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Abstract

We propose a framework for studying property testing of collections of distributions, where the
number of distributions in the collection is a parameter of the problem. Previous work on property
testing of distributions considered single distributions or pairs of distributions. We suggest two models
that differ in the way the algorithm is given access to samples from the distributions. In one model the
algorithm may ask for a sample from any distribution of its choice, and in the other the choice of the
distribution is random.

Our main focus is on the basic problem of distinguishing between the case that all the distributions in
the collection are the same (or very similar), and the case that it is necessary to modify the distributions
in the collection in a non-negligible manner so as to obtain this property. We give almost tight upper and
lower bounds for this testing problem, as well as study an extension to a clusterability property. One of
our lower bounds directly implies a lower bound on testing independence of a joint distribution, a result
which was left open by previous work.
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1 Introduction

In recent years, several works have investigated the problem of testing various properties of data that is
most naturally thought of as samples of an unknown distribution. More specifically, the goal in testing a
specific property is to distinguish the case that the samples come from a distribution that has the property
from the case that the samples come from a distribution that is far (usually in terffnsiofm, but other

norms have been studied as well) from any distribution that has the property. To give just a few examples,
such tasks include testing whether a distribution is unifarm [GR00, Pan08] or similar to another known
distribution [BFR"10], and testing whether a joint distribution is independant [BEFH. Related tasks
concern sublinear estimation of various measures of a distribution, such as its entropy [BDKRO05,|GMV09]
or its support size [RRSSD9]. Recently, general techniques have been designed to obtain nearly tight lower
bounds on such testing and estimation probleéms [Val08a, Val08b].

These types of questions have arisen in several disparate areas, including physids [Ma81.] SKSB98,
NBSO04], cryptography and pseudorandom number generation [Knu69], stafistics| [Csi67, [Har75] WW95,
Pan04/ Pan08, Pan03], learning theary [Yam95], property testing of graphs and sequendes (elg.,[GROO,
CSO07/KS08, NSO7, RRRS(O7, EM08]) and streaming algorithms (e.q., [AMS99, FKS§V99,[FS00, GMV09,
CMIMO03, [CK04, BYJK"02,[IM0g, [BO10a/ BO104, BO08, IKOS09)). In these works, there has been
significant focus on properties of distributions over very large domains, where standard statistical techniques
based on learning an approximation of the distribution may be very inefficient.

In this work we consider the setting in which one receives data which is most naturally thought of
as samples o$everaldistributions, for example, when studying purchase patterns in several geographic
locations, or the behavior of linguistic data among varied text sources. Such data could also be generated
when samples of the distributions come from various sensors that are each part of a large sensor-net. In these
examples, it may be reasonable to assume that the number of such distributions might be quite large, even
on the order of a thousand or more. However, for the most part, previous research has considered properties
of at most two distributions [BFR0Q, [Val08a]. We propose new models of property testing that apply
to properties of several distributions. We then consider the complexity of testing properties within these
models, beginning with properties that we view as basic and expect to be useful in constructing building
blocks for future work. We focus on quantifying the dependence of the sample complexities of the testing
algorithms in terms of the number of distributions that are being considered, as well as the size of the domain
of the distributions.

1.1 Our Contributions
1.1.1 The Models

We begin by proposing two models that describe possible access patterns to multiple distributions
Dy,...,D,, over the same domai]. In these models there is no explicit description of the distribu-
tion — the algorithm is only given access to the distributions via samples. In the first model, referred to as the
sampling modelat each time step, the algorithm receives a pair of the férg) wherei € [n] is distributed
according taD; andj is selected uniformly ifim]. In the second model, referred to as theery modelat
each time step, the algorithm is allowed to spegif¢ [m| and receives that is distributed according to
D;. Itis immediate that any algorithm in the sampling model can also be used in the query model. On the
other hand, as is implied by our results, there are property testing problems which have a significantly larger
sample complexity in the sampling model than in the query model.

In both models the task is to distinguish between the case that the tested distributions have the property



and the case that they ardar from having the property, for a given distance parametéistance to the
property is measured in terms of the averdégalistance between the tested distributions and the closest
collection of distributions that have the property. In all of our results, the dependence of the algorithms on
the distance parameteis (inverse) polynomial. Hence, for the sake of succinctness, in all that follows we
do not mention this dependence explicitly. We note that the sampling model can be extended to allow the
choice of the distribution (that is, the indgxto be non-uniform (i.e., be determined by a weigh) and

the distance measure is adapted accordingly.

1.1.2 Testing Equivalence in the sampling model

One of the first properties of distributions studied in the property testing model is that of determining whether
two distributions over domaim| are identical (alternatively, very close) or far (according tofhdistance).
In [BERT10], an algorithm is given that uséyn?/?) samples and distinguishes between the case that the
two distributions are-far and the case that they afe/\/n)-close. This algorithm has been shown to
be nearly tight (in terms of the dependencergrby Valiant [Val08b]. Valiant also shows that in order
to distinguish between the case that the distributionsdae and the case that they apeclose, for two
constants and(3, requires almost linear dependenceron

Our main focus is on a natural generalization, which we refer to agdhésalence propertpf dis-
tributions Dy, ..., D,,, in which the goal of the tester is to distinguish the case in which all distributions
are the same (or, slightly more generally, that there is a distribitiofor which L 3™ | || D; — D*||; <
poly(e)/y/n), from the case in which there is no distributiér for which L > |D; — D*||; < e. To
solve this problem in the (uniform) sampling model with sample complefi(byQ/?’m) (which ensures with
high probability that each distribution is sampl@gdn2/3 logm) times), one can make: — 1 calls to the
algorithm of [BFR"10] to check that every distribution is closefq.

OuUR ALGORITHMS. We show that one can get a better sample complexity dependenge Specifically,
we give two algorithms, one with sample comple>ﬂ~1(m2/3m1/3 +m) and the other with sample complex-
ity O(n'/2m!/24n). The first result in fact holds for the case that for each samplé pai, the distribution
D; (which generated) is not selected necessarily uniformly, and furthermore, it is unknown according to
what weight it is selected. The second result holds for the case where the selection is non-uniform, but the
weights are known. Moreover, the second result extends to the case in which it is desired that the tester pass
distributions that are close for each element, to within a multiplicative factor #ife /c) for some constant
¢ > 1, and for sufficiently large frequencies. Thus, starting from the known result:.fer 2, as long as
n > m, the complexity grows a®(n?3m'/3 + m) = O(n*3m!/3), and oncen > n, the complexity is
O(n'?2m!/2 + n) = O(n'/?>m!/?) (which is lower than the former expression whern> n).

Both of our algorithms build on the close relation between testing equivalence and testing independence
of a joint distribution overn] x [m] which was studied i [BEF01]. TheO(n?3m!/3 + m) algorithm
follows from [BEFT01] after we fill in a certain gap in the analysis of their algorithm due to an imprecision
of a claim given in[BER0Q]. TheO(n'/2m!/2 4+ n) algorithm exploits the fact thatis selected uniformly
(or, more generally, according to a known weighy to improve on the@(n2/3m1/3 + m) algorithm (in
the case thatr > n).

ALMOST MATCHING LOWER BOUNDS We show that the behavior of the upper bound on the sample com-
plexity of the problem is not just an artifact of our algorithms, but rather (almost) captures the complexity
of the problem. Namely, we give almost matching lower bound@(@f/3m!/?3) for n = Q(mlogm) and
Q(n'/?2m1/?) (for everyn andm). The latter lower bound can be viewed as a generalization of a lower



bound given inl[BER 10], but the analysis is somewhat more subtle.

Our lower bound of2(n?/3m!/3) consists of two parts. The first is a general theorem concerning
testing symmetric properties of collections of distributions. This theorem extends a central lemma of
Valiant [Val08h] on which he builds his lower bounds, and in particular the lower boufid:o¥3) for test-
ing whether two distributions are identical or far from each other (i.e., the case of equivalence-f@).

The second part is a construction of two collections of distributions to which the theorem is applied (where
the construction is based on the one proposed in [BAF for testing independence). As in [Val08b], the
lower bound is shown by focusing on the similarity between the typical collision statistics of a family of
collections of distributions that have the property and a family of collections of distributions that are far
from having the property. However, since many more types of collisions are expected to occur in the case
of collections of distributions, our proof outline is more intricate and requires new ways of upper bounding
the probabilities of certain types of events.

1.1.3 Testing Clusterability in the query model

The second property that we consider is a natural generalization of the equivalence property. Namely, we
ask whether the distributions can be partitioned into at rhastbsets (clusters), such that within in cluster

the distance between every two distributions is (very) small. We study this property in the query model,
and give an algorithm whose complexity does not depend on the number of distributions and for which the
dependence onis O(n2/3). The dependence dnis almost linear. The algorithms works by combining the
diameter clustering algorithm of [ADPRO3] (for points in a general metric space where the algorithm has
access to the corresponding distance matrix) with the closeness of distributions tester ol (3FRote

that the results of [Val08b] imply that this is tight to within polylogarithmic factorain

1.1.4 Implications of our results

As noted previously, in the course of proving the lower bouné@i?/3m'/3) for the equivalence prop-

erty, we prove a general theorem concerning testability of symmetric properties of collections of distribu-
tions (which extends a lemma in_[Val08b]). This theorem may have applications to proving other lower
bounds on collections of distributions. Further byproducts of our research regard the sample complexity
of testing whether a joint distribution is independent, More precisely, the following question is considered
in [BER™10Q]: LetQ be a distribution over pairs of elements drawn frprhx [m] (without loss of general-

ity, assumer > m); what is the sample complexity in termsmafandn required to distinguish independent
joint distributions, from those that are far from the nearest independent joint distribution (in tésndief
tance)? The lower bound claimed iin [BF&1], contains a known gap in the proof. Similar gaps in the lower
bounds of [BER 10] for testing the closeness of distributions and of [BDKRO5] for estimating the entropy
of a distribution were settled by the work 6f [Val08b], which applies to symmetric properties. Since inde-
pendence is not a symmetric property, the work of [Val08b] cannot be directly applied here. In this work, we
show that the lower bound 61(n%/?m'/3) indeed holds. Furthermore, by the aforementioned correction of
the upper bound af(n?/3m!/3) from [BEFT01], we get nearly tight bounds on the complexity of testing
independence.

1.2 Other related work

Other works on testing and estimating properties of (single or pairs of) distributions includel[Bat01, GMV09,
BKR04,[RS04, AAK™07,/[RX10/BNNR0A, ACS10, AIOR09].



1.3 Open Problems and Further Research

There are many interesting directions to pursue concerning the testing of properties of collections of dis-
tributions, and because of the applicability of the model to a wide range of circumstances, we expect that
new directions will present themselves. Here we give a few examples: One natural extension of our re-
sults is to give algorithms for testing the property of clusterabilityAas 1 in the sampling model. One

may also consider testing properties of collections of distributions that are defined by certain measures of
distributions, and may be less sensitive to the exact form of the distributions. For example, a very basic
measure is the mean (expected value) of the distribution, when we view the defnasrintegers instead of
element names, or when we consider other domains. Given this measure, we may consider testing whether
the distributions all have similar means (or whether they should be modified significantly so that this holds).
It is not hard to verify that this property can be quite easily tested in the query model by sefe¢tifg
distributions uniformly and estimating the mean of each. On the other hand, in the sampling model an
Q(y/m) lower bound is quite immediate even for= 2 (and a constard). We are currently investigating
whether the complexity of this problem (in the sampling model) is in fact higher, and it would be interesting
to consider other measures as well.

1.4 Organization

We start by providing notation and definitions in Section 2. In Sedtion 3 we give the lower bound of
Q(n?/3m1/3) for testing equivalence in the uniform sampling model, which is the main technical contribu-
tion of this paper. In Sectidn 4 we give our second lower boundX(af'/2m!/2)) for testing equivalence

and our algorithms for the problem follow in Secti¢rjs 5 phd 6. We conclude with our algorithm for testing
clusterability in the query model in Sectiph 7.

2 Preliminaries

Let [n] o {1,...,n},and letD = (Dy,..., Dy,) be a list ofm distributions, where); : [n] — [0, 1] and
i Dj(i) = 1foreveryl < j < m. Foravectonv = (vq,...,v,) € R", let|v]y = >, |v;| denote
the L1 norm of the vectop.

For a propertyP of lists of distributions and) < ¢ < 1, we say thatD is e-far from (having P if
= T 1D — Di|ly > efor every listD* = (D, ..., Dy,) that has the property (note that| D; — D3|,
is twice the the statistical distance between the two distributions).

Given a distance parametgra testing algorithm for a proper® should distinguish between the case
that D has the propertp and the case that it isfar from P. We consider two models within which this
task is performed.

1. The Query Model. In this model the testing algorithm may indicate an index j; < m of its
choice and it gets a sampl@listributed according td; (i).

2. The Sampling Model. In this model the algorithm cannot select (“query”) a distribution of its
choice. Rather, it may obtain a pdii, j) wherej is selected uniformly (we refer to this as the
Uniform sampling model) andis distributed according t®; (z).

We also consider a generalization in which there is an underlying weight wecter(ws, ..., wy,)
(where) ", w; = 1), and the distributiorD; is selected according t@. In this case the notion of



e-far needs to be modified accordingly. Namely, we say Thag e-far from P with respect tow if
>ty wj - [IDj — Dilly > e for every listD* = (D, ..., Dy,) that has the property.

We consider two variants of this non-uniform model: TK@own-Weightsampling model, in which
w is known to the algorithm, and thénknown-Weightsampling model in whickv is known.

A main focus of this work is on the following property. We shall say that alist (D, ... D,,) of m
distributions ovefn] belongs taPy;!, (or has the propertpy',) if D; = D forall 1 < j,5" < m.

3 A Lower Bound of Q(n?3m?'/3) for Testing Equivalence in the Uniform
Sampling Model whenn = ©2(mlog m)

In this section we prove the following theorem:

Theorem 1 Any testing algorithm for the proper®;;,, in the uniform sampling model for every< 1,/20
and forn > e¢mlog m wherec is some sufficiently large constant, requife&.>/3m!/3) samples.

The proof of Theorem|1 consists of two parts. The first is a general theorem (Thgprem 2) concerning
testing symmetric properties of lists of distributions. This theorem extends a lemma of Valiant [ValO8b,
Lem. 4.5.4] (which leads to what Valiant refers to as the “Wishful Thinking Theorem”). The second part
is a construction of two lists of distributions to which Theoigm 2 is applied. Our analysis uses a technique
called PoissonizatiorfSzp01] (which was used in the past in the context of lower bounds for testing and
estimating properties of distributions in [RRS$S09, Val(8a, Valo8b]), and hence we first introduce some
preliminaries concerning Poisson distributions. We later provide some intuition regarding the benefits of
Poissonization.

3.1 Preliminaries concerning Poisson distributions

For a positive real numbek, the Poisson distributiopoi(\) takes the valuec € N (whereN =
{0,1,2,...}) with probability poi(z; \) = e *\¥/z!. The expectation and variance p#i(\) are both

A. For A\; and A\, we shall use the following bound on tlie distance between the corresponding Poisson
distributions (for a proof see for example [RRS509, Claim A.2]):

[Poi(A1) — poi(A2)[l1 < 2[A1 — Agf . 1)

For a vector\ = (A1, ..., Aq) of positive real numbers, the correspondmgltivariate Poisson dis-
tribution poi(X) is the product distributiom)oi(/\l) x ... x poi(A\g). Thatis,poi(X) assigns each vector
#=ux1...,24 € N the probability[["_, Doi(x; Ai).

We shaII sometimes consider vectorsvhose coordinates are indexed by vectrs (ay, ..., am) €
N™, and will useX(@) to denote the coordinate afthat corresponds t@. Thus,poi(X(@)) is a univariate
Poisson distribution. With a slight abuse of notation, for a subsgt[d] (or I C N™), we letpoi(X(]))
denote the multivariate Poisson distributions restricted to the coordinaleis dt

For any twod-dimensional vectors+ = (AT, D) and\~ = (A1,...,A,) of positive real values,
we get from the proof of [Val08b, Lemma 4.5.3] that,

Hpm )\+) p01 H ZHpm )\+ p01()\ )H ,
for our purposes we shall use the following generalized lemma.
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Lemma 1 For any twod-dimensional vectors™ = (AT, AD) andX~ = (A1,...,A,) of positive real
values, and for any partitiofiZ;}¢_, of [d],

Hpm (X)) — poi(X H Z Hpm (X (I poi(/_\'_([i))H1 :

Proof: Let {I;}!_, be a partition ofd], let7 denote(iy, . . . i4), by the triangle inequality we have that for
everyk € [¢],

’p01 /\+) poi(f; )\*)‘ = ‘ H poi(ij; A J H poi(ij; A J ’
j€ld] Jjeld]
< ‘ Hp01 i3 A j H poi(ij; A j Hp01 i3 A ‘
jE[d] JE[d\ Ik J€l
+‘ H poi ij, Hp01 ij3 A ] Hp01 iji A j ‘ .
Jeld\ Ik JeIy

Hence, we obtain that

[poiCi) = poi(x7)| = 7 |poi(i’ X*) = poi(i; X)|
ieNd
< )poi(X+(1k)) poi( A~ (1)) H

[ |poi(* (1] \ 22)) — poi(A~([a]\ 1))

Thus, the lemma follows by induction@gn W
We shall also make use of the following Lemma.

Lemma 2 For any twod-dimensional vectors™ = (AT, AD) andX~ = (A1,...,A,) of positive real
values,

) -, <225 A

Proof: In order to prove the lemma we shall use Kle-divergencébetween distributions. Namely, for two
o , def T

cilstrlbutlonSpl andps oveza domainX, Dxr,(p1llp2) = 3 ,cx pi(z) - In %' LetA™ = (Af ..., A)),

AT = (A ..., A)) and leti denote(iy, . . . ig). We have that

N d . i
- Edj(@ = A +i; - (/)
j=1
< i((x S i (AF/A D)
j=1



where in the last inequality we used the fact that < x — 1 for everyx > 0. Therefore, we obtain that

Dia. (poi(X)lpoi(1)) = 3 poi(f X*)-In m
ieNd H
d
<3 (()\j‘ AT AT (A — 1)) )
j=1

<
I
—
<

where in Equatior] (2) we used the facts thaf. poi(i; A) = 1andy_; . poi(i; M) -7 = A. The/; distance
is related to the KL-divergence byD — D’||; < 2+/2Dx;, (D||D’) and thus we obtain the lemmall

The next lemma bounds the probability that a Poisson random variable is significantly smaller than its
expected value.

Lemma 3 Let X ~ poi()), then,
Pr[X < )\/2] < (3/4)M* .

Proof: Consider the matching betwegrand;j + A/2 for everyj = 0,..., /2 — 1. We consider the ratio
betweerpoi(j; ) andpoi(j + A/2; \):

poi(j+A/20) e M2/ 4+ A/2)!
poi(j; A) B e\ /]!

)\A/2
GHAN2)G+HA2-1)---(F+1)
A A A
JHA2 j+A2-1 j+1

)\ A A

> - ..
= A—1 A—2 )2

7 (3/4 >A

)M

This implies that

Pr[X < )\/2]
PriA\2< X <)
Pr[X < )\/2]
PriA/2 < X < )

B/aM,

Pr[X < \/2] PriA/2 < X < )

A

and the proof is completed.l



The next two notations will play an important technical role in our analysis. For a list of distributions

D = (D;1...Dy), aninteger and a vectofi = (a1, ...,a,) € N™, let
o def TT :
pPr(i;@) < [ ] poilay; v - Dy(i)) - ®3)
j=1

That is, for a fixed choice of a domain elemeént [n], consider performingn independent trials, one for
each distributionD;, where in trialj we select a non-negative integer according to the Poisson distribution
poi(A) for A = k- D;(i). Thenp?(i; @) is the probability of the joint event that we get an outcome jof

in trial j, for eachj e [m]. Let X»-* be a vector whose coordinates are indexed by allN", such that

AP (@) =y pPr(iza) @)
=1

That is, A\P-#() is the expected number of times we get the joint outcéme. . . , a,,) if we perform the
probabilistic process defined above independently for everyn|.

3.2 Testability of symmetric properties of lists of distributions

In this subsection we prove the following theorem (which is used to prove Th¢grem 1).

Theorem 2 Let D™ and D~ be two lists ofm distributions overn], all of whose frequencies are at most
— wherex is some positive integer arf< § < 1. If

Hpoi (XD+’“) — poi (XDi’“)

then testing in the uniform sampling model any symmetric property of distributions suchthiaas the
property, whileD~ is Q(1)-far from having the property required(x - m) samples.

16 3520

<35 ®)

A HIGH-LEVEL DISCUSSION OF THE PROOF Oﬁ'HEOREM. For an elemente [n] and a distributiorD;,
J € [m], leta; ; be the number of times the pdif, j) appears in the sample (when the sample is selected
according to some sampling model). THus 1, ..., a; ) is thesample histogranof the elemeni. The
histogram of the elements’ histograms is calledfthgerprint of the sample. That is, the fingerprint indi-
cates, for everyi € N™, the number of elemenissuch that{«; 1, . .., a;m) = d@. As shown in[[BFR10],
when testing symmetric properties of distributions, it can be assumed without loss of generality that the
testing algorithm is provided only with the fingerprint of the sample. Furthermore, since the numnbkr,
elements is fixed, it suffices to give the tester the fingerprint of the sample withdiitth@, . . . , 0) entry.

For example, consider the distributiofi and D, over {1,2,3} such thatD,[i] = 1/3 for every
i €{1,2,3}, Da[1] = D2[2] = 1/2 andDy[3] = 0. Assume that we samplé;, D5) four times, according
to the uniform sampling model and we get the samples$), (1, 2), (2, 2), (3, 1), where the first coordinate
denotes the element and the second coordinate denotes the distribution. Then the sample histogram of
elementl is (1, 1) becausd was selected once by; and once byDs. For the element8, 3 we have the
sample histogram&), 1) and(1, 0), respectively. The fingerprint of the samplgis1,1,0,1,0,0,...) for
the following order of histogramg10, 0), (0, 1), (1,0), (2,0)(1, 1), (0,2),(3,0),...).

In order to prove Theoreir] 2, we would like to show that the distributions of the fingerprints when the
sample is generated according®d and when it is generated accordingo are similar, for a sample size

8



that is below the lower bound stated in the theorem. For each choice of eleméntand a distributiorD,

the number of times the samplg j) appears, i.eq; ;, depends on the number of times the other samples
appear simply because the total number of samples is fixed. Furthermore, for each histatp@mumber

of elements with sample histogram identicakitcs dependent on the number of times the other histograms
appear, because the number of samples is fixed. For instance, in the example above, if we know that we have
the histogran{0, 1) once and the histografi, 1) once, then we know that third histogram can't(2e0).

In addition, it is dependent because the number of elements is fixed.

We thus see that the distribution of the fingerprints is rather difficult to analyze (and therefore it is
difficult to bound the statistical distance between two different such distributions). Therefore, we would like
to break as much of the above dependencies. To this end we define a slightly different process for generating
the samples that involvé®issonizationiSzp01]. In the Poissonized process the number of samples we take
from each distributiorD;, denoted bysg, is distributed according to the Poisson distribution. We prove that,
while the overall number of samples the Poissonized process takes is bigger just by a constant factor from
the uniform process, we get with very high probability th§t> kj, for everyj, wherer; is the number
of samples taken fronD;. This implies that if we prove a lower bound for algorithms that receive samples
generated by the Poissonized process, then we obtain a related lower bound for algorithms that work in the
uniform sampling model.

As opposed to the process that takes a fixed number of samples according to the uniform sampling
model, the benefit of the Poissonized process is thaithés determined by this process are indepen-
dent. Therefore, the type of sample histogram that elerlas is completely independent of the types of
sample histograms the other elements have. We get that the fingerprint distribution is a generalized multi-
nomial distribution, which fortunately for us has been studied by Roos [R0099] (the connection is due to
Valiant [Val08a]).

Definition 1 In the Poissonizeduniform sampling model with parameter (which we’ll refer to as the
k-Poissonizednodel), given alisD = (D, ..., D,,) of m distributions, a sample is generated as follows:

e Draw ki, ..., Ky < poi(k)

e Returnsx; samples distributed according 10, for each;j € [m].

Lemma 4 Assume that there exists a testém the uniform sampling model for a proper® of lists ofm
distributions, that takes a sample of sigze= km wherex > clogm for some sufficiently large constant
¢, and works for every > ¢, wheree is a constant (and whose success probability is at |243). Then
there exists a testéf’ for P in the Poissonized uniform sampling model with paraméterthat works for
everye > ¢y and whose success probability is at Ieé%l

Proof: Roughly speaking, the testéf tries to simulatd’” if it has a sufficiently large sample, and otherwise
it guesses the answer. More preciselyet (D, ..., D,,) be a list ofm distributions. For each € [m]
let x; denote the random variable that equals the number of samples that are selected accérgingie
uniform sampling model, when the total number of samplesnis Thus,x; ~ Bin(km, %). By [AS9Z,
Thm. A.12], for eacly € [m],

Prk; > 2k] < (e/4)" .

Now consider a testéf” that receives:; samples from eacl; wherex; ~ poi(4rx). By Lemma ), for
eachj we have that,
Pr [k; < 2k < (3/4)"



Supposd” also selects, . . ., k,, as in the distribution induced by the uniform sampling modeh;- 1>
for eachy, thenT” simulatesl” on the union of the first; samples that it got for eagh Otherwise it outputs
“accept” or “reject” with equal probability.

By taking a union bound over ajl € [m] we get that the probability that for evefye [m] it holds
that bothr; < 2x andx’; > 2k (so thatx; > k;), is at leastl — m(((e/4))" + (3/4)"), which is greater
than% for k > clog m and a sufficiently large constant Therefore, the success probability©fis at least

2.241.1=1 asdesired. B
Given Lemm4 }4 it suffices to consider samples that are generated in the Poissonized uniform sampling
model. The process for generating a samfplg, . . ., @im bicpn) (recall thata; ; is the number of times

that element was selected by distributiof;) in the x-Poissonized model is equivalent to the following
process: For eache [n] and;j € [m], independently seleet; ; according tapoi(x - D;()) (seel[Fel6l], p.

216). Thus the probability of getting a particular histogi@m= (a; 1, . . ., a;m) for element is pP~(i; a;)

(as defined in Equatiof|(3)). We can represent the event that the histogram of elésnigrity a Bernoulli
random vectob; that is indexed by ali € N, is1 in the coordinate correspondingdg and is0 elsewhere.

Given this representation, the fingerprint of the sample correspor@ﬁ;@@. In fact, we would likeb; to

be of finite dimension, so we have to consider only a finite number (sufficiently large) of possible histograms.
Under this relaxationy; = (0, ..., 0) would correspond to the case that the sample histogram of element

1 is not in the set of histograms we consider. Roos’s theorem, stated next, shows that the distribution of
the fingerprints can be approximated by a multivariate Poisson distribution (the Poisson here is related to
the fact that the fingerprints’ distributions are generalized multinomial distributions and not related to the
Poisson from the Poissonization process). For simplicity, the theorem is stated for vethatsre indexed
directly, that isb; = (bi1, ..., bip).

Theorem 3 ([R0099]) Let D~ be the distribution of the sus}, of n independent Bernoulli random vectors
bl, .. bn in R" wherePr [b = €g:| = p;¢ and Pr [b = (0, ...,0)} =1- Ze 1 pi¢ (heree, satisfies

e;r = lande; y = 0 for every?’ # (). Suppose we define @dimensional vecton = (M,...,\p) @S
follows: A, = > | pi¢. Then

88 z lpzé
D*n — poi(A H (6)
| Z Do

i= 1pzﬂ

We next show how to obtain a bound on sums of the form given in Equdtjon (6) under appropriate
conditions.

Lemma5 Given a listD = (Dy,..., D,,) of m distributions over[n] and a real numbef < § < 1/2
such that for all; € [n] and for all j € [m], D;(i) < % for some integek, we have that

§ Siza P70 (i) <26. (7)
ST pDn (i; @)
aeN™\Q z 1
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Proof:

geNm\§ =1 a

DY Glok ax (pP(i;a
L T e < 2 m D)

AN

7N\
S|
"
£
+
T

S

3

< S (2)
a=1
< 26, (8)

where the inequality in Equatiof|(8) holds ¥ 1/2 and the inequality in Equatioh](8) follows from:

e Pi0) (k. D; (i)
a!
(k- Dj(i))"

é a
m )
and the proof is completed.ll

Proof of Theorem|2: By the first premise of the theorerﬂ}j(z‘),Dj(i) < -2 for everyi € [n] and
j € [m]. By Lemm4 5 this implies that Equati (7) holds bothfr= DT and forD = D~. Combining
this with Theorenj B we get that the distance between the fingerprint distribution when the sample is

generated according @ (in the xk-Poissonized model, see Definitin 1) and the distribultioh(xwv“
is at most‘%8 20 = %5, and an analogous statement holdsPor. By applying the premise in Equatian (5)

poi(a; K - D;(i))

IN

IN

(concerning thée; distance betweepoi (XD+7”> andpoi (XDT’“>) and the triangle inequality, we get that

the ¢, distance between the two fingerprint distributions is smaller thaf¢s + 6 — 3320 — 16 ‘which
implies that the statistical difference is smaller t@%nand thus it is not possible to distinguish betwézh
andD~ in the x-Poissonized model with success probability at IéﬁstBy Lemmaﬁl we get the desired

result. W

3.3 Proof of Theorem 1

In this subsection we show how to apply Theo@m 2 to two lists of distributidrisandD~, which we will
define shortly, wher®* € P4 = Pgl, while D~ is (1/20)-far from P°4. Recall that by the premise of
Theorenj L > emlog m for some sufficiently large constant> 1. In the proof it will be convenient to
assume thatn is even and that (which corresponds in the lemmaz2¢) is divisible by 4. It is not hard to
verify that it is possible to reduce the general case to this case. In order to Befjwee shall need the next
lemma.

Lemma 6 For every two even integertsand m, there exists &/1-valued matrix)M/ with ¢ rows andm
columns for which the following holds:

11



1. In each row and each column 8f, exactly half of the elements areand the other half aré.

2. For every integer2 < =z < m/2, and for every subset C [m] of sizex, the number of rows
i such thatM[i, j] = 1 for everyj € S is at leastt - (;z (1 - %) — \/2““,5“7”>, and at most

t- (211 + /letnm>.
Proof: Consider selecting a matri randomly as follows: Denote the first2 rows of M by F'. For each
row in F', pick, independently from the othéf2 — 1 rows in F', a random half of its elements to bbeand
the other half of the elements to BeRowst/2+1, . .., t are the negations of rows. . ., t/2, respectively.
Thus, in each row and each columnldf, exactly half of the elements ateand the other half are.

Consider a fixed choice af. For each row betweenl andt, each subset of columiisC [m] of sizex,
andb € {0, 1}, define the indicator random variahlg; ; to bel if and only if M (i, j] = b for everyj € S.

Hence,
1 /1 1 1 z-1
Prilsip=1=--|z——)-..- [z — .
s ] 2 (2 m) (2 m)

Clearly,Pr[Ig;;, = 1] < 5-. On the other hand,

Pr[lg;p = 1]

(A4 AV

l\g‘._. N

N | —

N |
—_

| 3=

() N————

S‘&M 8
~_

where the last inequality is due to Bernoulli's inequality which states(thatx)™ > 1 + nx, for every real
numberz > —1 # 0 and an integen > 1 (IMV70]).
Let Es;, denote the expected valuegjﬁf1 Is ;. Fromthe factthat rows/2+-1, . . ., t are the negations

of rows1,...,t/2 it follows thatzﬁzt/2+1 Is;1 = fol Is; 0. Therefore, the expected number of rows
1 < i < tsuchthatM[i,j] = 1foreveryj € SissimplyEs; + Eg (that is, at most - 2% and at least
t o ( - Qmﬁ)) By the additive Chernoff bound,

t/2
trlnm

)E IS,i,b_ES,b‘ > \/T] < 2exp(—2(t/2)(2x1Inm)/t)

i=1

—2x

Pr

= 2m

Thus, by taking a union bound (ovee {0, 1}),

¢
Pr ‘ lev“ — (Esq + Es,g)‘ > 2tz In m] < 4m~%
i=1

By taking a union bound over all subsétsve get that\/ has the desired properties with probability greater
than0. W
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We first defineD ™, in which all distributions are identical. Specifically, for egch [m):

. . n2/3m1/3
if 1 <q<mom

o def | n?Pmi3
D (i) = Loifnci<n (9)
0 ow.

We now turn to defining>~. Let M be a matrix as in Lemnid 6 fér= n/2. For everyj € [m]:

. . 2/3,.,1/3
s M1 <i <
_ .\ def 2 jff2<i<n
D. 7 = n 2 — 10
i () andM[i —n/2,j] =1 (10)
0 ow.

For bothD* andD—, we refer to the elements< i < M as theheavyelements, and to the elements

5 < < n, as thdight elements. Observe that each heavy element has exactly the same probability weight,
W in all distributionsD;.r andD; . On the other hand, for each light eleménwhile Dj*(z') =1

(for everyy), in D~ we have tha]D;“(z‘) = % for half of the distributions, the distributions selected by the

M, andDj*(z’) = 0 for half of the distributions, the distributions which are not selectedhyWe later use

the properties of\/ to bound the/; distance between the fingerprints’ distributiongof andD~.

A HIGH-LEVEL DISCUSSION To gain some intuition before delving into the detailed proof, consider first
the special case that = 2 (which was studied by Valiant [Val08a], and indeed the construction is the
same as the one he analyzes (and was initially proposed in fBER In this case each heavy element has
probability weight©(1/n%/3) and we would like to establish a lower bound(@fr?/3) on the number of
samples required to distinguish betwé&@h andD~. That is, we would like to show that the corresponding
fingerprints’ distributions when the sample is of si€@?/?) are very similar.

The first main observation is that since the probability weight of light elemerigiign) in both D+
andD—, the probability that a light element will appear more than twice in a sample 0bgiZé’) is very
small. Thatis (using the fingerprints of histograms notation we introduced previously), fof each , a)
such thata; + a2 > 2, the sample won't include (with high probability) any light elemerguch that
a;1 = a; anda; 2 = ay (for bothD+ andD~). Moreover, the expected number of elemenssich that
(aj1,02) = (1,0) is the same irD™ andD~, as well as the variance (from symmetry, the same applies to
(0,1)). Thus, most of the difference between the fingerprints’ distributions is due to the numbers of elements
i such that(o; 1, i2) € {(1,1),(2,0),(0,2)}. For these settings af we do expect to see a non-negligble
difference for light elements betwe@nt andD~ (in particular, we can't get thél, 1) histogram for light
elements irD~, as opposed t®*).

Here is where the heavy elements come into play. Recall that inotand D~ the heavy elements
have the same probability weight, so that the expected number of heavy elérseaksthat(a; 1, a;2) =
(1,1) (and similarly for(2,0) and (0, 2)), is the same foD™ andD~. However, intuitively, the variance
of these numbers for the heavy elements “swamps” the differences between the light elements so that it
is not possible to distinguish betwe@h™ andD~. The actual proof, which formalizes (and quantifies)
this intuition, considers the difference between the values of the vertdré and XDk (as defined in
Equation [(4)) in the coordinates corresponding such thaia; + a; = 2. We can then apply Lemmas 1
and 2 to obtain Equatiof(5) in Theor¢in 2.

Turning tom > 2, it is no longer true that in a sample of sizé?/3m'/3) we won't get histogram
vectorsa such thatZ;.”:1 a; > 2 for light elements. Thus we have to deal with many more veaidicf
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dimensionm) and to bound the total contribution of all of them to the difference between fingerprifts of

and of D~. To this end we partition the set of all possible histograms’ vectors into several subsets according
to their Hamming WeighE?”‘:1 a; and depending on whether al}s are in{0, 1}, or there exists a least
onea; such thatz; > 2. In particular, to deal with the former (whose number, for each choice of Hamming
weightz is relatively large, i.e., roughlyn®), we use the properties of the matiiX based on whictD~

is defined. We note that from the analysis we see that, similarly to when 2, we need the variance of

the heavy elements to play a role just for the cases WETgl a; = 2 while in the other cases the total
contribution of the light elements is rather small.

In the remainder of this section we provide the details of the analysis.

Before establishing that inde&? is Q(1)-far from P4, we introduce some more notation (which will
be used throughout the remainder of the proof of Thedrem 1).SlL.dte the set of vectors that contain
exactlyx coordinates that arg, and all the rest aré (which corresponds to an element that was sampled
once or0 times by each distribution). Let, be the set of vector that their coordinates sum up bot must
contain at least one coordinate tha? igvhich corresponds to an element that was samples at least twice by
at least one distribution). More formally, for any integeme define the following two subsets Nf":

Sy L lgenm . Zj.zl a; = x and )
Vje[m],a; <2
and >
def [ om . D.jej@j=zand
Am_{aEN ' 3j€[m],ag‘22}

Ford € N™, letsup(a) def {Jj : a; # 0} denote thesupportof @, and let
_y def | . iy 2 . .
In(@) = i« Dy (i) = - Vj € sup(@) ¢ . (11)

Note that in terms of the matrik/ (based on whictD~ is defined),/;(@) consists of the rows id/ whose
restriction to the support @f contains onlyi’s. In terms of theD~, it corresponds to the set of light elements
that might have a sample histogramadfwhen sampling according t8~).

Lemma 7 For everym > 5 and forn > clnm for some sufficiently large, we have thad """, || D; —
D*||; > m/20 for every distributionD* over[n]. That s, the listD~ is (1,/20)-far from Ped,
Proof: Consider anyi € S,. By Lemmd §, setting = n/2, the size ofl);(a), i.e. the number of light

elementd such thatD; [¢] = 2 for everyj € sup(a), is at most} (}1 + Slnm) The same lower bound

holds for the number of light elementssuch thatD;[é] = 0 for everyj € sup(a). This implies that for
every;j # j'in [m], for at leastf — n <}1 + 1/8127”> of the light elements{, we have thatD; [{] = 2

i — _ — _ 2 i — _ — - 1 81lnm i
while D, [f] = 0, or thatD, [{] = = while D" [¢(] = 0. Therefore||D; — D [|y = 5 — 24/, which

for n > ¢Inm and a sufficiently large constantis at Ieas%. Thus, by the triangle inequality we have that
foreveryD*, >\, |D; — D*[l1 > [ 3] - 1, which greater tham /20 form > 5. W

In what follows we work towards establishing that Equatdn (5) in Thegriem 2 hold3 fandD~. Set
k=02’ whered is a constant to be determined later. We shall use the shorfhiafat X", andX~
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for X2~ (recall that the notatioA* was introduced in Equation|(4)). By the definition of, for each
aeN™,

. " (k- I)*' (1))%
@ = ZH HD+
i=1 j=1 € CLj.
2/321/3/2ﬁ @~ T G/
= +
5/m 5 n1/3m2/5 ]
6/ a‘ i=n/2+1Jj= 1€ /( 'aJ!
_ nPm!/? H(5/m) - n H(5/(n1/3m2/3))“f
2e9 i a;! Qeéﬁn/nﬂ/gjzl a;!

By the construction of\/, for every light, Zm:l D‘(z’) = % -4 = . Therefore,
n2/3mi/3 0 (5/m)a

o (26/(
Y@= ol aj! m/n)l/B 2 H =

Jj=1 i€l (@) =

1/3 2/3)

Hence \* (@) andX~ (&) differ only on the term which corresponds to the contribution of the light elements.
Equations[(I2) and (12) demonstrate why we chaswiith the specific properties defined in Lemfrja 6.
First of all, in order for everyD; to be a probability distribution, we want each columnidfto sum up

to exactlyn/2. We also want each row dff to sum up to exactlyn/2, in order to gelHT:1 R HO

[T/, e P %) Finally, we would have likedl); (@) - [T}, 2% to equaln/2 for everyd. This would
imply that \* (@) and X~ (@) are equal. As we show below, this is in fact true for evéry S;. For vectors
i € S, wherex > 1, the second condition in Lemm 6 ensures {iigt(@)| is sufficiently close t - 5.
This property ofM is not necessary in order to bound the contribution of the vectads.inThe bound that
we give for those vectors is less tight, but since there are fewer such vectors, it suffices.

We start by considering the contribution to Equatiph (5) of histogram veatersS; (i.e., vectors of
the form(0,...,0,1,0,...,0)) which correspond to the number of elements that are sampled only by one
distribution, once. We prove that in the Poissonized uniform sampling model, for @wery,; the number
of elements with such sample histogram is distributed exactly the safé andD~.

Lemma 8

1

3 Hpoi(x+(a’) - poi(x—(a))H ~0.
Proof: For everyd € Sy, the size off /(@) is %, thus,

(26/(n n 19

> 11 e

i€l (@) =1 j=1

By Equatlons) aan) it follows th%ﬂ — X (@)] =
applying Equation[(1). W

We now turn to bounding the contribution to Equatiph (5) of histogram vectogs A, (i.e., vectors of

the form(0,...,0,2,0,...,0) which correspond to the number of elements that are sampled only by one
distribution, twice.

1/3m2/3)) (n}/3 2/3))aj

. The lemma follows by
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Lemma9
[ poi(X* (42)) = poi(X~(42) | <36

Proof. For everya € As, the size offj;(a) is %, thus,

1/3,2/3)) m 1/3,,2/3Y)a;
$ H (26/(n —a] (6/(n )% (12)
i€l (@) J= j=1
By Equations[(IR)] (12) and (]L2) it follows that
. o n m (5/(n1/3m2/3))a‘7
Y@ -3a = ol —
j=1 !
n1/352
TSIy (13)
and that
. n2/3m1/3 (5/m)aj
(@) >
A = 2ed H a;!
7j=1
n2/382
- (14)
By Equations[(IB) andl (14) we have that
- - 2
()\_(a)—)\+(a)> I
X- (@) - 4dm
2
< (15)
m
By Equation[(15) and the fact that,| = m we get
- o 2
(x(a) - wa)) 52
Z = <m-— =262
acAs )\7(&) m

The lemma follows by applying Lemnja 2.1

Recall that for a subsdtof N, poi(X(I)) denotes the multivariate Poisson distributions restricted to
the coordinates of that are indexed by the vectors in We separately deal with, where2 < x < m/2,
andx > m/2, where our main efforts are with respect to the former, as the latter correspond to very low
probability events.

Lemma 10 For m > 16, n > ¢mInm (wherec is a sufficiently large constant) and fér< 1/16
Hpm)ﬁ'(US )—p01 (US >Hl§325.
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Proof: Letd be a vector inS, then by the definition of,,, every coordinate of is O or 1. Therefore we

make the following simplification of Equat|02) For eatk Um/2 ! Sz,

S+ (E) — n2/3m1/3 J\* n 1) v
(@) = 20 \m + 9e8(m/m)1/3  \ 1/3,,2/3 )

m/2 1 1 4ol
By Lemma 6, for everyi ¢ |J, 5 ~ S, the size ofl/(a) is at mosty - (270 + \/”n“m> and at least

n. (;I o ,/‘“”2”"). By Equation ) this implies that

n2/3

ml/3 I\* n n 1 o
200 \m 9ed(m/m)' /3~ \ 22 n1/3m2/3
where— (2"” ,/‘“”ﬁ””) < n < \/#Rm gnd thusip| < %' < ,/4mlnm> By the facts

%for every2 < x < m/2 and

(@) =

m > 16, we obtain thatn| < /. So we have that

T 2
_’+ =\ N— /= 2 n . 26 . £
(AT(@) = A" (@) < (265(’”/")1/3 <n1/3m2/3> \/;)

< n? 462 Yo
- 4 n2/3m4/3 m’

5-(a) » LLm (5>
a>————:- = ,

and that

2¢9 m

Then we get, fop < 1/2, that

IN

=

2ml/3 )

(@ -X@) g < 15 > .,

)\_(&») n2/3m1/3
< n/3 45 Cx
= /3 \n2B3mi3 ) T m
< n/3 4zt /e \°
= A3\ n2/3,1/3
< ni/3 83 *
= A\ pn2/3mi/3 )
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m/2 1

Summing over alii € | J,,./; ~ S, we get:
> (A~ (@) - X (@)?* _ i ni/3 <86m2/3>$
egpi s @ =R
8om?2/3
= 26462 ( 373 ) (16)
6452
<
- 1-86
< 12862 (17)

where in Equation (16) we used the fact that- m, and Equation[(17) holds far < 1/16. The lemma
follows by applying Lemma|2. H

Lemma 1l Forn > m,m > 12 andj < 1/4,

’ < 3289 .

> 3 [poitht @) - poiti-@a|

x>m/2 AESy

Proof: We first observe thdtS,| < m”/x for everyz > 6. To see why this is true, observe thét| equals
the number of possibilities of arrangingballs inm bins, i.e.,

1 T (2m)* 9
15, = m+x S(m—i—:r) S(m) _ om®
x x! x! (=1 =

where we have used the premise that> 12 and thust > 6. By Equations[(I)2) andl (12) (and the fact that
|z — y| < max{z,y} for every positive real numbeusy),

> Y Fra-ra@ = Y Y3 H( 1/3m2/3)%

<

mZ=
)
T

x>m/2 AES, x>m/2aeS,  j=1
Z Z < >Z;n 185
- 1/3,,2/3
$>m/2 acsSy FPm?/
m® n 20 v
= Z ) <n1/3m2/3)
= 2m® n 26 v
< o=
- m 2 \ nl/3m?2/3
x=m/2
B > 25m1/3\ "
R Z /3
:E m/2
> 25m1/3\ "
_ 3
- > ( ok
x=m/2—3
843
<
< 179 (18)
< 166° (19)



where in Equation8) we used the fact that> m and Equation9) holds far < 1/4. The lemma
follows by applying Equatior] {1). H
We finally turn to the contribution of € A, such thatr > 3.

Lemma 12 Forn > mandd < 1/4,

‘ < 168° .

S 3 [poi(i (@) — poi(i-(a)|

>3 a€A,

Proof: We first observe thatd,.| < m®~! for everyz. To see why this is true, observe that,| equals
the number of possibilities of arranging— 1 balls, where one ball is a “special” (“*double”) ballin bins.
By Equations|(1R) and (12) (and the fact that- y| < max{z,y} for every positive real numbersy),

Sy @@ < X3 5 ()

r>3adcA, r>3acA, j=1
Sy i(a2e)
- 1/3,,2/3
>3 dEA, n m
oo X
R} 20
< ng 2 (n1/3m2/3>
r=

=, (26m1/3\"
_ 3
= 4 Z( nl/3 )

x=0

463
<
< 179 (20)
< 853 (21)

where in EquationO) we used the fact that> m and Equationl) holds far < 1/4. The lemma
follows by applying Equatior] {1). H

We are now ready to finalize the proof of Theorgim 1.

Proof of Theorem[] Let DT andD~ be as defined in Equatior|s| (9) afd](10), respectively, and recall
thatk = 0 - 2/3 (whered will be set subsequently). By the deflnltlon of the distribution®ih andD—,

the probability weight assigned to each element is at m@gﬁﬁ = m, as required by TheoreE}n 2. By

LemmaﬁD is (1/20)-far from P4, Therefore, it remains to establish that Equat@n (5) hold$forand
D~. Consider the following partition dfi":

r=2

m/2
{{6}56517‘427 U Sz, {a}deUmZm/z Sz {EL‘}&'EUIES Aw} )
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where{a}zcr denotes the list of all singletons of elementginBy LemmaD. it follows that

Hp01 )\+) p01 H Z Hp01 p01 H

‘p01 Xt (Ag) — poi( X~ (As) H

m/2 m/2

+ Hpoi(XJr(U Sz)) — pOi(X_(Q S$)>H1
+ 20 Y [peitit@ - poi(X*(a‘))Hl

x>m/2 AESy

+3 % ‘poi(x+(&') - poi(X‘(é’))H

>3 G€EA,

.
Ford < 1/16 we get by Lemmals|8—12 that

Hpoi(X+) - poi(X—)H1 < 350 + 4803
which is less thad$ — 332 for § = 1/200. W

3.4 A lower bound for testing Independence

Corollary 4 Given a joint distribution) over[m] x [n] impossible to test if) is independent ot /48-far
from independent usingn?/3m!/3) samples.

Proof: Follows directly from Lemma 15 and Theor¢in 1l

4 A Lower Bound of Q(n'/2m'/?) for Testing Equivalence in the Uniform
Sampling Model

In this section we prove the following theorem:

Theorem 5 Testing the propertyy,',, in the uniform sampling model for eveey< 1/2 andm > 64
requiresQ(n'/?m!/?) samples.

We assume without loss of generality thais even (or else, we set the probability weight of the element
n to 0 in all distributions considered, and work with— 1 that is even). Defing{,, to be the set of all
distributions ovefn] that have probability% on exactly half of the elements afdn the other half. Define
H™ to be the set of all possible lists of distributions fromH,,. Definel{]" to consist of a single list

of m distributions that are identical t0,,, whereU,, denotes the uniform distribution ovét]. Thus the
single list in/"™ belongs taPy;',. On the other hand we show tHdf* contains mostly lists of distributions
that areQ(1)-far from Py;},,. However, we also show that any tester in the uniform sampling model that
takes less than'/?m!/2 /6 samples can't distinguish betwe@nthat was uniformly drawn from?* and

D = (Uyp,...,U,) € U Details follow.

Lemma 13 For everym > 3, with probability at Ieast(l — ﬁ) over the choice oD € H]* we have that
Dis (1/2)-far from Py,
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Proof: We need to prove that with probability at Iee<s]t— —) over the choice oD € H]", for every

v
= (v1,...,v,) € R™ which corresponds to a distribution (i.e;,> 0 for every: € [n] and)_;" , v; = 1),
1 & 1
— D, — — . 22
m;\ i =Vl >3 (22)

We shall actually prove a slightly more general statement. Namely, that Equatjon (22) hadderfprector
v € R". We define the functionped® : [n] — [0, 1], such thatned® (i) = p1(D1(i), ..., Dm(i)), where
Mé(xl’ ...,xpy) denotes the median afi, ..., z,, (where ifm is even, it is the value in positio§ in

sorted non-decreasing order). The shiffl’ | |; — ¢| is minimized when: = u%(xl, ..., Tm). Therefore,
for everyD and every vectov € R",

>_|1Dj —med®|l, <> 11D = vl - (23)
j=1 j=1
Recall that for everyD = (Dq,...,D,,) in H}', and for each(i,j) € [n| x [m], we have that either
D;(i) = 2, or D;(i) = 0. Thus,medP (i) = 0 whenD;(i) = 0 for at least half of thej’s in [m] and
medP (i) = 2 otherwise. We next show that for evefily j) € [n] x [m], the probability oveD € H!" that

D; (i) will have the same value ased® (4) is just a little bit bigger than half. More precisely, we show that
for every(i,j) € [n] x [m]:

Prper [D;(i) # med®(i)] > % <1 _ \/1%> . (24)
Fix (i, ) € [n] x [m], and consider selectir uniformly at random fron{])". Suppose we first determine
the valuesD ;. (¢) for ;' # j, and setDj(i) in the end. For eacft, j') the probability thatD;/ (i) = 0is1/2,
and the probability thab (i) = 2 is 1/2. If more thanm,/2 of the outcomes are, or more thann/2 are
2 , then the value OfnedD( ) is already determined. Conditioned on this we have that the probablllty that
D;(i) # medP (i) is exactlyl/2. On the other hand, if at mom/Q are0 and at mostn /2 are 2 (that is,
for oddm there argim — 1)/2 that are0 and(m — 1)/2 that areZ, and for evenn there aren/2 of one
kind and(m/2) — 1 of the other) then necessarityed” (i) = D;(i). We thus bound the probability of this
event. First consider the case thais odd (so thatn — 1 is even).

1 T T 1 x 1
2) 2 T TETR
By Stirling's approximationg! = v2rz (£)" e*+, whererz17 < A, < 137, thus,
1
! 1 V2 T2z 1
o < T (26)
55 2 ( 277.1,/2( 2)x/26m) 2
1 2
el2z” 6z+1
= — 27
Tx/2 @7
1
< (28)
wx/2
< = (29)
— \/m Y



where Inequalitied (28) anfl (29) hold for > 3. In casem is even, the probability (over the choice of
D (i) for j' # j) thatmedP (i) is determined byD; (i) is Pr [Bin (z, 3) = ] < Pr[Bin (z,1) = £].
Hence, Equatiorj (24) holds for all and we obtain that

Bocr | D211D; - med%] = 33 Every [|D5(0) - med®(i)] (30)
j=1 i=1 j=1
2
= m-n-Prpexn [D;(i) # medD(i)] - (31)
1 1 2
> m.n.2(1_ﬁ)-n (32)
while,
YD = med®||, = D) |D;(i) — med®(i)] (34)
j=1 i=1 j=1
" m?2
= 2o (35)
7=1
= m. (36)
Assume for the sake of contradiction that
“ 2
Prpeym HD — medDH <m/2| > , (37)
then by Equatior| (36) we have,
Eperg | SO0y —med®|,| < 2.7y (1-%)m @)
st vm o 2 vm
= m—+vm, (39)

which contradicts Equation (B3).H

Recall that for an elemernte [n] and a distributiorD;, j € [m], we leta; ; denote the number of times
the pair(i, j) appears in the sample (when the sample is selected in the uniform sampling model). Thus
(@in,-..,aim)isthesample histograrof the element. Since the sample points are selected independently,

a sample is simply the union of the histograms of the different elements, or equivalently, a fdaitnix
N’I’LXm.

Lemma 14 Letl be the distribution of the histogram @samples taken from the uniform distribution over
[n] x [m], and letH be the distribution of the histogram @tamples taken from a random list of distributions
in ", then,

4q?

4 = Hl, < — (40)
mn

22



Proof: For every matrixM € N"*™  let Ay, be the event of getting the histograid; For every

Z = (x1,...,zm) € N, let Bz be the event of getting a histograid such that for everyy € [m],

> icpn Mi, j] = z;; Let C be the event of getting a histograhi such that there exists, j) € [n] x [m]

such thatM [i, j] > 2; LetV = {Bz : Pry (BzN C) > 0} (whereC denotes the event complementary
to C). In order to bound the statistical distance betwg&eandl/, we use the fact that, for evely; € V,

given the occurrence dB; N C, i.e.m given the histogram projected on the first coordinate and given that
there were no collisiong{ andi/ are equivalent. More formally,

It =Hll, = > [P (Am) = Pr(Am)[+ Y [Pry(Anr) — Pry (An))| (41)
ApmCC Ay CC
< Pry(C)+Pr(C)+ > [Pru(Anm) — Pry (Anr)] - (42)
ApCC

We start by bounding the third term in Equatipn|(42).

> Pry(Ay) =Py (An)l = Y. > [Pry(Ay) — Pry (An)] (43)
Ay CC Bz ApCBznC
= > > [Pry(Aum) — Pry(Ay)| (44)
Bi’EVA]\/[ngﬂa
+ > > [Pry(Am) —Pry(Ay)| . (45)
BfEVA]wgBiﬂ?

We next bound the expression in Equatipn| (44).

> > Pry(Am) — Pry (Aw))|

BzeV Ay CBznC

= ) Pry(Bz) Y, Pry(Au|BzNC)-|Pry (C|Bz) — Pry (C|Bg)| (46)
BzeV AnCBzNC

= Y Pry(Bz) |Pry (C|Bz) — Pry (C|B;)| (47)
BzeV

= > Pry(Bg)|(1 - Pry (C|By)) — (1 — Pry (C|Bz))| (48)
BzeV

= Y Pru(Bg)|Pru (C|Bg) - Pry (C|Bz)| (49)
BzeV

< Pry (C) +Pry (C) (50)

23



where in Equation| (46) we used the fact that for evBrye V, M € N"*™, Py (B;) = Pry (Bz) and
Py (An|Bz N C) = Pry (An|Bz N C). Turning to the expression in Equat|l45)

S0 Pry(An) —Pry(Ay)l = > ) Pry(Awm) (51)
Bz€V Ay CBzNC Bz€V Ay CBzNC
< ) Pry(By) (52)
BzeV
= ) Pry(B (53)
BzeV
= ) Pry(BzNC) (54)
BzeV
< Pry(C). (55)

We thus obtain thait/ — H||, < 2Pr;(C) + 3Pry(C). If we takeq uniform independent samples from
[€], then by a union bound over tlhhesamples, the probability to get a collision is at m@srt % +...+ %

which is £;. Thus,2Pry, (C) + 3Pry (C) < 2-

Proof of Theorem|5: Assume there is a testér, for the propertyPS%n in the uniform sampling model,
which takes; < m'/2n'/2 /6 samples. By Lemma 13,

+3- Z and the lemma follows. B

2mn

Prpeym [A acceptsD] < \/QM 1+ <1 — \/2%) . % (56)
1 4
- 1 <1 i m) (57)
1
< 3 (58)

where the last inequality holds for > 64. By Lemmd 1}, foy < m'/?n 1/2/6 1 ||L{ H|, <
by Equation[(5B)(Prpey [A acceptsD] — Prpepey [A acceptSD]) > 2 [ |

18, while

2>18

5 Algorithms for Testing Equivalence in the Sampling Model

In this section we state our two main theorems (Theoigms 6 Jand 7) regarding testing Equivalence in the
sampling model. We prove Theor¢in 6 in this section. In Seftion 6 we prove a stronger version of Theorem 7
(Theorenj 1) as well as a stronger version of Thedrem 6 (Theorem 15). We have chosen to bring the proof
of Theorenj B, in addition to the proof of Theorgmnj 15, because it is simpler than the latter.

Theorem 6 Let D be a list ofm distributions over(n]. It is possible to test whethep € P4 in the
unknown-weights sampling model using a sample ofGize?/3m!/3 + m) - poly(1/e)).

Theorem 7 Let D be a list ofm distributions overln]. It is possible to test whethep € P4 in the
known-weights sampling model using a sample ofGi@ge'/?m!/2 + n) - poly(1/¢)).

Thus, when the weight vecta# is known, and in particular when all weights are equal (the uniform
sampling model) we get a combined upper boun@®@hin{n?/3m'/3 4+ m,n'/?2m'/2 4 n} - poly(1/e)).
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Namely, as long as > m the complexity (in terms of the dependenceroandrm) grows as) (n/3m!/3),
and whenm > n it grows asO(n!/2m!/2).

In order to prove Theore@ 6 we shall consider a (related) property of joint distributiongdverm).
Specifically, we are interested in determining whether a distribufioner[n] x [m] is aproductdistribution
Q1 x Q2, whereQ) is a distribution ovefn] andQs is a distribution ovefm] (i.e.,Q(i,7) = Q1(7) - Q2(j)
for every(i,7) € [n] x [m]). In other words, if we denote by; @ the marginal distribution according to
Q of the first coordinatej, and byws@ the marginal distribution of the second coordingtethen we ask
whetherr;QQ andms@Q are independent. With a slight abuse of the terminology, we shall say in such a case
that(@ is independent

As we observe in Lemnja [L5, the problem of testing independence of a joint distribution and the problem
of testing equivalence of a list of distributions in the (not necessarily uniform) sampling model, are closely
related. In the proof of the lemma we shall use the following proposition.

Proposition 8 (IBFFT01]) Letp,q be distributions ovefn] x [m]. If |[p—q|l1 < ¢/3 andq is independent,
then|lp — mp x mpl <e.

Lemma 15 If there exists an algorithrii” for testing whether a joint distributioy over[m| x [n] is inde-
pendent using a sample of sigen, n, €), then there exists an algorithiii for testing whetheD € P4 in
the unknown-weights sampling model using a sample okéizen, ¢/3).

If T is provided with (and uses) an explicit description of the marginal distributigf, then the claim
holds forT” in the known-weights sampling model.

Proof: Given a samplg(i(, j¢)};_,(m,n,€/3) generated according tB in the sampling model with a
weight vectoni = (wy, . . ., w,y, ), the algorithmI” simply runsT” on the sample and returns the answer that
T gives. Ifw is known, thenl” providesT with « (as the marginal distribution gf). If D1,..., D,, are
identical and equal to som®e*, then for eaclfi, j) € [n| x [m] we have that the probability of gettirig, j)
in the sample isv; - D*(4). That is, the joint distribution of the first and second coordinates is independent
and thereford” (and hencd”) accepts with probability at leagy3.

On the other hand, suppose thatis e-far from P4, that is, 7", w; - [|D; — D*||; > e for every
distribution, D* over([n]. In such a case, in particular we have thaf’ | w; - || D; — D||, > ¢, whereD is

the distribution ovefn| such thatD (i) = > j=1wj - D;(i). By Proposition 8, the joint distributio@ over
i andj (determined by the lisD and the sampling process)dg3-far from independent, sé' (and hence

T") rejects with probability greater thaxy3. W

5.1 Proof of Theorem 6

By Lemma[ 15, in order to prove Theorér 6 it suffices to design an algorithm for testing independence of
a joint distribution (with the complexity stated in the theorem). Indeed, testing independence was studied
in [BEET01]. However, there was a certain flaw in one of the claims on which their analysis built (Theorem
15 in [BEF"01], which is attributed ta [BFR0OQ]), and hence we fix the flaw next (building on [BER]],
which is the full version of [BER0Q]).

Given a sampling access to a pair of distributignandq and bounds on theif,.-norm b, andbg,
respectively, the algorithlBounded-..-Closeness-TesfAlgorithm[J] in Figurd 1) tests the closenesgof
andq. The sample complexity of the algorithm depend$gmndb,, as described in the next theorem.

For a multiset of sample point§' over a domainR and an elemeni € R, let occ(i, F') de-
note the number of times thatappears in the samplé and define thecollision countof F' to be

coll(F) © 32, (@),

25



Theorem 9 Let p and q be two distributions over the same finite domain Suppose thatp|| ., < bp
and ||ql|,, < bq whereby > b,. For everye < 1/4 , Algorithm Bounded+,,.-Closeness-Test
(p7 q, bp7 bq, ’R|, 6) is such that:

1. If [|[p — all; < ¢/(2|R|*/?), then the test accepts with probability at leags.

2. If ||p — qal|; > e, then the test rejects with probability at le&st3.

The algorithm take§) (\R| b2/ +|R)? - by - bp/e4> sample points from each distribution.

Proof: Following the analysis of [BFR0OQ, Lemma 5], we have that:

Algorithm 1: Bounded-/,.-Closeness-Test

Input: p, q, bp, bq, |R|, €
1 Take sample$}, and F; from p, each of siz¢, wheret = O (\R| b2/ +|R)? - by - bp/e4);
2 Take sample$?? and F3 from q, each of sizé;

I* rp is the the number of self collisions in FJ. */
3 Letrp = coll(Fg);

I* rq is the the number of self collisions in Fj. */
4 Letrq = coll(F});

I* spq is the number of collisions between F? and F}. */

Letsp.q = > icploce(i, F) - occ(i, F2));

; def 94 .
Definer = =5 (rp +rq);

if rq > (7/4)(5)bp then output REJECT ;

Defines % ¢/|R|1/2;
10 if 7 — s > 262 /2 then output REJECT ;
11 output ACCEPT ;

5
6
7 Defines & 25p.q;
8
9

Figure 1: The algorithm for testing distance wheid, is bounded

Explr — s] = t*|p — qall3 , (59)

and we have the following bounds on the varianceg,0f-q ands (for some constant):

Varls] < ct? Y " p(0)q(f) + ¢t > " (p(O)a(t)® + p(£)*a(e)) , (60)
lER lER
Varlrp] < ct®> " p(0)® +ct®> p(0)?, (61)
eER leER
and
Varlrg] < ct® > " q(0)* +ct* Y "q(0)® . (62)
leER leER
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Using the bounds we have on thg norms ofp andq we get (possibly for a larger constant

Var[s] < ct?(|plloo + ct*([Pllscllallz + [PlIZ) < ct?bp + ct? (bpllall; +b3) (63)
Varrp] < ct®||p|13 + ct’[pllsollpll3 < ct®|[plloo + ct?|Ipl1%, < ct?bp + ct’by, (64)

and
Var[rq] < ct®||qll3 + ct®|lallco|lall3 < ct*[lall3 + ct*bqllall3 - (65)

By Equations|(683) anr#%?), a tighter bound |agj|3 will imply a tighter bound on Vds] and Vafr,].
To this end, the check in Step 8 in the algorithm was added to the origiiistance-Testof [BER™00Q].

This check is beneficial in achieving a tighter bound on the sample complexity. First, prove that the tester
distinguishes with high constant probability between the case|tfjgt > 2b, and the case thafiq||3 <

(3/2)bp by rejecting (with high probability) wheng > (7/4) (;)bp. Notice that by the triangle inequality

Ip = allz > llall2 — [Ipll2 - Thus, if [all} > (3/2)b, and||p||3 < by then it follows that|p — q» >

\/(3/2)611,/2 — bll)/z. Therefore, by the fact thd, > 1/|R|, we obtain thatlp — q|[1 > ||p — qll2 >
(x/(3/2) ~ 1) /|R|'/? which is greater than/(2| R|'/?) for ¢ < 1/4. Consider first the case thd||3 >

2bp, so that Exfrq] > 2(§)bp. Then we can bound the probability that the tester accepts, that is, that
rq < (7/4)(5)bp, by the probability thatq < (7/8)Exp[rq]. In the case thafq||3 < (3/2)bp, so that
Explrq] < (3/2)(%)bp, we can bound the probability that the tester rejects, that isythat (7/4) (3) bp,

by the probability thatq > (7/6)Exp[rq]. Then the probability to accept whejey||3 > 2b, and reject
when||ql|3 < by, is upper bounded byr[|rq — Explrq]| > EXplrq]/8]. Now, using the upper bound on the
variance ofrq that we have (the first bound in Equatipn|(65)), the fact that for every distribgtiorer R,

lall3 < 1/|R| and Exgirg) = (4)|al3, we have that

64Var(rq]
Prl|rq — Explrq]| > EXxplrel/8] < —— (66)
q q q Esz[T'q]
¢ (*]al3 + £ alllal}}) (67)
B t4lall3
c cllalls
= + (68)
2lalz  tlal3
Rl | cRlllalls
69
< s (69)
To make this a small constant, we choos® that:
t=0Q (]R\1/2+ \R]bq> . (70)

Next, we prove that the tester distinguishes between the caséghatq|s > § and|p — qlj2 < §/2
by rejecting when- — s > t262/2. We have that EXp — s] = t?||p — q||3. Chebyshev gives us that
Pr[|A — Exp[A]| > p] < Var[A]/p?, and so, for the casgp — q||2 > J (i.e. Exgr — s] > t262) we have
that

Pr[r — s < t26%/2] < Pr[|(r — s) — Exp[r — s]| < t26%/2)] (71)
< Mmool (72)
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and similarly, for the casgp — ql| < 6/2 (i.e. Exgr — s] < t252/4) we have that

Pr[r —s > t%6%/2] < Pr[|(r —s) — Explr — s]| < t%6°/4] (73)
16Var[r — s]
< Py (74)
That is, we want% which is of the order ovar[’;;i]"RP to be a small constant. If we use Var-

s] = % (Var[rp] + Var[rq]) + Vars], then we need to ensure that eac Ve E;‘;L"R'Q , w and

VLR is a small constant, which by Equatiofs|(68),](64)] (65), and the premisgits 2b,, holds
when
t=Q (IR b/* /e + R b bp/e') | (75)

since bothb,, bq > 1/|R|, this dominates the sample complexitylll
As a corollary of Theorein|9 we obtain:

Theorem 10 Let @) be a distribution ovefn| x [m] such thatQ satisfies:||m1Q]|co < b1, [|T2Q|l0c < b2
andb; < by. There is a test that take3(nmb1’ by /€2 + n2m?2b2b, /*) samples fron®), such that ifQ is
independent, then the test accepts with probability at I2A3tand if Q is e-far from independent, then the

test rejects with probability at leagt/3.

Proof: By the premise of the theorem we have th@| . < b; and thal|7,Q x mQ||, < b1-b2. Applying
Theorenﬂa we can testdd is identical tor; Q x w2 Q using sample of siz€ (nmb./ by / 2+ n2m2b2b, /)
fronﬂ Q. If Q is independent, the® equalsm;Q x m@ and the tester accepts with probability at least
2/3. If Q is e-far from independent, then in particul@ris e-far from 71 Q x w2 @ and the tester rejects with
probability at leasg2/3. H

Applying Theorenf 10 witth; = 1/n2/3m!/3, by = 1/m, and combining that in the sample analysis of the
procedureTestLightindependence]BEET01], the following theorem is obtained:

Theorem 11 ([BEFT01]) There is an algorithm that given a distributi@ép over[n] x [m] and ane > 0,
e If Q is independent then the test accepts with high probability.

e If Q is e-far from independent then the test rejects with high probability.
The algorithm use®((n2/3m!/3 + m)poly(e~!)) samples.

Finally, Theorenj b follows by combining Theor¢m 11 with Lenjma 15.

6 Algorithms for Tolerant Testing of Equivalence in the Sampling Model

Given a list of distributiongD, atolerant equivalence tester is guaranteed to accept, with high probability,

if the distributions inD are close (and not necessarily identical), and refectvith high probability, if

the distributions inD are far. In this section we prove Theoremg 14 gnd 15. Theprém 14 states that
there is a tolerant equivalence tester takidfn'/2m'/? + n) samples in the known-weights sampling
model. TheorenﬂS states that there is a tolerant equivalence tester €@kirgm'/® + m) samples

in the unknown-weights sampling model. A tolerant equivalence tester is also a non-tolerant equivalence
tester, so Theoremis[14 and] 15 are stronger versions of Theloremg T and 6, respectively.

"We obtain a sample from; Q x m=Q by simply taking two independent samples fr@gm(iy, j1) and(iz, j2) and considering
(i1,72) as a sample from1Q x Q.
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6.1 An Algorithm for Tolerant Testing of Identity in the Sampling Model

Consider the problem where given sample access to a distribpteomd an explicit description of a dis-
tribution q, the algorithm should accept ,with high probabilitypifandq are identical, and should reject,
with high probability, if p andq are far. This is called Identity Testing and is defined in_[BBE]. If
the algorithm is guaranteed to accegpandq that are close, and not necessarily identical, we refer to it as
a tolerant identity test. We will use the tolerant identity test as a subroutine in the algorithms for tolerant
testing of equivalence.

We next present and prove Theo@ 12, which states that there is a tolerant identity testef?(@ﬁfr)g
samples. The theorem is a restatement of theorems_in | [Whi] and "[@HF The specific tolerance of
Theorenj IR is somewhat complex and in order to state it we introduce the following new definitions.

Definition 2 For two parametersy, 3 € (0,1), we say that a distributiop is an («, 5)-multiplicative
approximatiorof a distributionq (over the same domaiR) if the following holds.

e For everyi € R such thaig(i) > o we have thay(i) - (1 — 5) < p(i) < q(i) - (1 + 5).

e For everyi € R such thaig(i) < a we have thap(i) < - (1 + ().

Definition 3 For « € (0, 1), we say that a distributiop is an«-additive approximationf a distributiongq
(over the same domaiR) if for everyi € R, |p(i) — q(i)| < o

Theorem 12 (Adapted from [Whi], [BFFT01]) Given sample access {8 a black-box distribution over
a finite domainR, and q, an explicitly specified distribution ove®, for every0 < ¢ < 1/3, algorithm
Test-Tolerant-ldentity (p, q,n, €) is such that:

1. If |[p — q|l1 > 13¢, the algorithm rejects with high constant probability.

2. If g is an (¢/n, ¢/24)-multiplicative approximation of somg such that||lp — q'||; < Zf;; where
¢ =log(n/e)/log(1 + €), the algorithm accepts with high constant probability (in particulary iis
an (e/n, €/24)-multiplicative approximation op or if ||p —ql|; < 2 the test accepts with high

o/n’
constant probability) .

The algorithm take®(y/npoly(e~')) samples fronp.

In the proof of Theorerp 12 we shall use the following definitions and lemmas.

Definition 4 (BFF"01]) Given an explicit distributionp over R, Bucket(p, R, «,[3) is the partition
{Ro,...,Re} of R with ¢ = log(1/a)/log(1 + ), Ry = {i : p(i) < «}, such that for allj in [¢],

Ri={i:al+p) ' <pli)<a(l+p3)} (76)

Definition 5 (BEET01]) Given a distributionp over R, and a partitionR = {Ri,..., Ry} of R, the
coarseningp ) is the distribution ovef/] with distributionp ) (i) = p(R;).

Theorem 13 ([BEF"01]) Letp be a black-box distribution over a finite domaihand letS be a sample
set fromp. coll(S)/(‘g‘) approximated|p||2 to within a factor of(1 + ), with probability at leastl — 4,
provided that S| > c+/|R|e~2?log(1/6) for some sufficiently large constant
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Lemma 16 ([BEFT01]) Letp,q be distributions oveiz and letR’ C R, then||pjr — qrll1 < 2[lp —
qall1/p(R).

Lemma 17 ([BEEF01]) For any distributionp overR, ||p||3 — ||Uzl|3 = ||p — Ux||3.

Let p be a distribution over some finite domal?) and letR’ be a subset oR such thatp(R') > 0
wherep(R’) = 3 ,cp p(i). Denote bypr: the restriction ofp to i/, i.e., p|x is a distribution over?’

such that for every € R/, p|p/(i) = IZ%))-

Lemma 18 (Based onl[BFF01]) Let p,q be distributions overz and letR’ C R, then}", . |p(i) —
q(i)| < [p(R) —a(R)|+a(R)llpjr —qrlh -

Proof:
) . 1 R — q(R i)q(R' .

S ol < 3 PO ), > POU) _ -

— Ip() -~ a(m)]+ 3 PO g 78)
1ER!

_ N no | p@E)  a(d)
= P a3 | - o 79)
= |p(R) —aR)[+a(R)-|pjr —arl, (80)

and the lemma is establishedll

Lemma 19 Letp, q be distributions over a finite domaiR and letR’ C R be a subset oR such that for
everyi € R’ it holds that

p(i)(1—€) <q@i) <p(i)(1+e), . (81)
Then for every € R,

(82)

Proof: Equation ) implies thad(R')(1—¢) < q(R') < p(R')(1+¢) and thereforeli < BE) < =

q(r’
Thus, we obtain th (SQ) : 8;3 < q‘%g) < pFZS'Q) : E}fg and the lemma follows. W

Proof of Theorem[12: The algorithniTest-Tolerant-Identity is given in Figur¢ . LeE); be the event that
for everyi in [¢] we have thatn; approximated{p g, |3 to within a factor of(1+€*). By Theore, ifS; is
such thatS;| > ¢\/ne~*log ¢ thenE; occurs with probability at least/9. Let E» be the event that for every
i in [¢] we have that(|S;|/|S]) — p(R;:)| < €/(2¢). By Hoeffding’s inequalityE> occurs with probability
atleas8/9 for | S| = Q(¢2¢~2). Let F3 be the event thab ) andq ) aree/(2¢)-additive approximations
of p/ry andq gy, respectively. By taking (e 2¢% log ¢) samplesE3 occurs with probability at least/9.

Let p andq be as described in Cakg 1, i.gp — gl > 13e. Suppose the algorithm accepisand
q. Conditioned on&; N E3, this implies that for each partitioR; for which Step$ B | 70 were preformed,

which are those for whicly(R;) > ¢/¢, we have||p|g,||3 < % - —L5, which is at most”‘kl2 for

|

1—e2? |R;
0 < e <1/3. Thus, by Lemma 17 it follows that
2 2 2 4¢?
PR — U llz2 = PR, 12 = 1UR, |I2 < R (83)
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Algorithm 2: Test-Tolerant-Identity

Input: Sampling access tp, and explicit description of;, and parameterns, ¢

R Y Ry, -, Ry} = Bucket (q,n,e/n,e/24);

Let S be a set 0B (,/ne " logn) samples fronp ;
Let H be the set of alk: such thaiy(z) > €(1 + €)/n;
foreach R; C H do
LetS; =SNR;;
if q(R;) > ¢/l then
Let ¢ be the constant from Theorgm|13 ;
if |S;] < ey/ne~*log ¢ then output REJECT ;
Letm; = coll(S;)/(151) ;

if m; > (1%2‘)2 then output REJECT ;

© 0 N O O A WN P

=
o

Take© (e 2¢log ¢) samples and obtaine (4¢)-additive approximationp zy andqz) of p(xr)
andqr), respectively;

12 if |[pry — dryll1 > 3¢/2 then output REJECT ;

13 output ACCEPT ;

[ERN
[N

N

Figure 2: The algorithm for tolerant identity testing

From the bucketing definition we have that for every [¢],

62

— 84
| R;| (84)

lair; — U Il <

By the triangle inequality we obtain from Equatio(83) a{@ (84) thar, — ql&;”% < f%j and thus
IP|r, — qir;ll1 < 3e. We also have that the sum qf R;) over all R; for which Step 0 were not
preformed is at mogt (¢/¢)+n-(e(1+¢)?/n) < 4e. For thoseR; we use the trivial bounip |, —q;, |1 <

2. Also, [lp(r) — arryll1 < 2¢ by Ste IR. So by Lemnja 18 we get ttiat— q|; < 13 in contradiction
to our assumption. Therefore, the test accqp&nd q with probability at mostl /3 (the bound on the
probability of £, U By U E3).

We next turn to proving the second item in the theorem. Suppdsean (e/n, (¢/24))-multiplicative
approximation of someg’ such thatp is ;f;;-close toq’. Conditioned onEs, every R; that enters Stejp| 8
also passes this step, since otherwise we get, in contradiction to our assumptiej{ &hat /¢ while
p(R;) < 2¢/(3¢). From the bucketing definition we have that for every [¢] and for everyr € R;,

1 q(R;) qa(Ri)
0T (20 Ry = A= (G (e24) e

(85)

Sinceq is an(e/n, €/24)-multiplicative approximation ofi’, we get by Lemmp 19 that for for evefy; C H
and everyr € H,

d) (- (/24) _ @) _ d@) 1+ (e/2)
C(R) (T (e/22) = a(R) = (R (1= (e/24)) (89)
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Combining Equations ($5) and (86) we get that

(1—(e/24))  d'(Ri) (1+(e/24))” o (Ry)

/ : 87
(207 Rl =TS Gy R (57)
and thus fof < e < 1/2,
(1—(¢/2)) _ d'(@) _ (14 (¢/2))
Rl SRS R (59)
By Equation|(8B) we obtain that for evefy; C H
ldir, = Urll2 < €/(2V/|Ril) - (89)

For all subsetsd?; C H with q(R;) > ¢/¢ we have thaty(R;) > ¢/((1 + €)¢), combined with the fact that
Ip — d|l; < 2 we get by Lemma 16 (for sufficiently large) that

< m
PR, — qp, It < €/(2Vn) . (90)
This implies that
PR, — dig,ll2 < [P, — djg, 1 < €/(2v/n) < €/(2V/|Ri]) . (91)
By the triangle inequality we get that
1Pir; — Ur,ll2 < IPr, — djg,ll2 + Iz, = Ur,ll2 < e/VIRil . (92)

Therefore, by Lemma 17 it follows that

IR I3 = PR, — Uirill5 + 1UR: 15 < (1 + €2)/|Ri] - (93)

Therefore, conditioned of’; N E5 all such subsets will pass St@] 10. Sirgés ¢/2-close toq’, by the
triangle inequalityp is e-close toq and thus conditioned of; the algorithm will pass Step (112) as well.
Thus the algorithm accepts with probability at le2s3.

Finally, the sample complexity i@(\/ﬁe—5) from Step ), which dominates the sample complexity of

Step[1l). W

6.2 An Algorithm for Tolerant Testing of Equivalence in the Known-Weights Sampling
Model

In this section we prove Theorgm]|14. We note that in the proof of the theorem we essentially describe a
tolerant tester for the property of independence of two random variables.

Theorem 14 Let D be a list of[m] distributions oveln| and letw be a weight vector overn]. Denote by
QP the joint distribution ovefn] x [m] such that)?:“(i, j) = w; - D;(i). There is a test that works in
the Known-Weights sampling model, which taiégn'/2m!/2 +n)poly(1/¢)) samples fronD, and whose
output satisfies the following:

e If Dis ﬁ—close to being P4, wherel = log(n/¢)/log(1 + ¢), or if QP is an /n, ¢/120)-
multiplicative approximation ofr; QP x mQP™, then the test accepts with probability at least

2/3
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e If D is 19¢-far from being inP°4, then the test rejects with probability at le&st3.

In the proof of Theorerp 14 we shall use the following lemma:

Lemma 20 Let@ be a joint distribution ovefn] x [m]. LetQ! be a(a1, 41)-multiplicative approximation
of m Q. Let@? be a(as, 32)-multiplicative approximation of»(Q. Denote byA; the set of alli € [n] such
that Q' (i) > a1(1 + 31). Denote byA, the set of allj € [m] such thatQ?(i) > as(1 + [32). For every

0! x Q? i _201482) \_multiplicati -
B; € A and everyB, C Ay, (Q ) >|le32 is a (0, (1—61)-(1—,82)> multiplicative approximation of
(m@Q x WQQ)|leBQ-
Proof: For every(i, j) € By x By we have that

m Qi) m2Q(j) - (1= B1) - (1 - B2) < Q'(i) - Q*(f) < Qi) - m2Q(j) - (1 +51) - (1+52) . (94)

1461)-(1+52) 2(B1452) (1-51)-(1=p2) _2(B1+P2)
From the facts that G2y = 1+ 252 and (g () > 1~ (i, and from
Lemmd_19 the lemma follows. H

Algorithm 3: Tolerant Testing of Equivalence in the Known-Weights Sampling Model
Input: Parameted < e < 1/3, sampling access to a list of distributior®, over[n], in the
Known-Weights sampling model
1 Let Q denoteQ®¥:
2 TakeO (e 3nlogn) samples and obtain a/f, ¢/120)-multiplicative approximation()?, of
maQ ;
3 Let H be the set of all € [n] such thatQ' (i) > ¢(1 + ¢)/n and letL be[n] \ H;

JH|-m, e, 1/9;
x[m]

4 Call Test-Tolerant-Identity with parametersq) [, (@1 X w)‘H
5 if Test-Tolerant-ldentity rejectsthen output REJECT ;
def

6 Z = {H x [m],L x [m]};

7 Take©(e~2) samples and obtain(a/2)-additive approximationg)%zx.>2 and@m of
(mQ x m2Q) 7y andQ ), respectively;

8 if H@gf ~ Qn) Hl > 2¢ then output REJECT ;

9 output ACCEPT;

Figure 3: The algorithm for tolerant testing of equivalence in the known-weights sampling model

Proof of Theorem[14: The testreferred to in the statement of the theorem is Algofifhm 3 (see Figure 3). Let
E1 be the event thaD! is an €/n, ¢/120)-multiplicative approximation ofr; @, as defined in DefinitioBZ.

By applying Chernoff's inequality and the union bounf, occurs with probability at least/9 (for a
sufficiently large constant in thé(-) notation for the sample size). By Lemrnal 20, conditionedsan

we have that(@1 X u7>|HX[m] is a (0, e/24)-multiplicative approximation ofm; @ x @Q)mx[m]. Thus,

< €. Let E5 be the event that the application Bést-Tolerant-

H(@l X Tﬂ)‘HX[ | (mQ % w)|H><[m]‘
m 1
Identity returned a correct answer, as defined by Thedrem 12. We run the amplified versiesat-of

Tolerant-ldentity , therefore the additional parameter, which is the confidence parameter, is1gét to
i.e. F5 occurs with probability at least/9.
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Let D be 19e-far from being inP°Y and assume the test accepts. Conditionedgthis implies that

HQ|H><[m] - (@1 X 117)

< 13¢ . By the triangle inequality, we obtain that conditionediom FEs,
1

HQWXW —(mQxu7)|HX[MH1 < e+ 13€ < 1de . (95)

Conditioned onE; we have that)(L x [m]) < ¢, and therefore

|H x[m]

QUL [m)) - | Qo) = (11Q X B) || < 26 (96)

Let F5 be the event tha@%2 and é@) are e/2-additive approximations ofrQQ x mQ)7) andQzy,
respectively. By taking(e~2) samplesE3 occurs with probability at least/9. Conditioned onEs, we
have that

[(mQ x mQ) 1) — Quzy||, < 3e. (97)

Combining Equations (95) [ (97), by Leming 18, we have that
|(mQ x mQ) — Q|l; < 3e+ 14e + 2¢ = 19¢ . (98)

HenceD is 19¢-close to being irP°?, in contradiction to our assumption. It follows that the test accepts
with probability at most /3.

On the other hand, consider the case that eifhés ﬁ—close to being P4, or thatm; QP x

QP is an €/n, €/120)-multiplicative approximation of)”-%, and assume that the test rejects. In case

the test rejects in SteH(S) then conditioned oy we get by TheorerﬂZ the(t@l X w)‘H ) is not
X|m

an (e/n, e/24)-multiplicative approximation of any’ such that|| Q| xm — @[, < Zf;; Conditioned

on £y, we have tha(@1 X ’LU)H ] is an(e/n, ¢/24)-multiplicative approximation ofm;Q x w)HX{m].
X|m

Thus, conditioned o, N E5, we obtain that|Q — m1Q x |, > Z\Q/Eg By Proposition 8 this implies that
Dis gf;f-far from being inP°1. By settingq’ = Q| xm) We also have tha(@1 X W is not an
n H x[m)]

(€/n, €/24)-multiplicative approximation o) |- For the sake of simplicity, denol(e@1 X 117) by A
and(m @ x W) by B. Hence, there exists, j) € H x [m] that satisfies either
Al xm) (4,5) > (14 (€/24)) Q mx [my (2 1) (99)

or
Al xm) (4,5) < (1= (€/24)Q mrx[m) (i ) - (100)

By Lemm, we get thal 7, |,,,] is a(0, ¢/30)-multiplicative approximation o3|z (,,,- Therefore, by
Equations[(99) and (99), either it holds that

1+ (¢/30)

Qrx[m)(4,7) < WB\HX[WL] (4,7) (101)
or that ) 20
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Since Q(H x [m]) = B(H x [m]), we obtain from Equation§ (Ip1) and (102) that eittigs, j) <
ﬁg:ngB(i,j) or Q(i,j) > }:EZ@Z%B(L;‘), which by a simple calculation implies th& is not a
(e/n, €/120)-multiplicative approximation ofr1 ) x .

Alternatively, in case the test rejects in Sigp 8 then by the triangle inequality we get that conditioned on
Es, Qis e-far frommQ x m2@. In both cases we get a contradiction to our assumption and therefore the
algorithm accept® with probability at most /3 (which is the upper bound on the probability8f U Eo U
E3).

The sample complexity of Stép 5 is bounded®n'/2m/2poly (¢ 1)) so the overall sample complex-
ity is O((n'/?m!'/2 + n)poly(¢~1)). W

6.3 An Algorithm for Tolerant Testing of Equivalence in the Unknown-Weights Sampling
Model

In this section we prove the following theorem:

Theorem 15 Let D be a list ofm distributions overn]. It is possible to distinguish between the case that

Dis iffj;-close to being irP°4, wherel = log(n/e)/log(1 + €) and the case thab is 25¢-far from being

in ¢4 in the unknown-weights sampling model using a sample of&ige?/*m!/3 + m) - poly(1/e)).

Proof of Theorem[15: The algorithm referred to in the statement of the theorem is Algorthm 4
(given in Figurg #). We note that we run the amplified versiofTest-Tolerant-ldentity and Bounded-
l~-Closeness-Testind that the additional parameter in the applicationTe$t-Tolerant-ldentity and
Bounded-..-Closeness-Tesi the confidence parameter. Lt to be the event thap® is an ¢/n2/3m1/3,
€/250)-multiplicative approximation ofr; Q. For a sample of siz® (e 3n%/3m!/3 logn), we get, by Cher-
noff's inequality, thatE; occurs with probability at leasi0/21. Let E, be the event thaf? is an €/m,
¢/250)-multiplicative approximation ofr2(). By taking a sample of siz€(e3mlogm), E, occurs with
probability at leas0/21. By Lemma[ 2D, for every) < ¢ < 1/3, we get, condition orE; N E», that

<@1 X @2)|H . is a(0, e/24)-multiplicative approximation ofm Q@ x m2Q) y, s, Thus, conditioned
1 X2
on E; N Es, we have that

@@

Let E5 be the event that the application Tdst-Tolerant-ldentity returned a correct answer, as defined by
Theorenj 1R E3 occurs with probability at leag0/21.

Let D be 25e-far from being inP°? and assume the algorithm accepts. Then eiflest-Tolerant-
Identity returns accept of < 3¢/2. Consider the case th@est-Tolerant-Identity returns accept. Con-

— (MQ X 12Q) 1,y || € - (103)
1

|H1 ><H2

ditioned onEs, by Theorenj 12, we have thH(@l X @2) n, Qi xm,|| < 13e. By the triangle
1 X H2 1
inequality and Equation (103) we obtain that
H(mQ X T2Q) ety — Qi || < 13¢ 4 € = e (104)

Consider the casg < 3¢/2. Let E, be the event thdty — Q(H; x Hs)| < ¢/2. By taking©®(e~2) samples,
E, occurs with probability at leag0/21. Then we have that

Q(Hl X HQ) < 2¢ . (105)
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Algorithm 4: Tolerant Testing of Equivalence in the Unknown-Weights Sampling Model
Input: Parametef < e < 1/8, sampling access to a list of distributiori®, over[n], in the
Unknown-Weights sampling model
1 Let @ denoteQ??;
2 Take©(e*n?/3m!/3logn) samples and obtain an/(n?/?m!/3), ¢/250)-multiplicative
approximation)! of mQ ;
3 Let H, be the set of all € [n] such thatQ' (i) > e(1 + €)/(n*3m!/3) and letL, = [n] \ H;;

4 Take©(e3mlogm) samples and obtain an/gn, ¢/250)-multiplicative approximatior§)? of m,Q ;

5 RY (Ry, -, Ry} = Bucket (Q%m,(1+ e)e/m,e);

6 Let Ly = Ry and letH; = [m] \ Lo;

7 Take©(e=2) samples and let be the fraction of samples i; x Ho;

8 if v > 3¢/2 then

9 L Call Test-Tolerant-ldentity with parametersQ,| g, « ., (@1 X @2)|Hle2, |Hq| - |Ho| €, 1/21;
10 if Test-Tolerant-ldentity rejects then output REJECT ;

11 Let S be a set 0D (¢2¢~2) samples;
12 foreach R; do

13 LetS;, =SSN (L1 X Ri);

14 | if [S;]/|S] = €/¢ then

15 Call Bounded+ . -Closeness-Teswith parameters{mQ x maQ)|r, xr;» Q|1 x R;»
40/ (en®Pm /3| Ry)), 20/ (en®/3m/3), |L1| - |Ry|, €, 1/(214);
16 if Bounded-{.-Closeness-Testejects then output REJECT ;

17 T {H) x Hy, Hy x Ly, Ly X Ro,--- , L1 x Ry}
1x2

18 Take©(e2¢2log ¢) samples and obtain arf(2¢)-additive approximation§) & andQ,z of
(mQ x Q) 7y andQ 7, respectively;

19 if H@gﬁ — ©<I>H1 > 2¢ then output REJECT :

20 output ACCEPT;

Figure 4: The algorithm for tolerant testing of equivalence in the unknown-weights sampling model

Let E5 be the event that all applications Bbunded<,.-Closeness-Testeturned a correct answer, as
defined by Theorelﬁ] 9. By the union bourid, occurs with probability at leag0/21. Conditioned onés,
we obtain that every; that passes St¢p|16 satisfies the following

[(m@Q X mQ) L, xk; — Quixri|l; <€ (106)

Let E¢ to be the event that for everyin [/] we have that(|.S;[/[S|) — Q(R; x L1)| < €/(2¢). By Hoeffd-
ing’s inequality £ occurs with probability at leag0/21 for | S| = Q(¢2¢~2). From the fact that for every
R; that doesn't enter Stg¢p [L6 we have tiit/|S| < €/¢, we obtain, conditioned oA, that

Q(L x R;) < 3¢/(20) . (107)

Let Er be the event tha|}* and @z, aree/(2¢)-additive approximations ofr1Q x mQ)z, andQz),
respectively. By takin@® (e ~2¢2 log ) samplesE; occurs with probability at leag/21. Since we assume
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that the algorithm accep® then, in particularD passes Step 19. Therefore, conditioned&nwe have
that

[(m@Q x mQ) 1y — Qzy||, < 3e. (108)
Conditioned onE; N Es, for 0 < e < 1/5 we have that

For everyl € 7 we have the following trivial bound
[|(mQ x Q) — Qull, <2 (110)
Combining Equations (104) [ (1]L0), by Lemmg 18, we have that
[(m1Q x Q) — Q||; < 3+ 14e + 2+ £-3¢/(20) - 2 + 3¢/2 - 2 = 25¢ . (111)

ThereforeD is 25¢-close to being irP? in contradiction to our assumption. It follows that the algorithm
acceptsD with probability at most /3.

On the other hand, I€P be gfjs-close to being irP°? and assume the algorithm rejects. Conditioned on

E1NE,, we have tha@1 X QQ)W1 « H 18 @(0, €/24)-multiplicative approximation ofm1Q X m2Q) |, x i, -
Therefore, conditioned of N E, N E3 N Ey, if we reject in Step 10, then we obtain by Theoler 12 that

2
HQ\Hleg_(WlQ X WQQ)\H1XH2H1 > 72 ;W : (112)

It follows, by Lemm, thafmQ x mQ — Q|; > w 72 gf;ﬁ > ‘fo/e% . If we reject in
Sted 16, then conditioned df; N Eg, there isR; such that)(L, x R;) > ¢/¢ in which the following holds,

|(m@ % 72Q) 1, = Quraxrs |, > e/2v) (113)

Thus, by Lemm@GHmQ x mQ — Qll, > LEHL) /(9. /m) > €2 /(40/m) . If we reject in Ste@&
then conditioned orE; it follows that ||71Q x m@Q — Q||;, > €. Thus we get a contradiction to our
assumption (that the algorithm rejects), which implies that the algorithm acfeptgh probability at
least2/3. To achieve(l — ) confidence, the amplified algorithm takes the majority resut®@bg 1/0)
applications of the original algorithm. In addition, both algorithms are applied on restricted dotHains (
H in Test-Tolerant-Identity and I; x R; in Bounded+,-Closeness-Tes). This affects the sample
complexity only by a factor ofoly(1/e,logn). For everyR; that enters Step 15, the number of required
samples from the domaih; x R; in that step is bounded by ((n2/3 - |R;|"/2/m1/6 + n2/3 . |R;| /m?/3) -
poly(1/¢)). Thus, sincé is logarithmic inn and1/¢, the number of samples required by all the applications
of Bounded+.-Closeness-Tess bounded by (n?/3m?/3.poly(1/e)). Therefore, the sample complexity
is O((n?/3m!? 4+ m) - poly(1/¢)) as required. W

7 Testing(k, 3)-Clusterability in the Query Model

In this section we consider an extension of the prop@&iy, studied in the previous sections. Namely,
rather than asking whether all distributions in a fisare the same, we ask whether there exists a partition
of D into at mostk lists, such that within each list all distributions are the the same (or close). That is, we
are interested in the following@usteringproblem:
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Definition 6 LetD be a list ofm distributions overn|. We say thaD is (k, 3)-clusterabléf there exists a
partition of D to k lists {D; }¥_, such that for every € [k] and everyD, D’ € D;, |D — D'||, < 3.

In particular, fork = 1 and3 = 0, we get the propertPy;',. We study testindk, 3)-clusterability (for
k > 1) in the query model. The question fbr> 1 in the (uniform) sampling model remains open.

We start by noting that if we allow a linear (or slightly higher) dependence,dhen it is possible (by
adapting the algorithm we give below), to obtain a tester that works fot ang 5. The complexity of this
testerisO(n - k - poly(1/€))). However, if we want a dependencemithat grows slower than'—°() then
it is not possible to get such a result evenior= 2 (andk = 1). This is true since distinguishing between
the case that a pair of distributions d@t&lose and the case that they @fear for constants and3’ requires
n'—°() samples[[Val08b]. We also note that fér= 0 the dependence anmust be at leag®(n?/3) (for
m = 2 andk = 1) [Val08E]. Our algorithm works fog = 0 and slightly more generally, fgt = O(e/\/n),
has no dependence an, has almost linear dependencegrand its dependence angrows likeO(n?/?).

Theorem 16 Algorithm[§ (see Figurg]5) is a testing algorithm fdr, 3)-clusterability of a list of distribu-
tions in the query model, which works for every 84n!/2, and performs)(n?/3 - k - poly(1/¢)) sampling
gueries.

We build on the following theorem.

Theorem 17 ([BER"10]) Given parameted, and sampling access to distributiopsq over[n], there is a
test,/,-Distance-Test(p, ¢, ¢, §), which takes) (e ~*n?/3 log nlog §—') samples from each distribution and
for which the following holds.

o If |p —ql|, < ¢/(4n'/?), then the test accepts with probability at least 6.

e If |[p — ql|; > ¢, then the test rejects with probability at ledst- 6.

Our algorithm is an adaptation of the diameter-clustering tester of [ADPRO03], which applies to clustering
vectors inR?, and is given in FigurE|5. While often clustering algorithms rely on a method of evaluating
distances between the objects that they cluster, the algorithm from™[B8Fonly distinguishes pairs of
distributions that are very close from those thatafar (in ¢, distance). Still, this is enough information in
conjunction with the algorithm of [ADPR03] to construct a good distribufibrb)-clusterability tester. In
addition, by applying a small change, the algorithm can find an approximately good clustering, as described
in the proof of Theorerp 16.
Proof of Theorem[1§: Assume all applications dfi-Distance-Testreturned a correct answer, as defined
by Theore. By the union bound, this happens with probability at fg@stLet us refer to this event
asF;. Conditioned on¥, the clustering algorithm rejects only if it finds+ 1 distributions inD such that
the /; distance between every two of them is greater tﬁﬁﬁ% > . Thus, if D is (k, B)-clusterable, then
it will be accepted with probability at leaSy6.

We thus turn to the case that is e-far from being(k, 3)-clusterable. In this case we claim that as
long as there are¢ < k representativesiep,, ..., rep,, the number of distribution®); € D such that
|D; —rep,||1 > €/2is atleastm/2. To verify this, assuming in contradiction that there are less thaf2
such distributions. But then, by modifying each of these distributions so that it egpalsand modifying
each of the other distributions so that it equals the representative it is most close it, we get a list that is
(k,0)-clusterable (at a total cost of less than).

Since in each iteration of the while loop, there are less than representative distributions, at Ieégt
of the distributions irD ares-far from any of the former representative distributions. Therefore, conditioned
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Algorithm 5: Testing Clusterability
Input : Parameter&, 5 ande, and access in the query model to a Tisbf m distributions over
]
1 Pickrep; uniformly from D;
2 1:=1,
3 find_new_rep := true;
4 while (i < k + 1) and(find_new_rep = true) do
5 Uniformly and independently sele2in(6(k + 1)) /e distributions frombD;
6
7
8
9

foreach selected distributiorD do
find_new_rep := true;
for ¢ :=1to:do

Call ¢ -Distance-Testwith parametersD, rep,, €/2, ¢/12(k + 1) In(6(k + 1));
10 if £1-Distance-Testacceptghen find_new_rep := false;
11 if find_new_rep = true then
12 1 =1+ 1;
13 rep, = D,
14 break;

15 if ¢+ < k then output ACCEPT ;
16 else outputREJECT ;

Figure 5: The algorithm for testing clusterability

on E, for every iteration of the while loop, the probability that a new representative is not found is less than
(1-— e/z)w < en6k+1) — 6(k1+1)' By applying the union bound, the algorithm reje®swith
probability greater tha/3. Since there ar®(log k/¢) iterations, and in each there is a single application

of the ¢;-distance test, by Theorgm]|17 the total number of samples used is as stated. We note that if we
change the algorithm to continue finding new representatives even after findingrepresentatives then

the algorithm would find a set of representativessuch that at mostn of the distributions irD aree-far

from any representatives s W

References

. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie. Testikgvise an

[AAK t07] N. Alon, A. Andoni, T. Kauf K. Matulef, R. Rubinfeld, and N. Xie. Testihgyi d
almostk-wise independence. IAroceedings of the Thirty-Ninth Annual ACM Symposium on
the Theory of Computing (STO@ages 496-505, 2007.

[ACS10] M. Adamaszek, A. Czumaj, and C. Sohler. Testing monotone continuous distributions on high-
dimensional real cubes. Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODApages 56-65, 2010.

[ADPRO3] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clusteri®&AM Journal on Discrete
Math, 16(3):393-417, 2003.

39



[AIORO09]

[AMS99]

[AS92]
[Bat01]

[BDKRO5]

[BFF+01]

[BFR+00]

[BFRT10]

[BKRO4]

[BNNRO9]

[BOOS]

[BO10a]

[BO10b]

[BYJK*02]

[CKO4]

[CMIMO3]

A. Andoni, P. Indyk, K. Onak, and R. Rubinfeld. External samplingAltomata, Languages
and Programming: Thirty-Sixth International Colloquium (ICAL.Bages 83-94, 2009.

N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments.JCSS$58, 1999.

N. Alon and J. H. SpenceThe Probabilistic MethodWiley, New York, 1992.

T. Batu. Testing properties of distribution®hD thesis, Computer Science department, Cornell
University, 2001.

T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating the
entropy. SIAM Journal on Computing5(1):132—-150, 2005.

T. Batu, L. Fortnow, E. Fischer, R. Kumar, R. Rubinfeld, and P. White. Testing random vari-
ables for independence and identity. Rroceedings of the Forty-Second Annual Symposium
on Foundations of Computer Science (FOGsiges 442—-451, 2001.

T. Batu, L. Fortnow, R. Rubinfeld, W.D. Smith, and P. White. Testing that distributions are
close. InProceedings of the Forty-First Annual Symposium on Foundations of Computer Sci-
ence (FOCS)pages 259-269, Los Alamitos, CA, USA, 2000. IEEE Computer Society.

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing closeness of discrete
distributions.CoRR abs/1009.5397, 2010. This is a long version of [BBR].

T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and unimodal
distributions. InProceedings of the Thirty-Sixth Annual ACM Symposium on the Theory of
Computing (STOC)pages 381-390, 2004.

K. Do Ba, H. L. Nguyen, H. N. Nguyen, and R. Rubinfeld. Sublinear time algorithms for earth
mover’s distance. IICORR abs/0904.0292009.

V. Braverman and R. Ostrovsky. Measurikgvise independence of streaming dataClwoRR
abs/0806.479®008.

V. Braverman and R. Ostrovsky. Measuring independence of dataseé®sodeedings of the
Fourty-Second Annual ACM Symposium on the Theory of Computing (Sp&yeys 271-280,
2010.

V. Braverman and R. Ostrovsky. Zero-one frequency lawBraweedings of the Fourty-Second
Annual ACM Symposium on the Theory of Computing (ST@#g)es 281-290, 2010.

Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. Pmoceedings of RANDOM002.

D. Coppersmith and R. Kumar. An improved data stream algorithm for frequency moments. In
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
pages 151-156, 2004.

G. Cormode, M.Datar, P. Indyk, and S. Muthukrishnan. Comparing data stream using hamming
norms (how to zero in)IEEE Trans. Knowl. Data Eng15(3):529-540, 2003.

40



[CS07]

[Csi67]

[Fel67]

[FKSV99]

[FMOS]

[FS00]

[GMVO09]

[GROO]

[Har75]

[IKOS09]

[IM08]

[Knu69]

[KS08]

[Ma81]

[MV70]

A. Czumaj and C. Sohler. Testing expansion in bounded-degree graghmceedings of the
Forty-Eighth Annual Symposium on Foundations of Computer Science (F@&gs 570—
578, 2007.

I. Csisar. Information-type measures of difference of probability distributions and indirect
observationsStudia Scientiarum Mathematicarum Hungari@a299-318, 1967.

W. Feller. An introduction to probability theory and its applications / William Felladiley,
New York ; Sydney :, 3rd ed. edition, 1967.

J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approxirhdiéerence
algorithm for massive data streams (extended abstracBraceedings of the Fortieth Annual
Symposium on Foundations of Computer Science (FOISSP.

E. Fischer and A. Matsliah. Testing graph isomorphisi8IAM Journal on Computing
38(1):207-225, 2008.

J. Fong and M. Strauss. An approximatedifference algorithm for massive data streams. In
Annual Symposium on Theoretical Aspects of Computer S¢i20@ae.

S. Guha, A. McGregor, and S. Venkatasubramanian. Sub-linear estimation of entropy and
information distancesACM Transactions on Algorithm§, 2009.

0. Goldreich and D. Ron. On testing expansion in bounded-degree grajatsronic Collo-
gium on Computational Complexity(20), 2000.

B. Harris. The statistical estimation of entropy in the non-parametric cagoquia Mathe-
matica Societatisahos Bolyaj16:323-355, 1975. Topics in Information Theory.

Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Extracting correlationBrdaeedings of
the Fiftieth Annual Symposium on Foundations of Computer Science (FP&fts 261-270,
20009.

P. Indyk and A. McGregor. Declaring independence via the sketching of sketcHe®cied-
ings of the Ninteenth Annual ACM-SIAM Symposium on Discrete Algorithms (S@&yes
737-745, 2008.

D. Knuth. The Art of Computer Programming: Seminumerical Algorithmadume 2. Addison
Wesley, Phillipines, 1969.

S. Kale and C. Seshadhri. Testing expansion in bounded degree graphstomata, Lan-
guages and Programming: Thirty-Fifth International Colloquium (ICALPages 527-538,
2008. A preliminary version appeared in ECCC, TR07-076.

S.K. Ma. Calculation of entropy from data of motiah.of Statistical Physi¢26(2):221-240,
1981.

Dragoslav S. Mitrinovic and P. M. Vasiénalytic inequalities / D.S. Mitrinovi ; in cooperation
with P.M. Vasic Springer-Verlag, Berlin ; New York :, 1970.

41



[NBS04]

[NS07]

[Pan03]

[Pan04]

[Pan08]

[Ro099]

[RRRSO7]

[RRSS09]

[RS04]

[RX10]

[SKSB98]

[Szp01]

[ValO8a]

[Valosb]
[Whi]
[WWO5]

[Yam95]

I. Nemenman, W. Bialek, and R. de Ruyter van Steveninck. Entropy and information in neural
spike trains: Progress on the sampling probl&hnys. Rev. E69(056111), 2004.

A. Nachmias and A. Shapira. Testing the expansion of a graph. Technical Report TR07-118,
Electronic Colloquium on Computational Complexity (ECCC), 2007.

L. Paninski. Estimation of information-theoretic quantities and discrete distributiestal
Computation15:1191-1254, 2003.

L. Paninski. Estimating entropy an bins given fewer tham: samples.IEEE Transactions
on Information Theory50(9):2200-2203, 2004.

L. Paninski. Testing for uniformity given very sparsely-sampled discrete tBEE Transac-
tions on Information Theoryp4(10):4750-4755, 2008.

B. Roos. On the rate of multivariate poisson convergedc®lultivar. Anal, 69(1):120-134,
1999.

S. Raskhodnikova, D. Ron, R. Rubinfeld, and A. Smith. Sublinear algorithms for approx-
imating string compressibility. IfProceedings of the Eleventh International Workshop on
Randomization and Computation (RANDQMages 609-623, 2007.

S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong lower bonds for approximating
distributions support size and the distinct elements probl&RAM Journal on Computing
39(3):813-842, 2009.

R. Rubinfeld and R. Servedio. Testing monotone high-dimensional distributions. Manuscript,
2004.

R. Rubinfeld and N. Xie. Testing non-uniform k-wise independent distributions over product
spaces. IrAutomata, Languages and Programming: Thirty-Seventh International Colloquium
(ICALP), pages 565-581, 2010.

S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek. Entropy and infor-
mation in neural spike train®hys. Rev. Lett80(1):197-200, 1998.

W. Szpankowski.Average Case Analysis of Algorithms on Sequendetin Wiley & Sons,
Inc., New York, 2001.

P. Valiant. Testing symmetric properties of distributions. Piroceedings of the Fourtieth
Annual ACM Symposium on the Theory of Computing (STg)es 383—392, 2008.

P. Valiant. Testing symmetric properties of distributio®hD thesis, CSAIL, MIT, 2008.
P. White. Testing random variables for independence and identity. Unpublished manuscript.

D. Wolpert and D. R. Wolf. Estimating functions of probability distributions from a finite set
of samples. Part |. Bayes estimators and the Shannon enRbpgyical Review F52(6):6841—
6854, 1995.

K. Yamanishi. Probably almost discriminative learningylachine Learning 18(1):23-50,

1995.
42
ECCC ISSN 1433-8092
http://eccc.hpi-web.de




