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Abstract

We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for
bi-colorings of graphs. We prove a non-trivial conditional lower bound in Resolution
and a quasi-polynomial upper bound in bounded-depth Frege. The lower bound is
conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial)
Pigeonhole principle in Res(2). We show that under such assumption, there is no
refutation of the Paris-Harrington formulas of size quasi-polynomial in the number of
propositional variables. The proof technique for the lower bound extends the idea of
using a combinatorial principle to blow-up a counterexample for another combinatorial
principle beyond the threshold of inconsistency. A strong link with the proof complexity
of an unbalanced Ramsey principle for triangles is established. This is obtained by
adapting some constructions due to Erdős and Mills.

1 Introduction and Motivation

The Paris-Harrington Theorem for graphs says that for every k and m, there exists
an integer R(k,m) such that every graph on the vertices {k, . . . , R(k,m)} contains
either a clique with m vertices or an independent set with at least as many vertices
as its minimum member (and therefore with at least k vertices). The general version
(for arbitrary colorings of hypergraphs) of this seemingly innocent variant of Ramsey
Theorem is the most famous example of a natural mathematical finitary theorem that
cannot be proved in strong theories like Peano arithmetic, as shown by Harrington and
Paris in [8].

It has been sometimes proposed (e.g., by Clote in [3]) that propositional encoding
of logically strong combinatorial principles could produce hard tautologies for proposi-
tional proof systems. Kraj́ıček [14] recently dismissed this idea as impracticable. The
involved functions have an extremely fast growth, and this translates to tautologies so
large that there is no room for non-trivial lower and upper bounds on the proof length.

∗Results of this paper have been presented at the Conference on Computational Complexity 2011.
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This is no longer true if one focuses on suitably weak instances of the strong principles,
as exemplified in this paper.

Our first result is that for the known upper bound u(k) on R(k, k) (due to Erdős and
Mills [5, 18]) the natural propositional translation of the statement “R(k, k) ≤ u(k)”
has efficient bounded-depth Frege proofs. The proof combines a combinatorial argu-
ment by Mills [18] with a proof of a Paris-Harrington principle for triangles. To obtain
the latter we adapt Pudlák’s [20] proof of Ramsey Theorem in Bounded Arithmetic:
since we focus on an off-diagonal Ramsey, the argument requires careful and non-trivial
analysis to succeed. This is basically the only part in which we really need the strength
of bounded-depth Frege. Note that our upper bound is quasi-polynomial in the size of
the formula, which is very large compared to the number of variables.

Our second result is that the natural propositional encoding of “R(k, k) ≤ u(k)”
does not have polynomial-size Resolution proofs, unless the weak Pigeonhole principle
with quasi-polynomially many more pigeons than holes has small proofs in Res(2).
This is a very plausible assumption, perhaps not far beyond the reach of current meth-
ods. Our method of proof builds on a technique due to Kraj́ıček [13] who showed how
to reduce a proof of the Pigeonhole principle to a proof of Ramsey Theorem. We show
how to lift examples witnessing the known lower bounds on the Paris-Harrington num-
bers R(k, k) to counterexamples to a weak Pigeonhole principle. To do this we employ
a construction by Erdős and Mills [5] that has never been applied in proof complexity
before. The overall proof-scheme significantly extends Pudlák’s [20] and Kraj́ıček’s [13]
methods.

Our results stress an interesting connection between: (a) constructing witnesses to
lower bounds on combinatorial quantities such as R(k, k) or r(k, k), and (b) proving
complexity-theoretic lower bounds (in this case, conditional lower bounds for Resolu-
tion). Proving lower bounds on Ramsey-like quantities is a notable open-ended problem
in combinatorics. The most famous example is the best known lower bound on r(k, k),
based on the probabilistic method, that eludes so far all attempts to a constructive
proof. Other famous examples include Ramsey numbers for k-uniform hypergraphs for
k > 2. The method of proof in our second result hints at a computational complex-
ity lower bound being hidden under the problem of narrowing the interval in which
R(k, k) lays. This remarkable connection was originally made by Kraj́ıček [13] for
Ramsey numbers and we push it further to Paris-Harrington numbers. In our case, the
quality of the lower bound on the proof length strongly depends on how good the com-
binatorial bounds are. In the worst case we are able to (conditionally) exclude proofs
of quasi-polynomial length with respect to the number of propositional variables. We
believe that the connection is inspiring and worth of further study.

Another point of interest it that the proposed encoding of Paris-Harrington formulas
can be considered as (new) good candidates for separating bounded-depth from low-
depth (e.g. depth 2) Frege systems. This separation is a recurrent and notable open
problem in propositional proof complexity showing the big difference with Boolean
circuit complexity, where a separation between bounded-depth circuits and low-depth
circuits (e.g. depth 3) is known since the early work in the area (see, e.g.,[9]). By
contrast, only a few good candidates and some partial results are knownfor the proof
complexity separation [12, 2].

In Section 2 we introduce the propositional versions of Ramsey and Paris-Harrington
Theorems and discuss the proof scheme of our main results; in Section 3 we give a
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quasi-polynomial upper bound for the Paris-Harrington principle in bounded-depth
Frege systems; in Section 4 we give a conditional lower bound for the Paris-Harrington
principle in Resolution. The proof of the upper bound depends on a theorem which
prof is the content of the whole Section 5.

2 Ramsey and Paris-Harrington principles

We introduce the combinatorial principles of interest for the present paper and their
propositional formalizations. We consider the following formulation of Ramsey The-
orem for bi-colorings of graphs. The principle states that any large enough graph
contains either a clique or a stable set of arbitrary size. Of course “large enough” is
relative to the size of the clique and of the stable set.

Theorem (Ramsey Theorem). There exists a number r(k, s) which is the smallest
number such that any graph with at least r(k, s) vertices contains either a clique of size
k or a stable set of size s.

The conclusion of the above theorem is obviously satisfied by any n ≥ r(k, s). We
occasionally say that such an n satisfies the Ramsey principle for parameters k and s.

In this paper we are mainly concerned with Paris-Harrington principles. The gen-
eral Paris-Harrington Theorem (for arbitrary colorings of hypergraphs) was introduced
in [8] as the first example of a mathematically natural witness of the incompleteness
phenomenon for formal theories of arithmetic. The general version is known to be
unprovable in first-order Peano arithmetic [8], and this is already the case if one con-
siders bi-colorings of hypergraphs only [16]. We focus instead on the restriction of the
theorem to bi-colorings of graphs, which is known to be well in the realm of standard
combinatorics (see infra). We now state the principle.

A set is called relatively large (or just large, for brevity) if its cardinality is not
smaller than its minimum element. The principle claims that if n is big enough then
any graph with vertices labeled by the integers [k, n] either contains a clique of size m
or contains a stable set such that the labels of the vertices are a large set. A large set
is called exactly large if the minimum of the set is equal to the cardinality of the set.

Theorem (Paris-Harrington Theorem for graphs). There exists a number R(k;m)
which is the smallest number such that any graph on the integers [k,R(k;m)] contains
either a clique of size m or a relatively large stable set.

Obviously, the conclusion in the above principle is true for every number n ≥
R(k;m). We occasionally say that such an n satisfies the Paris-Harrington principle
for parameters k and m. Obviously R(a; b) ≥ r(a, b) always holds.

We now encode the Ramsey and the Paris-Harrington principles in propositional
logic. For any unordered pair of vertices we denote by Ei,j a propositional variable
whose intended meaning is that vertices i and j are connected. We use two types of
clauses, where X ⊆ [n].

Cli(X) =
∨
{i,j}∈(X2 ) ¬Ei,j (1)

Ind(X) =
∨
{i,j}∈(X2 )Ei,j (2)

3



Clauses (1) express that X is not a clique, and clauses (2) express that X is not an
independent set. The CNF encoding the fact that n does not satisfy the Ramsey
principle for k and s consists of the clauses Cli(X), for any X ⊆ [n] of size k and
Ind(X), for any X ⊆ [n] of size s. We denote this formula by Ram(n; k, s) and we refer
to it as the Ramsey principle when the parameters are clear from context. When n is
larger than r(k, s), Ram(n; k, s) is unsatisfiable because of Ramsey Theorem. The size
of Ram(n; k, s) is O(nmax(k,s)): the formula has

(
n
k

)
clauses of size

(
k
2

)
and

(
n
s

)
clauses

of size
(
s
2

)
.

The Paris-Harrington principle for n, k, m, consists of the clauses Cli(X) for any
X ⊆ [k, n] of size m and Ind(X) for any exactly large set X ⊆ [k, n]. We denote
this CNF as Ph(n; k,m) and we refer to it as the Paris-Harrington principle with
parameters n, k, m. Note that we explicitly mention exactly large sets only. This is
without loss of generality since any large set contains an exactly large subset. When
n ≥ R(k;m) such CNF is unsatisfiable and we can study its refutations. As for Ramsey
principles, the typical cases of interest are when n is the critical (but unknown) Paris-
Harrington number R(k;m), and when n is a known upper bound for the latter. The
size of the Paris-Harrington principle is dominated by the number of clauses dealing
with large sets. For our purposes the following Fact is sufficient.

Fact 1. Formula Ph(n; k,m) contains 2Θ(n) clauses, for n ≥ R(k;m).

Proof. Since n
3 ≥

R(k;m)
3 > k (see equation (4)), there is a clause of type (2) corre-

sponding to each subset of size bn/3c having bn/3c as the minimum.

While general Paris-Harrington principles (for arbitrary colorings of hypergraphs)
have enormously growing lower bounds [10], the above version for bi-colorings of graphs
is only slightly stronger than Ramsey Theorem. Indeed, it is known to have double
exponential upper bounds. This has been established by Erdős and Mills [5] and later
improved by Mills [18]. There exist constants α, β,N > 0 such that for all m ≥ 3 and
k ≥ N

k2αm < R(k;m) < k2βm . (3)

On the other hand, we recall the known bounds on Ramsey numbers [4, 22, 1, 11].
There are constants c1, c2, c3, c4 such that

c1 ·m2

logm
≤ r(3,m) ≤ c2 ·m2

logm
and

c3

(
m

logm

) k+1
2

≤ r(k,m) ≤ c4 ·mk−1

(logm)k−2
, (4)

for fixed k > 3. In the paper it is often sufficient to use the following weaker bound [7].
For k,m ≥ 2

r(k,m) ≤
(
k +m− 2
m− 1

)
. (5)

Thus, for 2 ≤ m ≤ k, we have that r(k − 1,m) ≤ km−1 − km−2.
We now briefly discuss what is known about the proof complexity of Ramsey prin-

ciples. Note that all known results deal with the diagonal Ramsey theorem, where
one forbids cliques and stable sets of the same size k. Krishnamurty and Moll [15]
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proved a r(k, k)/2 width lower bound in Resolution and an exponential lower bound
for the Davis-Putnam procedure for Ram(r(k, k); k, k). Recently Kraj́ıček [14] estab-
lished an exponential size lower bound in Resolution for the same principle. Pudlák
proved in [20] that the formula Ram(4k; k, k) has a quasi-polynomial size 2k

O(1)
proof

in bounded-depth Frege systems (note that the proof is polynomial in the size of the
Ramsey principle, which is quasi-polynomial in the number of variables). Kraj́ıček [13]
proved a conditional lower bound for the same formula: a lower bound for Ram(4k; k, k)
in Resolution follows from a lower bound for Phpn

4

n in Res(2). A suitable Pigeonhole
principle is used to blow-up a given counterexample to a Ramsey-type statement, so
as to obtain a counterexample that violates some known upper bound on the corre-
sponding Ramsey numbers. This can be seen as a reversal of Pudlák’s [20] approach.
The proof of our conditional lower bound in Section 4 can be seen as an extension of
these ideas to the case of the Paris-Harrington principle.

We give a brief overview of our proofs for the upper bound and for the lower bound.
Both rely on a two-steps reduction:

1. from the Paris-Harrington principle to an off-diagonal Ramsey principle,

2. from that off-diagonal Ramsey principle to a suitably weak Pigeonhole principle.

For the upper bound we give a recursive procedure (based on [18]) to reduce the Paris-
Harrington principle to a Paris-Harrington principle for triangles. Then we reduce this
to the off-diagonal Ramsey principle for triangles. Finally we use Pudlák’s [20] method
to reduce to a suitably weak Pigeonhole principle. For the lower bound we reduce
the Paris-Harrington principle to a very unbalanced off-diagonal Ramsey principle on
triangles, as in [5], and we relate the latter to a weak quasi-polynomial Pigeonhole
principle.

3 An upper bound in bounded-depth Frege

We prove that the Paris-Harrington principle Ph(k22βk
; k, k) has quasi-polynomial size

proofs in bounded-depth Frege systems, where β = 1.471 is the constant from equa-
tion (3).

The argument has two main ingredients: (1) We simulate a combinatorial upper
bound construction by Mills [18]. This construction recursively reduces the upper
bound for the Paris-Harrington principle to upper bounds for very unbalanced Ramsey
principles; (2) We deal with the base cases of the recursion using small bounded-depth
Frege proofs of the Paris-Harrington principle for triangles which exist by the following
theorem (proof is deferred to Section 5).

Theorem 1. Ph(k2; k, 3) has polynomial-size bounded-depth Frege proofs.

To prove point (1) we translate Mills’ [18] proof-method in a search procedure
which takes any graph on integers in the interval [k, k22βk

] and looks for either a clique
or a relatively large stable set. Such a procedure is guaranteed to succeed, and it
is essentially a decision tree, with the notable exception of the base cases. The well-
known isomorphism between decision trees and tree-like refutations gives the refutation
of Ph(k22βk

; k, k).1

1A comment is in order here. The best known upper bound on R(k; k) is k2βk while we deal with the
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Theorem 2. Ph(k22βk
; k, k) has a quasi-polynomial size proofs in bounded-depth Frege.

Proof. Mills [18, Theorem 4] defines a function B as follows: B(1) = 1; B(2t) =
(2t−1)B(t)2 and B(2t+1) = 2tB(t)B(t+1). Mills shows that the following properties
hold.

B(t) ≤ 2βt, if t = 3 · 2r for some r; (6)

kB(m) ≥ R(k;m), for m ≥ 3 and sufficiently large k. (7)

While we are interested mostly in the case k = m, we need to keep the two param-
eters distinct in the proof of the present theorem. For any s there is an integer r such
that s ≤ 3 · 2r < 2s.

From a refutation of Ph(X;Y, Z) one can always obtain a refutation of Ph(X ′;Y,Z)
for any X ′ > X. Similarly, from a refutation of Ph(X;Y,Z) one can always obtain a
refutation of Ph(X;Y,Z ′) for any Z ′ < Z. Given k, choose r such that k ≤ 3 ·2r < 2k.
Property (6) implies that kB(k) ≤ kB(3·2r) ≤ k2β3·2r ≤ k22βk

. Thus, from a refutation of
Ph(kB(3·2r); k, 3 · 2r) we obtain a refutation of Ph(k2β3·2r

; k, 3 · 2r), from the latter we
obtain a refutation of Ph(k2β3·2r

; k, k) and finally from the latter we obtain a refutation
of Ph(k22βk

; k, k).
We make the following assumptions without loss of generality: (a) m = 3 · 2r for

some r ≥ 0, and (b) k is so large that the condition of inequality (7) is met with respect
to such m. Then the propositional formula Ph(kB(m); k,m) is contradictory. For ease
of notation we fix N(k,m) = kB(m). If r = 0 then N(k,m) = B(3) = 2. For r > 0,
and our choice of m the function N(k,m) has the following property.

N(k,m) = N

(
N
(
k,
m

2

)m−1
,
m

2

)
(8)

This follows from the properties of B and from the special form of m, as we now show
in detail. On the one hand we have the following equalities.

N(k,m) = kB(m) = kB(3·2r) = k(3·2r−1)B(3·2r−1)
2

.

On the other hand we have the following equality.

N

(
N
(
k,
m

2

)m−1
,
m

2

)
= kB(3·2r−1)(3·2r−1)B(3·2r−1).

Proof strategy. Fix N = N(k,m). We describe a search procedure that defines a
decision tree for the following problem: given a graph on integers [k,N ], find a clause
in Ph(N ; k,m) which is falsified. Since N ≥ R(k;m) (by equation (7)) this decision
problem has always an answer. The leaves of the decision tree will be either initial
clauses of the Paris-Harrington principle or points at which a small proof of a suitable
Paris-Harrington principle for triangles can be plugged-in. These exist by Theorem 1.
The decision tree can thus be easily formalized as a bounded-depth Frege proof.

weaker k22βk
. The reason for this is technical and has to do with the details of Mills’ original proof. We

believe that the result can be strengthen to Ph(k2βk ; k, k) with a slightly more involved construction, thus
matching the best known upper bound on Paris-Harrington numbers.
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We recall that Ei,j indicates if {i, j} is an edge in the graph.
The first step of the procedure is to read all edges between integers from k to

R(k,m/2). This costs at most R(k,m/2)2 queries. If a relatively large stable set is
found, then the procedure outputs such a set and quits. Otherwise the graph explored
so far contains a clique of m/2 vertices. Let these vertices be P = {v1, . . . , vm/2}.

The second step is to read all edges with one vertex in P and the other outside
P . This requires less than m

2 N queries.
For any outcome of the queries, we identify the following sets. A0 = {i

∣∣Ei,v1 = 0},
and for t ∈ [1, m2 − 1], At = {i

∣∣Ei,v1 ∧ Ei,v2 ∧ . . . ∧ Ei,vt = 1 and Ei,vt+1 = 0}, and
Am

2
= {i

∣∣Ei,v1 ∧ Ei,v2 ∧ . . . ∧ Ei,vm
2

= 1}.
The third step Each branch of the tree satisfies one of the following two cases:
(Case 1) There exists 0 ≤ i < m

2 with |Ai| ≥ r(m− i, vi+1 − 1).
(Case 2) For all 0 ≤ i < m

2 , |Ai| < r(m− i, vi+1 − 1).
If (Case 1) applies for some Ai, then we apply a brute force search procedure on the

first r(m−i, vi+1−1) elements of such Ai to find either a clique C of size m−i or a stable
set S of size vi+1 − 1. We know that all elements of Ai are connected with v1, . . . , vi
and disconnected from vi+1. Thus either we output the m-clique {v1, . . . , vi} ∪ C or
the stable set {vi+1} ∪ S of size vi+1 and minimum less than or equal to vi+1. The
brute force search procedure requires at most r(m− i, vi+1 − 1)2 queries. Note that
vi+1 ≤ R(k;m/2) and hence r(m− i, vi+1 − 1) ≤ r(m,R(k;m/2)−1). Thus the cost of
the procedure (i.e., the maximal depth of a branch) in this case is at most R(k;m/2)2m,
using equation (5).

In (Case 2) we focus on Am/2. To estimate the size of Am/2 we need the following
Lemma.

Lemma (Mills [18]). Let w = N
(
k, m2

)
. If, for all 0 ≤ i < m

2 , |Ai| < r(m−i, vi+1−1),
then |Am/2| > N(wm−1,m/2)− wm−1.

Proof. In this proof we use the bound r(t, s) ≤ (s+ 1)t−1 − (s+ 1)t−2 for 2 ≤ s ≤ t
(see equation (5)). For all i < m

2 we have by construction that vi ≤ w, thus we have
|Ai| < r(m− i, vi+1 − 1) ≤ r(m− i, w − 1) ≤ wm−i−1 − wm−i−2.

The size of set P ∪A0 ∪ . . . ∪Am/2−1 is less than m/2 + wm−1 − wm/2−1 thus

|Am/2| ≥ N(k,m)− k − wm−1 + wm/2−1 −m/2 =

= N(N(wm−1,m/2),m/2)− k − wm−1 + wm/2−1 −m/2 =

= N(wm−1,m/2)B(m/2) − k − wm−1 + wm/2−1 −m/2 >
> N(wm−1,m/2)− wm−1,

for sufficiently large k,m. The second line is because of equation (8), the third line is
by definition of N , the last line is because B(x) ≥ 1, and wm/2−1 > k +m/2 for large
enough k,m.

The previous Lemma guarantees that the size of Am/2 is at least of

N
(
N(k,m/2)m−1,

m

2

)
−N(k,m/2)m−1 + 1,
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thus the graph induced by the elements of Am/2 (preserving their order) on the interval
[N(k,m/2)m−1, N ] either contains an m/2-clique or a relatively large stable set.

We then apply the search procedure recursively on this graph to find either a
clique C of size m/2 or a relatively large stable set S. We can do this because either
(i) m/2 = 3, or else (ii) m/2 and N(k,m/2)m−1 = (kB(m/2))

m−1
are such that the

conditions for the validity of inequalities (6) and (7) are met, i.e., B(m/2) ≤ 2βm/2

and kB(m/2) ≥ R(k;m/2). In case (i) we apply Theorem 1. Note that the relevant

interval in this case is [N(k, 3)5, N(N(k, 3)5, 3)], which is [(kB(3))
5
, ((kB(3))

5
)
B(3)

], i.e.,
[k10, k20], since B(3) = 2. Now consider case (ii). If C is found then it maps to a clique
of size m/2 in Am/2 which is in turn completely connected with vertices in P . Thus
we output C ∪P . If S is found, notice that mapping back S to Am/2 preserves the size
and never increases the indexes of vertices. This implies that S is a relatively large
stable set in the original graph and a legitimate output. This concludes the description
of the search procedure.

Depth of the procedure. We give an upper bound on the size of our the proof
of Paris-Harrington principle.

Let Q([a, b], c) denote the size of the proof that [a, b] satisfies the Paris-Harrington
principle for cliques of size c and large stable sets, i.e., of Ph(b; a, c).

In the first and second steps the procedure does an exhaustive search on the
value of the queried variables. Thus the number of branches required is at most
2R(k;m/2)2+m

2
N(k,m).

An analogous search procedure takes place in the third step if (Case 1) occurs,
requiring at most 2R(k;m/2)2m

branches. If (Case 2) occurs then the procedure is applied
recursively to the restriction of the input graph to the interval [N(k,m/2)m−1, N ] and
the search looks for m/2-cliques or large stable sets. The recursion stops either when
(Case 1) occurs or when the target clique size becomes 3.

We now have to evaluate the cost of this recursion. We have

Q([k,N ],m) ≤ R(k,m/2)2 +
m ·N

2
+M(k,m,N),

where M(k,m,N) abbreviates

max{R(k,m/2)2m, Q([N(k,m/2)m−1, N ],m/2)}.

Note that N = N(N(k,m/2)m−1,m/2). This is so because N = N(k,m) and N(k,m)
satisfies equation (8). Therefore the term Q([N(k,m/2)m−1, N ],m/2) is of the correct
form for the recursion to go through.

To simplify the estimate of the cost of the recursion we make the following obser-
vations. For m = 3 · 2` for some `, the base case of the recursion is Q([a, b], 3) for some
a, b. The recursion determines the following values.

k0 = k, k1 = N(k,m/2)m−1, . . . , ki+1 = N(ki,m/2i+1)m/2
i−1

, . . . , k`

where ` = logm − log 3 so that m/2` = 3. We observe that k` =
√
N . This can

be seen as follows: by repeated application of equation (8) we have that for every i,
N(ki,m/2i) = N . In particular N(k`, 3) = N . By definition of N(k`, 3) we get that
k
B(3)
` = N . Thus k` =

√
N , since B(3) = 2.
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We now show that the recursive call arising from (Case 2) always dominates the
cost of the procedure in (Case 1). First note that Q([ki+1, N ],m/2i+1) costs at least
as the cost of the execution of Step 1 and Step 2, for each step i ∈ [0, ` − 1] of the
recursion. Therefore

Q([ki+1, N ],
m

2i+1
) ≥ 2

m

2i+2 ·(N−ki) ≥ 23(N−
√
N) ≥ 2

3
2
N .

We now evaluate the cost of (Case 1). Let us assume that we are at step i of the
recursion. Let t be such that 0 ≤ t < m/2i+1 and |At| ≥ r(m/2i− t, vt+1−1). The cost
of (Case 1) is then at most 2r(m/2

i−t,vt+1−1)
2

, since a search is performed only the first
r(m/2i− t, vt+1−1) elements of At. It is now sufficient to show that r(m/2i− t, vt+1−
1) ≤

√
N . By construction vt+1 ∈ [ki, N(ki,m/2i+1)] hence vt+1 ≤ N(ki,m/2i+1) and

therefore r(m/2i − t, vt+1 − 1) is not larger than r(m/2i − t,N(ki,m/2i+1)) and we
have

r(m/2i − t, vt+1 − 1) ≤ r(m/2i − t,N(ki,m/2i+1))

≤ N(ki,m/2i+1)m/2
i−t−1

≤ N(ki,m/2i+1)m/2
i−1

= ki+1

≤
√
N.

The first inequality is by equation (5), the last equality is by definition of ki+1. Finally
we observe ki+1 ≤

√
N since at worst ki+1 ≤ k` and we have already proved that

k` =
√
N . Thus we have, for every 0 ≤ i < `,

Q([ki, N ],m/2i) ≤ 2R(ki;m/2
i+1)

2
+
(

m

2i+1

)
·(N−ki) · Q([ki+1, N ],m/2i+1).

We now observe that the for all steps of the recursion except the last, the term
R(ki;m/2i+1)2 is asymptotically polynomially smaller than N . This can be seen as
follows.

R(ki;m/2i+1)2 ≤

(
k
B
(

m

2i+1

)
i

)2

≤
(
m/2i−1

√
ki+1

)2

since ki+1 =

(
k
B
(

m

2i+1

)
i

)m

2i
−1

. The term
(
m/2i−1

√
ki+1

)2
is polynomially smaller than

N since k` =
√
N . At the last step of the recursion the term R(ki;m/2i+1)2 could be

of the order of N .
Therefore, since the recursion bottoms out after logarithmically many steps, we

obtain the following bound on the size of the whole procedure.

Q([k,N ],m) ≤ Q([
√
N,N ], 3) · 2

m
2
N+m

4
N+...+m

2`
N+O(N) ≤ 2cmN(

∑`
i=0 1/2i) = q2O(mN).

Note that for m = k we have m ≈ log logN . Note that the complexity of the base case
accounts for the need of reasoning in bounded-depth Frege.
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Assessing the quality of the refutation in Theorem 2 is somehow more difficult than
usual. For N = k2βk the size of the worst tree-like refutation is 2N

2
which is far greater

than our upper bound. Furthermore, such large refutations are only quasi-polynomial
in the size of the formula itself, which is 2Θ(N). While the size of the formula and the
number of variables are usually polynomially related, it is not the case here, since the
number of variables in Ph(N ; k, k) is O(N2). Thus, while our refutation is not much
longer than the formula, there might be refutations that are smaller than the formula
itself (as in very weak Pigeonhole principle formulations [21]). With respect to the
problem of formula size vs. variable number, Ramsey-like statements defined in the
recent work of Friedman [6] might be of some help. A natural open question is whether
the quasi-polynomial upper bound in Theorem 2 can be improved to polynomial with
respect to formula size.

4 A conditional lower bound in Resolution

We prove a conditional lower bound on the Paris-Harrington principle Ph(k2βk ; k, k) in
Resolution. The lower bound is conditional on a lower bound for a quasi-polynomial Pi-
geonhole principle in Res(2). The technique can be seen as generalizing Kraj́ıček’s [13,
14] approach to the Ramsey principle. We use a weak Pigeonhole principle to blow-up
a counterexample to the Paris-Harrington principle so as to obtain a contradiction.
More precisely we show how to start from a small graph on [k, L] without k-cliques
and large stable sets and to blow it up — using a suitable Pigeonhole principle — to a
large graph on [k,N ] without k-cliques and large stable sets. This is contradictory as
soon as N goes above the known upper bounds for R(k; k).

The proof has two ingredients: (1) We show how to adapt a combinatorial lower
bound construction for R(k; k) by Erdős and Mills [5] to reduce the proof complexity
of the Paris-Harrington principle to that of a very unbalanced off-diagonal Ramsey
principle for triangles; (2) We use a suitable Pigeonhole principle to obtain conditional
lower bounds on the off-diagonal Ramsey principle from part (1) of the proof.

Consider the bounds for R(k; k) proved by Mills in [18] (see equation (3)). Any
proof system that can prove an upper bound for R(k; k) must be able to distinguish
the upper bound from the lower bound in equation (3). Then it must be able to prove
some kind of Pigeonhole principle.

We substantially extend the technique by Kraj́ıček [13] to reduce a refutation
of Php2(logn)c

n , for some c, n depending on the parameters k, β, to a refutation of
Ph(k2βk ; k, k).

Note that Kraj́ıček [13] uses Phpn
4

n to postulate a bijective mapping between a
counterexample to Ramsey Theorem for small graphs and a big graph for which the
theorem is true. This gives a contradiction. This technique does not apply immediately
to the Paris-Harrington principle. The Pigeonhole mapping does not preserve the
relative order of indexes, which is needed for Paris-Harrington. On the other hand a
natural formulation of an order-preserving Pigeonhole principle is easy to refute. We
get around this obstacle by going first from Paris-Harrington to Ramsey and only then
to the Pigeonhole principle. The first step exploits a construction from Erdős-Mills [5].

We consider Res(2) as a refutational system, thus we include as axioms also the
clauses of the CNF we want to refute.

10



Theorem 3. Let N ≥ k2βk . There exists M = M(k) such that

i. 22k/2−1
< M <

√
N , and

ii. if Ph(N ; k, k) has a Resolution refutation of size S then Ram(N −M + 1; 3,M)
has a Resolution refutation of size S.

Proof. We assume even k ≥ 6. Consider any refutation for Ph(N ; k, k) of size S, and
consider the interval [k,N ]. We divide the interval in the following way: fix n0 = k,
n1 = k + r(3, k)− 1, ni+1 = ni + r(3, ni)− 1, up to M = M(k) = nk/2−2. The interval
[k,N ] is divided as [n0, n1 − 1], [n1, n2 − 1], up to [nk/2−2, nk/2−3 − 1], plus another
residual interval [nk/2−2, N ]. For 0 ≤ i ≤ k/2− 3 we call Ii the interval [ni, ni+1 − 1].
The last interval is [nk/2−2, N ] = [M,N ]. For those familiar with [5], note that we are
essentially carrying over Erdős-Mills’ construction up to the penultimate step inside a
suitably large interval given in advance.

Now we prove point (i). The RHS of (i) can be obtained by the following calculations
(see [5]). Let a be such that for all sufficiently large s, r(3, s) ≥ as2/(log s)2 (cfr. [4]).
Let b = a/(log k)2 (we can assume that b ≤ 1). One can show inductively for i =
0, 1, . . . , k/2− 1 that ni ≥ (k2ib2

i−1)/(42i−i−1). Let now c =
√
a/4. For all sufficiently

large k we have nk/2−2 ≥ (c
√
k/ log k)

2k/2−1

by the following calculation:

nk/2−2 ≥
(
k2k/2−2

b2
k/2−2−1

)
/
(

42k/2−2−k/2+1
)

≥ (kb/4)2k/2−2
= (c
√
k/ log k)

2k/2−1

.

The desired inequality follows for k so large that c
√
k/ log k > 2. The lower bound

can be slightly improved using the bounds in equation (4) but this is irrelevant for our
purposes.

For the LHS of (i), we give a very rough overestimation which is sufficient for
our purposes (in particular we ignore the logarithmic factor in the denominator of
equation (4)). Let u(x) := x + r(3, x). Obviously then ni+1 ≤ u(ni), by definition of
ni+1. Thus, ni+1 ≤ ui+1(k) and thence M ≤ uk/2−2(k). Also, ui+1(x) ≤ 2 · r(3, ui(x)),
by monotonicity of r(3, x). By the LHS of equation (4), r(3, ui(x)) < (ui(x))2. By
induction on i we easily prove ui+1(k) ≤ 22i+1−1 · k2i+1

: for i = 0, we have u(k) =
k + r(3, k) ≤ 2 · r(3, k) < 2 · k2. For the inductive step we have

ui+1(k) ≤ 2r(3, ui(k)) ≤ 2(ui(k))2 ≤

≤ 2(22i−1 · k2i)
2
≤ 2 · 22i+1−2 · k2i+1 ≤

≤ 22i+1−1 · k2i+1
.

Thus M < 22k/2−2−1 · k2k/2−2
and M2 < 22k/2−1−2 · k2k/2−1

, which is strictly smaller
than N = k2βk , since

2k/2−1 − 2 + log k2k/2−1 < 2 log k2k/2−1 = log k2k/2

which is smaller that log k2βk for β > 1.

We now prove point (ii) in the statement of the theorem. We define a restriction
ρ on the variables of Ph(N ; k, k). First of all we fix Ea,b to 1 for every indices a and
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b in different intervals. For all i ≤ k/2 − 3, |Ii| = r(3, ni) − 1. Therefore there exists
a graph Gi of size |Ii| with no stable set of size ni and no triangle. Gi immediately
defines an assignment ρi to all variable Ea,b with a, b ∈ Ii. We restrict the variables in
Ii according to ρi.

We observe that the only variables left unassigned are those of the form Ea,b with
a, b ∈ [M,N ]. We now argue that a refutation of Ph(N ; k, k)|ρ induces a refutation of
Ram(N −M +1; 3,M). In particular for any clause C in the refutation of Ph(N ; k, k),
we can deduce the clause C|ρ (or a subset of it) from Ram(N−M+1; 3,M). We prove
it for initial clauses, the rest follows by induction on the Resolution inference process.

If C is an initial clause in Ph(N ; k, k) then is either of type (1) or of type (2).
First suppose C is of type (1). If three or more elements mentioned in C are in

the same Ii for some i, then the restriction ρ satisfies C because no triangles are in
the assignment ρi associated to Ii. Therefore the clause is deducible, since it is true.
Suppose now that C refers to at most two elements in any interval Ii. Then it must
refer to at least 3 elements of interval [M,N ], since there are k/2− 2 intervals Ii. The
corresponding edges are not assigned by the restriction ρ. Thus, in this case, C|ρ is a
superset of a clause of Ram(N −M + 1; 3,M) of type (1).

Now suppose that C is of type (2). If C refers only to elements from different
intervals then it is killed by the restriction ρ which set to 1 all edges across different
intervals. Any clause of type (2) which refers to indexes in an interval Ii concerns a
stable of size at least ni, and is killed by the restriction ρi which set to 1 at least one edge
in any set of ni vertices in Ii. The only other clauses of type (2) of the Paris-Harrington
principle that survive are the ones referring to vertices in the interval [M,N ]. Such
clauses refer to sets of vertices of size at least M , thus are subsumed by the clauses
of type (2) of Ram(N −M + 1; 3,M). We conclude that any refutation of size S for
Ph(N ; k, k) gives a refutation of the same size for Ram(N −M + 1; 3, n(k)).

Theorem 4. Let T < r(k, s). If Ram(U ; k, s) has a Resolution refutation of size S
then PhpUT has a Res(2) refutation of size less than S · 2O(ks·max(log s,log k)).

Proof. To refute Ram(U ; k, s) it is necessary to distinguish between numbers U and
T with U ≥ r(k, s) > T . The proof strategy is to encode a Resolution refutation of
Ram(U ; k, s) as a Pigeonhole principle refutation in Res(2). If there was an homomor-
phism between a graph of T vertices with neither a k-size clique nor a s-stable set and
a graph of U vertices, then Ram(U ; k, s) would not be refutable. Thus any refutation
of Ram(U ; k, s) could be used to refute the Pigeonhole principle.

Fix G = (V,E) to be a graph with no k-clique and no s-stable, with |V | = T
vertices. We identify two sets ∆, Γ of edges and non-edges as follows.

∆ = {(a, b)
∣∣{a, b} ∈ E}, Γ = {(a, b)

∣∣{a, b} 6∈ E and a 6= b}

Consider any pair i, j ∈
(

[U ]
2

)
. We give two different encoding for any literal. The

disjunctive encoding is defined as follows.

Ei,j 7→
∨

(a,b)∈∆

pi,a ∧pj,b, ¬Ei,j 7→
∨

(a,b)∈Γ

pi,a ∧pj,b

The conjunctive encoding is defined as follows.

Ei,j 7→
∧

(a,b)∈Γ

(¬pi,a ∨¬pj,b) , ¬Ei,j 7→
∧

(a,b)∈∆

(¬pi,a ∨¬pj,b)

12



In the above, the variables pi,a for i ∈ U and a ∈ T are the variables of PhpUT .

The disjunctive encoding allows to encode each clause in the refutation of Ram(U ; k, s)
as a 2-DNF on the variables of PhpUT . To prove the theorem it is sufficient to show
that in Res(2) the following hold.

1. the disjunctive encoding of the empty clause is the empty clause.

2. the disjunctive encoding of A ∨ B is deducible from the disjunctive encoding of
A ∨ Ei,j and B ∨ ¬Ei,j for any A,B clauses on the variables of Ram(U ; k, s).

3. the disjunctive encoding of the initial clauses of Ram(U ; k, s) is deducible from
PhpUT .

Point (1) is trivial. To show point (2) we will use the conjunctive encoding. The
conjunctive encoding is necessary to simulate the Resolution cut, but it requires Θ(T 2)
clauses to represent a literal. To represent a clause of width w it would require up
to T 2w clauses, which is too inefficient. Instead we use the disjunctive encoding for
representing clauses, and we extract a mixed encoding to do the cut: all literals but
one are in disjunctive form, while one of the literals involved in the cut is represented in
conjunctive form. Proving point (3) requires more work, since deducing the encoding
of an axiom of Ram(U ; k, s) is equivalent to showing that G has no k-clique and no
s-stable set.

Inference simulation. Consider A ∨Ei,j and B ∨ ¬Ei,j where we assume that A
and B are already disjunctively encoded. We want to deduce A∨¬pi,c∨¬pj,d for every
pair (c, d) ∈ Γ. Such set of formula is essentially an mixed encoding for which A is
encoded disjunctively, and Ei,j is encoded conjunctively. Since we encode conjunctively
just one literal, the size blow-up does not occur.

Once the mixed encoding of A∨Ei,j has been deduced, we then apply Res(2) Cut
to all such formulas and to the disjunctive encoding of B ∨¬Ei,j to obtain A∨B. We
now show how to obtain the set of O(T 2) formulas

A ∨ ¬pi,c ∨ ¬pj,d (9)

for each (c, d) ∈ Γ, from the 2-DNF disjunctive encoding of A ∨ Ei,j , which is

A ∨
∨

(a,b)∈ ∆

pi,a ∧ pj,b (10)

Fix any (c, d) ∈ Γ. For any of (a, b) ∈ ∆ either a 6= c or b 6= d because ∆ and
Γ are disjoint sets. Thus any term pi,a ∧ pj,b can be eliminated from formula (10) by
an application of resolution with either ¬pi,a ∨ ¬pi,c or ¬pj,b ∨ ¬pj,d: at least one of
these formulas is a Pigeonhole axiom. After removing all such terms from (10), we
are left with a formula of the form A ∨ ¬pi,c ∨ ¬pj,d. The just described process costs
O(T 2) steps and must be repeated for any (c, d) ∈ Γ. Thus inferring the formulas in (9)
requires O(T 4) steps.

Now we have all formulas of the form (9) and B ∨
∨

(c,d)∈Γ pi,c ∧ pj,d, which is
the disjunctive encoding of B ∨ ¬Ei,j . To deduce the disjunctive encoding of A ∨ B,
we proceed as follows. Consider any Γ′ ⊆ Γ. We have that for any (c, d) ∈ Γ′, one
application of resolution to A ∨ ¬pi,c ∨¬pj,d and

A ∨ B ∨
( ∨

(c′,d′)∈Γ′−{(c,d)}

pi,c′ ∧pj,d′
)
∨(pi,c ∧pj,d)
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gives
A ∨B ∨

( ∨
(c′,d′)∈Γ′−{(c,d)}

pi,c′ ∧ pj,d′
)
.

The base case A ∨ B ∨ Ei,j is obtained by weakening. We repeat this inference until
Γ′ = ∅, and we get A ∨ B. The complete process is dominated by the O(T 4) steps
required to obtain the formulas in (9).

Axiom deduction. We show how to deduce the disjunctive encoding of an axiom
of Ram(U ; k, s) from the PhpUT axioms. We focus on the axioms that claim that no
stable of size s exists in the graph. The case of cliques is dual. Without loss of
generality we assume that the axiom we want to deduce is exactly the following.∨

i 6=j∈[s]

∨
(a,b)∈∆

pi,a ∧ pj,b. (11)

The deduction of such an axiom is equivalent to proving that there is no stable set
of size s in the model graph G (indeed formula (11) claims that any set of s vertices
contains a pair with an edge of G between them). The deduction of the latter fact can
be done in TO(s) steps, according to the following lemma.

Lemma 1. Let G be a graph with T vertices and no stable set of size s. Consider
propositional variables pi,v for i ∈ [s] and v ∈ V (G). The following formula has
Resolution refutation of size TO(s).∨

v

pi,v i ∈ [s] (12)

¬pi,v ∨ ¬pj,v i 6= j ∈ [s] and v ∈ V (G) (13)
¬pi,v ∨ ¬pj,v′ i 6= j ∈ [s] and {v, v′} ∈ E(G) (14)

Proof. Proof strategy is a brute force exploration of all possible assignments of the s
indexes to T elements. For any sequence of vertices (v1, . . . , vw) of length 0 ≤ w ≤ s
we are going to deduce the clause

∨w
i=1 ¬pi,vi .

We start with w = s and we proceed downward to w = 0 which corresponds to the
empty clause, i.e. the end of the refutation.

Since G has no stable set of size s, any sequence of (v1, . . . , vs) either has a repetition
or there is an edge between vi and vj for some 1 ≤ i < j ≤ s. In both cases the clause
to deduce is a weakening of an initial clause of type (13) or (14).

Fix w < s and C =
∨w
i=1 ¬pi,vi . For any v ∈ V (G), clause C ∨ ¬pw+1,v has been

deduced at the previous step. We obtain clause C by doing resolution of the initial
clause

∨
v pw+1,v (clause (12)) with all such T many clauses.

In this refutation we produce Tw clauses of witdh w for 0 ≤ w ≤ s. The clauses of
width s need an axiom download and a (not strictly necessary) weakening step to be
deduced from initial clauses. Each clause of width less than s requires at most T + 1
steps to be deduced from the corresponding clauses of larger width. The total size is
then TO(s).

Lemma 1 immediately implies that formula (11) is deducible in TO(s) steps. The
refutation of (11) is obtained by simulating the refutation given by Lemma 1 using the
initial clauses of PhpUT . Clauses (12) and (13) are also initial clauses of PhpUT ; clauses
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(14) are substituted by the corresponding 2-DNF tautologies ¬pi,v∨ ¬pj,v′∨(pi,v∧pj,v′)
which require 3 steps each to be deduced. The simulation of the refutation in Lemma 1
does not end with the empty clause, because of the weakening of the initial formulas.
Instead it ends with the disjunction of all weakenings made at the beginning. Such a
disjunction is a sub-formula of the desired axiom (11).

If a Resolution refutation of Ram(U ; k, s) has length S, then the correspond-
ing Res(2) refutation of PhpUT costs T 4 for each inference step, TO(k) for each ax-
iom (1) and TO(s) for each axiom (2). Thus the length of the whole refutation
is at most TO(max(s,k))S. By the choice of T < r(k, s) and by equation (5), we
have T ≤ (k + s− 2)min(k,s) = 2O(min(k,s) max(log k,log s)). Thus the total length is
TO(max(s,k))S = 2O(ks·max(log s,log k))S.

In the following discussion we fix N = k2βk , M = nk/2−2 as in the proof of Theo-
rem 4, and L = r(3,M)− 1. From Theorem 3 and Theorem 4 we immediately obtain
the following corollary.

Corollary 1. If Ph(N ; k, k) has a refutation of size S in Resolution, then PhpN−M+1
L

has a refutation of size 2O(M logM) · S in Res(2).

Proof. By Theorem 3 if the Paris-Harrington principle Ph(N ; k, k) has a Resolution
refutation of size S, then Ram(N − M + 1; 3,M) also has such a refutation. By
Theorem 4 if Ram(N −M + 1; 3,M) has a size S refutation in Resolution then the
Pigeonhole principle PhpN−M+1

L has a Res(2)-refutation of size MO(M) · S.

A conditional lower bound for the Paris-Harrington principle in Resolution can be
gleaned from the above results as follows. First note that PhpN−M+1

L is at best quasi-
linear and at worst quasi-polynomial for the parameters N , M , and L in question.
From (i) in Theorem 3 we know that

22k/2−1
< M <

√
k2βk . (15)

For L = r(3,M)− 1 we have ([11], see equation (4)) that L ≈ M2

logM .

If M is close to the upper bound in (15), then L = Θ
(

N
logN

)
, and we are dealing

with a quasi-linear Pigeonhole principle. If M is close to the lower bound in (15), then
L = 22Θ(k)

and we are dealing with a quasi-polynomial Pigeonhole principle (recall that
k ≈ log logN).

The strength of our result then depends on the lower bound we assume on the
relevant Pigeonhole principle PhpN−M+1

L in Res(2). For the sake of concreteness, let

us assume a lower bound of 2L
1
2 +ε

for some ε > 0. Then 2L
1
2 +ε(

2O(M logM)
)−1

is a lower

bound for Ph(N ; k, k) in Resolution. Since L = Ω
(

M2

logM

)
, we have that L1+ε ≥ M1+ε

(logM)d

for some d, and the latter term obviously dominates M logM . Therefore we obtain a

bound of 2Ω
(
L

1
2 +ε

)
for the Paris-Harrington principle in Resolution. We sum up the

above observations in the following corollary.

Corollary 2. If the length of any Res(2) refutations of PhpN−M+1
L is at least 2L

1
2 +ε

for some ε > 0, then any Resolution refutations of Ph(N ; k, k) has size 2Ω
(
L

1
2 +ε

)
.
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In our conditional lower bound L could be very small when compared to N . Indeed,
we could have (if M is close to the lower bound in 15) that for some c, N = 2O((logL)c).

Thus our conditional 2L
1
2 +ε

lower bound in the worst case only excludes proofs of
size quasi-polynomial in N but much smaller than the trivial 2N

2
upper bound in

Resolution. Nevertheless, any progress seems unlikely without a serious improvement
of the combinatorial upper and lower bounds.

5 The case of triangle-free graphs

In this Section we prove Theorem 1, used as the base case of the recursive construction
in the proof of Theorem 2. To achieve this we follow an argument by Mills [18] that
reduces Paris-Harrington principle for triangles to an off-diagonal Ramsey principle.
In Section 5.2 we formalize such reduction, but first in Section 5.1 we prove efficiently
such off-diagonal Ramsey Theorem in bounded-depth Frege systems. Latter proof is
a rather straightforward generalization of Pudlák’s [20] proof for the diagonal Ramsey
Theorem, but we avoid using the language of Bounded Arithmetic.

5.1 Off-diagonal Ramsey Theorem in bounded depth

We adapt Pudlák’s [20] treatment to the case of severely unbalanced off-diagonal Ram-
sey principles. We bypass the use of transfer principles from Bounded Arithmetic to
propositional systems. In particular we show that Ram(s2 − 5s + 2; 3, s − 1) has
polynomial-size proofs in bounded-depth Frege systems. The choice of the parameters
is dictated by the aim of eventually obtaining polynomial size proofs for Ph(s2; s, 3).
We will show how to obtain such proofs by a reduction to Ram(s2 − 5s + 2; 3, s− 1).
Note that by equation (4) there exists a constant c such that s2 − 5 + 2 ≥ c(s2 −
2s + 1)/(log(s − 1)) ≥ r(3, s − 1) for sufficiently large s. Small proofs for the Ram-
sey principles are obtained by reduction to a weak Pigeonhole principle of the form
(2n − 6

√
n) → n. We start with a simple lemma concerning the latter principle. We

do not make any attempt to strenghten the claim (e.g. by reducing to a stronger but
still efficiently provable Pigeonhole principle), which is just sufficient for our present
purposes.

Lemma 2. The Pigeonhole principle Php
2n−6

√
n

n has bounded-depth Frege proofs of
size nO(

√
n).

Proof. Consider the first 6
√
n pigeons. In the first part of the refutation we deduce

the sequent p1,h1 , p2,h2 , . . . , p6
√
n,h6

√
n
` ⊥ for any sequence (h1, h2, . . . , h6

√
n) of holes.

If a sequence contains a repetition then the corresponding sequent follows imme-
diately from the injectivity axioms of PHP. Fix a sequence with no repetitions, and
consider a restricted version of the principle, where the first 6

√
n pigeons are assigned

to that sequence of holes.
We call such restricted formula F . It is easy to see that up to renaming variables,

F is isomorphic to PHP 2(n−6
√
n)

n−6
√
n

.
By unit propagation of the partial assignment implied by the left part of the

sequent, formula p1,h1 , p2,h2 , . . . , p6
√
n,h6

√
n
` F can be deduced in polynomial time

16



from the initial pigeon axioms. Furthermore F has a polynomial size refutation in
bounded depth Frege (see [19, 17]), thus we can deduce the empty clause from the
p1,h1 , p1,h2 , . . . , p6

√
n,h6

√
n

and the axioms of the Pigeonhole principle in polynomial size.
The second part of the refutation goes through by noticing that for any i and any

formula A the collection of sequents {pi,j , A ` ⊥}nj=1 and the axiom ` ∨nj=1pi,j imply
A ` ⊥ with n cut operations. Thus for 6

√
n times we group sequents which are equal

up to the last hole, and we deduce the sequent corresponding to the common part. By
induction we obtain the empty sequence, i.e. the sequent ∅ ` ⊥.

The number of sequents to produce in the first part is n6
√
n and each one requires

a polynomial number of steps. The second part has size roughly n6
√
n+O(1), since the

deduction process mimics a tree of height 6
√
n and branch n and there is a O(n) cost

at each node to actually simulate the branching.

Given s ≥ 3, let Σ = Σ(s) be the set of binary sequences containing at most one
occurrence of 1 and at most s− 2 occurrences of 0. The sequences in Σ are called good
sequences. Note that good sequences have length at most s− 1. The cardinality of Σ
is S = (s+2)(s−1)

2 . This can be seen as follows. Σ contains a single sequence consisting
of all O’s, for each of the possible lengths. This gives s − 1 sequences (including the
empty one). For each possible positive length up to s− 1, Σ contains one sequence per
choice of positioning a 1, which gives

∑s−1
`=1 ` many sequences. We use the cardinality

of Σ as an upper bound to the off-diagonal Ramsey number r(3, s) (see equation (4)).

Theorem 5. Ram((s+1)(s−2)−4(s−1); 3, s−1) has polynomial-size bounded-depth
Frege proofs.

Proof. The proof is by reduction to Php
(s+1)(s−2)−4(s−1)
(s+1)(s−2)/2 . The latter has small bounded-

depth Frege proofs by Lemma 2 and since

4(s− 1) ≤ 6
√

(s+ 1)(s− 2)/2.

We introduce a crucial relation. For any sequence x0, . . . , xj of elements of
[1, (s + 1)(s − 2) − 4(s − 1)], and for any binary sequence α0, . . . , αj−1, we denote
by R(x0, . . . , xj ;α0, . . . , αj−1) the following formula.

 ∧
u∈[0,j−1]

∧
v∈[u+1,j−1]

Exu,xv = αu

 ∧
 ∧
u∈[1,j]

∧
xu−1<y<xu

∨
w∈[0,u−1]

Exw,y 6= αw

 .

The first conjunct expresses a compatibility condition between the sequence of vertices
~x and the sequence of colors ~α; the second conjunct expresses a minimality condition.

We further set, for every sequence ~α of length j,

px,~α :=
∨

x0<···<xj−1

R(x0, . . . , xj−1, x; ~α).

Proof Strategy We show how to deduce, given x in the domain, the disjunction∨
~α∈Σ px,~α from the negation of the Ramsey principle.
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Completeness Axioms Deduction We first give a sketch of the deduction of
the Pigeonhole principle axioms in the form of a Branching Program. In this particular
case the Branching Program is readily translatable in a bounded-depth Frege proof.

We branch on the value of Ex0,x. This univocally determines the color of (x0, x),
be it α0. We then branch on Ex0,t = α0, for t = 1, . . . , x − 1. If all these queries
have negative answer, then the program exits and R(x0, x;α0) holds. Else, let x1 be
the first value of t such that Ex0,t = α0. We then branch on Ex1,x, which determines
color α1. We then branch on Ex0,t = α0 ∧ Ex1,t = α1, for t > x1. If no t satisfies
the condition, then the program exits and the relation R(x0, x1, x;α0, α1) is satisfied.
Else, we proceed in a similar fashion chosing x2 as the first value of t that satisfies the
condition. We continue this process indefinitely.

The program either exits satisfying the relation R(x0, . . . , xj−1, x; ~α) for some
x0, . . . , xj−1, and some α0, . . . , αj−1, or else ~α is not a good sequence. The corre-
sponding branch then falsifies one of the initial clauses, since it implies the existence
of either a triangle or a large stable set.

It is easy to see that the cost of the process for every vertex is O((s2)s) = O(s2s).
We now show how to translate the above Branching Program into a derivation in a

bounded-depth Frege system. We introduce a family of auxiliary relations, parametrized
by x.

Cx(x0, . . . , x`;α0, . . . , α`−1) := R(x0, . . . , x`;α0, . . . , α`−1) ∧
`−1∧
i=0

Exi,x = αi.

Observe that Cx(x0, . . . , x`−1, x;α0, . . . , α`−1) is R(x0, . . . , x`−1, x;α0, . . . , α`−1). We
split the rest of the argument in two parts. First we show that, for all `, the truth of
Cx(x0, . . . , x`;α0, . . . , α`−1) implies∨

x` <z≤ x

Cx(x0, . . . , x`, z;α0, . . . , α`, 0) ∨
∨

x` <z≤ x

Cx(x0, . . . , x`, z;α0, . . . , α`, 1).

Second we show that all the formulas Cx(x0, . . . , x`, ~α) generated by the just described
inference process can be cut except those with ~α ∈ Σ and that for all such formulas
x` = x.

For the rest of this proof we abbreviate by R (respectively A) the first (respectively
the second) conjunct of Cx(x0, . . . , x`;α0, . . . , α`−1). First observe that

(R ∧A ∧ Ex`,x = 0) ∨ (R ∧A ∧ Ex`,x = 1)

is obviously deducible. We now reason by cases. We treat the case R ∧ A ∧ Ex`,x = 0
(the other case is symmetric).

First observe that the following formula is deducible from A ∧ Ex`,x = 0.

∨
x`<z≤ x


`−1∧
i=0

Exi,z = αi ∧ Ex`,z = 0︸ ︷︷ ︸
F (z)

∧
∧

x`<y<z

(
`−1∨
i=0

Exi,y 6= αi ∨ Ex`,y 6= 0

)
︸ ︷︷ ︸

G(z)

 .

For z = x, F (z) is exactly A ∧ Ex`,x = 0. We then reason by cases to either obtain
G(x) or to obtain F (z) ∧G(z) for some x` < z < x. The reasoning by cases is on the
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minimality of the currently inspected z, i.e., on the axiom G(z) ∨ ¬G(z). Thus, we
have that R ∧A ∧ Ex`,x = 0 implies

R ∧
∨

x`<z≤ x

( `−1∧
i=0

Exi,z = αi ∧ Ex`,z = 0
)
∧

∧
x`<y<z

( `−1∨
i=0

Exi,y 6= αi ∨ Ex`,y 6= 0
)
,

which is just
∨
x`<z≤xCx(x0, . . . , x`, z;α0, . . . , α`, 0) as needed.

If the sequence ~α is not a good sequence, then the conjunct R(~x, ~α) in Cx(~x, ~α)
induces a monochromatic triangle or a stable set of size s − 1, thus violating one of
the axioms of the Ramsey principle. The case that α is a good sequence but x` 6= x
is impossible since the sequence would have been extended using the above described
inference process.

Injectivity Axioms Deduction For the simulation of the inferences it is sufficient
to show that px,~α → py,~α, i.e., that px,~α ∧ py,~α →, for every x 6= y and every ~α.

Each of px,~α (resp. py,~α) is a disjunction asserting the existence of a sequence of
vertices of length j − 1 that can be extended by x (resp. y) so that the relation R is
satisfied with respect to ~α. For each such pair of sequences, σ and σ′, the extensions
σ · x and σ′ · y are distinct (since x 6= y). Consider the first coordinate in which they
differ, and let v, v′ be the corresponding vertices. Suppose without loss of generality
that v < v′. Then R(σ · x, ~α) contains a clause asserting the compatibility of v while
R(σ · y, ~α) contains a clause asserting the non-compatibility of v < v′. These two
clauses can be singled out using structural rules and then eliminated by a Cut.

The cost of the simulation is O(s2s × s2s) = O(s4s) steps.
The cost of the whole reduction is thus O(s4s) times the size of a refutation of the

formula Php
(s+1)(s−2)−4(s−1)
(s+1)(s−2)/2 . By Lemma 2 the latter quantity is bounded by O(s12s).

The size of the whole proof is thus bounded by sO(s), which is polynomial in the size
of the Ramsey formula (hence quasi-polynomial in the number of variables).

5.2 Small Paris-Harrington numbers

Paris-Harrington numbers for the case of forbidding a triangle and a large stable set
have the same asymptotic as the corresponding off-diagonal Ramsey numbers. In
particular, Mills [18] gives a direct proof of the following fact. For all k ≥ 3,

R(k; 3) ≤ r(3, k − 1) + 5k − 7.

Thus, k2 ≥ R(3; k) for sufficiently large k, by equation (4). We analyze this proof
to show that the complexity of proving a quadratic Paris-Harrington principle for
forbidding triangles can be reduced to the complexity of the quadratic off-diagonal
Ramsey principle from the previous subsection.

Theorem 1. Ph(k2; k, 3) has polynomial-size bounded-depth Frege proofs.

Proof. In the previous subsection we showed how to prove efficiently Ram((k+ 1)(k−
2)− 4(k− 1); 3, k− 1) in bounded-depth Frege. We will show how to mimic efficiently
Mills’ proof [18] by replacing the critical Ramsey number r(3, k−1) by the upper bound
(k+1)(k−2)−4(k−1) used in our proof of Theorem 5. Thus we show how to efficiently
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reduce a proof of Ph((k+ 1)(k− 2)− 4(k− 1) + 5k− 7; k, 3), i.e., of Ph(k2− 5; k, 3), to
a proof of Ram((k + 1)(k − 2)− 4(k − 1); 3, k − 1). A fortiori this gives a small proof
of Ph(k2; k, 3). The reduction procedure can be achieved in tree-like Resolution with
the exception of the use of small bounded-depth Frege proofs of Ramsey principles for
triangles.

Let n = k2 and suppose by way of contradiction that G = (V,E) is given such that
V = [k, n] and G contains no triangles and no large stable set.

Let A denote the set of vertices connected to k in G and B denote the set of vertices
disconnected from k in G. We branch exhaustively to determine A and B completely.
This results in at most 2n−k branches.

We then verify that A is a stable set. This produces at most |A|2 branches. In case
A is not stable, then a triangle is found and we are done. On the remaining branches
the set A is stable. If |A| ≥ min(A) then we have found a large stable set and we are
done.

If |B| ≥ (k+ 1)(k− 2)− 4(k− 1) then we know how to prove Ram(|B|; 3, k− 1) in
size 2O(k log k) (Theorem 5). Then either we find a triangle in B, in which case we are
done immediately, or else we find a stable set X ⊆ B of size k − 1. In the latter case
{k} ∪X is a large stable set in G and we are done.

In the rest of the proof all the branches that are left open correspond to cases
where |A| < min(A) and |B| < (k+ 1)(k− 2)− 4(k− 1). We prove that such cases are
impossible. We distinguish two further cases.

(Case 1) min(A) < 2k. Then |A| ≤ 2k − 2. Thus, since n = |A|+ |B|+ k, we have
the following contradiction to the choice of n.

n ≤ k + 2k − 2 + (k + 1)(k − 2)− 4(k − 1)

= k + 2k − 2 + k2 − k − 4k + 2 = k2 − k < k2.

(Case 2) min(A) ≥ 2k. Then we have I = [k + 1, 2k − 1] ⊆ B. We explore all the
pairs in I. This requires at most k2 branches. If no positive edge is found, then G
contains a large stable set and we are done. Otherwise, let p < q be connected vertices
in B.

We look for triangles involving vertices p, q in G. This search requires n branches.
With 22|A| ≤ 22n steps we determine the set of all vertices in A independent from

p and the set of all vertices in A independent from q. If more than p− 2 vertices in A
are independent from p, then we have found a large stable set. Analogously for q an
q − 2. We now assume that A contains at most p− 2 vertices independent from p and
q − 2 vertices independent from q. But then we have that

|A| ≥ |A ∩ {neighbors of p}|+ |A ∩ {neighbors of q}|,

and thus
|A| ≥ |A| − p+ 2 + |A| − q + 2 = 2|A| − (p+ q − 4).

Hence, since p, q ≤ 2k − 1,

|A| ≤ p+ q − 4 ≤ 2k − 1 + 2k − 2− 4 ≤ 4k − 7.

Finally then (recall |B| ≤ (k + 1)(k − 2)− 4(k − 1)− 1)

n = k + |A|+ |B| ≤ 4k − 7 + k + k2 − k − 4k + 1 = k2 − 6.
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This is a contradiction to our choice of n.
In the worst case, the above procedure translates into a bounded-depth Frege proof

of size at most 2n−k · 2O(k log k) · 22n ≤ 24n = 23n+O(k log k) = 2O(n).

6 Conclusion and future work

We comment on the significance of our results. In our conditional lower bound L
could be very small when compared to N . Indeed, we could have (if M is close to

the lower bound in (15)) that for some c, N = 2O((logL)c). Thus our conditional 2L
1
2 +ε

lower bound only excludes proofs of size quasi-polynomial in N but much smaller than
the trivial 2N

2
upper bound in Resolution. Nevertheless, any progress seems unlikely

without a serious improvement of the combinatorial upper and lower bounds. On the
other hand, assessing the quality of the refutation in Theorem 2 is somehow more
difficult than usual. For N = k2βk the size of the worst tree-like refutation is 2N

2

which is far greater than our upper bound. Furthermore, such large refutations are
only quasi-polynomial in the size of the formula itself, which is 2Θ(N). While the size
of the formula and the number of variables are usually polynomially related, it is not
the case here, since the number of variables in Ph(N ; k, k) is O(N2). Thus, while
our refutation is not much longer than the formula, there might be refutations that are
smaller than the formula itself (as in very weak Pigeonhole principle formulations [21]).

Furthermore notice that when Ph(N ; k, k) is unsatisfiable, then N ≥ R(k; k) and
the clauses of Ph(R(k; k); k, k) are contained in Ph(N ; k, k). This means that 2R(k;k)2

steps are always sufficient for a tree-like refutation of Ph(N ; k, k). Thus, any lower
bound of the form 2h(k) even for simple tree-like resolution implies

√
h(k) ≤ R(k; k).

Proving a non-trivial lower bound requires a better understanding of the value of
R(k; k) itself. Indeed, the strength of our conditional lower bound from Section 4
depends on how close the lower and upper bound for R(k; k) are.

The problems regarding (i) the formula size vs. variable number and (ii) the size of
the explicit combinatorial bounds vs. the size of the trivial non-constructive refutations,
can be probably mitigated by studying the Ramsey-like statements defined in the recent
work of Friedman [6].

Besides the problem of turning our lower bound into an unconditional one, a natural
open question is whether the quasi-polynomial upper bound in Theorem 2 can be
improved to polynomial with respect to formula size.
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[14] Jan Kraj́ıček. A note on propositional proof complexity of some Ramsey-type
statements. Archive for Mathematical Logic, 50:245–255, 2011. 10.1007/s00153-
010-0212-9. 1, 5, 10

[15] Balakrishnan Krishnamurthy and Robert N. Moll. Examples of hard tautologies
in the propositional calculus. In STOC 1981, 13th ACM Symposium on Th. of
Computing, pages 28–37, 1981. 4
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