 7 to Theorem 8

Proof of Theorem 7. Fix a constant integer d ≥ 2 and let ǫ∗ be as in Theorem 8. Let f ′ denote the
f -polynomial from Theorem 8. Henceforth, all constants may depend on d.

Let S be as in Theorem 7, and obtain S′ for use in Theorem 8 as follows: for each gate U ∈ S,
include in S′ all global phase shifts of U that lie in SU(d). (Note that there are exactly d such
shifts, namely those corresponding to the dth roots of the complex conjugate of the determinant
of U , so S′ is finite.) Since S is closed under adjoint and the global phase shifts of U that lie in
SU(d) are the adjoints of the global phase shifts of U † that lie in SU(d), it follows that S′ is closed
under adjoint.

There exists a finite set T ⊆ U(d) such that every operator in SU(d) is at distance at most
ǫ∗/2c from some operator in T , where c is a constant to be specified later. By our assumption
on S, each operator in T is at distance at most ǫ∗/2c from a global phase shift of the product of
some sequence of gates in S. Let m be the maximum length of this sequence over all operators in
T . Then by the triangle inequality, for every U ∈ SU(d) there is a sequence U1, . . . , Uk ∈ S

′ with
k ≤ m such that

∥∥U − eiθUk · · ·U1

∥∥ ≤ ǫ∗/c for some global phase factor eiθ.
But there is a problem with the latter approximation: to use Theorem 8, we need θ = 0. We

can handle this as follows. It can be verified that
∥∥U − eiθUk · · ·U1

∥∥ ≤ ǫ∗/c implies that the
determinant (eiθ)d of eiθUk · · ·U1 satisfies

∣∣(eiθ)d− 1
∣∣ ≤ O(ǫ∗/c) and thus θ ∈ 2πj/d±O(ǫ∗/c) mod

2π, for some j ∈ {0, . . . , d − 1}. Therefore,
∥∥eiθUk · · ·U1 − e

2πij/dUk · · ·U1

∥∥ ≤ O(ǫ∗/c), and by the

triangle inequality we have
∥∥U − e2πij/dUk · · ·U1

∥∥ ≤ O(ǫ∗/c). Note that the right side of the latter
inequality is at most ǫ∗ provided c is large enough. If j = 0 then this is just what we want. If
j 6= 0, then we can turn e2πij/dUk · · ·U1 into a product of gates from S′ by multiplying say U1 by
e−2πij/d, which keeps it in S′ since in the definition of S′ we included all appropriate phase shifts
of each gate in S.

Now that we have m and S′ as required for Theorem 8, consider any U ∈ U(d) and let eiφU
be any global phase shift that lies in SU(d). Now provided we can obtain f ′(ǫ)-approximations to
eiφU and the gates in S′ in time polylog(1/ǫ) and space O(log(1/ǫ)) from f(ǫ)-approximations to
U and the gates in S, we can run the algorithm from Theorem 8 to find a sequence U1, . . . , Uk ∈ S

′

with k ≤ polylog(1/ǫ) such that
∥∥eiφU −Uk · · ·U1

∥∥ ≤ ǫ in time polylog(1/ǫ) and space O(log(1/ǫ)).
Since each Ui is a global phase shift of a gate in S, we can output the labels of the gates in S
corresponding to U1, . . . , Uk, and then some global phase shift of the resulting product will be at
distance at most ǫ from U .

Thus all we need to do is show that, given a matrix Û such that
∥∥Û − U

∥∥ ≤ f(ǫ) for some

(unknown) U ∈ U(d), we can efficiently compute matrices Û (1), . . . , Û (d) such that for each global
phase shift eiθU that lies in SU(d) there is a j such that

∥∥Û (j)−eiθU
∥∥ ≤ f ′(ǫ), where f is a certain

polynomial (depending on f ′).
Note that each of the real numbers comprising Û can be assumed to have only O(log(1/ǫ))

bits. The first step is to exactly compute det
(
Û
)
. This number is within poly(ǫ) of det(U), for an

32

arbitrarily high degree polynomial, provided f(ǫ) is small enough. The next step is to approximate
the angle of det(U) using either the arcsin function or the arccos function (depending on whether
the real or imaginary part of det

(
Û
)

is smaller in absolute value, to ensure fast convergence of
the Taylor series). Computing the Taylor series to O(log(1/ǫ)) terms ensures that the contribution
of the Taylor series truncation to the total absolute error is poly(ǫ). There is another poly(ǫ)
contribution to the total error coming from the error in the input approximation. However, we
cannot exactly evaluate the first O(log(1/ǫ)) terms on the approximate input for two reasons:
raising an O(log(1/ǫ))-bit number to the power O(log(1/ǫ)) would take space O(log2(1/ǫ)), and the
coefficients of the Taylor series involve division by numbers that are not powers of 2. The former
issue can be solved by truncating to O(log(1/ǫ)) bits after multiplying on each copy of the number;
this contributes poly(ǫ) to the total error. The latter issue can be solved by just doing division to
O(log(1/ǫ)) bits; this also contributes poly(ǫ) to the total error.

Now that we have a poly(ǫ)-approximation to the angle of det(U), we can approximately divide
by−d to get a poly(ǫ)-approximation to the angle of one of the correct phase shifts. The other angles
can be approximately obtained by adding multiples of 2π/d. To get poly(ǫ)-approximations to the
actual phase shifts, approximately convert these angles to the corresponding complex numbers on
the unit circle and multiply Û by the resulting numbers. This finishes the proof.

4.3.2 The Kernel (d = 2)

Our goal in this section is to prove the following result.

Lemma 2. There exist constants b, c, and ǫ0 > 0 such that the following holds. There is a
deterministic algorithm that, given parameter 0 < ǫ ≤ ǫ0, runs in time polylog(1/ǫ) and space
O(log(1/ǫ)) and achieves the following. The input is a matrix Û promised to have the following
property: there exists a U ∈ SU(2) such that

∥∥Û − U
∥∥ ≤ 3bǫ1.5/c and ‖U − I‖ ≤ ǫ. The output

is two matrices V̂ , Ŵ having the following property: there exist V,W ∈ SU(2) such that
∥∥V̂ −

V
∥∥,
∥∥Ŵ − W

∥∥ ≤ ǫ/c and for every Ṽ , W̃ ∈ SU(2) with
∥∥V − Ṽ

∥∥,
∥∥W − W̃

∥∥ ≤ ǫ, we have∥∥U − Ṽ W̃ Ṽ †W̃ †
∥∥ ≤ bǫ1.5.

We first give some setup for the proof. Recall that SU(d) denotes the set of unitary operators
on C

d with determinant 1 under multiplication, and let su(d) denote the set of skew-hermitian
operators on C

d with trace 0 under addition. The identity in SU(d) is I, and the identity in su(d)
is 0. There is a bijection between U ∈ SU(d) with ‖U − I‖ < 2 and F ∈ su(d) with ‖F − 0‖ < π,
given by the logarithm map ln : SU(d) → su(d) and the exponential map exp : su(d) → SU(d).
Throughout this section, we always assume that operators in SU(d) are at distance < 2 from I
and that operators in su(d) are at distance < π from 0, so that we may move freely between
these two domains. In the SU(d) domain we make use of the group commutator, defined as
[V,W]gp = V WV †W †; note that [V,W]gp ∈ SU(d) if V,W ∈ SU(d). In the su(d) domain we make
use of the commutator, defined as [G,H] = GH −HG; note that [G,H] ∈ su(d) if G,H ∈ su(d).
We also need the following facts relating distances in the two domains.

Fact 2. If U1, U2 ∈ SU(d) with corresponding F1, F2 ∈ su(d) are such that ‖F1 − F2‖ ≤ δ, then
‖U1 − U2‖ ≤ O(δ).

Fact 3. If U ∈ SU(d) with corresponding F ∈ su(d) is such that ‖U−I‖ ≤ δ, then ‖F−0‖ ≤ O(δ).

33

Fact 2 follows from Corollary 6.2.32 in [21], which states that for all d× d complex matrices A
and E,

∥∥ exp(A + E)− exp(A)
∥∥ ≤ ‖E‖e‖E‖+‖A‖. Fact 3 is a partial converse to Fact 2 in the case

U2 = I. Actually, the more precise relation ‖U − I‖ = 2 sin
(

1
2‖F − 0‖

)
holds, but Fact 3 as stated

is all we need.

Proof of Lemma 2. We leave b and c free for now and decide how to set them later. We just let
ǫ0 > 0 be small enough to make all the big O’s and little o’s in the argument work. Throughout
this section, constants hidden in big O’s may depend on b, c, and d (though it turns out the form of
the dependence on b and c matters). Significant portions of the proof work for arbitrary d ≥ 2 (and
are used for the generalization to d > 2 described in Section 4.3.5), so we present those portions
for general d. Let ǫ, Û , and U be as in the statement of Lemma 2.

The standard proof of the kernel lemma in the general Solovay-Kitaev Theorem uses the fol-
lowing three structural results.

Fact 4. If U ∈ SU(d) with corresponding F ∈ su(d) is such that ‖U − I‖ ≤ δ, then there exist
V,W ∈ SU(d) with corresponding G,H ∈ su(d) such that F = [G,H] and ‖V − I‖, ‖W − I‖ ≤
O(δ0.5).

Fact 5. If U, V,W ∈ SU(d) with corresponding F,G,H ∈ su(d) are such that F = [G,H] and
‖V − I‖, ‖W − I‖ ≤ δ, then

∥∥U − [V,W]gp

∥∥ ≤ O(δ3).

Fact 6. If V,W, Ṽ , W̃ ∈ SU(d) are such that ‖V − I‖, ‖W − I‖ ≤ δ and
∥∥V − Ṽ

∥∥,
∥∥W − W̃

∥∥ ≤ γ,
then

∥∥∥[V,W]gp −
[
Ṽ , W̃

]
gp

∥∥∥ ≤ O(δγ + γ2).

Proofs of Fact 4 can be found in [9, 23]. Fact 5 follows from basic results in Lie theory,14 or
just using the infinite series for matrix exponentiation. A proof of Fact 6 can be found in [9]. The
existence of V,W as in Lemma 2 follows from these three facts. Specifically, let V,W ∈ SU(d) be

as guaranteed by Fact 4 (with δ = ǫ). Then for every Ṽ , W̃ ∈ SU(d) with
∥∥V − Ṽ

∥∥,
∥∥W −W̃

∥∥ ≤ ǫ,
we have
∥∥∥U −

[
Ṽ , W̃

]
gp

∥∥∥ ≤
∥∥U − [V,W]gp

∥∥+
∥∥∥[V,W]gp −

[
Ṽ , W̃

]
gp

∥∥∥ ≤ O(ǫ1.5) +O(ǫ1.5) ≤ O(ǫ1.5)

by Fact 5 (with δ = Θ(ǫ0.5)) and Fact 6 (with δ = Θ(ǫ0.5) and γ = ǫ).
Fact 4 is the only step that needs to be turned into an algorithm. That is, given an approxi-

mation to some U ∈ SU(d) such that ‖U − I‖ ≤ ǫ, we would like to compute approximations to
some V,W ∈ SU(d) such that F = [G,H] and ‖V − I‖, ‖W − I‖ ≤ O(ǫ0.5), where F,G,H ∈ su(d)
correspond to U, V,W . However, it turns out that this is a bit too ambitious of a goal: we only have
an approximation to U within roughly ǫ1.5, which is not good enough to be able to find approxima-
tions to some correct V,W within roughly ǫ, due to loss in precision in the numerical calculations.15

Instead, we shoot for the following revised goal: to find good enough approximations to some V,W
such that ‖V − I‖, ‖W − I‖ ≤ O(ǫ0.5) and [G,H] = F ′ where ‖F −F ′‖ ≤ O(ǫ1.5). This is sufficient

14The commutator is the bracket for the Lie algebra su(d) of the Lie group SU(d).
15It turns out we need to ensure that the product of ‖G − 0‖ and ‖H − 0‖ is roughly ‖F − 0‖ while keeping these

two quantities ≤ O(ǫ0.5), so the algorithm must do something tantamount to computing a square root, which could
cause the absolute error to get almost square rooted in the worst case.

34

because then by Fact 2, ‖U −U ′‖ ≤ O(ǫ1.5) (where U ′ ∈ SU(d) corresponds to F ′) and so for every

Ṽ , W̃ ∈ SU(d) with
∥∥V − Ṽ

∥∥,
∥∥W − W̃

∥∥ ≤ ǫ, we have

∥∥∥U −
[
Ṽ , W̃

]
gp

∥∥∥ ≤ ‖U − U ′‖+
∥∥∥U ′ −

[
Ṽ , W̃

]
gp

∥∥∥ ≤ O(ǫ1.5) +O(ǫ1.5) ≤ O(ǫ1.5)

by Fact 5 and Fact 6.
To achieve this revised goal, we follow the natural approach, which is to attempt to compute

F ′ from U , then G,H from F ′, then V,W from G,H. For the second step, of course, we need to
know a very accurate approximation to F ′ (this is the whole reason for introducing F ′: we do not
have a good enough approximation to F). In fact, in the first step we shall compute a suitable F ′

exactly. Formally, here are the three steps.

(1) Given Û such that
∥∥Û − U

∥∥ ≤ 3bǫ1.5/c for some U ∈ SU(d) with ‖U − I‖ ≤ ǫ, compute
F ′ ∈ su(d) exactly such that ‖F − F ′‖ ≤ O(ǫ1.5), where F ∈ su(d) corresponds to U .

(2) Given F ′ ∈ su(2) such that ‖F ′−0‖ ≤ O(ǫ), compute Ĝ, Ĥ such that
∥∥Ĝ−G

∥∥,
∥∥Ĥ−H

∥∥ ≤ o(ǫ)
for some G,H ∈ su(2) with F ′ = [G,H] and ‖G− 0‖, ‖H − 0‖ ≤ O(ǫ0.5).

(3) Given Ĝ, Ĥ such that
∥∥Ĝ−G

∥∥,
∥∥Ĥ−H

∥∥ ≤ o(ǫ) for someG,H ∈ su(d) with ‖G−0‖, ‖H−0‖ ≤

O(ǫ0.5), compute V̂ , Ŵ such that
∥∥V̂ −V

∥∥,
∥∥Ŵ −W

∥∥ ≤ ǫ/c, where V,W ∈ SU(d) correspond
to G,H.

We have restricted to d = 2 in step (2) because this is the only part that does not work for
d > 2 within the desired space bound. We can stitch these three steps together to accomplish the
revised goal (from the previous paragraph) as follows. To connect step (1) to step (2), note that
‖F ′ − 0‖ ≤ O(ǫ) since by Fact 3, ‖F − 0‖ ≤ O(ǫ). Also note that ‖V − I‖, ‖W − I‖ ≤ O(ǫ0.5)

by Fact 2. Thus, as in the previous paragraph, we conclude that for every Ṽ , W̃ ∈ SU(d) with∥∥V − Ṽ
∥∥,
∥∥W − W̃

∥∥ ≤ ǫ, we have

∥∥∥U −
[
Ṽ , W̃

]
gp

∥∥∥ ≤ O(ǫ1.5).

It turns out that the constant in this big O is a1b/c + a2 for some constants a1, a2 (which may
depend on d). We can make this quantity at most b by setting b = a2 + 1 and c = a1b. This gives
us what we want, provided each of the three steps runs in time polylog(1/ǫ) and space O(log(1/ǫ)).

We first describe step (3), since it is the simplest. We just compute V̂ = I + Ĝ + Ĝ2/2 and

Ŵ = I + Ĥ + Ĥ2/2. Using the Taylor series for the exponential it can be verified that

∥∥V̂ − V
∥∥ ≤

∥∥V̂ − (I +G+G2/2)
∥∥ +

∥∥(I +G+G2/2)− V
∥∥ ≤ o(ǫ) +O(ǫ1.5) ≤ ǫ/c,

and similarly for W . This takes care of step (3).
We now describe step (1). First compute F̂ = Û−I. Using the Taylor series for the exponential

it can be verified that

∥∥F̂ − F
∥∥ ≤

∥∥F̂ − (U − I)
∥∥+

∥∥(U − I)− F
∥∥ ≤ O(ǫ1.5) +O(ǫ2) ≤ O(ǫ1.5).

If F̂ ∈ su(d) then we can take F ′ = F̂ and be done. Otherwise, we obtain F ′ ∈ su(d) from F̂
as follows. To make it skew-hermitian, we set the real parts of the diagonal entries to 0, and

35

forget the entries below the diagonal and replace them with the negative complex conjugates of the
corresponding entries above the diagonal. Then to make it have trace 0, we replace an arbitrary
diagonal entry with the negative sum of the other diagonal entries. Using the facts that F ∈ su(d)
and

∥∥F̂ − F
∥∥ ≤ O(ǫ1.5), it can be verified that

∥∥F̂ − F ′
∥∥ ≤ O(ǫ1.5) and thus ‖F − F ′‖ ≤ O(ǫ1.5).

This takes care of step (1).
Finally, we describe step (2). This is the only part where we must restrict our attention to d = 2.

When d > 2, we do not know how to do this within the target space efficiency, due to significant
roundoff errors resulting from divisions in the standard matrix diagonalization algorithms (but
there is a workaround, which we discuss in Section 4.3.5). When d = 2, a single step of the
Jacobi eigenvalue algorithm [17] can be used to diagonalize F ′, and then an algorithm meeting our
efficiency constraints can be gleaned from the proof in [9] of Fact 4 (taking some care to avoid
significant roundoff errors). Rather than give more details about this approach, we describe a more
direct and elegant approach using so-called Pauli vectors (based on the proof of the Solovay-Kitaev
Theorem for d = 2 in [27]).

Let f ′ = (f ′X , f
′
Y , f

′
Z) ∈ R

3 be such that
(
0,− i

2f
′
X ,−

i
2f

′
Y ,−

i
2f

′
Z

)
are the coordinates of F ′ in

the basis of Pauli matrices I,X, Y, Z (note that since F ′ ∈ su(2), the I-coordinate must be 0 and
the others must be imaginary). Then f ′ is called the Pauli vector of F ′ (or of U ′). The Pauli
vector has a geometric interpretation in terms of the action of U ′ on the Bloch sphere,16 but this
is immaterial for us. What is important is that for all G,H ∈ su(2), the Pauli vector of [G,H] is
the cross product of the Pauli vectors of G and H (see Appendix 3 of [27]).

The Euclidean distance between Pauli vectors is within constant factors of the distance between
the associated operators in su(2). Thus ‖f ′‖ ≤ O(ǫ), and we seek Pauli vectors g, h ∈ R

3 (associated
with some G,H ∈ su(2)) such that g × h = f ′ and ‖g‖, ‖h‖ ≤ O(ǫ0.5). Further, given F ′ we can
compute f ′ by a simple change of basis, and given vectors ĝ, ĥ ∈ R

3 such that
∥∥ĝ−g

∥∥,
∥∥ĥ−h

∥∥ ≤ o(ǫ),
we can do the reverse change of basis to obtain matrices Ĝ, Ĥ such that

∥∥Ĝ−G
∥∥,
∥∥Ĥ−H

∥∥ ≤ o(ǫ).17
Thus, the bottom line is the following: given f ′ ∈ R

3 we wish to compute ĝ, ĥ ∈ R
3 such that∥∥ĝ − g

∥∥,
∥∥ĥ − h

∥∥ ≤ o(ǫ) for some g, h ∈ R
3 such that f ′, g, h are mutually perpendicular and

‖g‖, ‖h‖ = ‖f ′‖0.5.
If f ′ = (0, 0, 0) then this is trivial; otherwise, assume for example that either f ′Y 6= 0 or

f ′Z 6= 0. Then let g′ = f ′ × (1, 0, 0) and h′ = f ′ × g′, and note that we can compute g′ and h′

exactly. Define g = ‖f ′‖0.5 · g′ / ‖g′‖ and h = ‖f ′‖0.5 · h′ / ‖h′‖. We show how to obtain an
approximation ĝX to gX ; the cases of other coordinates, as well as h, are symmetric. Note that
gX =

(
sgn g′X

)
·
(
‖f ′‖ · (g′X)2

/
‖g′‖2

)0.5
. We can approximate this as follows. Compute (g′X)2

and ‖g′‖2 exactly and take the quotient to within ǫ3. Compute ‖f ′‖2 exactly and take the square
root to within ǫ3. Then take the product of these two approximations; the result approximates
‖f ′‖ · (g′X)2

/
‖g′‖2 within O(ǫ3). Then take the square root within ǫ1.5, and finally multiply by

sgn g′X . The result is within
√
O(ǫ3) + ǫ1.5 ≤ o(ǫ) of gX .

Analyzing the running time and space usage of the algorithm is straightforward. Each real num-
ber the algorithm uses can be written with O(log(1/ǫ)) bits past the radix point, and so arithmetic
operations on these numbers can all be computed in time polylog(1/ǫ) and space O(log(1/ǫ)). This
concludes the proof of Lemma 2.

16U ′ rotates the Bloch sphere by ‖f ′‖ radians about the unit vector in direction f ′.
17It happens to be the case that bG, bH ∈ su(2) and bg,bh are their Pauli vectors, but this is immaterial for us.

36

4.3.3 The Full Algorithm (d = 2)

Proof of Theorem 8 (d = 2). Let f(ǫ) be a certain polynomial, which we can take to be a sufficiently
high power of ǫ. Let b, c, and ǫ0 > 0 be the constants guaranteed by Lemma 2. We can assume
bǫ1.5

0 < ǫ0 < 1 and c ≥ 4 since in Lemma 2 we can take ǫ0 arbitrarily small and c arbitrarily large.
For integers ℓ > 0 define ǫℓ = bǫ1.5

ℓ−1. Let ǫ∗ = ǫ0/c. Let S and m be as hypothesized in Theorem 8.

Let compute-VW(ℓ, Û) be the algorithm from Lemma 2 that takes Û and outputs V̂ and Ŵ , using
ǫ = ǫℓ−1. Then we claim that Algorithm 1 witnesses Theorem 8.

Algorithm 1: Algorithm for Theorem 8

Input: parameter ǫ > 0, matrices at distance at most f(ǫ) from U and the gates in S
Output: sequence U1, . . . , Uk ∈ S such that

∥∥U − Uk · · ·U1

∥∥ ≤ ǫ
let L ≥ 0 be the smallest integer such that ǫL ≤ ǫ
let matrix Û be such that

∥∥Û − U
∥∥ ≤ ǫL/c

compute-sequence(L, Û , forward, on)

In Algorithm 1, the procedure compute-sequence (which is given in a separate figure) takes an
integer ℓ ≥ 0 and a finite-precision matrix Û which is close to some “intended” operator U ∈ SU(2)
and finds a sequence of gates from S whose product Ũ satisfies

∥∥U − Ũ
∥∥ ≤ ǫℓ. The procedure

also takes as input mode, indicating whether the sequence should be inverted (see Section 4.2.3),
and flag, indicating whether the procedure should output the sequence (see Section 4.2.4). It also

takes finite-precision matrices M̂L, . . . , M̂ℓ+1 where M̂j is associated with the node at level j on the
current path to the root in the recursion tree. If the latter node is in the process of computing an
approximation to its own Υ̃, it does so by multiplying together a sequence of matrices and truncating
after each is multiplied on (see Section 4.2.4), and M̂j represents the current intermediate value

in this computation. The input M̂j can be the symbol ?, which indicates that the node at level j

is not “interested” in Ũ . The correctness of Algorithm 1 follows immediately from the following
inductive claim. We analyze the time and space complexity after the proof of this claim.

Claim 3. For every integer 0 ≤ ℓ ≤ L and every matrix Û with
∥∥Û − U

∥∥ ≤ ǫℓ/c for some

U ∈ SU(2), there exists a Ũ ∈ SU(2) with
∥∥U − Ũ

∥∥ ≤ ǫℓ such that if we execute

compute-sequence(ℓ, Û , mode, flag, M̂L, . . . , M̂ℓ+1)

then the following three properties hold.

(i) If flag = off then no output is produced.

(ii) If flag = on then the output is a sequence of gates from S whose product equals Ũ (if mode =
forward) or Ũ † (if mode = inverse).

(iii) For each j ∈ {ℓ+ 1, . . . , L}, if M̂j 6= ? and
∥∥M̂j −Mj

∥∥ ≤ δ for some Mj ∈ SU(2) and some

δ ≥ 0, then the returned value of M̂j satisfies M̂j 6= ? and

∥∥M̂j − ŨMj

∥∥ ≤ (1 + δ)
(
1 + ǫj/(2c · 5

j−1)
)5ℓ

− 1 (if mode = forward)

or ∥∥M̂j − Ũ
†Mj

∥∥ ≤ (1 + δ)
(
1 + ǫj/(2c · 5

j−1)
)5ℓ

− 1 (if mode = inverse).

37

Procedure compute-sequence(ℓ, Û , mode, flag, M̂L, ..., M̂ℓ+1)

Input: integer 0 ≤ ℓ ≤ L, matrix Û , mode ∈ {forward, inverse}, flag ∈ {on, off}, list of

matrices M̂L, . . . , M̂ℓ+1

Output: sequence of gates from S satisfying the properties in Claim 3
Returns: updated list of matrices M̂L, . . . , M̂ℓ+1 satisfying the properties in Claim 3

if ℓ = 0 then1

find U1, . . . , Uk ∈ S with k ≤ m such that
∥∥Û − Ũ

∥∥ ≤ ǫ∗ + 2ǫ0/c where Ũ = Uk · · ·U12

if flag = on then3

if mode = forward then output the labels of U1, . . . , Uk4

else if mode = inverse then output the labels of U †
k , . . . , U

†
15

end6

for j ← 1 to L do7

if M̂j 6= ? then8

compute
̂̃
U such that

∥∥̂̃U − Ũ
∥∥ ≤ ǫj/(4c · 5j−1)9

if mode = forward then M̂j ←
̂̃
UM̂j truncated to O(log(1/ǫj)) bits10

else if mode = inverse then M̂j ←
̂̃
U

†

M̂j truncated to O(log(1/ǫj)) bits11

end12

end13

else if ℓ > 0 then14

Υ̂← Û truncated to O(log(1/ǫℓ−1)) bits15

(
?, . . . , ?,

̂̃
Υ
)
← compute-sequence(ℓ− 1, Υ̂, forward, off, ?, . . . , ?, I)16

(
V̂ , Ŵ

)
←compute-VW(ℓ, Û

̂̃
Υ

†

)17

if mode = forward then18 (
M̂L, . . . , M̂ℓ+1, ?

)
← compute-sequence(ℓ− 1, Υ̂, forward, flag, M̂L, . . . , M̂ℓ+1, ?)19 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, Ŵ , inverse, flag, M̂L, . . . , M̂ℓ+1, ?)20 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, V̂ , inverse, flag, M̂L, . . . , M̂ℓ+1, ?)21 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, Ŵ , forward, flag, M̂L, . . . , M̂ℓ+1, ?)22 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, V̂ , forward, flag, M̂L, . . . , M̂ℓ+1, ?)23

else if mode = inverse then24 (
M̂L, . . . , M̂ℓ+1, ?

)
← compute-sequence(ℓ− 1, V̂ , inverse, flag, M̂L, . . . , M̂ℓ+1, ?)25 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, Ŵ , inverse, flag, M̂L, . . . , M̂ℓ+1, ?)26 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, V̂ , forward, flag, M̂L, . . . , M̂ℓ+1, ?)27 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, Ŵ , forward, flag, M̂L, . . . , M̂ℓ+1, ?)28 (

M̂L, . . . , M̂ℓ+1, ?
)
← compute-sequence(ℓ− 1, Υ̂, inverse, flag, M̂L, . . . , M̂ℓ+1, ?)29

end30

end31

return M̂L, . . . , M̂ℓ+132

38

Proof of Claim 3. We begin with the base case ℓ = 0. We know that there exists a sequence
U1, . . . , Uk ∈ S with k ≤ m such that

∥∥Û − Uk · · ·U1

∥∥ ≤ ǫ∗ + ǫ0/c since there exists a sequence
U1, . . . , Uk ∈ S with k ≤ m such that

∥∥U − Uk · · ·U1

∥∥ ≤ ǫ∗ by our assumption on S. Thus
by trying all possible sequences (using the fact that S is finite) and considering a (hardcoded)
finite approximation to each sequence within a sufficiently small constant, the algorithm can find a
sequence U1, . . . , Uk ∈ S with k ≤ m such that

∥∥Û−Uk · · ·U1

∥∥ ≤ ǫ∗+2ǫ0/c, and thus line 2 succeeds.
By the triangle inequality, this sequence satisfies

∥∥U − Uk · · ·U1

∥∥ ≤ ǫ∗ + 3ǫ0/c = 4ǫ0/c ≤ ǫ0 since
c ≥ 4. Thus properties (i) and (ii) hold by lines 3-6.

To verify property (iii), fix j ∈ {1, . . . , L} and assume M̂j 6= ? and
∥∥M̂j −Mj

∥∥ ≤ δ for some
Mj ∈ SU(2) and some δ ≥ 0. Line 9 can be accomplished using the known matrices at distance at
most f(ǫ) from the gates in S. Suppose mode = forward (the case mode = inverse is similar). Let

M̂ ′
j denote the returned value of M̂j (computed in line 10). To show that

∥∥M̂ ′
j − ŨMj

∥∥ ≤ (1 + δ)
(
1 + ǫj/(2c · 5

j−1)
)50

− 1,

by the triangle inequality it suffices to show the following three inequalities.

∥∥M̂ ′
j −

̂̃
UM̂j

∥∥ ≤ (1 + δ) · ǫj/(4c · 5
j−1) (3)

∥∥̂̃UM̂j − ŨM̂j

∥∥ ≤ (1 + δ) · ǫj/(4c · 5
j−1) (4)

∥∥ŨM̂j − ŨMj

∥∥ ≤ δ (5)

To prove Inequality (3), note that truncating to O(log(1/ǫj)) bits with a suitably large constant in
the big O ensures that the left side is actually at most ǫj/(4c · 5

j−1). Inequality (4) follows from

the facts that
∥∥ ̂̃U − Ũ

∥∥ ≤ ǫj/(4c · 5
j−1) and

∥∥M̂j

∥∥ ≤ (1 + δ) (the latter following from the facts

that ‖Mj‖ = 1 and
∥∥M̂j −Mj

∥∥ ≤ δ). Inequality (5) follows from the facts that
∥∥Ũ
∥∥ = 1 and∥∥M̂j −Mj

∥∥ ≤ δ.
We now carry out the induction step. Assuming the claim holds for ℓ − 1, we prove it for ℓ.

Property (i) follows trivially from the induction hypothesis, since if flag = off then all recursive
calls are made with flag = off.

By choosing a suitably large constant in the big O on line 15, we have
∥∥Υ̂−Υ

∥∥ ≤ ǫℓ−1/c where

Υ = U . Let Υ̃ ∈ SU(2) be the operator (depending only on Υ̂ and ℓ − 1) guaranteed by the

induction hypothesis. Then
∥∥Υ− Υ̃

∥∥ ≤ ǫℓ−1, and
̂̃
Υ found on line 16 satisfies

∥∥̂̃Υ− Υ̃
∥∥ ≤

(
1 + ǫℓ/(2c · 5

ℓ−1)
)5ℓ−1

− 1 ≤ eǫℓ/2c − 1 ≤ (1 + ǫℓ/c)− 1 = ǫℓ/c

(using M̂ℓ = Mℓ = I and δ = 0). Also, no output is produced by the call on line 16.
It follows that

∥∥UΥ̃† − I
∥∥ ≤ ǫℓ−1 and

∥∥Û ̂̃Υ
†

− UΥ̃†
∥∥ ≤ 3ǫℓ/c.

By Lemma 2 (using Û
̂̃
Υ

†

in place of Û , UΥ̃† in place of U , and ǫℓ−1 in place of ǫ), there exist

V,W ∈ SU(2) such that
∥∥V̂ − V

∥∥,
∥∥Ŵ −W

∥∥ ≤ ǫℓ−1/c (where V̂ , Ŵ are as computed on line 17)

and for every Ṽ , W̃ ∈ SU(2) with
∥∥V − Ṽ

∥∥,
∥∥W − W̃

∥∥ ≤ ǫℓ−1, we have

∥∥UΥ̃† − Ṽ W̃ Ṽ †W̃ †
∥∥ ≤ ǫℓ.

39

In particular, this last inequality holds for the operators Ṽ , W̃ whose existence is guaranteed by
the induction hypothesis applied to V̂ and Ŵ . Defining Ũ = Ṽ W̃ Ṽ †W̃ †Υ̃, we have

∥∥U − Ũ
∥∥ ≤ ǫℓ.

Property (ii) is now immediate from lines 19-23 (if mode = forward) or 25-29 (if mode = inverse),

using the induction hypothesis applied to Υ̂, V̂ , and Ŵ .
To verify property (iii), fix j ∈ {ℓ+ 1, . . . , L} and assume M̂j 6= ? and

∥∥M̂j −Mj

∥∥ ≤ δ for some
Mj ∈ SU(2) and some δ ≥ 0. Assume mode = forward (the case mode = inverse is similar). After

line 19, by the induction hypothesis applied to Υ̂, we have

∥∥M̂j − Υ̃Mj

∥∥ ≤ (1 + δ)
(
1 + ǫj/(2c · 5

j−1)
)5ℓ−1

− 1.

After line 20, by the induction hypothesis applied to Ŵ (with Υ̃Mj in place of Mj and (1 + δ)
(
1 +

ǫj/(2c · 5
j−1)

)5ℓ−1

− 1 in place of δ), we have

∥∥M̂j − W̃
†Υ̃Mj

∥∥ ≤ (1 + δ)
(
1 + ǫj/(2c · 5

j−1)
)2·5ℓ−1

− 1.

Continuing with lines 21, 22, and 23, we find that the returned value of M̂j satisfies

∥∥M̂j − Ṽ W̃ Ṽ †W̃ †Υ̃Mj

∥∥ ≤ (1 + δ)
(
1 + ǫj/(2c · 5

j−1)
)5ℓ

− 1.

Since Ṽ W̃ Ṽ †W̃ †Υ̃ = Ũ , we are done. This concludes the proof of Claim 3.

We now analyze the time and space complexity of Algorithm 1. We start with the space
complexity.

Each of the matrices the algorithm needs to deal with (the ones with â) is associated with

some level. (For example, M̂j is at level j,
̂̃
U on line 9 is at level j, and for lines 15-17, Û and

̂̃
Υ

are at level ℓ while Υ̂, V̂ , and Ŵ are at level ℓ − 1.) Each matrix at level ℓ is poly(ǫℓ)-close to
some intended unitary operator and thus only takes space O(log(1/ǫℓ)). By Lemma 2, the call on
line 17 only takes space O(log(1/ǫℓ−1)) ≤ O(log(1/ǫ)). Now we just need to verify that at every
point during the execution of the algorithm, each level ℓ has at most a constant number of matrices
associated with it; then the total space usage is

∑L
ℓ=0O(log(1/ǫℓ)) ≤ O(log(1/ǫ)).

Each node on the path to the root only needs to keep track of its input Û , as well as
̂̃
Υ, Υ̂,

V̂ , and Ŵ , so this is fine. Regarding the list of matrices M̂L, . . . , M̂1, we only need to store one
matrix M̂j at a time, for each j. This is because for the call on line 16, we can store M̂L, . . . , M̂ℓ+1

and these matrices are never touched during the execution of that call. For the calls on lines 19-29,
we pass the list M̂L, . . . , M̂ℓ+1 to each call and do not need to store the old values while the call
executes.

It is straightforward to verify that the total running time is at most polylog(1/ǫ): the processing
time for each node in the recursion tree is polylog(1/ǫ), and the tree has depth O(log log(1/ǫ)) and
each node has six children, so the size of the recursion tree is polylog(1/ǫ). This finishes the proof
of Theorem 8 for the case d = 2.

4.3.4 Optimizations

Although we did not focus on optimizing the degree of the polylog in the running time, we now
briefly mention a few simple optimizations. First, when procedure compute-sequence is called

40

with mode = forward, the recursive call on line 16 can be folded into the call on line 19 as follows.

(
M̂L, . . . , M̂ℓ+1,

̂̃
Υ
)
← compute-sequence(ℓ− 1, Υ̂, forward, flag, M̂L, . . . , M̂ℓ+1, I)

(Then the call to compute-VW must come after this line.) This saves one recursive call when
mode = forward, but six calls are still used when mode = inverse.

As a further optimization, we show how to modify the algorithm so that five calls suffice in both
cases (at a constant factor cost in space). To achieve this, first interchange V and V † (as well as W

and W †) throughout the algorithm and the proof. Then Ũ = Ṽ †W̃ †Ṽ W̃ Υ̃, and the forward case

first makes forward calls on Υ̂ then Ŵ then V̂ , then inverse calls on Ŵ then V̂ , while the inverse
case first makes forward calls on V̂ then Ŵ , then inverse calls on V̂ then Ŵ then Υ̂. Note that
now all forward calls precede all inverse calls. If mode = forward, then as we pointed out above,
̂̃
Υ can be obtained through the first recursive call without the need for a special dummy call. The

point of the reshuffling is the following: we claim that when mode = inverse, the desired matrix
̂̃
Υ

must have been computed at some time in the past, so we can remember it rather than making a
dummy call, and further, the total space for all matrices that need to be “in storage” at any point
during the computation is only O(log(1/ǫ)). To see this, first note that for an intended input U
to a node at level ℓ, the algorithm finds operators, each expressed as a sequence of gates from S,
that approximate U within ǫ0, . . . , ǫℓ−1 at levels 0, . . . , ℓ−1, as well as finite-precision matrices that
approximate these operators within the corresponding ǫj+1/c. Suppose the algorithm is modified
so that whenever an inverse call is made, the list of these finite-precision matrices is provided as

additional input. Then the desired
̂̃
Υ can be read off as the last matrix in the list, but we now must

check that the invariant can be maintained. When an inverse call makes its final call, which is also
an inverse call, it can just pass on the first ℓ − 1 matrices in the list. All other inverse calls that
can occur are of V̂ -type or Ŵ -type. For these cases, the node that made the call previously made
a forward call on the same V̂ or Ŵ (by the reshuffling). This node can store the list for V and
the list for W , which were computed during these forward calls, and then pass on the lists to the
corresponding inverse calls. By a geometric sum, the space to store these two lists is O(log(1/ǫℓ))
where ℓ is the level of the node. Since we only need to store a pair of lists at each node along the
current path to the root, by another geometric sum we find that the total space overhead of these
lists is O(log(1/ǫ)).

Kitaev [23] has shown that the length of the output sequence in the standard Solovay-Kitaev
algorithm can be reduced to O(log3+δ(1/ǫ)) for every positive constant δ. He accomplishes this
by rearranging the two main ingredients (the translation step from U to UΥ̃† to get into the
neighborhood of the identity, and the kernel lemma, which only works in the neighborhood of the
identity) in a much more careful way, using the fact that the kernel lemma produces operators that
are somewhat close to the identity. This leads to a complicated recursion tree.

4.3.5 Generalization to Arbitrary Dimensions

When d > 2 we do not know how to prove the kernel lemma (Lemma 2) with the optimal O(log(1/ǫ))
space bound, due to the apparent need to diagonalize a skew-hermitian matrix: the known numer-
ical methods for doing this seem to need to store very accurate approximations (requiring large
space) in order to combat roundoff errors from the divisions. However, when d > 2 we can prove a
result similar to Lemma 2 but in which the algorithm produces ǫ/c-approximations to four oper-

ators V1,W1, V2,W2 ∈ SU(d) such that for every Ṽ1, W̃1, Ṽ2, W̃2 ∈ SU(2) with
∥∥V1 − Ṽ1

∥∥,
∥∥W1 −

41

W̃1

∥∥,
∥∥V2−Ṽ2

∥∥,
∥∥W2−W̃2

∥∥ ≤ ǫ, we have
∥∥U−Ṽ1W̃1Ṽ

†
1 W̃

†
1 Ṽ2W̃2Ṽ

†
2 W̃

†
2

∥∥ ≤ bǫ1.5. (In this result b, c,
and ǫ0 may depend on d.) The idea is due to Nagy [26], and it allows us to bypass the diagonaliza-
tion and replace it with simpler calculations which can be performed in small space with sufficient
accuracy (at a cost in the degree of the running time).18 We now describe this modification to
Lemma 2; the overall architecture discussed in Section 4.3.3 is then trivial to adapt.

Recall that the problem is step (2): given a matrix F ′ ∈ su(d) such that ‖F ′ − 0‖ ≤ O(ǫ),
we would like to compute good approximations to some G,H ∈ su(d) such that F ′ = [G,H] and
‖G − 0‖, ‖H − 0‖ ≤ O(ǫ0.5). There are proofs in [9, 23] that such G,H exist. The proof in [9]
involves converting to an orthonormal basis in which all diagonal entries in F ′ are 0 (an off-diagonal
matrix), doing some simple manipulations, and then converting back to the computational basis.
Converting to an off-diagonal matrix can be done by first diagonalizing and then conjugating by a
Fourier matrix.

Conjugation by a Fourier matrix does not present any numerical problems, and neither do
the simple manipulations. Thus the diagonalization is the only obstacle. Nagy’s idea is to write
F ′ = F ′

1 + F ′
2 where F ′

1 ∈ su(d) is the diagonal part in the computational basis and F ′
2 ∈ su(d)

is the off-diagonal part in the computational basis. Then ‖F ′
1 − 0‖, ‖F ′

2 − 0‖ ≤ O(ǫ), and we can
decompose F ′

1 = [G1,H1] and F ′
2 = [G2,H2] where ‖G1−0‖, ‖H1−0‖, ‖G2−0‖, ‖H2−0‖ ≤ O(ǫ0.5)

and obtain o(ǫ)-approximations to G1,H1, G2,H2 in time polylog(1/ǫ) and space O(log(1/ǫ)) using
simple numerical calculations. What good is this? Suppose U ′, U ′

1, U
′
2 ∈ SU(d) correspond to

F ′, F ′
1, F

′
2. Then using the fact that ‖F ′

1 − 0‖, ‖F ′
2 − 0‖ ≤ O(ǫ), it can be shown (Problem 8.16 in

[23]) that
∥∥U ′ − U ′

1U
′
2

∥∥ ≤ O(ǫ2). It follows from Fact 5 and Fact 6 that for every Ṽ1, W̃1 ∈ SU(2)

with
∥∥V1 − Ṽ1

∥∥,
∥∥W1 − W̃1

∥∥ ≤ ǫ (where as usual V1,W1 ∈ SU(d) correspond to G1,H1), we have

∥∥∥U ′
1−
[
Ṽ1, W̃1

]
gp

∥∥∥ ≤
∥∥U ′

1− [V1,W1]gp

∥∥+
∥∥∥[V1,W1]gp−

[
Ṽ1, W̃1

]
gp

∥∥∥ ≤ O(ǫ1.5)+O(ǫ1.5) ≤ O(ǫ1.5),

and similarly for U ′
2. Thus, we have

∥∥∥U −
[
Ṽ1, W̃1

]
gp

[
Ṽ2, W̃2

]
gp

∥∥∥ ≤ ‖U − U ′‖+
∥∥U ′ − U ′

1U
′
2

∥∥+
∥∥∥U ′

1U
′
2 −

[
Ṽ1, W̃1

]
gp

[
Ṽ2, W̃2

]
gp

∥∥∥
≤ O(ǫ1.5) +O(ǫ2) +O(ǫ1.5)

≤ O(ǫ1.5),

which is what we wanted to show.

5 Time-Space Lower Bound

In this section we develop one application of our time-space efficient simulation of quantum compu-
tations by unbounded-error randomized computations, namely time-space lower bounds for quan-
tum algorithms solving problems closely related to satisfiability. We provide background on this
research area in Section 5.1. In Section 5.2 we derive Theorem 3 and mention some extensions. We
present some directions for further research in Section 5.3.

18Nagy’s motivation was that diagonalization is generally not available in implementations of systems for symbolic
computation.

42

5.1 Background

Satisfiability, the problem of deciding whether a given Boolean formula has at least one satisfying
assignment, has tremendous practical and theoretical importance. It emerged as a central problem
in complexity theory with the advent of NP-completeness in the 1970’s. Proving lower bounds on
the complexity of satisfiability remains a major open problem. Complexity theorists conjecture
that satisfiability requires exponential time and linear space to solve in the worst case. Despite
decades of effort, the best single-resource lower bounds for satisfiability on general-purpose models
of computation are still the trivial ones — linear for time and logarithmic for space. However, since
the late 1990’s we have seen a number of results that rule out certain nontrivial combinations of
time and space complexity.

One line of research [14, 15, 34, 12, 35], initiated by Fortnow, focuses on proving stronger and
stronger time lower bounds for deterministic algorithms that solve satisfiability in small space. For
subpolynomial (i.e., no(1)) space bounds, the current record [35] states that no such algorithm can
run in time O(nc) for any c < 2 cos (π/7) ≈ 1.8019.

A second research direction aims to strengthen the lower bounds by considering more powerful
models of computation than the standard deterministic one. Diehl and Van Melkebeek [12] initiated
the study of lower bounds for problems related to satisfiability on randomized models with bounded
error. They showed that for every integer ℓ ≥ 2, ΣℓSAT cannot be solved in time O(nc) by
subpolynomial-space randomized algorithms with bounded two-sided error for any c < ℓ, where
ΣℓSAT denotes the problem of deciding the validity of a given fully quantified Boolean formula with
ℓ alternating blocks of quantifiers beginning with an existential quantifier. ΣℓSAT represents the
analogue of satisfiability for the ℓth level of the polynomial-time hierarchy; Σ1SAT corresponds to
satisfiability. Proving nontrivial time-space lower bounds for satisfiability on randomized algorithms
with bounded two-sided error remains open.

Allender et al. [2] considered the even more powerful (but physically unrealistic) model of
randomized algorithms with unbounded error. They settled for problems that are even harder
than ΣℓSAT for any fixed ℓ, namely MajSAT and MajMajSAT, the equivalents of satisfiability and
Σ2SAT in the counting hierarchy. MajSAT is the problem of deciding whether a given Boolean
formula is satisfied for at least half of the assignments to its variables. MajMajSAT is the problem
of deciding whether a given Boolean formula ϕ on disjoint variable sets y and z has the property
that for at least half of the assignments to y, ϕ is satisfied for at least half of the assignments to
z. Toda [31] proved that the polynomial-time hierarchy reduces to the class PP, which represents
polynomial-time randomized computations with unbounded two-sided error and forms the first level
of the counting hierarchy. Apart from dealing with harder problems, the quantitative strength of
the time bounds in the Allender et al. lower bounds is also somewhat weaker. They showed that no
randomized algorithm can solve MajMajSAT in time O(n1+o(1)) and space O(n1−δ) for any positive
constant δ.

We refer to [25] for a detailed survey of the past work on time-space lower bounds for satisfiability
and related problems, including a presentation of the Allender et al. lower bound that is somewhat
different from the original one.

5.2 Results

This paper studies the most powerful model that is considered physically realistic, namely quantum
algorithms with bounded error. We obtain the first nontrivial time-space lower bound for quantum

43

algorithms solving problems related to satisfiability. In the bounded two-sided error randomized
setting, the reason we can get lower bounds for ΣℓSAT for ℓ ≥ 2 but not for ℓ = 1 relates to the
fact that we know efficient simulations of such randomized computations in the second level of the
polynomial-time hierarchy but not in the first level. In the quantum setting we know of no efficient
simulations in any level of the polynomial-time hierarchy. As an application of our simulation by
unbounded-error randomized algorithms, we bring the lower bounds of Allender et al. to bear on
quantum algorithms. We show that either a time lower bound holds for quantum algorithms solving
MajMajSAT or a time-space lower bound holds for MajSAT (Theorem 3). In particular, we get a
single time-space lower bound for MajMajSAT (Corollary 1). We use the following general lower
bound on unbounded-error randomized algorithms, which is implicit in [2].

Theorem 9 (Allender et al. [2]). For every real d and every positive real δ there exists a real
c > 1 such that either

• MajMajSAT does not have an unbounded-error randomized algorithm running in time O(nc),
or

• MajSAT does not have an unbounded-error randomized algorithm running in time O(nd) and
space O(n1−δ).

Proof of Theorem 3. This follows immediately from Theorem 1 and Theorem 9 if we absorb the
time and space overheads of Theorem 1 into the relationship among the parameters c, d, and δ.

Proof of Corollary 1. This follows immediately from Theorem 3 because MajSAT trivially reduces
to MajMajSAT, and a quantum algorithm running in time O(n1+o(1)) and space O(n1−δ) trivially
runs in time O(nc) for every c > 1.

By exploiting the full power of Theorem 4 and Theorem 5, we can weaken the conditions on the
error and the complexity of the transition amplitudes in Theorem 3. For example, combining Theo-
rem 4 with Theorem 9 yields a stronger version of Theorem 3 that holds for quantum algorithms M
with error ǫ ≤ 1/2−1/nO(1) and such that each number in A(M) has a

(
2o(p), 2o(p)

)
-approximator.

5.3 Future Directions

Several questions remain open regarding time-space lower bounds on quantum models of computa-
tion. An obvious goal is to obtain a quantitative improvement to our lower bound. It would be nice
to get a particular constant c > 1 such that MajMajSAT cannot be solved by quantum algorithms
running in O(nc) time and subpolynomial space. The lower bound of Allender et al. does yield this;
however, the constant c is very close to 1, and determining it would require a complicated analysis
involving constant-depth threshold circuitry for iterated multiplication [20]. Perhaps there is a way
to remove the need for this circuitry in the quantum setting.

A major goal is to prove quantum time-space lower bounds for problems that are simpler than
MajMajSAT. Ideally we would like lower bounds for satisfiability itself, although lower bounds
for its cousins in PH or ⊕P would also be very interesting. The difficulty in obtaining such lower
bounds arises from the fact that we know of no simulations of quantum computations in these
classes. The known time-space lower bounds for satisfiability and related problems follow the
indirect diagonalization paradigm, which involves assuming the lower bound does not hold and then
deriving a contradiction with a direct diagonalization result. For example, applying this paradigm

44

to quantum algorithms solving ΣℓSAT would entail assuming that ΣℓSAT has an efficient quantum
algorithm. Since ΣℓSAT is complete for the class ΣℓP under very efficient reductions, this hypothesis
gives a general simulation of the latter class on quantum algorithms. To reach a contradiction with
a direct diagonalization result, we seem to need a way to convert these quantum computations back
into polynomial-time hierarchy computations.

Obtaining a single time-space lower bound for MajSAT instead of MajMajSAT may be within
reach. Recall that Theorem 9 only needs two types of inclusions to derive a contradiction. Under the
hypothesis that MajSAT has a bounded-error quantum algorithm running in time O(n1+o(1)) and
space O(n1−δ), Theorem 1 yields the second inclusion but not the first. One can use the hypothesis
to replace the second majority quantifier of a MajMajSAT formula with a quantum computation.
However, we do not know how to use the hypothesis again to remove the first majority quantifier,
because the hypothesis only applies to majority-quantified deterministic computations. Fortnow
and Rogers [16] prove that PPBQP = PP, and their proof shows how to absorb the “quantumness”
into the majority quantifier so that we can apply the hypothesis again. However, their proof
critically uses time-expensive amplification and is not efficient enough to yield a lower bound for
MajSAT via Theorem 9. It might be possible to exploit the space bound to obtain a more efficient
inclusion. It might also be possible to exploit more special properties of the construction in [2] to
circumvent the need for the amplification component.

Acknowledgments

We thank Sue Coppersmith, Scott Diehl, John Watrous, and anonymous reviewers for helpful
comments and pointers.

References

[1] L. Adleman, J. DeMarrais, and M. Huang. Quantum Computability. SIAM Journal on Com-
puting, 26(5): 1524-1540, 1997.

[2] E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay. Time-Space Tradeoffs in the
Counting Hierarchy. In Proceedings of the 16th IEEE Conference on Computational Complex-
ity, pages 295-302, 2001.

[3] E. Allender and M. Ogihara. Relationships Among PL, #L, and the Determinant. RAIRO -
Theoretical Informatics and Applications, 30: 1-21, 1996.

[4] E. Allender and K. Wagner. Counting Hierarchies: Polynomial Time and Constant Depth
Circuits. In G. Rozenberg and A. Salomaa, editors, Current Trends in Theoretical Computer
Science, pages 469-483, World Scientific, 1993.

[5] A. Barenco. A Universal Two-Bit Gate for Quantum Computation. Proceedings of the Royal
Society A, 449: 679-683, 1995.

[6] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin,
and H. Weinfurter. Elementary Gates for Quantum Computation. Physical Review A, 52:
3457-3467, 1995.

45

[7] E. Bernstein and U. Vazirani. Quantum Complexity Theory. SIAM Journal on Computing,
26(5): 1411-1473, 1997.

[8] P. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan. A New Universal and Fault-
Tolerant Quantum Basis. Information Processing Letters, 75(3): 101-107, 2000.

[9] C. Dawson and M. Nielsen. The Solovay-Kitaev Algorithm. Quantum Information and Com-
putation, 6(1): 81-95, 2006.

[10] D. Deutsch. Quantum Computational Networks. Proceedings of the Royal Society A, 425:
73-90, 1989.

[11] D. Deutsch, A. Barenco, and A. Ekert. Universality in Quantum Computation. Proceedings
of the Royal Society A, 449: 669-677, 1995.

[12] S. Diehl and D. van Melkebeek. Time-Space Lower Bounds for the Polynomial-Time Hierarchy
on Randomized Machines. SIAM Journal on Computing, 36(3): 563-594, 2006.

[13] D. DiVincenzo. Two-Bit Gates are Universal for Quantum Computation. Physical Review A,
51: 1015-1022, 1995.

[14] L. Fortnow. Time-Space Tradeoffs for Satisfiability. Journal of Computer and System Sciences,
60(2): 337-353, 2000.

[15] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-Space Lower Bounds for
Satisfiability. Journal of the ACM, 52(6): 835-865, 2005.

[16] L. Fortnow and J. Rogers. Complexity Limitations on Quantum Computation. Journal of
Computer and System Sciences, 59(2): 240-252, 1999.

[17] G. Golub and C. Van Loan. Matrix Computations, 3rd edition. The Johns Hopkins University
Press, 1996.

[18] L. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the
28th ACM Symposium on Theory of Computing, pages 212-219, 1996.

[19] A. Harrow, B. Recht, and I. Chuang. Efficient Discrete Approximations of Quantum Gates.
Journal of Mathematical Physics, 43(9): 4445-4451, 2002.

[20] W. Hesse. Division is in Uniform TC0. In Proceedings of the 28th International Colloquium
On Automata, Languages, and Programming, pages 104-114, 2001.

[21] R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press, 1994.

[22] A. Kitaev. Quantum Computations: Algorithms and Error Correction. Russian Mathematical
Surveys, 52(6): 1191-1249, 1997.

[23] A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation. American Mathe-
matical Society, 2002.

[24] S. Lloyd. Almost Any Quantum Logic Gate is Universal. Physical Review Letters, 75: 346-349,
1995.

46

[25] D. van Melkebeek. A Survey of Lower Bounds for Satisfiability and Related Problems. Foun-
dations and Trends in Theoretical Computer Science, 2: 197-303, 2007.

[26] A. Nagy. On an Implementation of the Solovay-Kitaev Algorithm. arXiv:quant-ph/0606077v1

[27] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[28] S. Perdrix and P. Jorrand. Classically Controlled Quantum Computation. Mathematical
Structures in Computer Science, 16(4): 601-620, 2006.

[29] Y. Shi. Both Toffoli and Controlled-NOT Need Little Help to Do Universal Quantum Com-
putation. Quantum Information and Computation, 3(1): 84-92, 2003.

[30] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer. SIAM Journal on Computing, 26(5): 1484-1509, 1997.

[31] S. Toda. PP is as Hard as the Polynomial Time Hierarchy. SIAM Journal on Computing,
20(5): 865-877, 1991.

[32] J. Watrous. On the Complexity of Simulating Space-Bounded Quantum Computations. Com-
putational Complexity, 12(1-2): 48-84, 2003.

[33] J. Watrous. Space-Bounded Quantum Complexity. Journal of Computer and System Sciences,
59(2): 281-326, 1999.

[34] R. Williams. Inductive Time-Space Lower Bounds for SAT and Related Problems. Computa-
tional Complexity, 15(4): 433-470, 2006.

[35] R. Williams. Time-Space Tradeoffs for Counting NP Solutions Modulo Integers. Computational
Complexity, 17(2): 179-219, 2008.

47

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

