Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 149 (2010)

Rank Bounds for Design Matrices with Applications to
Combinatorial Geometry and Locally Correctable Codes
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Abstract

A (g, k,t)-design matrix is an m x n matrix whose pattern of zeros/non-zeros satisfies the
following design-like condition: each row has at most ¢ non-zeros, each column has at least
k non-zeros and the supports of every two columns intersect in at most ¢t rows. We prove
that for m > n, the rank of any (g, k, t)-design matrix over a field of characteristic zero (or
sufficiently large finite characteristic) is at least

(g’

Using this result we derive the following applications:

Impossibility results for 2-query LCCs over large fields. A 2-query locally correctable
code (LCC) is an error correcting code in which every codeword coordinate can be re-
covered, probabilistically, by reading at most two other code positions. Such codes
have numerous applications and constructions (with exponential encoding length) are
known over finite fields of small characteristic. We show that infinite families of such
linear 2-query LCCs do not exist over fields of characteristic zero or large characteristic
regardless of the encoding length.

Generalization of known results in combinatorial geometry. We prove a quantita-
tive analog of the Sylvester-Gallai theorem: Let vq,...,v,, be a set of points in C?
such that for every ¢ € [m] there exists at least dm values of j € [m] such that the
line through v;,v; contains a third point in the set. We show that the dimension of
{v1,..., v} is at most O(1/6%). Our results generalize to the high dimensional case
(replacing lines with planes, etc.) and to the case where the points are colored (as in
the Motzkin-Rabin Theorem).
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1 Introduction

In this work we study what combinatorial properties of matrices guarantee high algebraic rank,
where a property is combinatorial if it depends only on the zero/non-zero pattern of the matrix,
and not on the values of its entries. This question has a rich history in mathematics (see
Section 1.2), and some computer science motivations:

Locally correctable codes. A locally correctable code is an error correcting code in which
for every codeword y, given a corrupted version ¢ of y and an index ¢, one can recover
the correct value of y; from g by looking only at very few coordinates of . It is an open
question in coding theory to understand the tradeoffs between the fraction of errors, locality
(number of coordinates read) and rate (ratio of message length to codeword length) of such
codes, with very large gaps between the known upper bounds and lower bounds (see the
survey [Tre04]). The question is open even for linear codes, where the condition of being
locally correctable turns out to be equivalent to the existence of low weight codewords in
the dual codewords that are “well-spread” in some precise technical sense (see Section 7).
Because of the relation between the rate of the code and its dual, the question becomes
equivalent to asking whether this combinatorial “well-spreadness” condition guarantees
high rank.

Matrix rigidity. A longstanding question is to come up with an explicit matrix that is rigid
in the sense that its rank cannot be reduced by changing a small number of its entries.
Random matrices are extremely rigid, and sufficiently good explicit constructions will yield
lower bounds for arithmetic circuits [Val77], though we are still very far from achieving
this (see the survey [Lok09]). One can hope that a combinatorial property guaranteeing
large rank will be robust under small perturbations, and hence a matrix satisfying such a
property will automatically be rigid.

In both these cases it is crucial to obtain bounds on the rank that depend solely on the
zero/non-zero pattern of the matrix, without placing any restrictions on the non-zero coefficients.
For example, there are very strong bounds known for matrix rigidity under the restriction that
the non-zero coefficients have bounded magnitude (see Chapter 3 in [Lok09]), but they only
imply lower bounds in a very restricted model. In fact, there is a relation between the two
questions, and sufficiently good answers for the first question will imply answers for the second
one [Dvil0]. We stress that these two examples are in no way exhaustive. The interplay between
combinatorial and algebraic properties of matrices is a fascinating question with many potential
applications that is still very poorly understood.

1.1 Our Results

In this work we give a combinatorial property of complex matrices that implies high rank. While
not strong enough to prove rigidity results, we are able to use it to obtain several applications
in combinatorial geometry and locally correctable codes. Our main result is the following the-
orem, giving a lower bound on the rank of matrix whose non-zero pattern forms has certain



combinatorial-design like properties in the sense that the sets of non-zero entries in each column
have small intersections. (This theorem is restated as Theorem 3.2.)

Theorem 1 (Rank bound for design matrices). Let m > n. We say that an m x n complex
matriz A is a (q,k,t)-design matriz if every row of A has at most q non-zero entries, every
column of A has at least k non-zeroes entries, and the supports of every two columns intersect
in at most t rows. For every such A,

2
qg-t-n
>n—
rank(A) > n < % >

We also show that Theorem 1, and in fact any result connecting the zero/non-zero pattern
to rank, can be made to hold over arbitrary characteristic zero fields and also over fields of
sufficiently large (depending on m,n) finite characteristic.

1.1.1 Applications to Combinatorial Geometry

Our most immediate applications of Theorem 1 are to questions regarding line-point incidences.
Results on line-point incidences have recently found use in the area of computational complexity
in relation to pseudo-randomness [BKT04, BIW06] and de-randomization [KS09, SS10]. In this
setting we have an arrangement of a finite number of points in real or complex space. Every such
arrangement gives rise to a set of lines, namely, those lines that pass through at least two of the
points in the arrangement. Information about these lines can be converted, in some cases, into
information about the dimension of the set of points (i.e. the dimension of the space the points
span). Our rank theorem can be used to derive generalizations for two well-known theorems in
this area: the Sylvester-Gallai theorem and the Motzkin-Rabin theorem.

Generalizing the Sylvester-Gallai Theorem. The Sylvester-Gallai (SG for short) theorem
says that if m distinct points vy, . .., v, € R? are not collinear, then there exists a line that passes
through exactly two of them. In its contrapositive form the SG theorem says that if for every
i # j the line through v; and v; passes through a third point v, then dim{vi,...,v,} < 1,
where dim{vy,..., v} is the dimension of the smallest affine subspace containing the points.
This theorem was first conjectured by Sylvester in 1893 [Syl93], proved (in dual form) by Melchior
in 1940 [Mel40], and then independently conjectured by Erdos in 1943 [Erd43] and proved by
Gallai in 1944. The SG theorem has several beautiful proofs and many generalizations, see the
survey [BM90]. Over the complex numbers the (tight) bound on the dimension is 2 instead of
1. The complex version was first proven by Kelly [Kel86] using a deep results from algebraic
geometry, and more recently, an elementary proof was found by Elkies, Pretorius and Swanepoel
[ES06] who also proved it over the quaternions with an upper of 4 on the dimension.

We say that the points vy, ..., vy, (in R or C%) form a 6-SG configuration if for every i € [m]
there exists at least dm values of j € [m] such that the line through v;, v; contains a third point
in the set. Szemeredi and Trotter [ST83] showed that, when § is larger than some absolute
constant close to 1, then the dimension of a 0-SG configuration is at most one (over the reals).
We show the following generalization of their result to arbitrary § > 0 (and over the complex
numbers).



Theorem 2 (Quantitative SG theorem). If vy,...,v, € C? is a 6-SG configuration then
dim{vy, ..., v} < 13/562.

We note that one cannot replace the bound 13/62 of Theorem 2 with 1 or even with any
fixed constant, as one can easily create a §-SG configuration of dimension roughly 2/§ by placing
the points on 1/ lines. This is analogous to error correcting codes, where once the fraction &
of agreement between the original and corrupted codeword drops below half there can be no
unique decoding. In that sense our result can be thought of as a list decoding variant of the SG
theorem, whereas the result of [ST83] is its unique decoding variant. We also show an “average
case” version of the SG theorem, proving a bound on the dimension of a large subset of the
points under the assumption that there are many collinear triples (see Theorem 4.8).

We also prove a version of Theorem 4.3 with lines replaced by k-flats (k-dimensional affine
subspaces). This generalizes a theorem of Hansen [Han65, BE67] which deals with the case
a = 1. The statement of this result is technical and so we give it in Section 5 where it is also
proven.

Since our proofs use elementary (and purely algebraic) reductions to the rank theorem, they
hold over arbitrary fields of characteristic zero or of sufficiently large finite characteristic. This is
in contrast to many of the known proofs of such theorems which often rely on specific properties
of the real (or complex) numbers. However, we currently do not recover the full version of the
original SG theorem, in the sense that even for 6 = 1 we do not get a bound of 1 (or 2 for
complex numbers) on the dimension. (However, the term 13/§2 can be improved a bit in the
d =1 case to obtain a bound of 9 on the dimension.)

Generalizing the Motzkin-Rabin Theorem. The Motzkin-Rabin (MR for short) theorem
(see e.g. [BM90]) is an interesting variant of the Sylvester-Gallai theorem that states that if
points vy, . .., vy, € R? are colored either red or blue and there is no monochromatic line passing
through at least two points, then they are all collinear. As in the SG theorem, we obtain a
quantitative generalization of the MR theorem such that (letting b and r be the numbers of blue
and red points respectively), if for every blue (resp. red) point v, there are db blue (resp. dr
red) points v" where the line through v and v’ passes through a red (resp. blue) point, then
dim{vy,...,vm} < O(1/6%). We also prove a three colors variant of the MR theorem, showing
that if v1,..., v, are colored red, blue and green, and all lines are not monochromatic, then
dim{wy,..., vy} is at most some absolute constant.

1.1.2 Locally Correctable Codes

A (linear) g query locally correctable code ((g,d)-LCC for short) over a field F is a subspace
C C F" such that, given an element § that disagrees with some y € C in at most dn positions and
an index i € [n], one can recover y; with, say, probability 0.9, by reading at most g coordinates
of §. Over the field of two elements Fy the standard Hadamard code construction yields a (2,0)-
query LCC with dimension Q(log(n)) for constant § > 0 (see the survey [Tre04]). In contrast
we show that for every constant § > 0 there do not exist infinite family of such codes over the
complex numbers:



Theorem 3 (Impossibility of 2-query LCCs over C). If C is a 2-query LCC for § fraction of
errors over C, then dim(C) < O(1/47).

We note that the Hadamard construction does yield a locally decodable code over the com-
plex numbers with dimension (logn). Locally decodable codes are the relaxation of a locally
correctable codes where one only needs to be able to recover the coordinates of the original
message as opposed to the codeword. Thus over the complex numbers, there is a very strong
separation between the notions of locally decodable and locally correctable codes, whereas it is
consistent with our knowledge that for, say, Fo the rate/locality tradeoffs of both notions are
the same.

1.2 Related Work

The idea to use matrix scaling to study structural properties of matrices was already present in
[CPRO0]. This work, which was also motivated by the problem of matrix rigidity, studies the
presence of short cycles in the graphs of non-zero entries of a square matrix.

A related line of work on the rank of ‘design’ matrices is the work emerging from Hamada’s
conjecture [Ham73]. (See [JT09] for a recent result and more references.) Here, a design matrix
is defined using stricter conditions (each row/column has exactly the same number of non-zeros
and the intersections are also all of the same size) which are more common in the literature
dealing with combinatorial designs. In order to be completely consistent with this line of work
we should have called our matrices ‘approximate-design’ matrices. We chose to use the (already
overused) word ‘design’ to make the presentation more readable. We also note that considering
approximate designs only makes our results stronger. Hamada’s conjecture states that of all
zero/one matrices whose support comes from a design (in the stricter sense), the minimal rank
is obtained by matrices coming from geometric designs (in our language, Reed-Muller codes).
In contrast to this paper, the emphasis in this line of works is typically on small finite fields. We
note here that the connection between Hamada’s conjecture and LCCs was already observed by
Barkol, Ishai and Weinreb [BIW07] who also conjectured (over small fields) the ‘approximate-
design’ versions which we prove here for large fields.

Another place where the support of a matrix is connected to its rank is in graph theory
where we are interested in minimizing the rank of a (square, symmetric) real matrix which has
the same support as the adjacency matrix of a given graph. This line of work goes back for over
fifty years and has many applications in graph theory. See [FH07] for a recent survey on this
topic.

Over the reals we can also ask about the minimal rank of matrices with certain sign-pattern.
That is, given a matrix over {1,—1}, what is the minimal rank of a matrix which has the
same sign-pattern. This minimal rank is called the sign-rank of a matrix. The question of
coming up with (combinatorial or otherwise) properties that imply high sign-rank is one of
major importance and has strong connections to communication complexity, learning theory
and circuit complexity, among others. For a recent work with plenty of references see [RS08]. In
particular we would like to mention a connection to the work of Forster [For02] on the sign-rank
of the Hadamard matrix. (An earlier version of this work used a variant [Bar98, Harl0] of a
lemma from [For02] instead of the results of [RS89] on matrix scaling to obtain our main result.)



1.3 Organization

In Section 2 we give a high level overview of our techniques. In Section 3 we prove our main
result on the rank of design matrices. In Section 4 we prove our quantitative variants of the
Sylvester-Gallai theorem. In Section 5 we prove the high-dimensional analog of Theorem 4.3
where lines are replaced with flats. In Section 6 we prove our generalizations of the Motzkin-
Rabin theorem. In Section 7 we prove our results on locally correctable codes. In Section 8 we
show how our results extend to other fields. We conclude in Section 9 with a discussion of open
problems.

2 Our Techniques

We now give high-level proof overviews for some of our results.

2.1 Rank Lower Bounds for Design Matrices

Theorem 1 — the rank lower bound for design matrices — is proved in two steps. We now sketch
the proof, ignoring some subtleties and optimizations. The proof starts with the observation
that, as in the case of matrix rigidity and similar questions, the result is much easier to prove
given a bound on the magnitude of the non-zero entries. Indeed, if A is a (g, k, t)-design matrix
and all of its non-zero entries have absolute value in [1/¢, 1] for some constant ¢, then the n x n
matrix M = A*A is diagonally dominant, in the sense that for all i # j, my > k/c® but
|mij| < t. (Here A* denotes the conjugate transpose of A.) Thus one can use known results on
such matrices (e.g. [Alo09]) to argue that rank(A) > rank(M) > n — (ntc?/k)%. Our main idea
is to reduce to this case where the non-zero coefficients of A are (roughly) bounded using matriz
scaling.

A scaling A of a matrix A is obtained by multiplying for all 4, j, the i’th row of A by some
positive number p; and the j’th column of A by some positive number ;. Clearly, A and A share
the same rank and zero/non-zero pattern. We use known matrix-scaling results [Sin64, RS89]
to show that every (g, k, t)-design matrix A has a scaling in which every entry has magnitude at
most (roughly) 1 but its columns have norm at least (roughly) \/% We note that the typical
application of matrix-scaling was with respect to the £;-norm of the rows and columns. Here we
take a different path: We use scaling with respect to fo-norm.

We defer the description of this step to Section 3 but the high level idea is to use a theorem
of [RS89] that shows that such a scaling exists (in fact without the dependence on ¢) if A had
the property of not containing any large all-zero sub-matrix. While this property cannot be in
general guaranteed, we show that by repeating some rows of A one can obtain a matrix B that
has this property, and a scaling of B can be converted into a scaling of A. Since our lower bound
on the entry m;; in the bounded coefficient case (where again M = A*A) only used the fact that
the columns have large norms, we can use the same argument as above to lower bound the rank
of M, and hence of A.



2.2 Generalized Sylvester-Gallai Theorem

Recall that the quantitative SG theorem (Theorem 2) states that every J-SG configuration
V1,...,Vn, has dimension at most 13/62. Our proof of Theorem 2 uses Theorem 1 as follows.
Suppose for starters that every one of these lines passed through ezactly three points. Each
such line induces an equation of the form awv; + Bv; + yvr = 0. Now for m = dn?, let A be the
m X n matrix whose rows correspond to these equations. Since every two points participate in
only one line, A will be a (3,dn,1) design matrix, meaning that according to Theorem 1, A’s
rank is at least n — (%)2. Since A times the matrix whose rows are vy,...,v, is zero we have
dim{vy,...,v,} < n —rank(A). We thus get an upper bound of [9/4] = 2 on this dimension.
To handle the case when some lines contain more than three points, we choose in some careful
way from each line £ containing r points a subset of the (g) equations of the form above that it
induces on its points. We show that at some small loss in the parameters we can still ensure the
set of equations forms a design, hence again deriving a lower bound on its rank via Theorem 1.

Our method extend also to an “average case” SG theorem (Theorem 4.8), where one only
requires that the set of points supports many (i.e., Q(n?)) collinear triples and that each pair
of points appear together in a few collinear triples. In this case we are able to show that there
is a subset of Q(n) points whose span has dimension O(1). See Section 4 for more details. Our
generalizations of the Motzkin-Rabin theorem follow from our theorem on §-SG configurations
via simple reductions (see Section 6).

2.3 Locally Correctable Codes

At first sight, Theorem 3 — non existence of 2 query locally correctable codes over C — seems
like it should be an immediate corollary of Theorem 2. Suppose that a code C' maps C¢ to
C", and let v1,...,v, denote the rows of its generating matrix. That is, the code maps a
message © € C? to the vector ((vi,z),...,(vs,2)). The fact that C is a 2 query LCC for §
errors implies that for every such row v;, there are roughly dn pairs j, k such that v; is in the
span of {v;,v}. Using some simple scaling/change of basis, this gives precisely the condition
of being a 0-SG configuration, save for one caveat: In a code there is no guarantee that all
the vectors vy, ...,v, are distinct. That is, the code may have repeated coordinates that are
always identical. Intuitively it seems that such repetitions should not help at all in constructing
LCCs but proving this turned out to be elusive. In fact, our proof of Theorem 3 is rather more
complicated than the proof Theorem 2, involving repeated applications of Theorem 1 which
result also in somewhat poorer quantitative bounds. The idea behind the proof to use a variant
of the “average case” SG theorem to repeatedly find Q(n) points among vy, ..., v, whose span
has O(1) dimension, until there are no more points left. We defer all details to Section 7.

Given Theorem 1, one may have expected that Theorem 3 could be extended for LCCs of
any constant number ¢ of queries. After all, the condition of C' being an LCC intuitively seems
like only a slight relaxation of requiring that the dual code of C' has a generating matrix whose
non-zero pattern is a combinatorial design, and indeed in known constructions of LCCs, the
dual code does form a design. We are not, however, able to extend our results to 3 and more
queries. A partial explanation to our inability is that 3 query LCCs give rise to configuration
of planes (instead of lines) and point and planes exhibit much more complicated combinatorial



properties than lines.

3 Rank of Design Matrices

In this section we prove our main result which gives a lower bound on the rank of matrices
whose zero/non-zero pattern satisfies certain properties. We start by defining these properties
formally.

Definition 3.1 (Design matrix). Let A be an m x n matrix over some field. For i € [m] let
R; C [n] denote the set of indices of all non-zero entries in the ¢’th row of A. Similarly, let
Cj C [m], j € [n], denote the set of non-zero indices in the j’th column. We say that A is a
(g, k,t)-design matriz if

1. For all i € [m], |R;| <gq.
2. For all j € [n], |C}| > k.
3. For all j; # jo € [n], |Cj1 N CjQ‘ <t.

Theorem 3.2 (Restatement of Theorem 1 — rank of design matrices). Let A be an m x n
complex matriz. If A is a (g, k,t)-design matrixz then

2
qg-t-n
A >n—
rank(A) > n < ok >

Remark 3.3. The proof of the theorem actually holds under a slightly weaker condition on
the sizes of the intersections. Instead of requiring that |C;, N Cj,| < t for all pairs of columns
j1 # jo, it is enough to ask that

D 1CHLNCRP <

Nn#j2
That is, there could be some pairs with large intersection as long as the average of the squares
is not too large.

The proof of the theorem is given below, following some preliminaries.

3.1 Preliminaries for the Proof of Theorem 3.2

Notation: For a set of real vectors V' € C™ we denote by rank(V') the dimension of the vector
space spanned by elements of V. We denote the ¢o-norm of a vector v by [|v||. We denote by I,
the n x n identity matrix.

We start with definitions and results on matrix scaling.

Definition 3.4. [Matrix scaling] Let A be an m x n complex matrix. Let p € C™,v € C" be
two complex vectors with all entries non-zero. We denote by

SC(4,p,7)



the matrix obtained from A by multiplying the (7, j)’th element of A by p; -v;. We say that two
matrices A, B of the same dimensions are a scaling of each other if there exist non-zero vectors
p,7 such that B = SC(A, p,v). It is easy to check that this is an equivalence relation. We refer
to the elements of the vector p as the row scaling coefficients and to the elements of v as the
column scaling coefficients. Notice that two matrices which are a scaling of each other have the
same rank and the same pattern of zero and non-zero entries.

Matrix scaling originated in a paper of Sinkhorn [Sin64] and has been widely studied since
(see [LSWO00] for more background). The following is a special case of a theorem from [RS89]
that gives sufficient conditions for finding a scaling of a matrix which has certain row and column
sums.

Definition 3.5 (Property-S). Let A be an m x n matrix over some field. We say that A satisfies
Property-S if for every zero sub-matrix of A of size a x b it holds that

a by (1)
m n

Theorem 3.6 (Matrix scaling theorem, Theorem 3 in [RS89] ). Let A be an m X n real matrix
with non-negative entries which satisfies Property-S. Then, for every e > 0, there exists a scaling
A’ of A such that the sum of each row of A’ is at most 1 + € and the sum of each column of
A" is at least m/n — €. Moreover, the scaling coefficients used to obtain A’ are all positive real
numbers.

The proof of the theorem is algorithmic [Sin64]: Start by normalizing A’s rows to have sum
1, then normalize A’s columns to have sum m/n, then go back to normalizing the rows the have
sum 1, and so forth. It can be shown (using a suitable potential function) that this process
eventually transforms A to the claimed form (since A has Property-S).

We will use the following easy corollary of the above theorem.

Corollary 3.7 ((3-scaling). Let A = (a;;) be an mxn complex matriz which satisfies Property-S.
Then, for every € > 0, there exists a scaling A" of A such that for every i € [m)]

Z \aij\z <1l+e

JEN]

and for every j € [n]

Z lai;|? > m/n —e.

1€[m]

Proof. Let B = (b;;) = (|a;;|?). Then B is a real non-negative matrix satisfying Property-S.
Applying Theorem 3.6 we get that for all e > 0 there exists a scaling B’ = SC(B, p, ), with p,~
positive real vectors, which has row sums at most 1+4¢ and column sums at least m/n—e. Letting
Py = /pi and 7] = \/7; we get a scaling SC(A, p’,7') of A with the required properties. O

We will use a variant of a well known lemma (see for example [Alo09]) which provides a
bound on the rank of matrices whose diagonal entries are much larger than the off-diagonal
ones.



Lemma 3.8. Let A = (a;5) be an n xn complex hermitian matriz and let 0 < £ < L be integers.
Suppose that a;; > L for all i € [n] and that |a;;| < € for all i # j. Then

rank(A) 5 >N — (n/L)2.

=T n-(¢/L)

Proof. We can assume w.l.o.g. that a; = L for all ¢. If not, then we can make the inequality
into an equality by multiplying the i’th row and column by (L/a;)'/? < 1 without changing
the rank or breaking the symmetry. Let r = rank(A) and let \q,..., A, denote the non-zero
eigenvalues of A (counting multiplicities). Since A is hermitian we have that the A;’s are real.
We have

r 2 r n
yﬁﬁ::mm%<ZM>§wZﬁ=w§H%P
=1 =1

ij=1
< ro(n-L*+n*- 2.

Rearranging we get the required bound. The second inequality in the statement of the lemma
follows from the fact that 1/(1 +z) > 1 — z for all x. O

3.2 Proof of Theorem 3.2

To prove the theorem we will first find a scaling of A so that the norms (squared) of the columns
are large and such that each entry is small.

Our first step is to find an nk x n matrix B that will satisfy Property-S and will be composed
from rows of A s.t. each row is repeated with multiplicity between 0 and g. To achieve this we
will describe an algorithm that builds the matrix B iteratively by concatenating to it rows from
A. The algorithm will mark entries of A as it continues to add rows. Keeping track of these
marks will help us decide which rows to add next. Initially all the entries of A are unmarked.
The algorithm proceeds in k steps. At step i (i goes from 1 to k) the algorithm picks n rows
from A and adds them to B. These n rows are chosen as follows: For every j € {1,...,n} pick
a row that has an unmarked non-zero entry in the j’th column and mark this non-zero entry.
The reason why such a row exists at all steps is that each column contains at least k£ non-zero
entries, and in each step we mark at most one non-zero entry in each column.

Claim 3.9. The matriz B obtained by the algorithm has Property-S and each row of A is added
to B at most q times.

Proof. The n rows added at each of the k steps form an n X n matrix with non-zero diagonal.
Thus they satisfy Property-S. It is an easy exercise to verify that a concatenation of matrices
with Property-S also has this property. The bound on the number of times each row is added
to B follows from the fact that each row has at most ¢ non-zero entries and each time we add
a row to B we mark one of its non-zero entries. O

Our next step is to obtain a scaling of B and, from it, a scaling of A. Fix some ¢ > 0 (which
will later tend to zero). Applying Corollary 3.7 we get a scaling B’ of B such that the ¢3-norm
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of each row is at most /1 + € and the /-norm of each column is at least \/nk:/n —e=Vk—e
We now obtain a scaling A’ of A as follows: The scaling of the columns are the same as for B’.
For the rows of A appearing in B we take the maximal scaling coefficient used for these rows in
B', that is, if row 7 in A appears as rows i1,1%2, ...,iy in B, then the scaling coefficient of row ¢
in A" is the maximal scaling coefficient of rows 41,2, ...,iy in B’. For rows not in B, we pick
scaling coefficients so that their £2 norm (in the final scaling) is equal to 1.

Claim 3.10. The matriz A" is a scaling of A such that each row has fa-norm at most /1 + €
and each column has la-norm at least \/(k —€)/q.

Proof. The fact that the row norms are at most /1 + € is trivial. To argue about the column
norms observe that a column of B’ is obtained from repeating each non-zero element in the
corresponding column of A" at most ¢ times (together with some zeros). Therefore, if we denote
by ci,...,cs the non-zero entries in some column of A’, we have that

S
> milal? = k—e
i=1

where the m;’s are integers between 0 and ¢. In this last inequality we also relied on the fact
that we chose the maximal row scaling coeflicient among all those that correspond to the same

row in A. Therefore,
S

dolal = (k—o/a,
i=1
as required. ]

Our final step is to argue about the rank of A’ (which is the same as the rank of A). To this
end, consider the matrix
M — (Al)* . A,,
where (A’)* is A’ transposed conjugate. Then M = (m;;) is an n X n hermitian matrix. The
diagonal entries of M are exactly the squares of the fo-norm of the columns of A’. Therefore,

mii > (k—¢€)/q
for all i € [n].

We now upper bound the off-diagonal entries. The off-diagonal entries of M are the inner
products of different columns of A’. The intersection of the support of each pair of different
columns is at most t. The norm of each row is at most /1 4 €. For every two real numbers «, 8
so that a® + 82 < 1+ € we have |a - 8| < 1/2 + ¢, where € tends to zero as e tends to zero.
Therefore

Imil <t-(1/2+€)
for all ¢ # j € [n]. Applying Lemma 3.8 we get that
(124 €) -n\?
rank(A) = rank(A4’) > n — <q ( ]{: +€) n) .
—€

Since this holds for all € > 0 it holds also for € = 0, which gives the required bound on the rank
of A. O
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4 Sylvester-Gallai Configurations

In this section we prove the quantitative Sylvester-Gallai (SG) Theorem. We will be interested
with point configurations in real and complex space. These are finite sets of distinct points
v1,...,0, in R or C?. The dimension of a configuration is defined to be the dimension of the
smallest affine subspace containing all points.

Definition 4.1 (Special and ordinary lines). Let v1,...,v, € C% be a set of n distinct points
in d-dimensional complex space. A line £ passing through at least three of these points is called
a special line. A line passing through exactly two points is called an ordinary line.

Definition 4.2 (6-SG configuration). Let § € [0,1]. A set of n distinct points vy, ..., v, € C?
is called a §-SG configuration if for every i € [n], there exists a family of special lines L; all
passing through v; and at least dn of the points vy,...,v, are on the lines in L;. (Note that
each collection L; may cover a different subset of the n points.)

The main result of this section bounds the dimension of §-SG configurations for all 6 > 0.
Since we can always satisfy the definition by spreading the points evenly over 1/6 lines we know
that the dimension can be at least 2/ (and in fact in complex space at least 3/9). We prove an
upper bound of O(1/§2).

Theorem 4.3 (Restatement of Theorem 2 — quantitative SG theorem). Let § € (0,1]. Let
V1, ..., € C? be a 6-SG configuration. Then

dim{vy,...,v,} < 13/58°.
Moreover, the dimension of a 1-SG configuration is at most 10.

The constants in the proof have been optimized to the best of our abilities. Notice that in
the above theorem § can be dependant on n. For example, a (1/log(n))-SG configuration of n
points can have rank at most O(log(n)?).

4.1 Preliminaries to the Proof of Theorem 4.3

The notion of a latin square will turn out useful in the proof:

Definition 4.4 (Latin squares). An 7 x 7 latin square is an r x r matrix D such that D; ; € [r]
for all 4, j and every number in [r| appears exactly once in each row and in each column. A latin
square D is called diagonal if D;; =i for all i € [r].

Theorem 4.5 ([Hil73]). For every r > 3 there exists a diagonal r X r latin square.

We note that we use diagonal latin squares only to optimize constant factors. If one does
not care about such factors then there is a simple construction that serves the same goal.

The following lemma is an easy consequence of the above theorem.

Lemma 4.6. Let r > 3. Then there exists a set T C [r]* of r® — r triples that satisfies the
following properties:
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1. Each triple (t1,ta,t3) € T is of three distinct elements.
2. For each i € [r] there are exactly 3(r — 1) triples in T' containing i as an element.

3. For every pair i,j € [r| of distinct elements there are at most 6 triples in T which contain
both i and j as elements.

Proof. Let D be an r x r diagonal latin square which we know exists from Theorem 4.5. Define
T C [r]? to be the set of all triples (i, j, k) € [r]> with i # j such that D;; = k. The number of
such triples is 72 — r. Property 1 holds by the definition of diagonal latin square— we cannot
have D; ;j =i for j # i since D;; = i and every row in D has distinct as the (7,7) entry in D is
labeled ¢ for all ¢ € [r], and similarly we cannot have D; ; = j for i # j.

Let ¢ € [r]. By construction, there are r — 1 triples in 7" which have i as their first entry, and
r — 1 triples that have ¢ as their second entry. There are also r — 1 triples in T" which have i as

their last entry, since for every one of the r — 1 rows ¢/ # i there is exactly one location j' # ¢’ in
which the label i appears, and that contributes the triple (i, j',7) to T. This proves Property 2.

To prove Property 3 observe that two triples in 1" can agree in at most one place. For example,
knowing the row and column determines the label, knowing the row and label determines the
column, and so forth. Therefore, a pair (7, j) cannot appear in more than 6 triples since otherwise
there would have been at least two triples with 4, j at the same places, and these triples would
violate the above rule. O

4.2 Proof of Theorem 4.3
Let V be the n x d matrix whose i'th row is the vector v;. Assume w.l.o.g. that v; = 0. Thus

dim{vy,...,v,} = rank(V).

The overview of the proof is as follows. We will first build an m x n matrix A that will
satisfy A -V = 0. Then, we will argue that the rank of A is large because it is a design matrix.
This will show that the rank of V' is small.

Consider a special line ¢ which passes through three points v;,v;,v;. This gives a linear
dependency among the three vectors v;, vj, v, (we identify a point with its vector of coordinates
in the standard basis). In other words, this gives a vector a = (ay, ..., a,) which is non-zero only
in the three coordinates 7, j, k and such that a -V = 0. If a is not unique, choose an arbitrary
vector a with these properties.

Our strategy is to pick a family of collinear triples among the points in our configuration
and to build the matrix A from rows corresponding to these triples in the above manner.

Let £ denote the set of all special lines in the configuration (i.e. all lines containing at least
three points). Then each L; is a subset of £ containing lines passing through v;. For each ¢ € £
let V; denote the set of points in the configuration which lie on the line ¢. Then |V;| > 3 and we
can assign to it a family of triples 7y C V2, given by Lemma 4.6 (we identify V; with [r], where
r = |Vp| in some arbitrary way).

13



We now construct the matrix A by going over all lines £ € £ and for each triple in Ty adding
as a row of A the vector with three non-zero coefficients a = (aq,...,a,) described above (so
that a is the linear dependency between the three points in the triple).

Since the matrix A satisfies A -V = 0 by construction, we only have to argue that A is a
design matrix and bound its rank.

Claim 4.7. The matriz A is a (3,3k, 6)-design matriz, where k = |6n] — 1.

Proof. By construction, each row of A has exactly 3 non-zero entries. The number of non-zero
entries in column ¢ of A corresponds to the number of triples we used that contain the point v;.
These can come from all special lines containing v;. Suppose there are s special lines containing
v; and let rq,...,7s denote the number of points on each of those lines. Then, since the lines
through v; have only the point v; in common, we have that

s

Y (rj-1) >k

j=1

The properties of the families of triples Ty guarantee that there are 3(r; — 1) triples containing
v; coming from the j’th line. Therefore there are at least 3k triples in total containing v;.

The size of the intersection of columns i1 and io is equal to the number of triples containing
the points v;,, v;, that were used in the construction of A. These triples can only come from one
special line (the line containing these two points) and so, by Lemma 4.6, there can be at most
6 of those. O

Applying Theorem 3.2 we get that

3.6-n)\> 3-n \?
K(A) > n— > —
rank(4) 2 n (2-3/<:> =" <5n—2>

3.n-13\2
> n—(") >n—13/62,

11-dn

where the third inequality holds as dn > 13 since otherwise the theorem trivially holds. Since
A -V =0 we have that
rank(A) + rank(V) < n.

This implies that
rank(V) < 13/6%,

which completes the proof. For § = 1, the calculation above yields rank(V') < 11. O

4.3 Average-Case Version

In this section we use Theorem 4.3 to argue about the case where we only know that there are
many collinear triples in a configuration.
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Theorem 4.8 (Average-case SG theorem). Let V = {v1,...,v,,} C C? be a set of m distinct
points. Let T be the set of (unordered) collinear triples in V. Suppose |T| > am? and that every

two points v,v" in V appear in at most ¢ triples in T, then there exists a subset V' C V such
that |V'| > am/(2¢) and dim(V') < O(1/a?).

Notice that the bound on the number of triples containing a fixed pair of points is necessary
for the theorem to hold. If we remove this assumption than we could create a counter-example
by arranging the points so that m?/3 of them are on a line and the rest span the entire space.

Lemma 4.9. Let H be a 3-regular hypergraph with vertex set [m] and am? edges of co-degree
at most ¢ (i.e. for every i # j in [m], the set {i,j} is contained in at most ¢ edges). Then there
is a subset M C [m] of size [M| > am/(2¢c) so that the minimal degree of the sub-graph of H
induced by M is at least am/2.

Proof. We describe an iterative process to find M. We start with M = [m]. While there exists
a vertex of degree less than arm/2, remove this vertex from M and remove all edges containing
this vertex from H. Continuing in this fashion we conclude with a set M such that every point
in M has degree at least am/2. This process removed in total at most m - am/2 edges and
thus the new H still contains at least am?/2 edges. As the co-degree is at most c, every vertex
appears in at most cm edges. Thus, the size of M is of size at least am/(2c). O

Proof of Theorem 4.8. The family of triples T" defines a 3-regular hypergraph on V of co-degree
at most ¢. Lemma 4.9 thus implies that there is a subset V' C V of size |V'| > am/(2¢) that is
an (a/2)-SG configuration. By Theorem 4.3, V' has dimension at most O(1/a?). O

5 Robust SG Theorem for k-Flats

In this section we prove two high-dimensional analogs of the SG theorem. Let fl(vy,...,vx)
(fl for ‘flat’) denote the affine span of k points (i.e. the points that can be written as linear
combinations with coefficients that sum to one). We call vy, ..., v independent if their flat is
of dimension k£ — 1 (dimension means affine dimension), and say that vy,..., v, are dependent
otherwise. A k-flat is an affine subspace of dimension k.

In the following V is a set of n distinct points in complex space C?. A k-flat is called ordinary
if its intersection with V' is contained in the union of a (k — 1)-flat and a single point. A k-flat
is elementary if its intersection with V' has exactly k + 1 points. Notice that for £ = 1 (lines)
the two notions of ordinary and elementary coincide.

For dimensions higher than one, there are two different definitions that generalize that of SG
configuration. The first definition is based on ordinary k-flats (though in a slightly stronger way
which will be more useful in the proofs to come). The second definition (which is less restricted
than the first one) uses elementary k-flats.

Definition 5.1. The set V is a §-SGj, configuration if for every independent vi,...,vy € V
there are at least dn points u € V s.t. either u € fl(vy,...,v;) or the k-flat fi(vy, ..., vg, u)
contains a point w outside fl(vy, ..., vg) U {u}.
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Definition 5.2. The set V is a §-SGy, configuration if for every independent vy,...,vp € V
there are at least dn points u € V' s.t. either u € fl(vy,...,v) or the k-flat fli(vy,..., vg,u) is
not elementary.

Both definitions coincide with that of SG configuration when k& = 1: Indeed, fl(v1) = v1
and fl(vy,u) is the line through vy, u. Therefore, u is never in fl(v1) and the line fl(vy, ) is not
elementary iff it contains at least one point w & {vy,u}.

We prove two high-dimensional versions of the SG theorem, each corresponding to one of the
definitions above. The first uses the more restricted ‘star’ definition and gives a strong upper
bound on dimension. The second uses the less restricted definition and gives a weaker bound
on dimension.

Theorem 5.3. Let V' be a 0-SGj, configuration. Then dim (V') < f(0, k) with
F(8,k) = O ((k/6)7).
Theorem 5.4. Let V' be a 6-SGy, configuration. Then dim(V') < g(d, k) with
9(6,k) =278
with C > 1 a universal constant.

The proofs of the two theorems are below. Theorem 5.3 follows by an appropriate induction
on the dimension, using the (one-dimensional) robust SG theorem. Theorem 5.4 follows by
reduction to Theorem 5.3.

Before proving the theorems we set some notations. Fix some point vg € V. By a normaliza-
tion w.r.t. vo we mean an affine transformation N : C% — C¢ which first moves vy to zero, then
picks a hyperplane H s.t. no point in V' (after the shift) is parallel to H (i.e has inner product
zero with the orthogonal vector to H) and finally multiplies each point (other than zero) by a
constant s.t. it is in H.

Claim 5.5. For such a mapping N we have that vy, vy, ..., v are dependent iff N(vi),..., N(vg)
are dependent.

Proof. Since translation and scaling does not affect dependence, w.l.o.g. we assume that vg =0
and that the distance of the hyperplane H from zero is one. Let h be the unit vector orthogonal
to H. For all i € [k] we have N(v;) = v;/(vi, h). Assume that vg, vy, ..., v are dependent, that

is, w.lL.o.g. v = Zz’e[k—l} a;v; for some ay,...,ax_1. For alli € [k—1] define b; = a;(v;, h)/(vg, h).
Thus N(vi) = > iep—1) @ivi/ (Vi h) = 3 e 1) bilN (vi) where 3,y bi = 1, which means that
N(v1),...,N(vg) are dependent. Since the map a; +— b; is invertible, the other direction of the
claim holds as well. O

We first prove the theorem for §-SGj, configurations.

Proof of Theorem 5.3. The proof is by induction on k. For k = 1 we know f(4,1) < c§~2 with
¢ > 1 a universal constant. Suppose k > 1. We separate into two cases. The first case is when
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V is an (0/(2k))-SG; configuration and we are done using the bound on k£ = 1. In the other
case there is some point vg € V s.t. the size of the set of points on special lines through vg is at
most §/(2k) (a line is special if it contains at least three points). Let S denote the set of points
on special lines through vy. Thus |S| < dn/(2k). Let N : C% — C? be a normalization w.r.t. vg.
Notice that for points v € S the image N (v) determines v. Similarly, all points on some special
line map to the same point via N.

Our goal is to show that V' = N(V \ {vg}) is a ((1 — 1/(2k))d)-SG}_, configuration (after
eliminating multiplicities from V’). This will complete the proof since dim(V) < dim(V’) + 1.
Indeed, if this is the case we have

f(6,k) < max{4c(k/6)?, f((1 —1/(2k))8,k — 1) +1}.

and by induction we have f(8, k) < 4c(k/5)2.

Fix v{,...,v,_; € V' to be k—1 independent points (if no such tuple exists then V" is trivially
a configuration). Let vq,...,v5_1 € V be points s.t. N(v;) = v} for i € [k—1]. Claim 5.5 implies
that vg,v1,...,vp_1 are independent. Thus, there is a set U C V of size at least dn s.t. for every
u € U either u € fl(vg,v1,...,v5_1) or the k-flat fi(vo, v1,...,vx_1,u) contains a point w outside
ﬂ(’l}o,’l}l, cee ,Uk_l) U {u}

Let U = U \ S so that N is invertible on U and

U > U] =S| > (1 - 1/(2k))én.

Suppose u € U and let o = N(u). By Claim 5.5 if u € fl(vg,v1,...,v5_1) then o is in
fi(vy,...,v,_y). Otherwise, fl(vg,v1,...,v_1,u) contains a point w outside fl(vo, v1, ..., vk—1)U
{u}. Let w' = N(w). We will show that w’ is (a) contained in the (k —1)-flat fi(v], ..., v}_;, /)
and (b) is outside fi(v], ..., v} _;)U{u'}. Property (a) follows from Claim 5.5 since vg, v1, . . . , Vk—1,
u, w are dependent and so v}, ...,v,_;,u,w’ are also dependent. To show (b) observe first that
by Claim 5.5 the points v{,...,v}_;,u’ are independent (since vg,v1,...,v5_1,u are indepen-
dent) and so «’ is not in fi(v],...,v,_;). We also need to show that w' # u’ but this follows
from the fact that u # w and so w’ = N(w) # N(u) = v’ since N is invertible on U and u € U.
Since
IN@) = 18] 2 (1 - 1/(2K))on > (1 1/(2K)a]V

the proof is complete. O
We can now prove the theorem for §-SGy configurations.

Proof of Theorem 5.4. The proof follows by induction on k (the case k = 1 is given by Theo-
rem 4.3). Suppose k > 1. Suppose that dim(V') > ¢(d, k). We want to show that there exist k
independent points vy,..., v s.t. for at least 1 — ¢ fraction of the points w € V we have that
w is not in fl(vy,...,v;) and the flat fl(vy,..., vk, w) is elementary (i.e. does not contain any
other point).

Let ¥ = g(1,k — 1). By choice of g we have ¢(d,k) > f(d,k" + 1) with f from Theorem 5.3.

Thus, by Theorem 5.3, we can find k' + 1 independent points v1, ..., vk 11 s.t. there is a set
U C V of size at least (1 —§)n s.t. for every u € U we have that u is not in fi(vy,...,v41) and
the (k' + 1)-flat fl(vq, ..., vk 41, u) contains only one point, namely u, outside fl(vy, ..., vpy1).
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We now apply the inductive hypothesis on the set V Nfl(vy,...,vx 1) which has dimension
at least k" = g(1,k—1). This gives us k independent points v}, ..., v}, that define an elementary
(k —1)-flat fi(v],...,v;,). (Saying that V' is not 1-SGj_; is the same as saying that it contains
an elementary (k —1)-flat). Joining any of the points v € U to v{,...,v} gives us an elementary
k-flat and so the theorem is proved. ]

6 Generalizations of the Motzkin-Rabin Theorem

In this section we prove two variants of the Motzkin-Rabin Theorem. The first is a quantitative
analog in the spirit of Theorem 4.3. The second is a variant in which the number of colors is
three (instead of two).

6.1 A Quantitative Variant

Definition 6.1 (6-MR configuration). Let V3, V5 be two disjoint finite subsets of C¢. Points in
V1 are of color 1 and points in V5 are of color 2. A line is called bi-chromatic if it contains at
least one point from each of the two colors. We say that Vi, Vs are a §-MR configuration if for
every i € [2] and for every point p € V;, the bi-chromatic lines through p contain at least 6|Vj|
points.

Theorem 6.2. Let Vi, Vo C C% be a 6-MR configuration. Then
dim(V1,Vp) < O(1/8%).

Proof. We will call a line passing through exactly two points in V; (resp. V) a Vi-ordinary
(resp. Va-ordinary) line. W.l.o.g. assume

Vi < [Val.

We seperate the proof into two cases:

Case I is when V3 is a (6/2)-SG configuration. Then, by Theorem 4.3, dim(V2) < O(1/52).
If in addition
dim(V7) < 13/(6/2)

then we are done. Otherwise, by Theorem 4.3, there exists a point ag € V7 such that there are
at least (1 —9/2)|V4| Vi-ordinary lines through ag. Let aq, ..., a; denote the points in V; that
belong to these lines with k£ > (1 — ¢/2)|Vi|. We now claim that V5 U {ap} spans all the points
in V4. This will suffice since, in this case, dim(V5) < O(1/62). Let a € V1. Then, since V1, V5 is
a 0-MR configuration, there are at least §|V1| points in V7 such that the line through them and
a contains a point in V5. One of these points must be among ay, ..., ag, say it is a;. Since a is
in the span of V5 and a; and since aq is in the span of V5 and ag we are done.

Case II is when V3 is not a (§/2)-SG configuration. In this case, there is a point b € V5
such that there are at least (1 — §/2)|Va| Va-ordinary lines through b. From this fact and from
the 0-MR property, we get that |Vi| > (6/2)|V2| (there are at least (6/2)|Va2| Va-ordinary lines
through b that have an additional point from V; on them). This implies that the union V3 U V5
is a (62/4)-SG configuration and the result follows by applying Theorem 4.3. O
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6.2 A Three Colors Variant

Definition 6.3 (3MR configuration). Let Vi, V5, V3 be three pairwise disjoint finite subsets of
C9, each of distinct points. We say that Vi, Vs, V3 is a 3MR-configuration if every line ¢ so that
¢N (V1 U Ve U V3) has more than one point intersects at least two of the sets Vi, Vo, V3.

Theorem 6.4. Let V1, V5, V3 be a SMR configuration and denote V.=V U Vo U V3. Then
dim(V) < O(1).

Proof. Assume w.l.o.g. that V] is not smaller than V5, V5. Let a = 1/16. There are several cases
to consider:

1. Vi is an a-SG configuration. By Theorem 4.3, the dimension of V; is at most
dy = O(1/a?).
Consider the two sets
Vy = Vo \ span(Vy) and Vj = V5 \ span(V}),
each is a set of distinct points in C?. Assume w.l.o.g. that [Vj| > |VJ].

1.1. Vj is an a-SG configuration. By Theorem 4.3, the dimension of Vj is at most
dy = O(1/a?).

Fix a point vs in V4. For every point v # vs in V4 the line through vs,v contains a
point from span(V;) U Vj. Therefore,

dim(V) < dy +dz + 1 < O(1).

1.2. Vj is not an a-SG configuration. There is a point vy in V4 so that for k& > |V5]/2
of the points v # vy in Vj the line through ve,v does not contain any other point
from Vj. If Vj = span(Vi,v2) then the dimension of V3 U V3 is at most d; + 1 and we
are done as in the previous case. Otherwise, there is a point v} in VJ \ span(Vi,va).
We claim that in this case |V3| > k/2. Denote by P, the k points v # vy in V4 so that
the line through vy, v does not contain any other point from Vj. For every v € P»
there is a point Vj 3(v) in V4 U V3 that is on the line through v, vy (the point vy is
fixed). There are two cases to consider.

The first case is that for at least k/2 of the points v in P» we have V; 3(v) € V3. In
this case clearly |V3| > k/2.

The second case is that for at least k/2 of the points v in P, we have V;3(v) € V;.
Fix such a point v € P, (which is in span(V;,v2)). The line through v}, v contains a
point v from V3 U V3. The point v’ is not in span(V;), as if it was then v, would be
in span(v,v’) C span(Vy,v). Therefore v’ is in V3. This also implies that |V5| > k/2.

19



Denote V! = V5 U V4. So we can conclude that for every v’ in V' the special lines
through v contain at least |V'|/8 of the points in V3 U V5 U V3. As in the proof of
Theorem 4.3, we can thus define a family of triples T, each triple of three distinct
collinear points in V, so that each v" in V' belongs to at least |V’|/8 triples in T" and
each two distinct v/, v” in V' belong to at most 6 triples.

By a slight abuse of notation, we also denote by V' the matrix with rows defined
by the points in V. Let V; be the submatrix of V' with row defined by points in
span(V;1)NV and V’ be the submatrix of V' with row defined by points in V’. Use the
triples in T to construct a matrix A so that A-V = 0. Let A; be the submatrix of A
consisting of the columns that correspond to span(V7) NV and A’ be the submatrix
of A consisting of the columns that correspond to V’. Therefore, A’ - V' = —A; -V}
which implies

rank(A" - V') < rank(4; - V;) < dy.

By the above discussion A’ is a (3, |[V’|/8, 6)-design matrix and thus, by Theorem 3.2,
has rank at least
V| = 0(1)

and so
dim(V’) < O(1) +dy < O(1).

We can finally conclude that

dim(V) < dy + dim(V’) < O(1).

2. Vj is not an a-SG configuration. There is a point v; in V; so that for at least |V;]/2 of
the points v # v1 in Vj the line through v, v does not contain any other point from V.
Assume w.l.o.g. that |V2| > |V3]. This implies that

2.1.

2.1.

[Va| = [Vi]/4.

|V3| < |Va2|/16. In this case the configuration defined by V; U V3 is an a-SG configu-
ration. By Theorem 4.3, the dimension of V; U V5 is at most

d172 = 0(1/062).

Fix a point v3 in V3. For every point v # wvg in V3 the line through vs, v contains a
point from Vi U Va. Therefore,

dim(V) <dip+1<0(1).

|Va| > |Va2|/16. In this case V is an a-SG configuration. By Theorem 4.3, the dimen-
sion of V is thus at most O(1/a?).
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7 Two-Query Locally Correctable Codes

We now prove the non-existence of 2-query (linear) locally correctable codes (LCC) over C. We
start by formally defining locally correctable codes:

Definition 7.1 (Linear locally correctable code (LCC)). Let F be some field. A (g,0)-LCC
over [ is a linear subspace C' C F™ such that there exists a randomized decoding procedure
D : F™ x [m] — F with the following properties:

1. Forall z € C, for all i € [m] and for all v € F™ with w(v) < dm we have that D (z + v,i) =
x; with probability at least 3/4 (the probability is taken only over the internal randomness
of D).

2. For every y € F™ and i € [m], the decoder D(y, ) reads at most ¢ positions in y.

The dimension of an LCC is simply its dimension as a subspace of ™.

In the above definition we allow the algorithm D to perform operations over the field F.
Since we do not care about the running time of D we do not discuss issues of representation of
field elements and efficiency of handling them. (In any case, it turns out that for linear codes
in the small number of queries and low error case, one can assume w.l.o.g. that the decoder is
also linear, see Lemma 7.4 below.)

Our result on locally decodable codes is the following:

Theorem 7.2 (Restatement of Theorem 3— non-existence of 2 query LCCs over C). Let C' C
C™ be a (2,9)-LCC over C. Then

dim(C) < O(1/47).
As in Theorem 4.3, also in this theorem, é can be an arbitrary function of m. To make

the connection between LCCs and SG-configurations explicit, we define the notion of a §-LCC
configuration.

Definition 7.3 (§-LCC Configuration). A list of non-zero points (v1, ..., v,) in C? (not neces-
sarily distinct) is called a §-LCC configuration if for every subset A C [m] of size at most dm
and for every i € [m], there exist j, k € [m] \ A such that either v; € {v;,v;} (in which case v;
can be recovered by its own copies), or v;, v;, vy are three distinct collinear points (in which case
v; is recovered by two other coordinates).

The following lemma shows the connection between these two notions.

Lemma 7.4. If there exists a (2,9)-LCC of dimension n over C then there exists a §-LCC
configuration of dimension at least n — 1 over C.

To prove the lemma we will use the following definition.

Definition 7.5 (Generating set). Let C' C F™ be a subspace. We say that a list of vectors
V = (vi,...,vn) in F™ is a generating set for C' if

C= {(<yvvl>7 <ya U2>a AR (y,vm>) | yE Fn}?
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where (y,v) is the standard inner product over F.

Proof of Lemma 7.4. Let V. = (v1,...,vy) be a generating set for C' with dim(V) > n — 1.
We might lose 1 since we defined dim(V) as the dimension of the smallest affine subspace
containing V. When the local decoder for C reads two positions in a codeword, it is actually
reading (y,v;), (y,vx) for some vector y € C" (or noisy versions of them). In order to be able
to recover (y,v;) from (y,v;), (y,vg) with positive probability it must be that v; € span{v;, vy}
(If we choose y as Gaussian and v; is not in the span of v;, v then even conditioned on the
values of (y,v;), (y,vg) the r.v. (y,v;) takes any specific value with probability zero.) Applying
an invertible linear transformation on V' preserves properties such as one vector being in the
span of another set. So we can assume w.l.o.g. that the first coordinate in all elements of V is
non-zero. Scaling each v; by a non-zero scalar also preserves the properties of spans and so we
can assume w.l.o.g. that the first coordinate in each v; is equal to 1. Now, for v; to be in the
span of v;, vy, it must be that either v; € {v;, v} or v; is on the line passing through v;, vy (and
they are all distinct). Thus, we have a §-LCC configuration with dimension n — 1. O

In view of this lemma, in order to prove Theorem 7.2 it is enough to prove:

Theorem 7.6. Let V = (vi,...,vn) € (C)™ be a 6-LCC configuration. Then

dim(V) < O(1/5°).

7.1 Proof of Theorem 7.6

Let V = (v1,...,un) be the list of m points in C?. The main difficulty in proving the theorem
is that some of these points may be the same. That is, two points v;, v; can actually correspond
to the same vector in C%. In this case we say that v;, vj are copies of each other. Otherwise,
we say that v;,v; are distinct. If v is a point in the list V', we let the multiplicity of v, denoted
M (v), be the number of times that (a copy of) v occurs in V.

We note that while repetitions make the proof of Theorem 7.6 more complicated, we do not
know if they actually help in constructing LCCs with better parameters. Our proof will proceed
in an iterative way, at each step identifying a sufficiently large sublist with small dimension and
removing it. The key step will be the following theorem:

Theorem 7.7. There exists an integer K1 > 0 s.t. the following holds. Let V = (v1,...,vy) €
(CH™ be a 6-LCC configuration. Then there exists a sublist V! C V of size at least 6>m /K1 and
dimension at most K /4°.

Proof. If there exists a point v € V with multiplicity larger that ém/10 then the theorem is
true by taking V' to be all copies of this point. This avoids the case where a point is recovered
mostly by its own copies. For the rest of the proof we can, thus, assume the following.

Fact 7.8. For all v € V and for every sublist A of V' of size at most dm/2 there is a collinear
triple containing v such that the other two points in the triple are not in A (and are distinct
fromv).
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We will describe a (probabilistic) construction of a family of collinear triples and build a
design matrix from it. We call a triple of points in V' good if it contains three distinct collinear
points. We define a family T of good triples as follows: For every line ¢ that has at least three
distinct points in V' we will define (randomly) a family T, of good triples (later we will fix the
randomness). The family 7" will be the union of all these sets.

Remark 7.9. The construction of 1" we present is probabilistic. It is possible to construct T
explicitly and achieve similar properties. We choose to present the probabilistic construction as
it is simpler and less technical.

Let £ be such a line with r points on it (counting multiplicities). Denote by V' (¢) the sublist
of V' containing all points that lie on ¢. We first take the family F' of triples on [r] given by
Lemma 4.6 and then pick a random one-to-one mapping p : [r] — V(£). For a triple ¢ in F' we
denote by p(t) the triple of points in V' (¢) that is the image of ¢ under p. We take T, to be the
set of all triples p(t) with ¢t € F' and such that p(t) is good (i.e., it ‘hits’ three distinct points).

Intuitively, we will have many good triples on a line (in expectation) if there are no two
points whose copies cover most of the line (then the probability of hitting three distinct points
is small). We will later show that this cannot happen on too many lines.

The next proposition shows that there is a way to fix the randomness so that T contains a
quadratic number of triples.

Proposition 7.10. The expectation of |T)| is at least am? with o = (5/15)3.

We will prove this proposition later in Section 7.2 and will continue now with the proof of
the theorem.

Fix T to be a family of triples that has size at least the expectation of |T'|. By construction
and Lemma 4.6, the family T contains only good triples and each pair of points appears in at
most 6 different triples (since every two distinct points define a single line and two non-distinct
points never appear in a triple together). The family 7" thus defines a 3-regular hypergraph with
vertex set [m] and at least am? edges and of co-degree at most 6. Lemma 4.9 thus implies that
there is a sublist V' of V of size at least

V| =m/ > am/12 > (6/45)3m
with the following property: Let T” be the subfamily of T that V' induces. Every v’ in V' is
contained in at least am/2 triples in T".

By a slight abuse of notation, we also denote by V' the m’ x d matrix with rows defined by
the points in V' (including repetitions). We now use the triples in 7" to construct a matrix A’
so that A’ - V' = 0. By the above discussion A" is a (3, am/2,6)-design matrix and thus, by
Theorem 3.2, has rank at least

m' — <18m,>2 > ' — (18/a)>2

and so
dim(V’) < (18/a)? < (60/6)°

as was required. O
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The next proposition shows how the above theorem can be used repeatedly on a given LCC.

Proposition 7.11. There exist an integer Ko > 0 s.t. the following holds: LetV = (v1,...,vy) €
(CH™ be a 6-LCC configuration and let U, W be a partition of V into two disjoint sublists such
that W N span(U) = 0. Then there exists a new partition of V to two sublists U and W' such
that W' (0 span(U’) = 0 and such that

1. |U'| > |U| + 8*m /K2, and
2. dim(U") < dim(U) + K5 /4°.

Proof. First, we can assume that all points in W have multiplicity at most dm/2 (otherwise we
can add one point from W with high multiplicity to U to get U’). Thus, for all points v and
all sublists A of size at most dm /2 there is a collinear triple of three distinct points containing
v and two other points outside A. Again, this is to avoid points that are recovered mostly by
copies of themselves.

For a point w € W we define three disjoint sublists of points U(w), P;(w) and Py(w). The
first list, U(w), will be the list of all points in U that are on special lines through w (that is,
lines containing w and at least two other distinct points). Notice that, since w ¢ span(U), each
line through w can contain at most one point from U. The second list, P;(w), will be the list of
points in W\ {w} that are on a line containing w and a point from U. The third list, Pa(w), will
be of all other points on special lines through w (that is, on special lines that do not intersect
U). These three lists are indeed disjoints, since w is the only common point between two lines
passing through it. By the above discussion we have that |Py(w)| + |P2(w)| > dm/2 for all
w € W (since removing these two lists destroys all collinear triples with w). We now separate
the proof into two cases:

Case I : There exists w € W with |P;(w)| > dm/4. In this case we can simply take U’ to
be the points in V that are also in the span of {w} UU. This new U’ will include all points in
P;(w) and so will grow by at least dm/4 points. Its dimension will grow by at most one and so
we are done.

Case II : For all w € W, |Py(w)| > ém/4. Denote m’ = |W|. In this case W itself is a
§’-LCC configuration with

T 8w
Applying Theorem 7.7 we get a sublist U” C W of size at least
(5/)3m/
K

5 om

> (5/8)% - %

and dimension at most K
1 6
—— < K(8/6)°.
) < K1(8/9)
We can thus take U’ to be the points in V that are in the span of U U U” and the proposition
is proved. O
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Proof of Theorem 7.6. We apply Proposition 7.11 on V, starting with the partition U = (), W =
V and ending when U = V, W = (). We can apply the proposition at most K/ times and in
each step add at most K3/% to the dimension of A (which is initially zero). Therefore, the final
list U = V will have dimension at most O(1/6). O

7.2 Proof of Proposition 7.10

Order the points in V' so that all copies of the same point are consecutive and so that M (v;) <
M (vj) whenever i < j. Let S C V be the sublist containing the first dm/10 points in this
ordering (we may be splitting the copies of a single point in the middle but this is fine). We will
use the following simple fact later on:

Fact 7.12. Ifv e S and M(v') < M(v) then v’ € S.

For a point v € V' we denote by T'(v) the set of (ordered) triples in T containing v and for a
line ¢ by T;(v) the set of (ordered) triples in Ty containing v. Recall that these are all random
variables determined by the choice of the mappings p for each line ¢.

The proposition will follow by the following lemma.

Lemma 7.13. Let v € S. Then the expectation of |T(v)| is at least (6/10)%*m.

The lemma completes the proof of the proposition: summing over all points in S we get

E[|T|]] > E [(1/3) Z |T(v)|| (each triple is counted at most three times)
veV
> (1/3) Y E[T(v)]
veS
> (1/3)- (bm/10) - (5/10)m) > (5/15)*m?.

Proof of Lemma 7.13. Denote by L(v) the set of all special lines through v. To prove the lemma
we will identify a subfamily L'(v) of L(v) that contributes many triples to T'(v). To do so, we
need the following definitions. For a set v C C? denote by P(v) the set of distinct points in V'

that are in 7. Denote M(v) = >_,cp(,) M (v). Denote by P(S) the set of distinct points not in
S.

Definition 7.14 (Degenerate line). Let ¢ € L(v). We say that ¢ € L(v) is degenerate if either

1. The size of P(¢) N P(S) is at most one. That is, ¢ contains at most one distinct point
outside S. Or,

2. There exists a point v, € P({), distinct from v, such that M (vy) > (1 — 6/10)M ().

A degenerate line satisfying the first (second) property above will be called a degenerate line of
the first (second) kind.
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Define L'(v) as the set of line £ in L(v) that are not degenerate. We will continue by proving

two claims. The first claim shows that every line in L'(v) contributes many triples in expectation
to T'(v).

Claim 7.15. For every ¢ € L'(v) we have E[|T;(v)|] > dM(¢)/10.

Proof. Denote r = |M(¢)|. The family of triples Ty is obtained by taking a family of r(r — 1)
triples F' on [r] (obtained from Lemma 4.6) and mapping it randomly to ¢, omitting all triples
that are not good (those that do not have three distinct points). For each triple ¢t € F' the
probability that p(¢) will be in T;(v) can be lower bounded by

3w o 0
r 3(r—1) 20 10(r —1)

The factor of 3/r comes from the probability that one of the three entries in ¢ maps to v
(these are disjoint events so we can sum their probabilities).

The next factor, 2r/(3(r — 1)), comes from the probability that the second entry in ¢ (in
some fixed order) maps to a point distinct from v. Indeed since |P(¢) N P(S)| > 2 and using
Fact 7.12 we know that there are at least two distinct points v, v” on ¢ with M (v") > M (v) and
M(v") > v. Since M(v) + M (v") + M(v") < r, we get that M(v) < r/3, and so there are at
least 2r/3 “good” places for the second point to map to.

The last factor, 6/20, comes from the probability that the third element of the triple will
map to a point distinct from the first two. The bound of §/20 will follow from the fact that ¢
does not satisfy the second property in the definition of a degenerate line. To see why, let vy be
the image of the second entry in ¢. Since £ is not degenerate, 7’ = r — M (vo) > 67/10. Since
|P(¢£) N P(S)| > 2, there is a point v’ in P(S) not in {v,v2}, and hence, by Fact 7.12, M(v) <
M (v"). Since M(v) + M (v') < 7', we get that M(v) < r'/2. Thus ' — M(v) > /2 > dr/20.
But ' — M(v) is exactly the number of ‘good’ places that the third entry can map to that are
from v and vs.

Using linearity of expectation we can conclude

4]

B{ITe(w)l] 2 r(r = 1) 15075

= or/10.

The second claim shows that there are many points on lines in L'(v).

Claim 7.16. With the above notations, we have:

> M(¢) > émj/10.

Lel!(v)

Proof. Assume in contradiction that

> M(¢) < dmj/10.

teL’ (v)
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Let A’ denote the sub-list of V' containing all points that lie on lines in L'(v) so that |A'| <
dm/10. We will derive a contradiction by finding a small sublist A of V' (containing A’ and two
other small sub-lists) that would violate Fact 7.8. That is, if we remove A from V', we destroy
all collinear triples containing v.

Let ¢ be a degenerate line of the second kind. Then there is a point vy on it that is distinct
from v and has multiplicity at least (1—0/10)M (¢). For every such line let Ay denote the sublist
of V' containing all of the at most (6/10)M (£) — M (v) points on this line that are distinct from
both v and vy. Let Ay denote the union of these lists Ay over all degenerate lines of the second
kind. We now have that |Ag| < dm/10 since ) ,(M(¢) — M(v)) < m and in each line ¢ we have

[Ag| < (6/10)M(£) — M (v) < (6/10)(M (€) — M (v)).
Notice that, removing the points in As destroys all collinear triples on degenerate lines of the
second kind.

Finally, let Ag denote the sublist of V' containing all points that have a copy in S. Thus
Ag contains the list S (of at most m/10 elements), plus all of the at most dm/10 copies of
the last point in S, meaning that |Ag| < dm/5. Removing Ag destroys all collinear triples on
degenerate lines of the first kind. Define A as the union of the three sublists A’, Ay and Ag.
From the above we have that removing A from V destroys all collinear triples containing V' and
that |A| < 4(6/10)m < dm/2. This contradicts Fact 7.8. O

Combining the two claims we get that for all v € S,
EIT@)] = Y BTN = Y 8M(0)/10 > (5/10) - (6m/10) = (6/10)?m.
el (v) el (v)

This completes the proof of Lemma 7.13. O

8 Extensions to Other Fields

In this section we show that our results can be extended from the complex field to fields of
characteristic zero, and even to fields with very large positive characteristic. The argument is
quite generic and relies on Hilbert’s Nullstellensatz.

Definition 8.1 (7T-matrix). Let m,n be integers and let T' C [m] x [n]. We call an m x n matrix
A a T-matriz if all entries of A with indices in T are non-zero and all entries with indices outside
T are zero.

Theorem 8.2 (Effective Hilbert’s Nullstellensatz [Kol88]). Let g1,...,9s € Z[y1,...,y:] be de-
gree d polynomials with coefficients in {0,1} and let

Z={yeCg(y) =0Vie [s]}.

Suppose h € Zz1,. .., 2] is another polynomial with coefficients in {0, 1} which vanishes on Z.
Then there exist positive integers p,q and polynomials fi,..., fs € Zly1,...,ys] such that

Y firgi=p-ht.
i=1

27



Furthermore, one can bound p and the mazximal absolute value of the coefficients of the f;’s by
an explicit function Hy(d,t,s).

Theorem 8.3. Let m,n,r be integers and let T C [m] x [n]. Suppose that all complex T-
matrices have rank at least r. Let F be a field of either characteristic zero or of finite large
enough characteristic p > Py(n,m), where Py is some explicit function of n and m. Then, the
rank of all T-matrices over F is at least r.

Proof. Let g1,...,9s € C[{zi; | i € [m],j € [n]}] be the determinants of all r x 7 sub-matrices of
an m x n matrix of variables X = (z;;). The statement “all T-matrices have rank at least 7” can
be phrased as “if ;; = 0 for all (¢,j) ¢ T" and g(X) = 0 for all k € [s] then [[; ep zi5 = 0.7
That is, if all entries outside T" are zero and X has rank smaller than r then it must have at
least one zero entry also inside T'. From Nullstellensatz we know that there are integers a,, A > 0
and polynomials fi,..., fs and hyj, (4,7) € T, with integer coefficients such that

A

a- | JT ws | = D i hii(X) + D fil(X) - gi(X). (2)
k=1

(4,4)€T (4,5) T

This identity implies the high rank of T-matrices also over any field F in which a # 0. Since we
have a bound on « in terms of n and m the result follows. O

9 Discussion and Open Problems

Our rank bound for design matrices has a dependence on ¢, the number of non-zeros in each row.
Can this dependency be removed? This might be possible since a bound on g follows indirectly
from specifying the bound on ¢, the sizes of the intersections. Removing this dependency might
also enable us to argue about square matrices. Our results so far are interesting only in the
range of parameters where the number of rows is much larger than the number of columns.

With respect to Sylvester-Gallai configurations, the most obvious open problem (discussed
in the introduction) is to close the gap between our bound of O(1/6%) on the dimension of 5-SG
configuration and the trivial lower bound of ©(1/§) obtained by a simple partition of the points
into 1/0 lines.

Another interesting direction is to explore further the connection between design-matrices
and LCCs. The most natural way to construct an LCC is by starting with a low-rank design
matrix and then defining the code by taking the matrix to be its parity-check matrix. Call such
codes design-LCCs. Our result on the rank of design matrices shows, essentially, that design-
LCCs over the complex numbers cannot have good parameters in general (even for large query
complexity). It is natural to ask whether there could exist LCCs that do not originate from
designs. Or, more specifically, whether any LCC defines another LCC (with similar parameters)
which is a design-LCC. This question was already raised in [BIW07]. Answering this question
over the complex numbers will, using our results, give bounds for general LCCs. It is not out
of the question to hope for bounds on LCCs with query complexity as large as polynomial in m
(the encoding length). This would be enough to derive new results on rigidity via the connection
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made in [Dvil0]. In particular, our results on design matrices still give meaningful bounds (on
design-LCCs) in this range of parameters.

More formally, our results suggest a bound of roughly poly(q, 1/6) on the dimension of (g, §)-
LCCs that arise from designs. A strong from of a conjecture from [Dvil0] says that an LCC
C C F" with ¢ = n® queries and error § = n™¢, for some constant ¢ > 0, cannot have dimension
0.99 - n. This conjecture, if true, would lead to new results on rigidity. Thus, showing that any
LCC defines a design (up to some polynomial loss of parameters), combined with our results,
would lead to new results on rigidity.
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