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Abstract

We study the complexity of polynomial multiplication over arbitrary
fields. We present a unified approach that generalizes all known asymp-
totically fastest algorithms for this problem. In particular, the well-known
algorithm for multiplication of polynomials over fields supporting DFTs of
large smooth orders, Schönhage-Strassen’s algorithm over arbitrary fields
of characteristic different from 2, Schönhage’s algorithm over fields of char-
acteristic 2, and Cantor-Kaltofen’s algorithm over arbitrary algebras—all
appear to be instances of this approach. We also obtain faster algorithms
for polynomial multiplication over certain fields which do not support
DFTs of large smooth orders.

We prove that the Schönhage-Strassen’s upper bound cannot be im-
proved further over the field of rational numbers if we consider only al-
gorithms based on consecutive applications of DFT, as all known fastest
algorithms are. We also explore the ways to transfer the recent Fürer’s
algorithm for integer multiplication to the problem of polynomial multi-
plication over arbitrary fields of positive characteristic.

This work is inspired by the recent improvement for the closely re-
lated problem of complexity of integer multiplication by Fürer and its
consequent modular arithmetic treatment due to De, Kurur, Saha, and
Saptharishi. We explore the barriers in transferring the techniques for
solutions of one problem to a solution of the other.

1 Introduction

Complexity of polynomial multiplication is one of the central problems in com-
puter algebra and algebraic complexity theory. Given two univariate polynomi-
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als by vectors of their coefficients,

a(x) =

n−1∑
i=0

aix
i, b(x) =

n−1∑
j=0

bjx
j , (1)

over some field k, the goal is to compute the coefficients of their product

c(x) = a(x) · b(x) =

2n−2∑
`=0

c`x
` =

2n−2∑
`=0

∑
0≤i, j<n,
i+j=`

aibjx
`. (2)

The direct way by the formulas above requires n2 multiplications and (n− 1)2

additions of elements of k, making the total complexity of the naive algorithm
O(n2). In what follows we call k the ground field.

1.1 Model Of Computation

We study the problem of the total algebraic complexity of the multiplication
of polynomials over fields. That is, elements of k are thought of as algebraic
entities, and each binary arithmetic operation on these entities has unit cost.
This model is rather abstract in the sense, that it counts, for example, an infinite
precision multiplication of two reals as a unit cost operation. On the other hand,
it has an advantage of being independent of any concrete implementation that
may depend on many factors, including human-related, thus it is more universal,
see the discussion on this topic in [9, Introduction].

We are concerned with the total number of arithmetic operations, i.e. multi-
plications and additions/subtractions that are sufficient to multiply two degree
n− 1 polynomials. Since the resulting functions can be computed without divi-
sions, it seems natural to consider only division-free algebraic algorithms. The
inputs of such algorithm are the values a0, . . . , an−1, b0, . . . , bn−1 ∈ k, the out-
puts are the values c0, c1, . . . , c2n−2 ∈ k as defined in (1), (2). Any step of
an algorithm is a multiplication, a division, an addition or a subtraction of two
values, each being an input, a value, previously computed by the algorithm, or
a constant from the ground field. An algorithm computes product of two de-
gree n− 1 polynomials, if all outputs c0, . . . , c2n−2 are computed in some of its
steps. The number of steps of an algorithm A is called algebraic or arithmetic
complexity of A.

In what follows, we will always consider division-free algebraic algorithms.
A multiplication performed in a step of an algorithm is called scalar, if at least
one multiplicand is a field constant, and nonscalar in the other case. For an
algorithm A which computes the product of two degree n − 1 polynomials, we
define LmA (n) to be the number of nonscalar multiplications used in A, and
LaA(n) to be the total number of additions, subtractions and scalar multiplica-
tions in A. We also set LA(n) := LmA (n) +LaA(n), the total algebraic complexity
of A computing the product of two degree n− 1 polynomials. In what follows,
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An
k always stands for the set of division-free algorithms computing the product

of two degree n− 1 polynomials over k,

Lmk (n) := min
A∈An

k

LmA (n), Lak(n) := min
A∈An

k

LaA(n), Lk(n) := min
A∈An

k

LA(n).

When the field k will be clear from the context or insignificant, we will use
then the simplified notation: Lm(n), La(n) and L(n), respectively. Note, that
L(n) needs not to be equal to Lm(n) + La(n), since the minimal number of
nonscalar multiplications and the minimal number of additive operations and
scalar multiplications can be achieved by different algorithms.

1.2 Fast Polynomial Multiplication And Lower Bounds

Design of efficient algorithms and proving lower bounds is a classical problem
in algebraic complexity theory that received wide attention in the past. For an
exhaustive treatment of the current state of the art we advise the reader to refer
to [9, Sections 2.1, 2.2, 2,7, 2.8]. There exists an algorithm A ∈ An

k , such that

LmA (n) = O(n), LaA(n) = O(n log n), LA(n) = O(n log n), 1 (3)

if k supports Discrete Fourier Transformation (DFT) of order 2l, [9, Chapter 1,
Section 2.1] or 3l, [9, Exercise 2.5] for each l > 0. Schönhage-Strassen’s algo-
rithm B ∈ An

k computes the product of two degree n − 1 polynomials over an
arbitrary field k of characteristic different from 2 with

LmB (n) = O(n log n), LaB(n) = O(n log n log log n),

LB(n) = O(n log n log log n).
(4)

cf. [24], [9, Section 2.2]. In fact, the original algorithm of [24] computes prod-
uct of two n-bit integers, but it readily transforms into an algorithm for degree
n−1 polynomial multiplication. For fields of characteristic 2, Schönhage’s algo-
rithm [23], [9, Exercise 2.6] has the same upper bounds as in (4). An algorithm
C′ for multiplication of polynomials over arbitrary rings with the same upper
bound for LmC′(n) was first proposed by Kaminski in [17]. However, there was no
matching upper bound for LaC′(n). Cantor and Kaltofen generalized Schönhage-
Strassen’s algorithm into an algorithm C for the problem of multiplication of
polynomials over arbitrary algebras (not necessarily commutative, not necessar-
ily associative) achieving the upper bounds (4), see [11].

For the rest of the paper, we will use the introduced notation: A will al-
ways stand for the multiplication algorithm via DFT with complexity upper
bounds (3), B will stand for Schönhage-Strassen’s algorithm if char k 6= 2 and
for Schönhage’s algorithm if char k = 2, both with complexity upper bounds (4),
and C will stand for Cantor-Kaltofen’s algorithm for multiplication of poly-
nomials over arbitrary algebras with the same complexity upper bounds as
Schönhage-Strassen’s algorithm.

1In this paper we always use log := log2.
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Upper and lower bounds for Lmk (n), which is also called the multiplicative
complexity, received special attention in literature, see, e.g., [9, Section 14.5].
It is interesting, that for each k, there exists always an algorithm E ∈ An

k

with LmE (n) = O(n), if we do not worry that LaE(n) will be worse than in (4),
see [12, 25].

If |k| ≥ 2n−2, then it is known, that Lm(n) = 2n−1, see [9, Theorem (2.2)].
For the fields k with n − 2 ≤ |k| ≤ 2n − 3, the exact value for Lmk (n) =

3n−
⌊ |k|

2

⌋
− 2 was proved by Kaminski and Bshouty in [19, Theorem 2] (see [7,

Lemma 1] for the proof of the theorem to hold for the multiplicative complexity).
In order to multiply two degree n − 1 polynomials over Fq it suffices to

pick an irreducible over Fq polynomial p(x) of degree 2n − 1 and multiply two
elements in Fq[x]/p(x), that is in Fq2n−1 . Therefore, for finite fields k = Fq
with |k| = q ≤ n− 3, currently best upper bounds for LmFq (n) are derived from

Chudnovskys’ algorithm for multiplication in finite field extensions [12, 25] and
its improvements by Ballet et al. (p stands always for a prime number; in fact
all of the following upper bounds hold also for the bilinear complexity, which is
a special case of multiplicative complexity, when each nonscalar multiplication
in an algorithm is of kind `(a0, . . . , an−1)·`′(b0, . . . , bn−1) for some linear forms
`, `′ ∈ (kn)∗):

LmFq (n) ≤



4(1 + 1√
q−3 )n+ o(n), q = p2κ ≥ 25, [12, Theorem 7.7],

4(1 + p√
q−3 )n, q = p2κ ≥ 16, [1, Theorem 3.1],

6(1 + 4
q−3 )n, q = p ≥ 5, [3, Theorem 2.3],

6(1 + 2p
q−3 )n, q = pκ ≥ 16, [2, Theorem 4.6],

12(1 + p
q−3 )n, q > 3, [1, Corollary 3.1],

54n− 27, q = 3, [1, Remark after Corollary 3.1],
477
13 n−

108
13 < 36.7n, q = 2, [4, Theorem 3.4].

The best known lower bounds in case of k = Fq when q ≤ n− 3 are

LFq (n) ≥ LmFq (n) ≥

{(
3 + (q−1)2

q5+(q−1)3

)
n− o(n), q ≥ 3, [18],

3.52n− o(n), q = 2, [6].

If we allow for a moment divisions to be present in an algorithm, then there
is a lower bound 3n − o(n) for the total number of nonscalar multiplications
and divisions necessary for any algebraic algorithm computing product of two
degree n polynomials, see [8].

There are few lower bounds for the algebraic complexity of polynomial mul-
tiplication. Most of them are actually bounding Lm(n) which can be used as a
conservative lower bound for L(n). Since the coefficients c0, . . . , c2n−2 are lin-
early independent, in case of division-free algorithms one immediately obtains
the lower bound L(n) ≥ Lm(n) ≥ 2n− 1 over arbitrary fields. To the moment,
this is the only general lower bound for L(n) which does not depend on the
ground field. Bürgisser and Lotz in [10] proved the only currently known non-
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linear lower bound if Ω(n log n) for LC(n) (actually, on LaC(n)) which holds in
case when all scalar multiplications in an algorithm are with bounded constants.

The gap between the upper and the lower bounds on Lk(n) motivates to
look for better multiplication algorithms and for higher lower bounds for the
complexity of polynomial multiplication, in particular over small fields. For ex-
ample, it is still an open problem if the total algebraic complexity of polynomial
multiplication is nonlinear, see [9, Problem 2.1]. Another well known challenge
is to decrease the upper bound for Lk(n) of (4) to the level of (3) in case of ar-
bitrary fields, see [21] for the more general challenge of multivariate polynomial
multiplication. In this paper we partially address both problems.

1.3 Our Results

As our first contribution, for every field k, we present an algorithm Dk ∈ An
k ,

which is a generalization of Schönhage-Strassen’s construction that works over
arbitrary fields and achieves the best known complexity upper bounds. In fact,
we argue that the algorithm Dk stands for a generic polynomial multiplication
algorithm that relies on consecutive application of DFT. In particular, the algo-
rithms A, B, and C come as special cases of the algorithm Dk. We are currently
not aware of any algorithms with an upper bound of (4) that are not based on
consecutive DFT applications and thus do not follow from the algorithm Dk.

As the second contribution, we show that LDk(n) = o(n log n log log n) in
case when algorithm A cannot be applied but the field k has some simple al-
gebraic properties that are ignored by algorithms B and C. This improves the
upper bound of (4) over such fields. We also present a parameterization of fields
k with respect to the performance of the algorithm Dk, and give explicit upper
bounds which depend on this parameterization. More precisely, over each field
k, we have Ω(n log n) = LDk(n) = O(n log n log log n), and over certain fields
that do not admit low-overhead application of the algorithm A, the algorithm
Dk achieves intermediate complexities between the indicated bounds.

Finally, we show, that the algorithm Dk has natural limitations depending on
the ground field k. For example, we prove that LDQ(n) = Ω(n log n log log n).
Furthermore, we characterize all such fields, where application of DFT-based
methods does not lead to any improvement of the upper bound (4). There-
fore, we consider this as an exhaustive exploration of performance of generic
algorithms for polynomial multiplication based on application of DFT.

1.4 Organization Of the Paper

Section 2 contains the necessary algebraic preliminaries. We then give a uni-
form treatment of the best known algorithms for polynomial multiplication over
arbitrary fields in Section 3: Schönhage-Strassen’s algorithm [24], Schönhage’s
algorithm [23] and Cantor-Kaltofen’s algorithm [11]. In Section 4 we remind the
best known upper bounds for computation of DFT over different fields and show
some efficient applications of their combination. We also indicate limitations of
the known techniques.
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Section 5 contains our main contributions. We end with one particular
number-theoretic conjecture due to Bläser on the existence of special finite field
extensions. In fact, if it holds, then the algorithm algorithm Dk can achieve
better performance than that of the previously known algorithms B and C over
any field of characteristic different from 0.

2 Basic Definitions

In what follows we will denote the ground field by k. Algebra will always stand
for a finite dimensional associative algebra over some field with unity 1. For
a function f : N → R, a positive integer n is called f -smooth, if each prime
divisor of n does not exceed f(n). Note, that this definition is not trivial only
if f(n) < n

2 . If f(n) = O(1), then an f -smooth positive integer is called just
smooth.

All currently known fastest algorithms for polynomial multiplication over
arbitrary fields rely on the possibility to apply the Discrete Fourier Transform by
means of the Fast Fourier Transform algorithm (FFT) and on the estimation of
the overhead needed to extend the field to make DFTs available. This possibility
depends on existence of so-called principal roots of unity of large smooth orders,
e.g., of orders 2ν for all ν > 0.

Let A be an algebra over a field k. ω ∈ A is called a principal n-th root of
unity if ωn = 1A (where 1A is the unity of A) and for 1 ≤ ν < n, 1− ων is not
a zero divisor in A. It follows, that if ω ∈ A is a principal n-th root of unity,
then char k - n and

n−1∑
ν=0

ωi·ν =

{
n, if i ≡ 0 (mod n),

0, otherwise.
(5)

If A is a field, then ω ∈ A is a principal n-th root of unity iff ω is a primitive
n-th root of unity. For a principal n-th root of unity ω ∈ A, the map

DFTωn : A[x]/(xn − 1)→ An

defined as DFTωn

(∑n−1
ν=0 aνx

ν
)

= (ã0, . . . , ãn−1), where ãi =
∑n−1
ν=0 ω

i·νaν , for

i = 0, . . . , n − 1, is called the Discrete Fourier Transform of order n over A
with respect to the principal n-th root of unity ω.

It follows from Chinese Remainder Theorem that if ω ∈ A is a principal n-th
root of unity, then DFTωn is an isomorphism between A[x]/(xn−1) and An. (5)

implies that the inverse transform of DFTωn is 1
n DFTω

−1

n since ω−1 is also a

principal n-th root of unity in A [9, Theorem (2.6)]: ai = 1
n

∑n−1
ν=0 ω

−i·ν · ãν ,
for i = 0, . . . , n − 1. Note, that if ω ∈ A is a principal n-th root of unity and
a(x) = a0 + a1x+ · · ·+ an−1x

n−1 ∈ k[x]/(xn − 1), then

DFTωn (a(x)) =
(
a(ω0), a(ω), . . . , a(ωn−1)

)
.
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An important property of the DFT is that it can be computed efficiently
under certain conditions, see Section 4. We only mention here, that if n = sν

for some constant s, there is a principal n-th root of unity ω in an algebra
A, then DFTωn can be computed in O(n log n) additions of elements of A and
multiplications of elements of A with powers of ω.

3 State Of the Art

3.1 Multiplication via DFT

The easiest way to illustrate power of applications of DFT is to consider mul-
tiplication of polynomials over a field k which contains primitive roots of unity
of large smooth orders. Assume that for some integer constant s ≥ 2 and for
each ν, k contains a primitive sν-th root of unity. The well-known DFT-based
algorithm A takes two degree n− 1 polynomials a(x) and b(x) and proceeds as
follows:

Embed and pad Set ν = dlogs(2n− 1)e such that sν ≥ 2n− 1. Pad the vec-
tors of coefficients of a(x) and b(x) with zeroes and consider a(x) and b(x)
as polynomials of degree sν − 1 in k[x]/(xs

ν − 1). This step is performed
at no arithmetical cost.

Compute DFTs For a primitive sν-th root of unity ω ∈ k, compute

ã := DFTωsν (a(x)), b̃ := DFTωsν (b(x)).

The cost of this step is O(n log n) arithmetical operations over k (recall,
that s is a constant).

Multiply vectors Compute dot-product c̃ := ã · b̃, that is perform sν = O(n)
multiplications of elements in k.

Compute inverse DFT Compute

1

sν
DFTω

−1

sν (c̃) = c(x).

This step requires O(n log n) arithmetical operations in k.

As we can see the total complexity of O(n log n) arithmetic operations over
k. Note, that the number of multiplications is sν ≤ 2ns − s, and is linear in n
as long as s is a constant.

3.2 Multiplication in Arbitrary Fields

Now suppose that k does not contain the needed primitive roots of unity. The
methods we will describe now are all based on the idea of an algebraic extension
K ⊃ k where the DFT of a large smooth order is defined. In these methods one
encodes the input polynomials into polynomials of smaller degree over K and
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uses the algorithm A over K to multiply these polynomials. The sν multiplica-
tions of elements in K are performed via an efficient reduction to multiplication
of polynomials of smaller degree, thus making the whole scheme recursive.

3.2.1 Schönhage-Strassen’s Algorithm

Assume that char k 6= 2. In this case, x is a 2n-th principal root of unity in
An := k[x]/(xn + 1), which is a k-algebra of dimension ndimA [9, (2.11)] and
A[x]/(xn + 1) ∼= A[x]/(xn − 1), if a k-algebra A contains a principal 2n-th
root of unity [9, (2.12)]. For n ≥ 3, Schönhage-Strassen’s algorithm [24], which
we denote by B takes two degree n − 1 polynomials a(x) and b(x) over k and
proceeds as follows:

Embed and pad Set ν = dlog2(2n− 1)e ≥ 2 such that N := 2ν ≥ 2n−1. Pad
the vectors of coefficients of a(x) and b(x) with zeroes and consider a(x)
and b(x) as polynomials of degree N − 1 in AN . This step is performed
at no arithmetical cost.

Extend Set N1 := 2d
ν
2 e ≥ 2, N2 := 2b

ν
2 c+1, such that N1

2 · N2 = N . Encode
a(x) and b(x) (considered as elements of AN ) as polynomials of degree
N2 − 1 over AN1

= k[y]/(yN1 + 1):

a(x) =

N−1∑
i=0

aix
i 7→

N2−1∑
i=0

N1
2 −1∑
j=0

aN1
2 ·i+j

yj


︸ ︷︷ ︸

=:āi∈AN1

(x
N1
2 )︸ ︷︷ ︸
x̄

i

=

N2−1∑
i=0

āix̄
i =: ā(x̄).

y is a 2N1-th principal root of unity in AN1
and 2N1 ≥ N2, all powers of

2. Since N2 | 2N1, ψ := y
2N1
N2 is a principal N2-th root of unity in AN1

.

Compute DFTs of orders N2 of ā(x̄) and b̄(x̄) with respect to ψ. Note, that
addition of two elements in AN1 can be performed in N1 additions in A,
and multiplication by powers of ψ, that is, by powers of y results in cyclic
shifts and sign changes and is also bounded by N1 additions (if we count
a sign change as an additive operation). Therefore, this step requires
O(N1 ·N2 logN2) = O(N logN) arithmetic operations over k.

Multiply the coordinates of ˜̄a · ˜̄b = ˜̄c. This results in computing N2 prod-
ucts of polynomials of degree N1

2 − 1, which are computed by a recursive
application of the currently described procedure.

Compute inverse DFT of ˜̄c with respect to ψ−1 = y2N1− 2N1
N2 . As before, this

requires O(N logN) additive operations in k.

Unembedding in this case is can be computed in the following way: since
degrees in y of all coefficients āi, b̄i were at most N1

2 − 1, and they were
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multiplied in AN1 , degrees in y of all coefficients c̄i are at mostN1−2 < N1.
Therefore, for all i = 0, . . . , N2 − 1,

c̄i =

N1−1∑
j=0

ci, jy
j

are already computed with some ci, j ∈ k, and

c(x) =

N2−1∑
i=0

c̄i(x
N1
2 )i =

N2−1∑
i=0

N1−1∑
j=0

ci, jx
N1
2 ·i+j

=

N−1∑
i=0

(cb 2i
N1
c, i−b 2i

N1
c·N1

2
+ cb 2i

N1
c−1,

N1
2 +i−b 2i

N1
c·N1

2
)xi

can be computed by at most N additions of elements in k (we assume that
ci, j = 0 if i < 0 or j ≥ N1).

Denoting by L′B(N) the total complexity of multiplication in AN via Schönhage-
Strassen’s algorithm B, we obtain following complexity inequality:

LB(n) ≤ L′B(N) ≤ N2L
′
B (N1) +O(N logN).

It implies L′B(N) = O(N logN log logN) and the desired estimates (4) since
N ≤ 4n − 2. A more careful examination of the numbers of additions and
multiplications used gives also the upper bounds (4).

Rough complexity analysis can be also made by following observations. The
cost of each recursive step (under a recursive step we understand all the work
done on a fixed recursive depth) is O(N1 ·N2 logN2) = O(n log n) and is defined
by the complexity of the DFT used to reduce the multiplication to several
multiplications of smaller formats. Note, that in order to adjoin a 2N1-th root
of unity to k in the initial step we take a (ring) extension of degree N1, which is
a half of the degree of the root we get. This crucial fact reduces the number of
recursive steps to O(log log n). Thus, the upper bounds (4) for the complexity
of B can also be obtained as a product of the upper bound for the complexity
of a recursive step by the number of recursive steps.

3.2.2 Schönhage’s Algorithm

Now assume that char k = 2. Again, the first step is the choice of a finite
dimensional algebra to reduce the original polynomial multiplication to. In case
of char k = 2, the choice of k[x]/(xn+1) does not work since it can be used only
efficient to append 2ν-th roots of unity and x2ν − 1 = (x − 1)2ν in every field
of characteristic 2. Schönhage’s algorithm [23] thus reduces the multiplication
of polynomials over k to the multiplication in BN := k[x]/(x2N + xN + 1),
where x is a 3N -th principal root of unity. Therefore, we can follow the way
of the original Schönhage-Strassen’s algorithm with one important modification
explained in this section.
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For n ≥ 3, Schönhage’s algorithm B takes two degree n−1 polynomials a(x)
and b(x) and proceeds as follows:

Embed and pad Set ν =
⌈
log3(n− 1

2 )
⌉

such that for N := 3ν , 2N ≥ 2n − 1.
Pad the vectors of coefficients of a(x) and b(x) with zeroes and consider
a(x) and b(x) as elements of BN . This step is performed at no arithmetical
cost.

Extend Set N1 := 3d
ν
2 e and N2 := 3b

ν
2 c such that N1N2 = N . Encode the

input polynomials a(x) and b(x) (considered as elements of BN ) as poly-
nomials of degree 2N2 − 1 over BN1 = k[y]/(y2N1 + yN1 + 1):

a(x) =

2N−1∑
i=0

aix
i 7→

2N2−1∑
i=0

N1−1∑
j=0

aN1·i+jy
j


︸ ︷︷ ︸

=:āi∈BN1

(xN1)︸ ︷︷ ︸
x̄

i
=

2N2−1∑
i=0

āix̄
i =: ā(x̄).

y is a 3N1-th principal root of unity in BN1
, and N1 ≥ N2, both powers

of 3. Thus, ψ = y
N1
N2 is a 3N2-th principal root of unity in BN1

.

Compute DFTs of ā(x̄) and b̄(x̄), both padded to degree 3N2 with zeroes,
with respect to ψ. Note, that addition of two elements in BN1 can be
performed in at most 2N1 additions of elements in k, and multiplications
by powers of ψ, that is, by powers of y can also be performed in O(N1)
operations since y3N1i+` = y`, y3N1i+2N1+`′ = −yN1+`′ − y`

′
for every

i ≥ 0, 0 ≤ ` < 2N1, and 0 ≤ `′ < N1. Therefore, multiplication of
any element of BN1

by a power of y can be performed by at most one
addition of two polynomials in BN1 and sign inversion of it, that is, in at
most 4N1 additive operations in k (again, if we count a sign inversion as
an operation with unit cost, otherwise it is just 2N1). Overall, this step
requires O(N1 ·N2 logN2) = O(N logN) operations in k.

Multiply component-wise two vectors of length 3N2, ˜̄a and ˜̄b. Note, however,

that only 2N2 out of these products are enough, namely only ˜̄ai · ˜̄bi where
i 6≡ 0 (mod 3). This is explained in the next step.

Compute inverse DFT of (¯̃c0, . . . , ¯̃c3N2−1) in O(N logN) operations in k.
This computes the coefficients of c̄′(x̄) = ā(x̄)b̄(x̄) (mod x̄3N2 − 1), and
we need

c̄(x̄) = ā(x̄)b̄(x̄) (mod x2N2 + xN2 + 1).

This is resolved by noticing that

c̄i = c̄′i − c̄′i+2N2
, c̄i+N2

= c̄′i+N2
− c̄′i+2N2

,

for all i = 0, . . . , N2 − 1. To compute these differences, consider the
explicit formulas of the direct DFT of order 3N2 with respect to ψ:

˜̄c3i+j =

3N2−1∑
ν=0

c̄′νψ
3iν+jν =

N2−1∑
ν=0

c̄′ν, jψ
3iν =: ˜̄ci, j ,

10



c̄′i, j =
1

N2

N2−1∑
ν=0

˜̄cν, jψ
−3iν , (6)

for 0 ≤ i < N2, 0 ≤ j ≤ 2 and c̄′i, j = 1
3 (c̄′i+ψ

jN2 c̄′i+N2
+ψ2jN2 c̄′i+2N2

) ·ψij .
Therefore,

c̄′i+jN2
=

1

3
(c̄′i, 0 + ψ−2jN2−ic̄′i, 1 + ψ−jN2−2ic̄′i, 2)

and the required differences

c̄′i − c̄′i+2N2
=

1

3

(
(ψ−i − ψ−N2−i)c̄′i, 1 + (ψ−2i − ψ−2N2−2i)c̄′i, 2

)
,

c̄′i+N2
− c̄′i+2N2

=
1

3

(
(ψ−2N2−i − ψ−N2−i)c̄′i, 1 + (ψ−2i − ψ−N2−2i)c̄′i, 2

)
,

can be computed from c̄′i, j for j = 1, 2, which can be computed via (6)

from ˜̄ci, j = ˜̄c3i+j = ˜̄a3i+j
˜̄b3i+j for i = 0, . . . , N2 − 1 and j = 1, 2, that is

from 2N2 products.

Unembed in the similar way as in the original Schönhage-Strassen’s algorithm.
This requires O(N) operations in k.

If we denote again L′B(N) the total complexity of multiplication in BN via
Schönhage’s algorithm B, we obtain following complexity inequality:

LB(n) ≤ L′B(N) ≤ 2N2L
′
B (N1) +O(N logN).

It implies L′B(N) = O(N logN log logN) and the desired estimates (4) since
N ≤ 3n − 2. Again, a more careful examination of the numbers of additions
and multiplications used again gives also the upper bounds (4).

3.2.3 Cantor-Kaltofen’s Generalization

In [11] Cantor and Kaltofen presented a generalized version of Schönhage-Stras-
sen’s algorithm [24], an algorithm C which computes the coefficients of a product
of two polynomials over an arbitrary, not necessarily commutative, not neces-
sarily associative algebra with unity with upper bounds (4). Here we present
a simplified version of this algorithm which works over fields, or, more gener-
ally, over division algebras. We will use this restriction to perform divisions by
constants of an algebra via multiplication by inverses of these constants.

Let ω ∈ C be a primitive n-th root of unity. Then Φn(x) =
∏

(i, n)=1(x−ωi)
is called a cyclotomic polynomial of order n. One easily deduces that for each
n,

Φn(x) | (xn − 1) =
∏

0≤i<n

(x− ωi).

It is well known, that all coefficients of Φn(x) are integers, for every n, Φn(x) is
irreducible over Q, and or any s, n, Φsn(x) = Φs(x

n−1). The degree of Φn(x) is

11



the number of natural numbers i ≤ n, coprime with n, which is denoted by φ(n)
and called Euler’s totient function. Trivially, φ(n) ≤ n − 1 with an equality iff
n is a prime, and for n ≥ 3, φ(n) > 1

2 ·
n

logn , see [20]. From the above properties

of Φn(x) we also have φ(sn) = sn−1φ(s) for all s, n ≥ 1. Therefore, if s is a
constant and n grows, then the number of monomials in Φsn(x) is bounded by
a constant (for example, s− 1).

Let k be a field of characteristic p, and s ≥ 2 be some integer, that will
be fixed throughout of the entire algorithm, p - s. Cantor-Kaltofen’s algorithm
takes two degree n−1 polynomials a(x) and b(x) over k for n ≥ s3 and proceeds
as follows:

Embed and pad Set ν :=
⌈
logs

(
(4n− 2) log s

)⌉
, such that

N := φ(sν) ≥ 2n− 1.

The multiplication is then performed in CN := k[x]/ΦN (x), where x is a
principal N -th root of unity.

Extend Set N1 := sb
ν
2 cφ(s), N2 := sd

ν
2 e−1 such that for

N3 := sb
ν
2 c+1, N1 = φ(N3) ≥ N2, N1N2 = N.

Note, that sN2 | N3. Encode polynomials a(x) and b(x) (considered as
elements of CN ) as polynomials of degree N2 − 1 over CN3 :

a(x) =

N−1∑
i=0

aix
i 7→

N2−1∑
i=0

N1−1∑
j=0

ai+N2jy
j


︸ ︷︷ ︸

=:āi∈CN3

x̄i =: ā(x̄).

y is a principalN3-th root of unity in CN3 , therefore, ψ = y
N3
N2 is a principal

N2-th root of unity and ξ = y
N3
sN2 is a principal sN2-th root of unity in

CN3 .

Note, that xN1 7→ y, and the polynomials āi = āi(y) are in fact of degree
at most dN1−1

2 e. This follows from the fact, that al = 0 for l ≥ n, that is,
for i + N2j ≥ n, for 0 ≤ i < N2 and 0 ≤ j < N1. One can easily verify,
that it is equivalent to the inequality j ≤ n

N2
− 1 ≤ N−1

2N2
− 1 ≤ bN1

2 c − 1.
Therefore, multiplication of any two polynomials taken from the linear
span of āi modulo ΦN3(y) is in fact the ordinary multiplication of these
polynomials.

Compute DFTs ˜̄a = DFTψN2
(ā(x̄)), ˜̄a′ = DFTψN2

(ā(ξx̄)), ˜̄b = DFTψN2
(b̄(x̄)),

and ˜̄b′ = DFTψN2
(b(ξx̄)). Precomputation of coefficient of a(ξx) and b(ξx)

requires O(N2) multiplications by small powers of y in CN3 . Computation
of the DFTs requiresO(N2 logN2) additions and multiplications by powers
of ψ, that is, by powers of y, in CN3

. Note, that, as usual, addition of two
elements in CN3

requires N2 = φ(N3) additions of elements in k.

12



Multiplications by powers of ψ, that is, by powers of y, can be first per-
formed modulo XN3 − 1 at no cost (since they are in this case simply
cyclic shifts), and then by reduction modulo ΦN3

(x). This is possible
since ΦN3

(x) divides xN3 − 1. Since ΦN3
(x) is monic and has at most

s nonzero monomials, such a reduction can be performed with at most
(s − 1)(N3 − N2) = O(N3) scalar multiplications and the same number
of additions of elements in k. Therefore, the total cost of this step is
O(N3 ·N1 logN1) = O(N logN) since N3 ≤ s

φ(s)N2 ≤ 2 log s ·N2 = O(N2)

and N1N2 = N .

Multiply component-wise two pairs of vectors of length N2: ˜̄c′′ = ˜̄a · ˜̄b and
˜̄c′ = ˜̄a′ · ˜̄b′. This is performed recursively by the same procedure since the
components of these vectors are elements in CN3

.

Compute inverse DFTs c̄′ = DFTψ
−1

N2
(˜̄c′) and c̄′′ = DFTψ

−1

N2
(˜̄c′′). This re-

quires again O(N logN) steps, as in the computation of the direct DFTs.

Now recall, that we need the coefficients c̄i ∈ CN3
of the product of

polynomials c̄(x) = ā(x)b̄(x) (mod ΦN (x)). For this, we shall first com-
pute the coefficients ĉ0, . . . , ĉ2N2−2 of the regular polynomial product
ĉ(x) = ā(x)b̄(x). These can easily be computed from the c̄′i, c̄

′′
i via the

following formulas for 0 ≤ i < N2:

ĉi =
1

N2(1− ξN2)
(c̄′′i − ξN2 c̄′i), ĉN2+i =

1

N2(1− ξN2)
(c̄′i − c̄′′i ).

In order to get rid of divisions in CN3
we can use the identity

1

1− ξN2
=

1

τ

∏
2≤i<s,
(i, s)=1

(1− ξN2i),

where τ = 1 if s is not a prime power, and τ = p if s = pκ for some
prime p. Note, that in the latter case necessarily char k 6= p. This identity
shows how one can compute the fraction 1

1−ξ in 2φ(s) − 1 additions and
multiplications by powers of y in CN3

without divisions: multiplication of
the intermediate product Π by the next factor 1− ξN2i can be computed
as Π − ξN2iΠ. Therefore, all coefficients ĉi for 0 ≤ i ≤ 2N2 − 2 can be
computed in O(N) operations in k. In order to obtain the coefficients of
c̄(x), it suffices to reduce the polynomial ĉ(x) modulo ΦN3(x) which can
be performed in O(N) steps, as explained before.

Unembedding in this case is not needed because of the choice of the encod-
ing of polynomials: coefficients c̄i computed in the Multiplication step,
decoded back by substituting y 7→ xN2 , turn into polynomials in x with
monomials of pairwise different degrees for different i = 0, . . . , N − 1.

If we denote L′C(N) the total complexity of multiplication in CN via Cantor-
Kaltofen’s algorithm C, we obtain following complexity inequality:

LC(n) ≤ L′C(N) ≤ 2N2L
′
C (N1) +O(N logN).
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The choice of parameters N1 and N2 implies L′C(N) = O(N logN log logN) and
the desired estimates (4) since N < (s−1) log s·(2n−1) = O(n). A more careful
examination of the numbers of additions and multiplications used again gives
also the upper bounds (4).

If char k 6= 2 and s = 2, then Φsν (x) = x2ν−1

+ 1, and we get the multiplica-
tion in the algebra A2ν−1 from the Schönhage-Strassen’s algorithm. If char k 6= 3
and s = 3, then Φsν (x) = x2·3ν−1

+x3ν−1

+1 and we get the multiplication in the
algebra B3ν−1 . However, the multiplication is performed differently: instead of
performing one DFT of order N2 ∼ 2

√
N over AN1 (of order 3N2 over BN1 with

only 2N2 ∼ 2
√
N multiplications sufficient, resp.), Cantor-Kaltofen’s algorithm

performs two DFTs of order N2 ∼
√
N over CN3

.
Summarizing the above algorithms of complexity O(n log n log log n) we no-

tice that in case, when it is impossible to apply FFT directly in the ground
field, a ring extension is always introduced. Since the costs of all recursive
steps are roughly the same, total complexity of such an algorithm can be nat-
urally bounded by the product of the cost of one recursive step by the number
of steps, which is O(log log n) in the algorithm B. Complexity of one recur-
sive step is defined by the complexity of computing DFTs, for which nothing
better than O(n log n)-time algorithms for computing of a DFT of order n is
currently known. The first potential improvement of this scheme is to reduce
the complexity of algorithms computing DFT. The second is reducing the num-
ber of recursive steps of such an algorithm. In the first case we can increase
the number of recursive steps needed, depending on the boost we will achieve
in computing DFT. In the second case we can increase the number of opera-
tions used by DFT computations, however, we must always make sure that the
product of these two values does not exceed Ω(n log n log log n). In this paper
we are concerned mostly with the problem of reduction of the recursive depth of
such algorithms. Effectivity of our solution appears to depend only on algebraic
properties of the ground field.

4 An Upper Bound for the Complexity of DFT

In this section we summarize the best known upper bounds for the computation
of DFTs over an algebra A with unity 1. Let ω ∈ A be a principal n-th root
of unity. For a(x) ∈ A[x] of degree n − 1 let ã = DFTωn(a(x)) ∈ An. We will
denote the total number of operations over A that are sufficient for an algebraic
algorithm to compute the DFT of order n over A by DA(n). In case, when the
algebra A be insignificant or clear from the context, we will use the notation
D(n).

There is always an obvious way to compute ã from the coefficients of a(x).

Lemma 1. For every A and n ≥ 1, such that the DFT of order n is defined
over A,

DA(n) ≤

{
2n2 − 3n+ 1, if 2 - n,
2n2 − 5n+ 4, if 2 | n.

(7)
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Proof. To compute ã0, n − 1 additions are always sufficient. Let ω ∈ A be a
principal n-th root of unity. If 2 | n, then ω

n
2 = −1, and to compute ãn

2
, n− 1

additions/subtractions are also sufficient. For the rest of the coefficients ãi, one
always needs n−1 additions and, in case of odd n, n−1 multiplications by powers
of ω. For even n, one multiplication can be saved, namely, by ωi

n
2 = (−1)i, it

can be implemented by selective changing the sign of the corresponding additive
operation in the sum for ãi. Therefore, we obtain

DA(n) ≤

{
(n− 1) + 2(n− 1)2 = 2n2 − 3n+ 1, if 2 - n,
2(n− 1) + (n− 2)((n− 2) + (n− 1)) = 2n2 − 5n+ 4, if 2 | n,

which proves the statement.

The next method of effective reduction of a DFT of large order to DFTs
of smaller orders is known as Cooley-Tukey’s algorithm [14], [13, Section 4.1]
and is based on the following lemma which directly follows from the well-known
facts and is present here for completeness.

Lemma 2. Let the DFT of order

n = pd11 . . . pdss ≥ 2 (8)

be defined over A (pσ are not necessary prime and even pairwise coprime). Then

D(n) ≤ n
s∑

σ=1

(
dσ
pσ

(D(pσ)− 1) + dσ

)
− n+ 1. (9)

Proof. We first prove that if n = n1n2, then

D(n) ≤ n1D(n2) + n2D(n1) + (n1 − 1)(n2 − 1). (10)

Let ω ∈ A be a principal n-th root of unity. Then ω1 := ωn2 is a principal n1-th
root of unity and ω2 := ωn1 is a principal n2-th root of unity. For a polynomial
a(x) ∈ A[x]/(xn − 1), consider ã = DFTωn(a(x)): for 0 ≤ j < n2, 0 ≤ l < n1

ãn1j+l =

n−1∑
ν=0

aνω
(n1j+l)ν =

n1−1∑
ν=0

n2−1∑
µ=0

an2ν+µω
n2ν(n1j+l)+µ(n1j+l)

=

n2−1∑
µ=0

(
ωµl

n1−1∑
ν=0

an2ν+µω
νl
1︸ ︷︷ ︸

=:ãµ, l

)
ωµj2 =

n2−1∑
µ=0

(ωµlãµ, l)︸ ︷︷ ︸
=:âµ, l

ωµj2 =

n2−1∑
µ=0

âµ, lω
µj
2 =: ãj, l.

Computation of all values ãj, l for a fixed l can be performed via the DFT of
order n2 with respect to ω2. Therefore, to compute all values ãj, l, i.e., all values
ai for 0 ≤ i < n, it suffices to perform n1 DFTs of order n2. Computation of all
values ãµ, l for fixed µ can be performed via the DFT of order n1 with respect
to ω1. Therefore, to compute all values ãµ, l, it suffices to perform n2 DFTs of
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order n1. Finally, to compute âµ, l from ãµ, l, one needs one multiplication by
ωµl if µ > 0 and l > 0 (if µ = 0 or l = 0 then no computation is needed). This
takes (n1−1)(n2−1) multiplications by powers of ω to compute all values âµ, l.
This proves (10).

(9) follows by consecutive application of (10) choosing d1 times p1 for n1,
then d2 times p2, etc. Noting that D(1) = 0 completes the proof.

Corollary 1. Let n be as in (8), and let all 2 = p1 < p2 < · · · < ps be all
primes. Then

D(n) ≤
(

3

2
d1 + 2

s∑
σ=2

dσ(pσ − 1)− 1

)
n+ 1. (11)

In particular,
D(n) ≤ 2 max

1≤σ≤s
pσ · n log n. (12)

Proof. (11) follows from (9) by applying the upper bound of Lemma 1 for the
values of D(pσ).

Obviously d1, . . . , ds ≤ log n since pdσσ ≤ n, pσ ≥ 2 for 1 ≤ σ ≤ s. Therefore,

D(n) ≤
(

3

2
+ 2
(

max
1≤σ≤s

pσ − 1
)
− 1

)
n log n+ 1 ≤ 2 max

1≤σ≤s
pσ · n log n,

which proves (12).

Lemma 2 provides an efficient method of reduction of a DFT of compos-
ite order n to several DFTs of smaller orders which divide n. For example,
if all pσ in (8) are bounded by some constant, then (12) shows that Cooley-
Tukey’s algorithm computes the DFT of order n in O(n log n) steps. Fur-
thermore, if max1≤σ≤s pσ ≤ g(n) for some slowly growing function g(n), say
g(n) = o(log log n), then (12) gives an upper bound of o(n log n · g(n)) for the
computation of the DFT of order n. However, this method fails to be effective
if n has large prime factors (or is just prime). We could use the algorithm from
Lemma 1, but sometimes we can apply Rader’s algorithm to compute a DFT
of prime order [22], [13, Section 4.2].

Lemma 3. Let p be a prime, and assume that the DFT of order p is defined
over A.

1. If the DFT of order p−1 is defined over A, then D(p) ≤ 2D(p−1)+O(p).

2. If for n > 2p− 4, the DFT of order n is defined over A, then

D(p) ≤ 2D(n) +O(n).

Remark 1. Note, that the first bound can be efficient if p−1 is a smooth number.
Otherwise we may choose some larger smooth n for the second case, making sure
that the DFT of order n exists over A and n is not too large, that is, to achieve
an O(p log p) upper bound for D(p).
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Proof. Let ω ∈ A be a principal p-th root of unity. For a polynomial

a(x) ∈ A[x]/(xp − 1),

the value of ã0 =
∑p−1
i=0 ai can be computed directly by performing p− 1 addi-

tions. For 1 ≤ i ≤ p− 1,

ãi − a0 =

p−1∑
j=1

ajω
ij =: ã′i. (13)

Thus, to compute all ãi from ã′i, p− 1 additions are enough.

1. The multiplicative group F∗p = {1 ≤ i < p} is isomorphic to the cyclic
group Zp−1 with p − 1 elements. We will denote the isomorphism by α.
For a′′i−1 := aα(i) and ã′′i−1 = ã′α(i), from (13) we obtain

ã′′i =

p−1∑
j=1

ajω
α(i)+α(j) =

p−2∑
j=0

a′′jω
α(i+j).

The latter is a cyclic convolution, which can be performed via computing
the coefficients of the product of the degree p− 2 polynomial

a′′(x) =

p−2∑
i=0

a′′i x
i,

and the degree p− 2 polynomial with fixed coefficients

ω(x) =

p−2∑
i=0

ωα(i)xi.

This can be achieved by computing the DFT of a′′(x), performing p − 1
multiplications by constants (components of the DFT of ω(x), in fact,
these are just polynomials in ω), and computing the reverse DFT. This
proves the first bound.

2. For an n ≥ 2p− 3, we may define the polynomials

â(x) = a′′0 + a′′1x
n−p+2 + · · ·+ a′′p−2x

n−1, ω̂(x) =

n−1∑
i=0

ωα(i mod (p−2)+1)xi

and compute their cyclic convolution. Then the first p − 1 coefficients of
the cyclic convolution will be exactly the a′′0 , . . . , a

′′
p−2. Note, that again,

we do not need to count the complexity of the DFT of ω̂(x) since it is
fixed and can be precomputed. This proves the second bound.

Corollary 2. Let p be a fixed odd prime, k be a field where the DFT of order
pN−1 is defined for N = 2n, n ≥ dlog(2p− 5)e. Then Dk(pN−1) = O(pN ·N2).
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Proof. We have pN − 1 = (p− 1)(p+ 1)(p2 + 1) · · · (p2n−1

+ 1). Since p is odd,

each factor is even and pN − 1 = 2n · p−1
2

∏n−1
i=1

p2
i
+1

2 . Let pN − 1 = pd11 · · · pdss
be the decomposition of pN − 1 into primes and p1 = 2 < p2 < · · · < ps,
and p2, . . . , pi1 are all less than p−1

2 , pi1+1, . . . , pi2 are less than p+1
2 , and, in

general, pij+1, . . . , pij+1 are less or equal than p2
j−1

+1
2 . Note, that in = s. We

also set i−1 = 0, i0 = 1. From (9) we have

D(pN − 1) ≤ (pN − 1)

s∑
σ=1

(
dσ
pσ

(D(pσ)− 1) + dσ

)
− pN + 2.

Obviously, for p1 = 2, we have D(p1) = 2 ≤ p1 · log p1. Using Lemma 3 we can
compute the DFT of orders pσ for pσ = 2, . . . , i2 in 8pσ log pσ + O(pσ) time
since we can reduce each DFT of order pσ to 2 DFTs of order 2n1 > 2pσ − 4,
2n1 < 4pσ. This is possible since the DFT of order 2n > 2 · p−1

2 − 4 is defined
over k. In the same way, the DFT of order pσ for σ = i1 + 1, . . . , i2 can be
computed in 16pσ log pσ +O(pσ) steps since 2n · p−1

2 > 2 · p+1
2 − 4. Continuing

this process we obtain the following upper bound:

D(pN − 1) ≤ (pN − 1)

n−1∑
j=−1

ij+1∑
σ=ij+1

O
(
dσ · 2j log pσ + dσ

)
= O(pN ·N · log

s∏
σ=1

pdσσ ) = O(pN ·N2),

which completes the proof.

Remark 2. For a fixed odd prime p, the DFT of order p2n−1 is defined in the field
Fp2n since the multiplicative group F∗

p2n
of order p2n − 1 is cyclic. Corollary 2

implies that the DFT of order p2n−1 can be computed in O(p2n ·22n) steps over
Fp. A similar argument shows that the same holds for any field of characteristic
p which contains F

p2k
as a subfield.

5 Unified Approach for Fast Polynomial Multi-
plication

In this section we present our main contribution. We proceed as follows: first
we introduce the notions of the degree function and of the order sequence of
a field. Then we describe the DFT-based algorithm Dk which computes the
product of two polynomials over a field k. We show that Dk generalizes any
algorithm for polynomial multiplication that relies on consecutive applications
of DFT, and in particular, Schönhage-Strassen’s [24], Schönhage’s [23], and
Cantor-Kaltofen’s [11] algorithms for polynomial multiplication are special cases
of the algorithm Dk. We prove that both the upper and the lower bounds for
the total complexity of the algorithm Dk depend on the degree function of k
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and the existence of special order sequences for k. In particular, we show that
LDk(n) = Ω(n log n) when k is a finite field, and LDQ(n) = Ω(n log n log log n).
Furthermore, we show sufficient conditions on the field k for the algorithm Dk
to compute the product of two degree n polynomials in o(n log n log log n), that
is, to outperform Schönhage-Strassen’s, Schönhage’s and Cantor-Kaltofen’s al-
gorithms. Finally, we pose a number-theoretic conjecture whose validity would
imply faster polynomial multiplication over arbitrary fields of positive charac-
teristic.

In what follows k always stands a field.

5.1 Extension Degree and Order Sequence

Definition 1. The degree function of k, is fk(n) = [k(ωn) : k] for any positive
n, where ωn is a primitive n-th root of unity in the algebraic closure of k.

For example, fk(n) = 1 if k is algebraically closed, fR(n) = 1 if n ≤ 2 and
fR(n) = 2 for n ≥ 3, fQ(n) = φ(n) where φ(N) is as before the Euler’s totient
function.

An important idea behind Fürer’s algorithm [16, 15] is a field extension of
small degree containing a principal root of unity of high smooth order. In case
of integer multiplication, the characteristic of the ground ring is a parameter we
can choose [15], and it allows us to pick such Zpc that pc− 1 has a large smooth
factor. However, in case of multiplication of polynomials over fields, we cannot
change the characteristic of the ground field. In what follows we explore this
limitation.

Definition 2. An integer n > 0 is called c-suitable over the field k, if the DFT
of order n is defined over k and Dk(n) ≤ cn log n.

It follows from Corollary 1 that any c-smooth n is c-suitable over k as long
as the DFT of order n is defined over k, and Lemma 3 also implies, that if for
each prime divisor p of n, p, or p−1 or some n′ ≥ 2p−3, n′ = O(p) is c-suitable
over k, then n is O(c)-suitable. If char k ≥ 3, then the integers (char k)2n − 1
are 2n-suitable over k for arbitrary n (see Remark 2).

Definition 3. Let s(n) : N→ R be such that s(n) > 1. A sequence

N = {n1, n2, . . . }

is called an order sequence of sparseness s(n) for the field k, if

ni < ni+1 ≤ s(ni)ni

and ni | ni+1 for i ≥ 1, and ni = n′in
′′
i , such that there exists a ring extension

of k of degree n′i containing an n′′i -th principal root of unity ωn′′i , which is O(1)-
suitable over this extension. If s(n) ≤ C for some constant C, then N is called
an order sequence of constant sparseness.
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It follows from Remark 2 that ni = 2i · (p2i − 1) is almost an order sequence
of sparseness s(n) = n for any field of characteristic p. Decreasing the upper
bound for the computation of DFT from O(n log2 n) to O(n log n) would turn
it into an order sequence.

Remark 3. If char k 6= 2, then for the order sequence N = {2i}i≥1, fk(n′′) ≤ n′′

2

for each n = n′n′′ ∈ N since if for n ∈ N , ωn′′ , n
′′ = 2d

i−1
2 e, n′′ = 2b

i−1
2 c+1 is

a primitive n′′-th root of unity in the algebraic closure of k, then

k(ωn′′) ∼= k[x]/p(x)

and p(x) | xn
′′
2 + 1. The same argument shows that if char k 6= 3 and

N = {2 · 3i}i≥1,

then fk(n′′) ≤ 2n′′

3 for each n = n′n′′ ∈ N , n′ = 2 · 3d
i−1
2 e, n′′ = 3b

i−1
2 c+1, since

for k(ωn′′) ∼= k[x]/p(x), p(x) | x 2n′′
3 +x

n′′
3 + 1. Both these order sequences have

constant sparsenesses.

Definition 4. A field k is called

• Fast, if there is an order sequence N of constant sparseness such that
fk(n′i) = O(1) for all ni = n′in

′′
i ∈ N ;

• t(n)-Fast, if there exists an order sequence N of constant sparseness such
that fk(n′i) ≤ t(n′i) for all n=n

′
in
′′
i ∈ N .

• t(n)-Slow, if for any order sequence N of constant sparseness,

fk(n′i) ≥ t(n′i)

for all ni = n′in
′′
i ∈ N .

For example, any algebraically closed field is fast, R is a fast field, and Q
is a φ(n)-slow field, in particular, Q is an n

2 logn -slow field. It follows from
Remark 3, that any field of characteristic different from 2 is n

2 -fast, and any
field of characteristic different from 3 is 2n

3 -fast.
If we want to extend a b(n)-slow field k with an n-th root of unity, the degree

of the extension will be Ω(b(n)). We will see, that to increase performance of a
DFT-based algorithm for computing the product of two degree n−1 polynomials
over k, we need to take an extension K ⊇ k of degree n1 over k, such that
K contains a primitive n2-th root of unity. We will want n2 to be a large
suitable number and to belong to a “not too sparse” order sequence, preferably
of constant sparseness, n1 to be small such that 2n− 1 ≤ n1n2 = O(n).

We close this subsection with introducing some technical notation. for a
function f : N → N, such that lim supn→∞ f(n) = ∞, we will denote by f∨(n)
the minimal value f(i) over all integer solutions i of the inequality

i · f(i) ≥ n.

For example, n∨ = d
√
ne,

(
n

logn

)∨ ∼ √
n

logn for n ≥ 2,2 and for q ≥ 2,

2By f(n) ∼ g(n) we denote f(n) = (1± o(1))g(n).
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(logq n)∨ = logq n−Θ(logq logq n) if n ≥ q.
We will need to restrict the possible values for i in the inequality to be taken

from some order sequence.

For a monotonically growing function f : N→ N, such that limn→∞
f(n)
n < 1,

we will define f (0)(n) = n, and for i ≥ 1, f (i)(n) = f (i−1)(f(n)). For each n ≥ 1,
there exists the value i = i(n) such that

f (i−1)(n) 6= f (i)(n) = f (i+1)(n) = · · · .

This value will be denoted by f∗(n). For example,(⌈n
2

⌉)∗
= dlog ne ,

(⌈√
n
⌉)∗

= dlog log ne , (dlog ne)∗ = dlog∗ ne .

5.2 Generalized Algorithm For Polynomial Multiplication

The DFT-based algorithm A, the Schönhage-Strassen’s and Schönhage’s algo-
rithms B, and the Cantor-Kaltofen’s algorithm C are all based on the idea of a
field extension with roots of unity of large smooth orders to reduce the poly-
nomial multiplication to many polynomial multiplications of smaller degrees by
means of DFT. The natural metaflow of all these algorithms can be generalized
as follows: let N be an order sequence of constant sparseness over a field k, for
two polynomials a(x) and b(x) of degree n− 1 over k:

Embed Choose a polynomial PN (x) of degree N = N ′N ′′ ∈ N ,

2n− 1 ≤ N = O(n),

and switch to multiplication in AN := k[x]/PN (x). From this moment con-
sider a(x) and b(x) as elements of AN . There should be an efficiently com-
putable by means of DFTs injective homomorphism ψ : AN → (AN ′)

2N ′′ ,
where AN ′ ∼= k[y]/PN ′(y) for some PN ′(y) ∈ k[y], and AN ′ contains a
principal N ′′-th (or 2N ′′-th) root of unity.

Transform By means of DFTs over AN ′ compute

ã := ψ(a(x)), b̃ := ψ(b(x)),

both in (AN ′)
2N ′′ .

Multiply Compute 2N ′′ products c̃ := ã · b̃ in AN ′ .

Back-Transform By means of DFT compute c(x) = ψ−1(c̃), which is the
ordinary product of the input polynomials.

Unembed Reduce the product modulo PN (x) to return the product in AN .

Theorem 1. The algorithm A, Schönhage-Strassen’s and Schönhage’s algo-
rithms B and Cantor-Kaltofen’s algorithm C are instances of the algorithm D.
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Proof. For a field k which contains an N -th primitive root of unity for

N = 2dlog(2n−1)e,

N = O(n), set PN (x) = xN − 1, N ′ = 1, N ′′ = N and AN ′ = k. Then ψ is the
DFT of order 2N (which can be trivially reduced to N in this case) over k and
the algorithm D appears to be the algorithm A.

For a field k of characteristic different from 2, for ν = dlog(2n− 1)e and

N = 2ν , set PN (x) = xN + 1, N ′ = 2d
ν
2 e, and N ′′ = 2b

ν
2 c. Then ψ is the

DFT of order 2N ′′ over AN ′ and the algorithm D appears to be the Schönhage-
Strassen’s algorithm B [24].

For char k = 2, set ν =
⌈
log3(n− 1

2 )
⌉
, N = 3ν , and P2N (x) = x2N +xN + 1,

N ′ = 3d
ν
2 e, and N ′′ = 3b

ν
2 c. Then ψ is the DFT of order 3N ′′ over AN ′ .

However, to fetch the entries of the product in AN ′ by means ψ−1, 2N ′′ products
of polynomials in AN ′ are sufficient [23]. Therefore, the algorithm D appears
to be the Schönhage’s algorithm B.

For an arbitrary field k fix a positive integer s 6= char p and find the least ν
such that N = φ(sν) = sν−1φ(s) ≥ 2n−1, and let N̂ = sν . Set PN̂ (x) = ΦN̂ (x),

N ′ = φ(sb
ν
2 c+1), and N ′′ = sd

ν
2 e−1. Then ψ = α◦β where α stands for 2 DFTs

of order N ′′ over A′, and β is a linear map AN ′ [x]→ AN ′ [x]×AN ′ [x] such that
β(a(x)) = (a(x), a(γx)), where γ is the sN ′′-th root of unity in AN ′ , i.e., for
AN ′ ∼= k[y]/ΦN̂ ′(y), either γ = y or γ = y2. One can easily show that β and
β−1 are computable in linear time. Therefore, the algorithm D appears to be
the Cantor-Kaltofen’s algorithm C.

5.3 Complexity Analysis

From the description of the algorithm D we have

LD(n) = L′D(N) = 2N ′′L′D(N ′) + 2T (ψ(N)) + T (ψ−1(N))

where L′D(N) denotes the complexity of D computing the product in AN ,
T (ψ(N)) and T (ψ−1(N)) stand for the total complexities of the transforma-
tions ψ and ψ−1 on inputs of length N respectively.

Theorem 2. Let the algorithm D compute the product of two polynomials in
AN in ` recursive steps and let N ′ = N ′λ and N ′′ = N ′′λ be chosen on the step

λ = 1, . . . , ` (N ′0 = N , N ′` = O(1)), and for M(N ′λ) = max{1, M
∗(N ′λ)
N ′λ

}, where

M∗(N ′λ) stands for the complexity of multiplication of an element in AN ′λ by
powers of an N ′′λ -th root of unity (which exists in AN ′λ by assumption). Then

L′D(N) = Θ

(
N · 2` +N

∑̀
λ=1

2λ−1 ·M(N ′λ) logN ′′λ

)
, (14)

and if char k 6= 2, then

L′D(N) = Ω

(
N · 2(f∨k )∗(N) +N

(f∨k )∗(N)−1∑
λ=1

2λ−1 log(f∨k )(λ)(N)

)
. (15)

22



Proof. Consider the total cost of the algorithm with respect to the computa-
tional cost of the first step:

L′D(N) = 2N ′′ · L′D(N ′) + Θ (N ′′ logN ′′ · (N ′ +M∗(N ′))) . (16)

This follows from the fact that we need to perform a DFT of order N ′′ over AN ′ .
Each DFT requires Θ(N ′′ logN ′′) additions of elements in AN ′ and the same
number of multiplications by powers of an N ′′-th principal root of unity. Since
dimk AN ′ = N ′, one addition in AN ′ takes N ′ additions in k, and by definition,
M∗(N ′) is the number of operations in k, needed to computed the necessary
products by powers of a principal root of unity. Unrolling (16) (by using (16)
recursively ` times), (14) follows.

To obtain (15) from (14) we use the trivial lower bound M(N ′) ≥ 1. We
then notice that N ′ ≥ f∨k (N ′′), therefore, we come to the equality N ′′` = O(1)
not earlier than for ` = (f∨k )∗(N), by definition of these operations and the
lower bound (15) follows.

Corollary 3.

1. For an arbitrary fast field k, we have LDk(n) = O(n log n).

2. For an o(log log n)-fast field k, we have LDk = o(n log n log log n).

3. For an Ω(n1−o(1))-slow field k, we have LDk = Ω(n log n log log n).

Proof.

1. By definition of a fast field, it suffices to take constant number of steps (in
fact, even one step) to extend k with a principal root of unity of a suitable
order. This means, ` = 1 and N ′ = O(1). Therefore, M(N ′) = O(1) and
trivially logN ′′ ≤ logN .

2. By definition of an o(log log n)-fast field, in the first step we have

N ′ = o(log logN).

We always can bound M(N ′i) with N ′i in (14), and we have

` = o(log∗ log∗ n).

Bounding the first summand in the sum in (14) by

N ·N ′ · logN = o(n log n log log n),

and each next summand by o(n · 2log∗ log∗ n · log log n · log(log log n)), we
obtain the statement.

3. For fk(n) = Ω(n1−o(1)) we have f∨k (n) = Ω(n
1
2−o(1)) and

(f∨k )∗(n) = Ω(log log n).

Each summand in (15) is therefore Ω(log n) and the statement follows.
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Corollary 4. LDQ(n) = Ω(n log n log logn).

Proof. We have fQ(n) ≥ n
2 logn = Ω(n1−o(1)) and the statement follows from

Corollary 3.

Corollary 5. For the finite field Fp, LDQ(n) = Ω(n · log n).

Proof. We have fFp(n) ∼ logp n since the multiplicative group F∗p is cyclic and in
the extension field Fpn of degree n exists a primitive root of unity of order pn−1.
This means that f∨Fp(n) ∼ logp n and (f∨Fp)∗(n) ∼ log∗p n, and the statement

follows from taking in (15) the first summand which is always Θ(n log n).

Note, that Theorem 2 does not give any pessimistic lower bound in case of
finite fields. Actually, it can give a good upper bound if one can prove existence
of order sequences of constant sparseness over finite fields. More formally,

Corollary 6. Assume, there exists an order sequence N = {ni(pni − 1)}i≥1 of
constant sparseness over Fp and assume that the complexity of multiplication
by powers of a principal (pni − 1)-th root of unity in Fpni can be performed in
O(ni) time. Then LDFp

(n) = O(n log n log∗ n).

Proof. From (16) we get L′DFp
(N) ≤ 2N

logpN
L′DFp

(logpN) +O(N logN), and the

statement follows from the solution of this inequality.

There are two challenges to find a faster polynomial multiplication algorithm
over finite fields. The first challenge is the already mentioned existence of order
sequences of constant sparseness over these fields. This conjecture is due to
Bläser [5].

Conjecture (Bläser). There exist order sequences of constant sparseness over
finite fields.

In Remark 2 we showed, that indeed there exist suitable order sequences,
however, they are too sparse for our purposes. The second challenge is the
complexity of multiplication by powers of a primitive root of unity in extension
fields. However, there are ways to overcome this with slight complexity increase.
We recently obtained some progress in this area, and we think that a general
improvement for fields of characteristic different from 2 and 0 is possible.

6 Conclusion

We generalized the notion of a DFT-based algorithm for polynomial multipli-
cation, which describes uniformly all currently known fastest algorithms for
polynomial multiplication over arbitrary fields. We parameterized fields by in-
troducing the notion of the degree function and order sequences and showed
upper and lower bounds for DFT-based algorithm in terms of these paremeters.

There is still an important open question whether one can improve the gen-
eral Schönhage-Strassen’s upper bound. As an outcome of this paper we support
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the general experience that this question is not very easy. In particular, using
only known DFT-based techniques will unlikely help much in case of arbitrary
fields, in particular for the case of the rational field, as they did for the com-
plexity of integer multiplication.
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