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Abstract

We propose a framework for studying property testing of collections of distributions, where the
number of distributions in the collection is a parameter of the problem. Previous work on property
testing of distributions considered single distributions or pairs of distributions. We suggest two models
that differ in the way the algorithm is given access to samples from the distributions. In one model the
algorithm may ask for a sample from any distribution of its choice, and in the other the choice of the
distribution is random.

Our main focus is on the basic problem of distinguishing between the case that all the distributions in
the collection are the same (or very similar), and the case that it is necessary to modify the distributions
in the collection in a non-negligible manner so as to obtain this property. We give almost tight upper and
lower bounds for this testing problem, as well as study an extension to a clusterability property. One of
our lower bounds directly implies a lower bound on testing independence of a joint distribution, a result
which was left open by previous work.
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1 Introduction

In recent years, several works have investigated the problem of testing various properties of data that is
most naturally thought of as samples of an unknown distribution. More specifically, the goal in testing a
specific property is to distinguish the case that the samples come from a distribution that has the property
from the case that the samples come from a distribution that is far (usually in terms of`1 norm, but other
norms have been studied as well) from any distribution that has the property. To give just a few examples,
such tasks include testing whether a distribution is uniform [GR00, Pan08] or similar to another known
distribution [BFR+10], and testing whether a joint distribution is independent [BFF+01]. Related tasks
concern sublinear estimation of various measures of a distribution, such as its entropy [BDKR05, GMV09]
or its support size [RRSS09]. Recently, general techniques have been designed to obtain nearly tight lower
bounds on such testing and estimation problems [Val08a, Val08b].

These types of questions have arisen in several disparate areas, including physics [Ma81, SKSB98,
NBS04], cryptography and pseudorandom number generation [Knu69], statistics [Csi67, Har75, WW95,
Pan04, Pan08, Pan03], learning theory [Yam95], property testing of graphs and sequences (e.g.,[GR00,
CS07, KS08, NS07, RRRS07, FM08]) and streaming algorithms (e.g., [AMS99, FKSV99, FS00, GMV09,
CMIM03, CK04, BYJK+02, IM08, BO10a, BO10b, BO08, IKOS09]). In these works, there has been
significant focus on properties of distributions over very large domains, where standard statistical techniques
based on learning an approximation of the distribution may be very inefficient.

In this work we consider the setting in which one receives data which is most naturally thought of
as samples ofseveraldistributions, for example, when studying purchase patterns in several geographic
locations, or the behavior of linguistic data among varied text sources. Such data could also be generated
when samples of the distributions come from various sensors that are each part of a large sensor-net. In these
examples, it may be reasonable to assume that the number of such distributions might be quite large, even
on the order of a thousand or more. However, for the most part, previous research has considered properties
of at most two distributions [BFR+00, Val08a]. We propose new models of property testing that apply
to properties of several distributions. We then consider the complexity of testing properties within these
models, beginning with properties that we view as basic and expect to be useful in constructing building
blocks for future work. We focus on quantifying the dependence of the sample complexities of the testing
algorithms in terms of the number of distributions that are being considered, as well as the size of the domain
of the distributions.

1.1 Our Contributions

1.1.1 The Models

We begin by proposing two models that describe possible access patterns to multiple distributions
D1, . . . , Dm over the same domain[n]. In these models there is no explicit description of the distribu-
tion – the algorithm is only given access to the distributions via samples. In the first model, referred to as the
sampling model, at each time step, the algorithm receives a pair of the form(i, j) wherei ∈ [n] is distributed
according toDj andj is selected uniformly in[m]. In the second model, referred to as thequery model, at
each time step, the algorithm is allowed to specifyj ∈ [m] and receivesi that is distributed according to
Dj . It is immediate that any algorithm in the sampling model can also be used in the query model. On the
other hand, as is implied by our results, there are property testing problems which have a significantly larger
sample complexity in the sampling model than in the query model.

In both models the task is to distinguish between the case that the tested distributions have the property
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and the case that they areε-far from having the property, for a given distance parameterε. Distance to the
property is measured in terms of the average`1-distance between the tested distributions and the closest
collection of distributions that have the property. In all of our results, the dependence of the algorithms on
the distance parameterε is (inverse) polynomial. Hence, for the sake of succinctness, in all that follows we
do not mention this dependence explicitly. We note that the sampling model can be extended to allow the
choice of the distribution (that is, the indexj) to be non-uniform (i.e., be determined by a weightwj) and
the distance measure is adapted accordingly.

1.1.2 Testing Equivalence in the sampling model

One of the first properties of distributions studied in the property testing model is that of determining whether
two distributions over domain[n] are identical (alternatively, very close) or far (according to the`1-distance).
In [BFR+10], an algorithm is given that uses̃O(n2/3) samples and distinguishes between the case that the
two distributions areε-far and the case that they areO(ε/

√
n)-close. This algorithm has been shown to

be nearly tight (in terms of the dependence onn) by Valiant [Val08b]. Valiant also shows that in order
to distinguish between the case that the distributions areε-far and the case that they areβ-close, for two
constantsε andβ, requires almost linear dependence onn.

Our main focus is on a natural generalization, which we refer to as theequivalence propertyof dis-
tributionsD1, . . . , Dm, in which the goal of the tester is to distinguish the case in which all distributions
are the same (or, slightly more generally, that there is a distributionD∗ for which 1

m

∑m
i=1 ‖Di −D∗‖1 ≤

poly(ε)/
√

n), from the case in which there is no distributionD∗ for which 1
m

∑m
i=1 ‖Di − D∗‖1 ≤ ε. To

solve this problem in the (uniform) sampling model with sample complexityÕ(n2/3m) (which ensures with
high probability that each distribution is sampledΩ̃(n2/3 log m) times), one can makem − 1 calls to the
algorithm of [BFR+10] to check that every distribution is close toD1.

OUR ALGORITHMS. We show that one can get a better sample complexity dependence onm. Specifically,
we give two algorithms, one with sample complexityÕ(n2/3m1/3 +m) and the other with sample complex-
ity Õ(n1/2m1/2+n). The first result in fact holds for the case that for each sample pair(i, j), the distribution
Dj (which generatedi) is not selected necessarily uniformly, and furthermore, it is unknown according to
what weight it is selected. The second result holds for the case where the selection is non-uniform, but the
weights are known. Moreover, the second result extends to the case in which it is desired that the tester pass
distributions that are close for each element, to within a multiplicative factor of(1± ε/c) for some constant
c > 1, and for sufficiently large frequencies. Thus, starting from the known result form = 2, as long as
n ≥ m, the complexity grows as̃O(n2/3m1/3 + m) = Õ(n2/3m1/3), and oncem ≥ n, the complexity is
Õ(n1/2m1/2 + n) = Õ(n1/2m1/2) (which is lower than the former expression whenm ≥ n).

Both of our algorithms build on the close relation between testing equivalence and testing independence
of a joint distribution over[n] × [m] which was studied in [BFF+01]. TheÕ(n2/3m1/3 + m) algorithm
follows from [BFF+01] after we fill in a certain gap in the analysis of their algorithm due to an imprecision
of a claim given in [BFR+00]. TheÕ(n1/2m1/2 +n) algorithm exploits the fact thatj is selected uniformly
(or, more generally, according to a known weightwj) to improve on theÕ(n2/3m1/3 + m) algorithm (in
the case thatm ≥ n).

ALMOST MATCHING LOWER BOUNDS. We show that the behavior of the upper bound on the sample com-
plexity of the problem is not just an artifact of our algorithms, but rather (almost) captures the complexity
of the problem. Namely, we give almost matching lower bounds ofΩ(n2/3m1/3) for n = Ω(m log m) and
Ω(n1/2m1/2) (for everyn andm). The latter lower bound can be viewed as a generalization of a lower
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bound given in [BFR+10], but the analysis is somewhat more subtle.
Our lower bound ofΩ(n2/3m1/3) consists of two parts. The first is a general theorem concerning

testing symmetric properties of collections of distributions. This theorem extends a central lemma of
Valiant [Val08b] on which he builds his lower bounds, and in particular the lower bound ofΩ(n2/3) for test-
ing whether two distributions are identical or far from each other (i.e., the case of equivalence form = 2).
The second part is a construction of two collections of distributions to which the theorem is applied (where
the construction is based on the one proposed in [BFF+01] for testing independence). As in [Val08b], the
lower bound is shown by focusing on the similarity between the typical collision statistics of a family of
collections of distributions that have the property and a family of collections of distributions that are far
from having the property. However, since many more types of collisions are expected to occur in the case
of collections of distributions, our proof outline is more intricate and requires new ways of upper bounding
the probabilities of certain types of events.

1.1.3 Testing Clusterability in the query model

The second property that we consider is a natural generalization of the equivalence property. Namely, we
ask whether the distributions can be partitioned into at mostk subsets (clusters), such that within in cluster
the distance between every two distributions is (very) small. We study this property in the query model,
and give an algorithm whose complexity does not depend on the number of distributions and for which the
dependence onn is Õ(n2/3). The dependence onk is almost linear. The algorithms works by combining the
diameter clustering algorithm of [ADPR03] (for points in a general metric space where the algorithm has
access to the corresponding distance matrix) with the closeness of distributions tester of [BFR+10]. Note
that the results of [Val08b] imply that this is tight to within polylogarithmic factors inn.

1.1.4 Implications of our results

As noted previously, in the course of proving the lower bound ofΩ(n2/3m1/3) for the equivalence prop-
erty, we prove a general theorem concerning testability of symmetric properties of collections of distribu-
tions (which extends a lemma in [Val08b]). This theorem may have applications to proving other lower
bounds on collections of distributions. Further byproducts of our research regard the sample complexity
of testing whether a joint distribution is independent, More precisely, the following question is considered
in [BFR+10]: LetQ be a distribution over pairs of elements drawn from[n]× [m] (without loss of general-
ity, assumen ≥ m); what is the sample complexity in terms ofm andn required to distinguish independent
joint distributions, from those that are far from the nearest independent joint distribution (in term of`1 dis-
tance)? The lower bound claimed in [BFF+01], contains a known gap in the proof. Similar gaps in the lower
bounds of [BFR+10] for testing the closeness of distributions and of [BDKR05] for estimating the entropy
of a distribution were settled by the work of [Val08b], which applies to symmetric properties. Since inde-
pendence is not a symmetric property, the work of [Val08b] cannot be directly applied here. In this work, we
show that the lower bound ofΩ(n2/3m1/3) indeed holds. Furthermore, by the aforementioned correction of
the upper bound of̃O(n2/3m1/3) from [BFF+01], we get nearly tight bounds on the complexity of testing
independence.

1.2 Other related work

Other works on testing and estimating properties of (single or pairs of) distributions include [Bat01, GMV09,
BKR04, RS04, AAK+07, RX10, BNNR09, ACS10, AIOR09].
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1.3 Open Problems and Further Research

There are many interesting directions to pursue concerning the testing of properties of collections of dis-
tributions, and because of the applicability of the model to a wide range of circumstances, we expect that
new directions will present themselves. Here we give a few examples: One natural extension of our re-
sults is to give algorithms for testing the property of clusterability fork > 1 in the sampling model. One
may also consider testing properties of collections of distributions that are defined by certain measures of
distributions, and may be less sensitive to the exact form of the distributions. For example, a very basic
measure is the mean (expected value) of the distribution, when we view the domain[n] as integers instead of
element names, or when we consider other domains. Given this measure, we may consider testing whether
the distributions all have similar means (or whether they should be modified significantly so that this holds).
It is not hard to verify that this property can be quite easily tested in the query model by selectingΘ(1/ε)
distributions uniformly and estimating the mean of each. On the other hand, in the sampling model an
Ω(
√

m) lower bound is quite immediate even forn = 2 (and a constantε). We are currently investigating
whether the complexity of this problem (in the sampling model) is in fact higher, and it would be interesting
to consider other measures as well.

1.4 Organization

We start by providing notation and definitions in Section 2. In Section 3 we give the lower bound of
Ω(n2/3m1/3) for testing equivalence in the uniform sampling model, which is the main technical contribu-
tion of this paper. In Section 4 we give our second lower bound (ofΩ(n1/2m1/2)) for testing equivalence
and our algorithms for the problem follow in Sections 5 and 6. We conclude with our algorithm for testing
clusterability in the query model in Section 7.

2 Preliminaries

Let [n] def= {1, . . . , n}, and letD = (D1, . . . , Dm) be a list ofm distributions, whereDj : [n] → [0, 1] and∑n
i=1 Dj(i) = 1 for every1 ≤ j ≤ m. For a vectorv = (v1, . . . , vn) ∈ Rn, let ‖v‖1 =

∑n
i=1 |vi| denote

theL1 norm of the vectorv.
For a propertyP of lists of distributions and0 ≤ ε ≤ 1, we say thatD is ε-far from (having) P if

1
m

∑m
j=1 ‖Dj−D∗

j‖1 > ε for every listD∗ = (D∗
1, . . . , D

∗
m) that has the propertyP (note that‖Dj−D∗

j‖1
is twice the the statistical distance between the two distributions).

Given a distance parameterε, a testing algorithm for a propertyP should distinguish between the case
thatD has the propertyP and the case that it isε-far fromP. We consider two models within which this
task is performed.

1. The Query Model. In this model the testing algorithm may indicate an index1 ≤ j ≤ m of its
choice and it gets a samplei distributed according toDj(i).

2. The Sampling Model. In this model the algorithm cannot select (“query”) a distribution of its
choice. Rather, it may obtain a pair(i, j) wherej is selected uniformly (we refer to this as the
Uniformsampling model) andi is distributed according toDj(i).

We also consider a generalization in which there is an underlying weight vectorw = (w1, . . . , wm)
(where

∑m
j=1 wj = 1), and the distributionDj is selected according tow. In this case the notion of
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ε-far needs to be modified accordingly. Namely, we say thatD is ε-far fromP with respect tow if∑m
j=1 wj · ‖Dj −D∗

j‖1 > ε for every listD∗ = (D∗
1, . . . , D

∗
m) that has the propertyP.

We consider two variants of this non-uniform model: TheKnown-Weightssampling model, in which
w is known to the algorithm, and theUnknown-Weightssampling model in whichw is known.

A main focus of this work is on the following property. We shall say that a listD = (D1 . . . Dm) of m
distributions over[n] belongs toPeq

m,n (or has the propertyPeq
m,n) if Dj = Dj′ for all 1 ≤ j, j′ ≤ m.

3 A Lower Bound of Ω(n2/3m1/3) for Testing Equivalence in the Uniform
Sampling Model whenn = Ω(m log m)

In this section we prove the following theorem:

Theorem 1 Any testing algorithm for the propertyPeq
m,n in the uniform sampling model for everyε ≤ 1/20

and forn > cm log m wherec is some sufficiently large constant, requiresΩ(n2/3m1/3) samples.

The proof of Theorem 1 consists of two parts. The first is a general theorem (Theorem 2) concerning
testing symmetric properties of lists of distributions. This theorem extends a lemma of Valiant [Val08b,
Lem. 4.5.4] (which leads to what Valiant refers to as the “Wishful Thinking Theorem”). The second part
is a construction of two lists of distributions to which Theorem 2 is applied. Our analysis uses a technique
calledPoissonization[Szp01] (which was used in the past in the context of lower bounds for testing and
estimating properties of distributions in [RRSS09, Val08a, Val08b]), and hence we first introduce some
preliminaries concerning Poisson distributions. We later provide some intuition regarding the benefits of
Poissonization.

3.1 Preliminaries concerning Poisson distributions

For a positive real numberλ, the Poisson distributionpoi(λ) takes the valuex ∈ N (where N =
{0, 1, 2, . . .}) with probability poi(x;λ) = e−λλx/x!. The expectation and variance ofpoi(λ) are both
λ. For λ1 andλ2 we shall use the following bound on the`1 distance between the corresponding Poisson
distributions (for a proof see for example [RRSS09, Claim A.2]):

‖poi(λ1)− poi(λ2)‖1 ≤ 2|λ1 − λ2| . (1)

For a vector~λ = (λ1, . . . , λd) of positive real numbers, the correspondingmultivariatePoisson dis-
tribution poi(~λ) is the product distributionpoi(λ1) × . . . × poi(λd). That is,poi(~λ) assigns each vector
~x = x1 . . . , xd ∈ Nd the probability

∏d
i=1 poi(xi;λi).

We shall sometimes consider vectors~λ whose coordinates are indexed by vectors~a = (a1, . . . , am) ∈
Nm, and will use~λ(~a) to denote the coordinate of~λ that corresponds to~a. Thus,poi(~λ(~a)) is a univariate
Poisson distribution. With a slight abuse of notation, for a subsetI ⊆ [d] (or I ⊆ Nm), we letpoi(~λ(I))
denote the multivariate Poisson distributions restricted to the coordinates of~λ in I.

For any twod-dimensional vectors~λ+ = (λ+
1 , . . . , λ+

d ) and~λ− = (λ−1 , . . . , λ−d ) of positive real values,
we get from the proof of [Val08b, Lemma 4.5.3] that,∥∥∥poi(~λ+)− poi(~λ−)

∥∥∥
1
≤

d∑
j=1

∥∥∥poi(λ+
j )− poi(λ−j )

∥∥∥
1

,

for our purposes we shall use the following generalized lemma.
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Lemma 1 For any twod-dimensional vectors~λ+ = (λ+
1 , . . . , λ+

d ) and~λ− = (λ−1 , . . . , λ−d ) of positive real
values, and for any partition{Ii}`i=1 of [d],

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤
∑̀
i=1

∥∥∥poi(~λ+(Ii))− poi(~λ−(Ii))
∥∥∥

1
.

Proof: Let {Ii}`i=1 be a partition of[d], let~i denote(i1, . . . id), by the triangle inequality we have that for
everyk ∈ [`],∣∣∣poi(~i ; ~λ+)− poi(~i ; ~λ−)

∣∣∣ =
∣∣∣ ∏

j∈[d]

poi(ij ;λ+
j )−

∏
j∈[d]

poi(ij ;λ−j )
∣∣∣

≤
∣∣∣ ∏

j∈[d]

poi(ij ;λ+
j )−

∏
j∈[d]\Ik

poi(ij ;λ+
j )
∏
j∈Ik

poi(ij ;λ−j )
∣∣∣

+
∣∣∣ ∏

j∈[d]\Ik

poi(ij ;λ+
j )
∏
j∈Ik

poi(ij ;λ−j )−
∏
j∈[d]

poi(ij ;λ−j )
∣∣∣ .

Hence, we obtain that∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
=

∑
~i∈Nd

∣∣∣poi(~i ; ~λ+)− poi(~i ; ~λ−)
∣∣∣

≤
∥∥∥poi(~λ+(Ik))− poi(~λ−(Ik))

∥∥∥
1

+
∥∥∥poi(~λ+([d] \ Ik))− poi(~λ−([d] \ Ik))

∥∥∥
1

.

Thus, the lemma follows by induction on`.
We shall also make use of the following Lemma.

Lemma 2 For any twod-dimensional vectors~λ+ = (λ+
1 , . . . , λ+

d ) and~λ− = (λ−1 , . . . , λ−d ) of positive real
values,

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤ 2

√√√√2
d∑

j=1

(λ−j − λ+
j )2

λ−j
.

Proof: In order to prove the lemma we shall use theKL-divergencebetween distributions. Namely, for two

distributionsp1 andp2 over a domainX, DKL(p1‖p2)
def=
∑

x∈X p1(x) · ln p1(x)
p2(x) . Let~λ+ = (λ+

1 . . . , λ+
d ),

~λ− = (λ−1 . . . , λ−d ) and let~i denote(i1, . . . id). We have that

ln
poi(~i ; ~λ+)

poi(~i ; ~λ−)
=

d∑
j=1

ln
(

eλ−j −λ+
j

(
λ+

j /λ−j

)ij
)

=
d∑

j=1

(
(λ−j − λ+

j ) + ij · ln(λ+
j /λ−j )

)

≤
d∑

j=1

(
(λ−j − λ+

j ) + ij · (λ+
j /λ−j − 1)

)
,
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where in the last inequality we used the fact thatlnx ≤ x− 1 for everyx > 0. Therefore, we obtain that

DKL

(
poi(~λ+)‖poi(~λ−)

)
=

∑
~i∈Nd

poi(~i ; ~λ+) · ln poi(~i ; ~λ+)

poi(~i ; ~λ−)

≤
d∑

j=1

(
(λ−j − λ+

j ) + λ+
j · (λ

+
j /λ−j − 1)

)
(2)

=
d∑

j=1

(λ−j − λ+
j )2

λ−j
,

where in Equation (2) we used the facts that
∑

i∈N poi(i;λ) = 1 and
∑

i∈N poi(i;λ) · i = λ. The`1 distance
is related to the KL-divergence by‖D −D′‖1 ≤ 2

√
2DKL (D‖D′) and thus we obtain the lemma.

The next lemma bounds the probability that a Poisson random variable is significantly smaller than its
expected value.

Lemma 3 LetX ∼ poi(λ), then,
Pr[X < λ/2] < (3/4)λ/4 .

Proof: Consider the matching betweenj andj + λ/2 for everyj = 0, . . . , λ/2− 1. We consider the ratio
betweenpoi(j;λ) andpoi(j + λ/2;λ):

poi(j + λ/2;λ)
poi(j;λ)

=
e−λ · λj+λ/2/(j + λ/2)!

e−λ · λj/j!

=
λλ/2

(j + λ/2)(j + λ/2− 1) · · · (j + 1)

=
λ

j + λ/2
· λ

j + λ/2− 1
· · · λ

j + 1

≥ λ

λ− 1
· λ

λ− 2
· · · λ

λ/2

>

(
λ

(3/4)λ

)λ/4

= (4/3)λ/4

This implies that

Pr[X < λ/2] =
Pr[X < λ/2]

Pr[λ/2 ≤ X < λ]
· Pr[λ/2 ≤ X < λ]

<
Pr[X < λ/2]

Pr[λ/2 ≤ X < λ]

< (3/4)λ/4 ,

and the proof is completed.
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The next two notations will play an important technical role in our analysis. For a list of distributions
D = (D1 . . . Dm), an integerκ and a vector~a = (a1, . . . , am) ∈ Nm, let

pD,κ(i;~a) def=
m∏

j=1

poi(aj ;κ ·Dj(i)) . (3)

That is, for a fixed choice of a domain elementi ∈ [n], consider performingm independent trials, one for
each distributionDj , where in trialj we select a non-negative integer according to the Poisson distribution
poi(λ) for λ = κ ·Dj(i). ThenpD,κ(i;~a) is the probability of the joint event that we get an outcome ofaj

in trial j, for eachj ∈ [m]. Let~λD,κ be a vector whose coordinates are indexed by all~a ∈ Nm, such that

~λD,κ(~a) =
n∑

i=1

pD,κ(i;~a) . (4)

That is,~λD,κ(~a) is the expected number of times we get the joint outcome(a1, . . . , am) if we perform the
probabilistic process defined above independently for everyi ∈ [n].

3.2 Testability of symmetric properties of lists of distributions

In this subsection we prove the following theorem (which is used to prove Theorem 1).

Theorem 2 LetD+ andD− be two lists ofm distributions over[n], all of whose frequencies are at most
δ

κ·m whereκ is some positive integer and0 < δ < 1. If∥∥∥poi
(
~λD

+,κ
)
− poi

(
~λD

−,κ
)∥∥∥

1
<

16
30
− 352δ

5
, (5)

then testing in the uniform sampling model any symmetric property of distributions such thatD+ has the
property, whileD− is Ω(1)-far from having the property requiresΩ(κ ·m) samples.

A HIGH-LEVEL DISCUSSION OF THE PROOF OFTHEOREM 2. For an elementi ∈ [n] and a distributionDj ,
j ∈ [m], let αi,j be the number of times the pair(i, j) appears in the sample (when the sample is selected
according to some sampling model). Thus(αi,1, . . . , αi,m) is thesample histogramof the elementi. The
histogram of the elements’ histograms is called thefingerprintof the sample. That is, the fingerprint indi-
cates, for every~a ∈ Nm, the number of elementsi such that(αi,1, . . . , αi,m) = ~a. As shown in [BFR+10],
when testing symmetric properties of distributions, it can be assumed without loss of generality that the
testing algorithm is provided only with the fingerprint of the sample. Furthermore, since the number,n, of
elements is fixed, it suffices to give the tester the fingerprint of the sample without the~0 = (0, . . . , 0) entry.

For example, consider the distributionsD1 and D2 over {1, 2, 3} such thatD1[i] = 1/3 for every
i ∈ {1, 2, 3}, D2[1] = D2[2] = 1/2 andD2[3] = 0. Assume that we sample(D1, D2) four times, according
to the uniform sampling model and we get the samples(1, 1), (1, 2), (2, 2), (3, 1), where the first coordinate
denotes the element and the second coordinate denotes the distribution. Then the sample histogram of
element1 is (1, 1) because1 was selected once byD1 and once byD2. For the elements2, 3 we have the
sample histograms(0, 1) and(1, 0), respectively. The fingerprint of the sample is(0, 1, 1, 0, 1, 0, 0, . . .) for
the following order of histograms:((0, 0), (0, 1), (1, 0), (2, 0)(1, 1), (0, 2), (3, 0), . . .).

In order to prove Theorem 2, we would like to show that the distributions of the fingerprints when the
sample is generated according toD+ and when it is generated according toD− are similar, for a sample size
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that is below the lower bound stated in the theorem. For each choice of elementi ∈ [n] and a distributionDj ,
the number of times the sample(i, j) appears, i.e.αi,j , depends on the number of times the other samples
appear simply because the total number of samples is fixed. Furthermore, for each histogram~a, the number
of elements with sample histogram identical to~a is dependent on the number of times the other histograms
appear, because the number of samples is fixed. For instance, in the example above, if we know that we have
the histogram(0, 1) once and the histogram(1, 1) once, then we know that third histogram can’t be(2, 0).
In addition, it is dependent because the number of elements is fixed.

We thus see that the distribution of the fingerprints is rather difficult to analyze (and therefore it is
difficult to bound the statistical distance between two different such distributions). Therefore, we would like
to break as much of the above dependencies. To this end we define a slightly different process for generating
the samples that involvesPoissonization[Szp01]. In the Poissonized process the number of samples we take
from each distributionDj , denoted byκ′j , is distributed according to the Poisson distribution. We prove that,
while the overall number of samples the Poissonized process takes is bigger just by a constant factor from
the uniform process, we get with very high probability thatκ′j > κj , for everyj, whereκj is the number
of samples taken fromDj . This implies that if we prove a lower bound for algorithms that receive samples
generated by the Poissonized process, then we obtain a related lower bound for algorithms that work in the
uniform sampling model.

As opposed to the process that takes a fixed number of samples according to the uniform sampling
model, the benefit of the Poissonized process is that theαi,j ’s determined by this process are indepen-
dent. Therefore, the type of sample histogram that elementi has is completely independent of the types of
sample histograms the other elements have. We get that the fingerprint distribution is a generalized multi-
nomial distribution, which fortunately for us has been studied by Roos [Roo99] (the connection is due to
Valiant [Val08a]).

Definition 1 In the Poissonizeduniform sampling model with parameterκ (which we’ll refer to as the
κ-Poissonizedmodel), given a listD = (D1, . . . , Dm) of m distributions, a sample is generated as follows:

• Draw κ1, . . . , κm ← poi(κ)

• Returnκj samples distributed according toDj for eachj ∈ [m].

Lemma 4 Assume that there exists a testerT in the uniform sampling model for a propertyP of lists ofm
distributions, that takes a sample of sizes = κm whereκ ≥ c log m for some sufficiently large constant
c, and works for everyε ≥ ε0 whereε0 is a constant (and whose success probability is at least2/3). Then
there exists a testerT ′ for P in the Poissonized uniform sampling model with parameter4κ, that works for
everyε ≥ ε0 and whose success probability is at least19

30 .

Proof: Roughly speaking, the testerT ′ tries to simulateT if it has a sufficiently large sample, and otherwise
it guesses the answer. More precisely, letD = (D1, . . . , Dm) be a list ofm distributions. For eachj ∈ [m]
let κj denote the random variable that equals the number of samples that are selected according toDj in the
uniform sampling model, when the total number of samples isκm. Thus,κj ∼ Bin(κm, 1

m). By [AS92,
Thm. A.12], for eachj ∈ [m],

Pr [κi ≥ 2κ] < (e/4)κ .

Now consider a testerT ′ that receivesκ′j samples from eachDj whereκ′j ∼ poi(4κ). By Lemma (3), for
eachj we have that,

Pr
[
κ′i < 2κ

]
≤ (3/4)κ

9



SupposeT ′ also selectsκ1, . . . , κm as in the distribution induced by the uniform sampling model. Ifκ′j ≥ κj

for eachj, thenT ′ simulatesT on the union of the firstκj samples that it got for eachj. Otherwise it outputs
“accept” or “reject” with equal probability.

By taking a union bound over allj ∈ [m] we get that the probability that for everyj ∈ [m] it holds
that bothκj ≤ 2κ andκ′j ≥ 2κ (so thatκ′j ≥ κj), is at least1 −m(((e/4))κ + (3/4)κ), which is greater
than 4

5 for κ > c log m and a sufficiently large constantc. Therefore, the success probability ofT ′ is at least
4
5 ·

2
3 + 1

5 ·
1
2 = 19

30 , as desired.
Given Lemma 4 it suffices to consider samples that are generated in the Poissonized uniform sampling

model. The process for generating a sample{αi,1, . . . , αi,m}i∈[n] (recall thatαi,j is the number of times
that elementi was selected by distributionDj) in theκ-Poissonized model is equivalent to the following
process: For eachi ∈ [n] andj ∈ [m], independently selectαi,j according topoi(κ ·Dj(i)) (see [Fel67], p.
216). Thus the probability of getting a particular histogram~ai = (ai,1, . . . , ai,m) for elementi is pD,κ(i;~ai)
(as defined in Equation (3)). We can represent the event that the histogram of elementi is~ai by a Bernoulli
random vector~bi that is indexed by all~a ∈ Nm, is1 in the coordinate corresponding to~ai, and is0 elsewhere.
Given this representation, the fingerprint of the sample corresponds to

∑n
i=1

~bi. In fact, we would like~bi to
be of finite dimension, so we have to consider only a finite number (sufficiently large) of possible histograms.
Under this relaxation,~bi = (0, . . . , 0) would correspond to the case that the sample histogram of element
i is not in the set of histograms we consider. Roos’s theorem, stated next, shows that the distribution of
the fingerprints can be approximated by a multivariate Poisson distribution (the Poisson here is related to
the fact that the fingerprints’ distributions are generalized multinomial distributions and not related to the
Poisson from the Poissonization process). For simplicity, the theorem is stated for vectors~bi that are indexed
directly, that is~bi = (bi,1, . . . , bi,h).

Theorem 3 ([Roo99]) LetDSn be the distribution of the sumSn ofn independent Bernoulli random vectors
~b1, . . . ,~bn in Rh wherePr

[
~bi = ~e`

]
= pi,` and Pr

[
~bi = (0, . . . , 0)

]
= 1 −

∑h
`=1 pi,` (here~e` satisfies

ei,` = 1 andei,`′ = 0 for every`′ 6= `). Suppose we define anh-dimensional vector~λ = (λ1, . . . , λh) as
follows: λ` =

∑n
i=1 pi,`. Then

∥∥∥DSn − poi(~λ)
∥∥∥

1
≤ 88

5

h∑
`=1

∑n
i=1 p2

i,`∑n
i=1 pi,`

. (6)

We next show how to obtain a bound on sums of the form given in Equation (6) under appropriate
conditions.

Lemma 5 Given a listD = (D1, . . . , Dm) of m distributions over[n] and a real number0 < δ ≤ 1/2
such that for alli ∈ [n] and for all j ∈ [m], Dj(i) ≤ δ

m·κ for some integerκ, we have that

∑
~a∈Nm\~0

∑n
i=1 pD,κ(i;~a)2∑n
i=1 pD,κ(i;~a)

≤ 2δ . (7)
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Proof: ∑
~a∈Nm\~0

∑n
i=1 pD,κ(i;~a)2∑n
i=1 pD,κ(i;~a)

≤
∑

~a∈Nm\~0

max
i

(
pD(i;~a)

)

=
∑

~a∈Nm\~0

max
i

 m∏
j=1

poi(aj ;κ ·Dj(i))


≤

∑
~a∈Nm\~0

(
δ

m

)a1+...+am

≤
∞∑

a=1

ma

(
δ

m

)a

≤ 2δ , (8)

where the inequality in Equation (8) holds forδ ≤ 1/2 and the inequality in Equation (8) follows from:

poi(a;κ ·Dj(i)) =
e−κ·Dj(i)(κ ·Dj(i))a

a!
≤ (κ ·Dj(i))a

≤
(

δ

m

)a

,

and the proof is completed.

Proof of Theorem 2: By the first premise of the theorem,D+
j (i), D+

j (i) ≤ δ
κm for every i ∈ [n] and

j ∈ [m]. By Lemma 5 this implies that Equation (7) holds both forD = D+ and forD = D−. Combining
this with Theorem 3 we get that thè1 distance between the fingerprint distribution when the sample is

generated according toD+ (in theκ-Poissonized model, see Definition 1) and the distributionpoi
(
~λD

+,κ
)

is at most88
5 ·2δ = 176

5 δ, and an analogous statement holds forD−. By applying the premise in Equation (5)

(concerning thè1 distance betweenpoi
(
~λD

+,κ
)

andpoi
(
~λD

−,κ
)

) and the triangle inequality, we get that

the`1 distance between the two fingerprint distributions is smaller than2 · 176
5 δ + 16

30 −
352δ

5 = 16
30 , which

implies that the statistical difference is smaller than8
30 , and thus it is not possible to distinguish betweenD+

andD− in theκ-Poissonized model with success probability at least19
30 . By Lemma 4 we get the desired

result.

3.3 Proof of Theorem 1

In this subsection we show how to apply Theorem 2 to two lists of distributions,D+ andD−, which we will
define shortly, whereD+ ∈ Peq = Peq

m,n while D− is (1/20)-far fromPeq. Recall that by the premise of
Theorem 1,n ≥ cm log m for some sufficiently large constantc > 1. In the proof it will be convenient to
assume thatm is even and thatn (which corresponds in the lemma to2t) is divisible by 4. It is not hard to
verify that it is possible to reduce the general case to this case. In order to defineD−, we shall need the next
lemma.

Lemma 6 For every two even integerst and m, there exists a0/1-valued matrixM with t rows andm
columns for which the following holds:
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1. In each row and each column ofM , exactly half of the elements are1 and the other half are0.

2. For every integer2 ≤ x < m/2, and for every subsetS ⊆ [m] of sizex, the number of rows

i such thatM [i, j] = 1 for everyj ∈ S is at leastt ·
(

1
2x

(
1− 2x2

m

)
−
√

2x ln m
t

)
, and at most

t ·
(

1
2x +

√
2x ln m

t

)
.

Proof: Consider selecting a matrixM randomly as follows: Denote the firstt/2 rows ofM by F . For each
row in F , pick, independently from the othert/2− 1 rows inF , a random half of its elements to be1, and
the other half of the elements to be0. Rowst/2+1, . . . , t are the negations of rows1, . . . , t/2, respectively.
Thus, in each row and each column ofM , exactly half of the elements are1 and the other half are0.

Consider a fixed choice ofx. For each rowi between1 andt, each subset of columnsS ⊆ [m] of sizex,
andb ∈ {0, 1}, define the indicator random variableIS,i,b to be1 if and only if M [i, j] = b for everyj ∈ S.
Hence,

Pr[IS,i,b = 1] =
1
2
·
(

1
2
− 1

m

)
· . . . ·

(
1
2
− x− 1

m

)
.

Clearly,Pr[IS,i,b = 1] < 1
2x . On the other hand,

Pr[IS,i,b = 1] ≥
(

1
2
− x

m

)x

=
1
2x

(
1− 2x

m

)x

≥ 1
2x

(
1− 2x2

m

)
.

where the last inequality is due to Bernoulli’s inequality which states that(1 + x)n > 1 + nx, for every real
numberx > −1 6= 0 and an integern > 1 ([MV70]).

LetES,b denote the expected value of
∑t/2

i=1 IS,i,b. From the fact that rowst/2+1, . . . , t are the negations

of rows1, . . . , t/2 it follows that
∑t

i=t/2+1 IS,i,1 =
∑t/2

i=1 IS,i,0. Therefore, the expected number of rows

1 ≤ i ≤ t such thatM [i, j] = 1 for everyj ∈ S is simplyES,1 + ES,0 (that is, at mostt · 1
2x and at least

t · 1
2x

(
1− 2x2

m

)
). By the additive Chernoff bound,

Pr

[∣∣∣ t/2∑
i=1

IS,i,b − ES,b

∣∣∣ >√ tx lnm

2

]
< 2 exp(−2(t/2)(2x lnm)/t)

= 2m−2x .

Thus, by taking a union bound (overb ∈ {0, 1}),

Pr

[∣∣∣ t∑
i=1

IS,i,1 − (ES,1 + ES,0)
∣∣∣ > √2tx lnm

]
< 4m−2x .

By taking a union bound over all subsetsS we get thatM has the desired properties with probability greater
than0.
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We first defineD+, in which all distributions are identical. Specifically, for eachj ∈ [m]:

D+
j (i) def=


1

n2/3m1/3 if 1 ≤ i ≤ n2/3m1/3

2
1
n if n

2 < i ≤ n
0 o.w.

(9)

We now turn to definingD−. Let M be a matrix as in Lemma 6 fort = n/2. For everyj ∈ [m]:

D−
j (i) def=


1

n2/3m1/3 if 1 ≤ i ≤ n2/3m1/3

2
2
n if n

2 < i ≤ n
andM [i− n/2, j] = 1

0 o.w.

(10)

For bothD+ andD−, we refer to the elements1 ≤ i ≤ n2/3m1/3

2 as theheavyelements, and to the elements
n
2 ≤ i ≤ n, as thelight elements. Observe that each heavy element has exactly the same probability weight,

1
n2/3m1/3 , in all distributionsD+

j andD−
j . On the other hand, for each light elementi, while D+

j (i) = 1
n

(for everyj), in D− we have thatD+
j (i) = 2

n for half of the distributions, the distributions selected by the
M , andD+

j (i) = 0 for half of the distributions, the distributions which are not selected byM . We later use
the properties ofM to bound thè 1 distance between the fingerprints’ distributions ofD+ andD−.

A HIGH-LEVEL DISCUSSION. To gain some intuition before delving into the detailed proof, consider first
the special case thatm = 2 (which was studied by Valiant [Val08a], and indeed the construction is the
same as the one he analyzes (and was initially proposed in [BFR+00]). In this case each heavy element has
probability weightΘ(1/n2/3) and we would like to establish a lower bound ofΩ(n2/3) on the number of
samples required to distinguish betweenD+ andD−. That is, we would like to show that the corresponding
fingerprints’ distributions when the sample is of sizeo(n2/3) are very similar.

The first main observation is that since the probability weight of light elements isΘ(1/n) in bothD+

andD−, the probability that a light element will appear more than twice in a sample of sizeo(n2/3) is very
small. That is (using the fingerprints of histograms notation we introduced previously), for each~a = (a1, a2)
such thata1 + a2 > 2, the sample won’t include (with high probability) any light elementi such that
αi,1 = a1 andαi,2 = a2 (for bothD+ andD−). Moreover, the expected number of elementsi such that
(αi,1, αi,2) = (1, 0) is the same inD+ andD−, as well as the variance (from symmetry, the same applies to
(0, 1)). Thus, most of the difference between the fingerprints’ distributions is due to the numbers of elements
i such that(αi,1, αi,2) ∈ {(1, 1), (2, 0), (0, 2)}. For these settings of~a we do expect to see a non-negligble
difference for light elements betweenD+ andD− (in particular, we can’t get the(1, 1) histogram for light
elements inD−, as opposed toD+).

Here is where the heavy elements come into play. Recall that in bothD+ andD− the heavy elements
have the same probability weight, so that the expected number of heavy elementsi such that(ai,1, ai,2) =
(1, 1) (and similarly for(2, 0) and(0, 2)), is the same forD+ andD−. However, intuitively, the variance
of these numbers for the heavy elements “swamps” the differences between the light elements so that it
is not possible to distinguish betweenD+ andD−. The actual proof, which formalizes (and quantifies)
this intuition, considers the difference between the values of the vectors~λD

+,k and~λD
−,k (as defined in

Equation (4)) in the coordinates corresponding to~a such thata1 + a2 = 2. We can then apply Lemmas 1
and 2 to obtain Equation (5) in Theorem 2.

Turning tom > 2, it is no longer true that in a sample of sizeo(n2/3m1/3) we won’t get histogram
vectors~a such that

∑m
j=1 ai > 2 for light elements. Thus we have to deal with many more vectors~a (of
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dimensionm) and to bound the total contribution of all of them to the difference between fingerprints ofD+

and ofD−. To this end we partition the set of all possible histograms’ vectors into several subsets according
to their Hamming weight

∑m
j=1 aj and depending on whether alla′js are in{0, 1}, or there exists a least

oneaj such thataj ≥ 2. In particular, to deal with the former (whose number, for each choice of Hamming
weightx is relatively large, i.e., roughlymx), we use the properties of the matrixM based on whichD−
is defined. We note that from the analysis we see that, similarly to whenm = 2, we need the variance of
the heavy elements to play a role just for the cases where

∑m
j=1 ai = 2 while in the other cases the total

contribution of the light elements is rather small.
In the remainder of this section we provide the details of the analysis.

Before establishing that indeedD− is Ω(1)-far fromPeq, we introduce some more notation (which will
be used throughout the remainder of the proof of Theorem 1). LetSx be the set of vectors that contain
exactlyx coordinates that are1, and all the rest are0 (which corresponds to an element that was sampled
once or0 times by each distribution). LetAx be the set of vector that their coordinates sum up tox but must
contain at least one coordinate that is2 (which corresponds to an element that was samples at least twice by
at least one distribution). More formally, for any integerx, we define the following two subsets ofNm:

Sx
def=
{

~a ∈ Nm :
∑m

j=1 aj = x and
∀j ∈ [m], aj < 2

}
,

and

Ax
def=
{

~a ∈ Nm :
∑m

j=1 aj = x and
∃j ∈ [m], aj ≥ 2

}
For~a ∈ Nm, let sup(~a) def= {j : aj 6= 0} denote thesupportof ~a, and let

IM (~a) def=
{

i : D−
j (i) =

2
n
∀j ∈ sup(~a)

}
. (11)

Note that in terms of the matrixM (based on whichD− is defined),IM (~a) consists of the rows inM whose
restriction to the support of~a contains only1’s. In terms of theD−, it corresponds to the set of light elements
that might have a sample histogram of~a (when sampling according toD−).

Lemma 7 For everym > 5 and forn ≥ c lnm for some sufficiently largec, we have that
∑m

j=1 ‖D
−
j −

D∗‖1 > m/20 for every distributionD∗ over[n]. That is, the listD− is (1/20)-far fromPeq.

Proof: Consider any~a ∈ S2. By Lemma 6, settingt = n/2, the size ofIM (~a), i.e. the number of light

elements̀ such thatD−
j [`] = 2

n for everyj ∈ sup(~a), is at mostn2

(
1
4 +

√
8 ln m

n

)
. The same lower bound

holds for the number of light elements` such thatD−
j [`] = 0 for everyj ∈ sup(~a). This implies that for

everyj 6= j′ in [m], for at leastn2 − n

(
1
4 +

√
8 ln m

n

)
of the light elements,̀, we have thatD−

j [`] = 2
n

while D−
j′ [`] = 0, or thatD−

j′ [`] = 2
n while D−

j [`] = 0 . Therefore,‖D−
j −D−

j′‖1 ≥
1
2 − 2

√
8 ln m

n , which

for n ≥ c lnm and a sufficiently large constantc, is at least18 . Thus, by the triangle inequality we have that
for everyD∗,

∑m
j=1 ‖D

−
j −D∗‖1 ≥ bm2 c ·

1
8 , which greater thanm/20 for m > 5.

In what follows we work towards establishing that Equation (5) in Theorem 2 holds forD+ andD−. Set
κ = δ · n2/3

m2/3 , whereδ is a constant to be determined later. We shall use the shorthand~λ+ for ~λD
+,κ, and~λ−
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for ~λD
−,κ (recall that the notation~λD,κ was introduced in Equation (4)). By the definition of~λ+, for each

~a ∈ Nm,

~λ+(~a) =
n∑

i=1

m∏
j=1

(κ ·D+
j (i))aj

eκ·D+
j (i) · aj !

=
n2/3m1/3/2∑

i=1

m∏
j=1

(δ/m)aj

eδ/m · aj !
+

n∑
i=n/2+1

m∏
j=1

(δ/(n1/3m2/3))aj

eδ/(n1/3m2/3) · aj !

=
n2/3m1/3

2eδ

m∏
j=1

(δ/m)aj

aj !
+

n

2eδ(m/n)1/3

m∏
j=1

(δ/(n1/3m2/3))aj

aj !
.

By the construction ofM , for every lighti,
∑m

j=1 D−
j (i) = 2

n ·
m
2 = m

n . Therefore,

~λ−(~a) =
n2/3m1/3

2eδ

m∏
j=1

(δ/m)aj

aj !
+

1
eδ(m/n)1/3

∑
i∈IM (~a)

m∏
j=1

(2δ/(n1/3m2/3))aj

aj !
.

Hence,~λ+(~a) and~λ−(~a) differ only on the term which corresponds to the contribution of the light elements.
Equations (12) and (12) demonstrate why we chooseM with the specific properties defined in Lemma 6.
First of all, in order for everyD−

j to be a probability distribution, we want each column ofM to sum up

to exactlyn/2. We also want each row ofM to sum up to exactlym/2, in order to get
∏m

j=1 e−κ·D+
j (i) =∏m

j=1 e−κ·D−
j (i). Finally, we would have liked|IM (~a)| ·

∏m
j=1 2aj to equaln/2 for every~a. This would

imply that~λ+(~a) and~λ−(~a) are equal. As we show below, this is in fact true for every~a ∈ S1. For vectors
~a ∈ Sx wherex > 1, the second condition in Lemma 6 ensures that|IM (~a)| is sufficiently close ton

2 ·
1
2x .

This property ofM is not necessary in order to bound the contribution of the vectors inAx. The bound that
we give for those vectors is less tight, but since there are fewer such vectors, it suffices.

We start by considering the contribution to Equation (5) of histogram vectors~a ∈ S1 (i.e., vectors of
the form(0, . . . , 0, 1, 0, . . . , 0)) which correspond to the number of elements that are sampled only by one
distribution, once. We prove that in the Poissonized uniform sampling model, for every~a ∈ S1 the number
of elements with such sample histogram is distributed exactly the same inD+ andD−.

Lemma 8 ∑
~a∈S1

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1
= 0 .

Proof: For every~a ∈ S1, the size ofIM (~a) is n
4 , thus,∑

i∈IM (~a)

m∏
j=1

(2δ/(n1/3m2/3))aj

aj !
=

n

2

m∏
j=1

(δ/(n1/3m2/3))aj

aj !
.

By Equations (12) and (12), it follows that
∣∣∣~λ+(~a)− ~λ−(~a)

∣∣∣ = 0 for every~a ∈ S1. The lemma follows by

applying Equation (1).

We now turn to bounding the contribution to Equation (5) of histogram vectors~a ∈ A2 (i.e., vectors of
the form(0, . . . , 0, 2, 0, . . . , 0) which correspond to the number of elements that are sampled only by one
distribution, twice.
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Lemma 9 ∥∥∥poi(~λ+(A2))− poi(~λ−(A2))
∥∥∥

1
≤ 3δ .

Proof: For every~a ∈ A2, the size ofIM (~a) is n
4 , thus,

∑
i∈IM (~a)

m∏
j=1

(2δ/(n1/3m2/3))aj

aj !
= n

m∏
j=1

(δ/(n1/3m2/3))aj

aj !
. (12)

By Equations (12), (12) and (12) it follows that

~λ−(~a)− ~λ+(~a) =
n

2eδ(m/n)1/3

m∏
j=1

(δ/(n1/3m2/3))aj

aj !

=
n1/3δ2

4eδ(m/n)1/3
m4/3

, (13)

and that

~λ−(~a) ≥ n2/3m1/3

2eδ

m∏
j=1

(δ/m)aj

aj !

=
n2/3δ2

4eδm5/3
. (14)

By Equations (13) and (14) we have that(
~λ−(~a)− ~λ+(~a)

)2

~λ−(~a)
≤ eδ−2δ(m/n)1/3

δ2

4m

≤ δ2

m
. (15)

By Equation (15) and the fact that|A2| = m we get

∑
~a∈A2

(
~λ−(~a)− ~λ+(~a)

)2

~λ−(~a)
≤ m · δ

2

m
= δ2

The lemma follows by applying Lemma 2.

Recall that for a subsetI of Nm, poi(~λ(I)) denotes the multivariate Poisson distributions restricted to
the coordinates of~λ that are indexed by the vectors inI. We separately deal withSx where2 ≤ x < m/2,
andx ≥ m/2, where our main efforts are with respect to the former, as the latter correspond to very low
probability events.

Lemma 10 For m ≥ 16, n ≥ cm lnm (wherec is a sufficiently large constant) and forδ ≤ 1/16

∥∥∥poi(~λ+
(m/2⋃

x=2

Sx)
)
− poi(~λ−

(m/2⋃
x=2

Sx)
)∥∥∥

1
≤ 32δ .
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Proof: Let ~a be a vector inSx then by the definition ofSx, every coordinate of~a is 0 or 1. Therefore we
make the following simplification of Equation (12): For each~a ∈

⋃m/2−1
x=2 Sx,

~λ+(~a) =
n2/3m1/3

2eδ
·
(

δ

m

)x

+
n

2eδ(m/n)1/3
·
(

δ

n1/3m2/3

)x

.

By Lemma 6, for every~a ∈
⋃m/2−1

x=2 Sx the size ofIM (~a) is at mostn2 ·
(

1
2x +

√
4x ln m

n

)
and at least

n
2 ·
(

1
2x − 2x2

2xm −
√

4x ln m
n

)
. By Equation (12) this implies that

~λ−(~a) =
n2/3m1/3

2eδ
·
(

δ

m

)x

+
n

2eδ(m/n)1/3
·
(

1
2x

+ η

)(
2δ

n1/3m2/3

)x

,

where−
(

2x2

2xm +
√

4x ln m
n

)
≤ η ≤

√
4x ln m

n and thus|η| ≤
√

x
m ·

(
2x2

2x
√

m
+
√

4m ln m
n

)
. By the facts

thatn ≥ cm lnm for some sufficiently large constantc, and that 2x2

2x
√

m
≤ 1

2 for every2 ≤ x < m/2 and

m ≥ 16, we obtain that|η| ≤
√

x
m . So we have that

(~λ+(~a)− ~λ−(~a))2 ≤
(

n

2eδ(m/n)1/3
·
(

2δ

n1/3m2/3

)x

·
√

x

m

)2

≤ n2

4
·
(

4δ2

n2/3m4/3

)x

· x

m
,

and that

~λ−(~a) ≥ n2/3m1/3

2eδ
·
(

δ

m

)x

,

Then we get, forδ ≤ 1/2, that(
~λ+(~a)− ~λ−(~a)

)2

~λ−(~a)
≤ eδn4/3

2m1/3
·
(

4δ

n2/3m1/3

)x

· x

m

≤ n4/3

m1/3
·
(

4δ

n2/3m1/3

)x

· x

m

≤ n4/3

m4/3
·

(
4x1/xδ

n2/3m1/3

)x

≤ n4/3

m4/3
·
(

8δ

n2/3m1/3

)x

.
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Summing over all~a ∈
⋃m/2−1

x=2 Sx we get:∑
~a∈

Sm/2−1
x=2 Sx

(~λ−(~a)− ~λ+(~a))2

~λ−(~a)
≤

∞∑
x=2

n4/3

m4/3
·

(
8δm2/3

n2/3

)x

=
∞∑

x=0

64δ2 ·

(
8δm2/3

n2/3

)x

(16)

≤ 64δ2

1− 8δ

≤ 128δ2 (17)

where in Equation (16) we used the fact thatn > m, and Equation (17) holds forδ ≤ 1/16. The lemma
follows by applying Lemma 2.

Lemma 11 For n ≥ m, m ≥ 12 andδ ≤ 1/4,∑
x≥m/2

∑
~a∈Sx

∥∥∥poi(~λ+(~a))− poi(~λ−(~a))
∥∥∥

1
≤ 32δ3 .

Proof: We first observe that|Sx| ≤ mx/x for everyx ≥ 6. To see why this is true, observe that|Sx| equals
the number of possibilities of arrangingx balls inm bins, i.e.,

|Sx| =
(

m + x− 1
x

)
≤ (m + x)x

x!
≤ (2m)x

x!
=

2x

(x− 1)!
· m

x

x
≤ mx

x
,

where we have used the premise thatm ≥ 12 and thusx ≥ 6. By Equations (12) and (12) (and the fact that
|x− y| ≤ max{x, y} for every positive real numbersx,y),∑

x≥m/2

∑
~a∈Sx

∣∣∣~λ+(~a)− ~λ−(~a)
∣∣∣ ≤ ∑

x≥m/2

∑
~a∈Sx

n

2

m∏
j=1

(
2δ

n1/3m2/3

)aj

=
∑

x≥m/2

∑
~a∈Sx

n

2

(
2δ

n1/3m2/3

)Pm
j=1 aj

≤
∞∑

x=m/2

mx

x
· n
2

(
2δ

n1/3m2/3

)x

≤
∞∑

x=m/2

2mx

m
· n
2

(
2δ

n1/3m2/3

)x

=
n

m

∞∑
x=m/2

(
2δm1/3

n1/3

)x

= 8δ3
∞∑

x=m/2−3

(
2δm1/3

n1/3

)x

≤ 8δ3

1− 2δ
(18)

≤ 16δ3 (19)
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where in Equation (18) we used the fact thatn ≥ m and Equation (19) holds forδ ≤ 1/4. The lemma
follows by applying Equation (1).

We finally turn to the contribution of~a ∈ Ax such thatx ≥ 3.

Lemma 12 For n ≥ m andδ ≤ 1/4,∑
x≥3

∑
~a∈Ax

∥∥∥poi(~λ+(~a))− poi(~λ−(~a))
∥∥∥

1
≤ 16δ3 .

Proof: We first observe that|Ax| ≤ mx−1 for everyx. To see why this is true, observe that|Ax| equals
the number of possibilities of arrangingx− 1 balls, where one ball is a “special” (“double”) ball inm bins.
By Equations (12) and (12) (and the fact that|x− y| ≤ max{x, y} for every positive real numbersx,y),

∑
x≥3

∑
~a∈Ax

∣∣∣~λ+(~a)− ~λ−(~a)
∣∣∣ ≤ ∑

x≥3

∑
~a∈Ax

n

2

m∏
j=1

(
2δ

n1/3m2/3

)aj

=
∑
x≥3

∑
~a∈Ax

n

2

(
2δ

n1/3m2/3

)Pm
j=1 aj

≤
∞∑

x=3

mx−1 · n
2

(
2δ

n1/3m2/3

)x

=
n

2m

∞∑
x=3

(
2δm1/3

n1/3

)x

= 4δ3
∞∑

x=0

(
2δm1/3

n1/3

)x

≤ 4δ3

1− 2δ
(20)

≤ 8δ3 (21)

where in Equation (20) we used the fact thatn ≥ m and Equation (21) holds forδ ≤ 1/4. The lemma
follows by applying Equation (1).

We are now ready to finalize the proof of Theorem 1.
Proof of Theorem 1: Let D+ andD− be as defined in Equations (9) and (10), respectively, and recall
thatκ = δ · n2/3

m2/3 (whereδ will be set subsequently). By the definition of the distributions inD+ andD−,

the probability weight assigned to each element is at most1
n2/3m1/3 = δ

κ·m , as required by Theorem 2. By
Lemma 7,D− is (1/20)-far fromPeq. Therefore, it remains to establish that Equation (5) holds forD+ and
D−. Consider the following partition ofNm:{~a}~a∈S1 , A2,

m/2⋃
x=2

Sx, {~a}~a∈S
x≥m/2 Sx

, {~a}~a∈S
x≥3 Ax

 ,
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where{~a}~a∈T denotes the list of all singletons of elements inT . By Lemma 1 it follows that∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤

∑
~a∈S1

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1

+
∥∥∥poi(~λ+(A2)− poi(~λ−(A2))

∥∥∥
1

+
∥∥∥poi(~λ+(

m/2⋃
x=2

Sx))− poi(~λ−(
m/2⋃
x=2

Sx))
∥∥∥

1

+
∑

x≥m/2

∑
~a∈Sx

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1

+
∑
x≥3

∑
~a∈Ax

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1
.

For δ < 1/16 we get by Lemmas 8–12 that∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤ 35δ + 48δ3 ,

which is less than16
30 −

352δ
5 for δ = 1/200.

3.4 A lower bound for testing Independence

Corollary 4 Given a joint distributionQ over [m] × [n] impossible to test ifQ is independent or1/48-far
from independent usingo(n2/3m1/3) samples.

Proof: Follows directly from Lemma 15 and Theorem 1.

4 A Lower Bound of Ω(n1/2m1/2) for Testing Equivalence in the Uniform
Sampling Model

In this section we prove the following theorem:

Theorem 5 Testing the propertyPeq
m,n in the uniform sampling model for everyε ≤ 1/2 and m ≥ 64

requiresΩ(n1/2m1/2) samples.

We assume without loss of generality thatn is even (or else, we set the probability weight of the element
n to 0 in all distributions considered, and work withn − 1 that is even). DefineHn to be the set of all
distributions over[n] that have probability2n on exactly half of the elements and0 on the other half. Define
Hm

n to be the set of all possible lists ofm distributions fromHn. DefineUm
n to consist of a single list

of m distributions that are identical toUn, whereUn denotes the uniform distribution over[n]. Thus the
single list inUm

n belongs toPeq
m,n. On the other hand we show thatHm

n contains mostly lists of distributions
that areΩ(1)-far from Peq

m,n. However, we also show that any tester in the uniform sampling model that
takes less thann1/2m1/2/6 samples can’t distinguish betweenD that was uniformly drawn fromHm

n and
D = (Un, . . . , Un) ∈ Um

n . Details follow.

Lemma 13 For everym ≥ 3, with probability at least
(
1− 2√

m

)
over the choice ofD ∈ Hm

n we have that

D is (1/2)-far fromPeq
m,n.
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Proof: We need to prove that with probability at least
(
1− 2√

m

)
over the choice ofD ∈ Hm

n , for every

v = (v1, . . . , vn) ∈ Rn which corresponds to a distribution (i.e.,vi ≥ 0 for everyi ∈ [n] and
∑n

i=1 vi = 1),

1
m

m∑
j=1

‖Dj − v‖1 >
1
2

. (22)

We shall actually prove a slightly more general statement. Namely, that Equation (22) holds foreveryvector
v ∈ Rn. We define the function,medD : [n]→ [0, 1], such thatmedD(i) = µ 1

2
(D1(i), . . . , Dm(i)), where

µ 1
2
(x1, . . . , xm) denotes the median ofx1, . . . , xm (where if m is even, it is the value in positionm2 in

sorted non-decreasing order). The sum
∑m

i=1 |xi − c| is minimized whenc = µ 1
2
(x1, . . . , xm). Therefore,

for everyD and every vectorv ∈ Rn,

m∑
j=1

∥∥Dj −medD
∥∥

1
≤

m∑
j=1

‖Dj − v‖1 . (23)

Recall that for everyD = (D1, . . . , Dm) in Hm
n , and for each(i, j) ∈ [n] × [m], we have that either

Dj(i) = 2
n , or Dj(i) = 0. Thus,medD(i) = 0 whenDj(i) = 0 for at least half of thej’s in [m] and

medD(i) = 2
n otherwise. We next show that for every(i, j) ∈ [n]× [m], the probability overD ∈ Hm

n that
Dj(i) will have the same value asmedD(i) is just a little bit bigger than half. More precisely, we show that
for every(i, j) ∈ [n]× [m]:

PrD∈Hm
n

[
Dj(i) 6= medD(i)

]
≥ 1

2

(
1− 1√

m

)
. (24)

Fix (i, j) ∈ [n]× [m], and consider selectingD uniformly at random fromHm
n . Suppose we first determine

the valuesDj′(i) for j′ 6= j, and setDj(i) in the end. For each(i, j′) the probability thatDj′(i) = 0 is 1/2,
and the probability thatDj′(i) = 2

n is 1/2. If more thanm/2 of the outcomes are0, or more thanm/2 are
2
n , then the value ofmedD(i) is already determined. Conditioned on this we have that the probability that
Dj(i) 6= medD(i) is exactly1/2. On the other hand, if at mostm/2 are0 and at mostm/2 are 2

n (that is,
for oddm there are(m − 1)/2 that are0 and(m − 1)/2 that are2

n , and for evenm there arem/2 of one
kind and(m/2)− 1 of the other) then necessarilymedD(i) = Dj(i). We thus bound the probability of this
event. First consider the case thatm is odd (so thatm− 1 is even).

Pr
[
Bin

(
x,

1
2

)
=

x

2

]
=
(

x
x
2

)
· 1
2x

=
x!

x
2 !x

2 !
· 1
2x

(25)

By Stirling’s approximation,x! =
√

2πx
(

x
e

)x
eλx , where 1

12x+1 < λx < 1
12x , thus,

x!
x
2 !x2 !

· 1
2x

<

√
2πx(x

e )xe
1

12x

(
√

2πx/2(x/2
e )x/2e

1
12x/2+1 )2

· 1
2x

(26)

=
e

1
12x

− 2
6x+1√

πx/2
(27)

<
1√

πx/2
(28)

≤ 1√
m

, (29)
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where Inequalities (28) and (29) hold form ≥ 3. In casem is even, the probability (over the choice of
Dj′(i) for j′ 6= j) thatmedD(i) is determined byDj(i) is Pr

[
Bin

(
x, 1

2

)
= x+1

2

]
≤ Pr

[
Bin

(
x, 1

2

)
= x

2

]
.

Hence, Equation (24) holds for allm and we obtain that

ED∈Hm
n

 m∑
j=1

∥∥Dj −medD
∥∥

1

 =
m∑

i=1

n∑
j=1

ED∈Hm
n

[∣∣Dj(i)−medD(i)
∣∣] (30)

= m · n · PrD∈Hm
n

[
Dj(i) 6= medD(i)

]
· 2
n

(31)

≥ m · n · 1
2

(
1− 1√

m

)
· 2
n

(32)

= m−
√

m , (33)

while,

m∑
j=1

∥∥Dj −medD
∥∥

1
=

m∑
i=1

n∑
j=1

∣∣Dj(i)−medD(i)
∣∣ (34)

≤
n∑

j=1

m

2
2
n

(35)

= m . (36)

Assume for the sake of contradiction that

PrD∈Hm
n

 m∑
j=1

∥∥Dj −medD
∥∥

1
≤ m/2

 >
2√
m

, (37)

then by Equation (36) we have,

ED∈Hm
n

 m∑
j=1

∥∥Dj −medD
∥∥

1

 <
2√
m
· m

2
+
(

1− 2√
m

)
·m (38)

= m−
√

m , (39)

which contradicts Equation (33).
Recall that for an elementi ∈ [n] and a distributionDj , j ∈ [m], we letai,j denote the number of times

the pair(i, j) appears in the sample (when the sample is selected in the uniform sampling model). Thus
(ai,1, . . . , ai,m) is thesample histogramof the elementi. Since the sample points are selected independently,
a sample is simply the union of the histograms of the different elements, or equivalently, a matrixM in
Nn×m.

Lemma 14 LetU be the distribution of the histogram ofq samples taken from the uniform distribution over
[n]×[m], and letH be the distribution of the histogram ofq samples taken from a random list of distributions
inHm

n , then,

‖U −H‖1 ≤
4q2

mn
(40)
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Proof: For every matrixM ∈ Nn×m, let AM be the event of getting the histogramM ; For every
~x = (x1, . . . , xm) ∈ Nm, let B~x be the event of getting a histogramM such that for everyj ∈ [m],∑

i∈[n] M [i, j] = xj ; Let C be the event of getting a histogramM such that there exists(i, j) ∈ [n] × [m]
such thatM [i, j] ≥ 2; Let V = {B~x : PrH

(
B~x ∩ C

)
> 0} (whereC denotes the event complementary

to C). In order to bound the statistical distance betweenH andU , we use the fact that, for everyB~x ∈ V ,
given the occurrence ofB~x ∩ C, i.e.m given the histogram projected on the first coordinate and given that
there were no collisions,H andU are equivalent. More formally,

‖U −H‖1 =
∑

AM⊆C

|PrU (AM )− PrH (AM )|+
∑

AM⊆C

|PrU (AM )− PrH (AM )| (41)

≤ PrU (C) + PrH (C) +
∑

AM⊆C

|PrU (AM )− PrH (AM )| . (42)

We start by bounding the third term in Equation (42).∑
AM⊆C

|PrU (AM )− PrH (AM )| =
∑
B~x

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| (43)

=
∑

B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| (44)

+
∑

B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| . (45)

We next bound the expression in Equation (44).∑
B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )|

=
∑

B~x∈V

PrU (B~x)
∑

AM⊆B~x∩C

PrU
(
AM |B~x ∩ C

)
·
∣∣PrU

(
C|B~x

)
− PrH

(
C|B~x

)∣∣ (46)

=
∑

B~x∈V

PrU (B~x)
∣∣PrU

(
C|B~x

)
− PrH

(
C|B~x

)∣∣ (47)

=
∑

B~x∈V

PrU (B~x) |(1− PrU (C|B~x))− (1− PrH (C|B~x))| (48)

=
∑

B~x∈V

PrU (B~x) |PrU (C|B~x)− PrH (C|B~x)| (49)

≤ PrU (C) + PrH (C) , (50)
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where in Equation (46) we used the fact that for everyB~x ∈ V,M ∈ Nn×m, PrU (B~x) = PrH (B~x) and
PrU

(
AM |B~x ∩ C

)
= PrH

(
AM |B~x ∩ C

)
. Turning to the expression in Equation (45),∑

B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| =
∑

B~x∈V

∑
AM⊆B~x∩C

PrU (AM ) (51)

≤
∑

B~x∈V

PrU (B~x) (52)

=
∑

B~x∈V

PrH(B~x) (53)

=
∑

B~x∈V

PrH(B~x ∩ C) (54)

≤ PrH(C) . (55)

We thus obtain that‖U −H‖1 ≤ 2PrU (C) + 3PrH(C). If we takeq uniform independent samples from
[`], then by a union bound over theq samples, the probability to get a collision is at most1

` + 2
` + . . . + q−1

`

which is q2

2` . Thus,2PrU (C) + 3PrH (C) ≤ 2 · q2

2mn + 3 · q2

mn = 4q2

mn , and the lemma follows.

Proof of Theorem 5: Assume there is a tester,T , for the propertyPeq
m,n in the uniform sampling model,

which takesq ≤ m1/2n1/2/6 samples. By Lemma 13,

PrD∈Hm
n

[A acceptsD] ≤ 2√
m
· 1 +

(
1− 2√

m

)
· 1
3

(56)

=
1
3

(
1 +

4√
m

)
(57)

≤ 1
2

(58)

where the last inequality holds form ≥ 64. By Lemma 14, forq ≤ m1/2n1/2/6, 1
2 ‖U −H‖1 ≤

1
18 , while

by Equation (58),
(
PrD∈Um

n
[A acceptsD]− PrD∈Hm

n
[A acceptsD]

)
≥ 2

3 −
1
2 > 1

18 .

5 Algorithms for Testing Equivalence in the Sampling Model

In this section we state our two main theorems (Theorems 6 and 7) regarding testing Equivalence in the
sampling model. We prove Theorem 6 in this section. In Section 6 we prove a stronger version of Theorem 7
(Theorem 14) as well as a stronger version of Theorem 6 (Theorem 15). We have chosen to bring the proof
of Theorem 6, in addition to the proof of Theorem 15, because it is simpler than the latter.

Theorem 6 Let D be a list ofm distributions over[n]. It is possible to test whetherD ∈ Peq in the
unknown-weights sampling model using a sample of sizeÕ((n2/3m1/3 + m) · poly(1/ε)).

Theorem 7 Let D be a list ofm distributions over[n]. It is possible to test whetherD ∈ Peq in the
known-weights sampling model using a sample of sizeÕ((n1/2m1/2 + n) · poly(1/ε)).

Thus, when the weight vector~w is known, and in particular when all weights are equal (the uniform
sampling model) we get a combined upper bound ofÕ(min{n2/3m1/3 + m,n1/2m1/2 + n} · poly(1/ε)).
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Namely, as long asn ≥ m the complexity (in terms of the dependence onn andm) grows asÕ(n2/3m1/3),
and whenm ≥ n it grows asÕ(n1/2m1/2).

In order to prove Theorem 6 we shall consider a (related) property of joint distributions over[n]× [m].
Specifically, we are interested in determining whether a distributionQ over[n]×[m] is aproductdistribution
Q1×Q2, whereQ1 is a distribution over[n] andQ2 is a distribution over[m] (i.e.,Q(i, j) = Q1(i) ·Q2(j)
for every(i, j) ∈ [n] × [m]). In other words, if we denote byπ1Q the marginal distribution according to
Q of the first coordinate,i, and byπ2Q the marginal distribution of the second coordinate,j, then we ask
whetherπ1Q andπ2Q are independent. With a slight abuse of the terminology, we shall say in such a case
thatQ is independent.

As we observe in Lemma 15, the problem of testing independence of a joint distribution and the problem
of testing equivalence of a list of distributions in the (not necessarily uniform) sampling model, are closely
related. In the proof of the lemma we shall use the following proposition.

Proposition 8 ([BFF+01]) Letp,q be distributions over[n]×[m]. If ‖p−q‖1 ≤ ε/3 andq is independent,
then‖p− π1p× π2p‖1 ≤ ε.

Lemma 15 If there exists an algorithmT for testing whether a joint distributionQ over [m]× [n] is inde-
pendent using a sample of sizes(m,n, ε), then there exists an algorithmT ′ for testing whetherD ∈ Peq in
the unknown-weights sampling model using a sample of sizes(m, n, ε/3).

If T is provided with (and uses) an explicit description of the marginal distributionπ2Q, then the claim
holds forT ′ in the known-weights sampling model.

Proof: Given a sample{(i`, j`)}s`=1(m, n, ε/3) generated according toD in the sampling model with a
weight vector~w = (w1, . . . , wm), the algorithmT ′ simply runsT on the sample and returns the answer that
T gives. If ~w is known, thenT ′ providesT with ~w (as the marginal distribution ofj). If D1, . . . , Dm are
identical and equal to someD∗, then for each(i, j) ∈ [n]× [m] we have that the probability of getting(i, j)
in the sample iswj ·D∗(i). That is, the joint distribution of the first and second coordinates is independent
and thereforeT (and henceT ′) accepts with probability at least2/3.

On the other hand, suppose thatD is ε-far from Peq, that is,
∑m

j=1 wj · ‖Dj −D∗‖1 > ε for every

distribution,D∗ over [n]. In such a case, in particular we have that
∑m

j=1 wj ·
∥∥Dj −D

∥∥
1

> ε, whereD is

the distribution over[n] such thatD(i) =
∑m

j=1 wj ·Dj(i). By Proposition 8, the joint distributionQ over
i andj (determined by the listD and the sampling process) isδ/3-far from independent, soT (and hence
T ′) rejects with probability greater than2/3.

5.1 Proof of Theorem 6

By Lemma 15, in order to prove Theorem 6 it suffices to design an algorithm for testing independence of
a joint distribution (with the complexity stated in the theorem). Indeed, testing independence was studied
in [BFF+01]. However, there was a certain flaw in one of the claims on which their analysis built (Theorem
15 in [BFF+01], which is attributed to [BFR+00]), and hence we fix the flaw next (building on [BFR+10],
which is the full version of [BFR+00]).

Given a sampling access to a pair of distributionsp andq and bounds on their̀∞-norm bp andbq,
respectively, the algorithmBounded-̀ ∞-Closeness-Test(Algorithm 1 in Figure 1) tests the closeness ofp
andq. The sample complexity of the algorithm depends onbp andbq, as described in the next theorem.

For a multiset of sample pointsF over a domainR and an elementi ∈ R, let occ(i, F ) de-
note the number of times thati appears in the sampleF and define thecollision count of F to be

coll(F ) def=
∑

i∈R

(
occ(i,F )

2

)
.
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Theorem 9 Let p and q be two distributions over the same finite domainR. Suppose that‖p‖∞ ≤ bp
and ‖q‖∞ ≤ bq where bq ≥ bp. For every ε ≤ 1/4 , Algorithm Bounded-̀ ∞-Closeness-Test
(p,q, bp, bq, |R|, ε) is such that:

1. If ‖p− q‖1 ≤ ε/(2|R|1/2), then the test accepts with probability at least2/3.

2. If ‖p− q‖1 > ε, then the test rejects with probability at least2/3.

The algorithm takesO
(
|R| · b1/2

p /ε2 + |R|2 · bq · bp/ε4
)

sample points from each distribution.

Proof: Following the analysis of [BFR+00, Lemma 5], we have that:

Algorithm 1: Bounded-`∞-Closeness-Test
Input : p, q, bp, bq, |R|, ε

1 Take samplesF 1
p andF 2

p from p, each of sizet, wheret = O
(
|R| · b1/2

p /ε2 + |R|2 · bq · bp/ε4
)

;

2 Take samplesF 2
q andF 2

q from q, each of sizet;
/* rp is the the number of self collisions in F 1

p. */

3 Let rp = coll(F 1
p);

/* rq is the the number of self collisions in F 1
q . */

4 Let rq = coll(F 1
q);

/* sp,q is the number of collisions between F 2
p and F 2

q . */

5 Let sp,q =
∑

i∈R(occ(i, F 2
p) · occ(i, F 2

q));

6 Definer
def= 2t

t−1(rp + rq);

7 Defines
def= 2sp,q;

8 if rq > (7/4)
(

t
2

)
bp then output REJECT ;

9 Defineδ
def= ε/|R|1/2;

10 if r − s > t2δ2/2 then output REJECT ;
11 output ACCEPT ;

Figure 1: The algorithm for testing̀1 distance wheǹ∞ is bounded

Exp[r − s] = t2‖p− q‖22 , (59)

and we have the following bounds on the variances ofrp, rq ands (for some constantc):

Var[s] ≤ ct2
∑
`∈R

p(`)q(`) + ct3
∑
`∈R

(p(`)q(`)2 + p(`)2q(`)) , (60)

Var[rp] ≤ ct2
∑
`∈R

p(`)2 + ct3
∑
`∈R

p(`)3 , (61)

and
Var[rq] ≤ ct2

∑
`∈R

q(`)2 + ct3
∑
`∈R

q(`)3 . (62)
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Using the bounds we have on the`∞ norms ofp andq we get (possibly for a larger constantc):

Var[s] ≤ ct2‖p‖∞ + ct3(‖p‖∞‖q‖22 + ‖p‖2∞) ≤ ct2bp + ct3(bp‖q‖22 + b2
p) , (63)

Var[rp] ≤ ct2‖p‖22 + ct3‖p‖∞‖p‖22 ≤ ct2‖p‖∞ + ct3‖p‖2∞ ≤ ct2bp + ct3b2
p , (64)

and
Var[rq] ≤ ct2‖q‖22 + ct3‖q‖∞‖q‖22 ≤ ct2‖q‖22 + ct3bq‖q‖22 . (65)

By Equations (63) and (65), a tighter bound on‖q‖22 will imply a tighter bound on Var[s] and Var[rq].
To this end, the check in Step 8 in the algorithm was added to the original`2-Distance-Testof [BFR+00].
This check is beneficial in achieving a tighter bound on the sample complexity. First, prove that the tester
distinguishes with high constant probability between the case that‖q‖22 > 2bp and the case that‖q‖22 ≤
(3/2)bp by rejecting (with high probability) whenrq > (7/4)

(
t
2

)
bp. Notice that by the triangle inequality

‖p − q‖2 ≥ ‖q‖2 − ‖p‖2 . Thus, if ‖q‖22 > (3/2)bp and‖p‖22 ≤ bp then it follows that‖p − q‖2 ≥√
(3/2)b1/2

p − b
1/2
p . Therefore, by the fact thatbp ≥ 1/|R|, we obtain that‖p − q‖1 ≥ ‖p − q‖2 ≥(√

(3/2)− 1
)

/|R|1/2 which is greater thanε/(2|R|1/2) for ε ≤ 1/4. Consider first the case that‖q‖22 >

2bp, so that Exp[rq] > 2
(

t
2

)
bp. Then we can bound the probability that the tester accepts, that is, that

rq ≤ (7/4)
(

t
2

)
bp, by the probability thatrq < (7/8)Exp[rq]. In the case that‖q‖22 ≤ (3/2)bp, so that

Exp[rq] ≤ (3/2)
(

t
2

)
bp, we can bound the probability that the tester rejects, that is, thatrq > (7/4)

(
t
2

)
bp,

by the probability thatrq > (7/6)Exp[rq]. Then the probability to accept when‖q‖22 > 2bp and reject
when‖q‖22 ≤ bp is upper bounded byPr[|rq − Exp[rq]| > Exp[rq]/8]. Now, using the upper bound on the
variance ofrq that we have (the first bound in Equation (65)), the fact that for every distributionq overR,
‖q‖22 ≤ 1/|R| and Exp[rq] =

(
t
2

)
‖q‖22, we have that

Pr[|rq − Exp[rq]| > Exp[rq]/8] ≤ 64Var[rq]
Exp2[rq]

(66)

≤ c · (t2‖q‖22 + t3‖q‖∞‖q‖22)
t4‖q‖42

(67)

=
c

t2‖q‖22
+

c‖q‖∞
t‖q‖22

(68)

≤ c|R|
t2

+
c|R|‖q‖∞

t
, (69)

To make this a small constant, we chooset so that:

t = Ω
(
|R|1/2 + |R|bq

)
. (70)

Next, we prove that the tester distinguishes between the case that‖p − q‖2 > δ and‖p − q‖2 ≤ δ/2
by rejecting whenr − s > t2δ2/2. We have that Exp[r − s] = t2‖p − q‖22. Chebyshev gives us that
Pr[|A − Exp[A]| > ρ] ≤ Var[A]/ρ2, and so, for the case‖p − q‖2 > δ (i.e. Exp[r − s] > t2δ2) we have
that

Pr[r − s < t2δ2/2] ≤ Pr[|(r − s)− Exp[r − s]| < t2δ2/2] (71)

≤ 4Var[r − s]
t4δ4

, (72)
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and similarly, for the case‖p− q‖2 ≤ δ/2 (i.e. Exp[r − s] ≤ t2δ2/4) we have that

Pr[r − s ≥ t2δ2/2] ≤ Pr[|(r − s)− Exp[r − s]| < t2δ2/4] (73)

≤ 16Var[r − s]
t4δ4

. (74)

That is, we wantVar[r−s]
t4δ4 which is of the order ofVar[r−s]·|R|2

t4ε4
to be a small constant. If we use Var[r −

s] = 4t2

(t−1)2
(Var[rp] + Var[rq]) + Var[s], then we need to ensure that each ofVar[rp]·|R|2

t4ε4
, Var[rq]·|R|2

t4ε4
and

Var[s]·|R|2
t4ε4

is a small constant, which by Equations (63), (64), (65), and the premise that‖q‖22 ≤ 2bp, holds
when

t = Ω
(
|R| · b1/2

p /ε2 + |R|2 · bq · bp/ε4
)

, (75)

since bothbp, bq ≥ 1/|R|, this dominates the sample complexity.

As a corollary of Theorem 9 we obtain:

Theorem 10 Let Q be a distribution over[n] × [m] such thatQ satisfies:‖π1Q‖∞ ≤ b1, ‖π2Q‖∞ ≤ b2

andb1 ≤ b2. There is a test that takesO(nmb
1/2
1 b

1/2
2 /ε2 + n2m2b2

1b2/ε4) samples fromQ, such that ifQ is
independent, then the test accepts with probability at least2/3 and if Q is ε-far from independent, then the
test rejects with probability at least2/3.

Proof: By the premise of the theorem we have that‖Q‖∞ ≤ b1 and that‖π1Q× π2Q‖∞ ≤ b1·b2. Applying

Theorem 9 we can test ifQ is identical toπ1Q×π2Q using sample of sizeO(nmb
1/2
1 b

1/2
2 /ε2+n2m2b2

1b2/ε4)
from1 Q. If Q is independent, thenQ equalsπ1Q × π2Q and the tester accepts with probability at least
2/3. If Q is ε-far from independent, then in particularQ is ε-far fromπ1Q× π2Q and the tester rejects with
probability at least2/3.

Applying Theorem 10 withb1 = 1/n2/3m1/3, b2 = 1/m, and combining that in the sample analysis of the
procedureTestLightIndependence[BFF+01], the following theorem is obtained:

Theorem 11 ( [BFF+01]) There is an algorithm that given a distributionQ over[n]× [m] and anε > 0,

• If Q is independent then the test accepts with high probability.

• If Q is ε-far from independent then the test rejects with high probability.

The algorithm uses̃O((n2/3m1/3 + m)poly(ε−1)) samples.

Finally, Theorem 6 follows by combining Theorem 11 with Lemma 15.

6 Algorithms for Tolerant Testing of Equivalence in the Sampling Model

Given a list of distributionsD, a tolerant equivalence tester is guaranteed to accept, with high probability,
if the distributions inD are close (and not necessarily identical), and rejectD, with high probability, if
the distributions inD are far. In this section we prove Theorems 14 and 15. Theorem 14 states that
there is a tolerant equivalence tester takingÕ(n1/2m1/2 + n) samples in the known-weights sampling
model. Theorem 15 states that there is a tolerant equivalence tester takingÕ(n2/3m1/3 + m) samples
in the unknown-weights sampling model. A tolerant equivalence tester is also a non-tolerant equivalence
tester, so Theorems 14 and 15 are stronger versions of Theorems 7 and 6, respectively.

1We obtain a sample fromπ1Q×π2Q by simply taking two independent samples fromQ, (i1, j1) and(i2, j2) and considering
(i1, j2) as a sample fromπ1Q× π2Q.
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6.1 An Algorithm for Tolerant Testing of Identity in the Sampling Model

Consider the problem where given sample access to a distributionp and an explicit description of a dis-
tribution q, the algorithm should accept ,with high probability, ifp andq are identical, and should reject,
with high probability, ifp andq are far. This is called Identity Testing and is defined in [BFF+01]. If
the algorithm is guaranteed to acceptp andq that are close, and not necessarily identical, we refer to it as
a tolerant identity test. We will use the tolerant identity test as a subroutine in the algorithms for tolerant
testing of equivalence.

We next present and prove Theorem 12, which states that there is a tolerant identity tester takingÕ(
√

n)
samples. The theorem is a restatement of theorems in [Whi] and [BFF+01]. The specific tolerance of
Theorem 12 is somewhat complex and in order to state it we introduce the following new definitions.

Definition 2 For two parametersα, β ∈ (0, 1), we say that a distributionp is an (α, β)-multiplicative
approximationof a distributionq (over the same domainR) if the following holds.

• For everyi ∈ R such thatq(i) ≥ α we have thatq(i) · (1− β) ≤ p(i) ≤ q(i) · (1 + β).

• For everyi ∈ R such thatq(i) < α we have thatp(i) < α · (1 + β).

Definition 3 For α ∈ (0, 1), we say that a distributionp is anα-additive approximationof a distributionq
(over the same domainR) if for everyi ∈ R, |p(i)− q(i)| ≤ α .

Theorem 12 (Adapted from [Whi], [BFF+01]) Given sample access top, a black-box distribution over
a finite domainR, andq, an explicitly specified distribution overR, for every0 < ε ≤ 1/3, algorithm
Test-Tolerant-Identity (p,q, n, ε) is such that:

1. If ‖p− q‖1 > 13ε, the algorithm rejects with high constant probability.

2. If q is an (ε/n, ε/24)-multiplicative approximation of someq′ such that‖p− q′‖1 ≤
72ε2

`
√

n
, where

` = log(n/ε)/ log(1 + ε), the algorithm accepts with high constant probability (in particular, ifq is
an (ε/n, ε/24)-multiplicative approximation ofp or if ‖p− q‖1 ≤

72ε2

`
√

n
, the test accepts with high

constant probability) .

The algorithm takes̃O(
√

npoly(ε−1)) samples fromp.

In the proof of Theorem 12 we shall use the following definitions and lemmas.

Definition 4 ([BFF+01]) Given an explicit distributionp over R, Bucket(p, R, α, β) is the partition
{R0, . . . , R`} of R with ` = log(1/α)/ log(1 + β), R0 = {i : p(i) ≤ α}, such that for allj in [`],

Rj =
{
i : α(1 + β)j−1 < p(i) ≤ α(1 + β)j

}
(76)

Definition 5 ([BFF+01]) Given a distributionp over R, and a partitionR = {R1, . . . , R`} of R, the
coarseningp〈R〉 is the distribution over[`] with distributionp〈R〉(i) = p(Ri).

Theorem 13 ([BFF+01]) Let p be a black-box distribution over a finite domainR and letS be a sample
set fromp. coll(S)/

(|S|
2

)
approximates‖p‖22 to within a factor of(1 ± ε), with probability at least1 − δ,

provided that|S| ≥ c
√
|R|ε−2 log(1/δ) for some sufficiently large constantc.
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Lemma 16 ([BFF+01]) Let p,q be distributions overR and letR′ ⊆ R, then‖p|R′ − q|R′‖1 ≤ 2‖p −
q‖1/p(R′).

Lemma 17 ([BFF+01]) For any distributionp overR, ‖p‖22 − ‖UR‖22 = ‖p− UR‖22.

Let p be a distribution over some finite domainR, and letR′ be a subset ofR such thatp(R′) > 0
wherep(R′) =

∑
i∈R′ p(i). Denote byp|R′ the restriction ofp to R′, i.e.,p|R′ is a distribution overR′

such that for everyi ∈ R′, p|R′(i) = p(i)
p(R′) .

Lemma 18 (Based on [BFF+01]) Let p,q be distributions overR and letR′ ⊆ R, then
∑

i∈R′ |p(i) −
q(i)| ≤ |p(R′)− q(R′)|+ q(R′)‖p|R′ − q|R′‖1 .

Proof: ∑
i∈R′

|p(i)− q(i)| ≤
∑
i∈R′

∣∣∣∣p(i)(p(R′)− q(R′))
p(R′)

∣∣∣∣+ ∑
i∈R′

∣∣∣∣p(i)q(R′)
p(R′)

− q(i)
∣∣∣∣ (77)

= |p(R′)− q(R′)|+
∑
i∈R′

∣∣∣∣p(i)q(R′)
p(R′)

− q(i)
∣∣∣∣ (78)

= |p(R′)− q(R′)|+
∑
i∈R′

q(R′) ·
∣∣∣∣ p(i)
p(R′)

− q(i)
q(R′)

∣∣∣∣ (79)

= |p(R′)− q(R′)|+ q(R′) ·
∥∥p|R′ − q|R′

∥∥
1

, (80)

and the lemma is established.

Lemma 19 Letp,q be distributions over a finite domainR and letR′ ⊆ R be a subset ofR such that for
everyi ∈ R′ it holds that

p(i)(1− ε) ≤ q(i) ≤ p(i)(1 + ε) , . (81)

Then for everyi ∈ R′,

p|R′(i)
(1− ε)
(1 + ε)

≤ q|R′(i) ≤ p|R′(i)
(1 + ε)
(1− ε)

(82)

Proof: Equation (81) implies thatp(R′)(1−ε) ≤ q(R′) ≤ p(R′)(1+ε) and therefore 1
1+ε ≤

p(R′)
q(R′) ≤

1
1−ε .

Thus, we obtain thatp(i)
p(R′) ·

(1−ε)
(1+ε) ≤

q(i)
q(R′) ≤

p(i)
p(R′) ·

(1+ε)
(1−ε) , and the lemma follows.

Proof of Theorem 12: The algorithmTest-Tolerant-Identity is given in Figure 2. LetE1 be the event that
for everyi in [`] we have thatmi approximates‖p|Ri

‖22 to within a factor of(1±ε2). By Theorem 13, ifSi is
such that|Si| ≥ c

√
nε−4 log ` thenE1 occurs with probability at least8/9. LetE2 be the event that for every

i in [`] we have that|(|Si|/|S|)− p(Ri)| ≤ ε/(2`). By Hoeffding’s inequalityE2 occurs with probability
at least8/9 for |S| = Ω̃(`2ε−2). Let E3 be the event that̃p〈R〉 andq̃〈R〉 areε/(2`)-additive approximations
of p〈R〉 andq〈R〉, respectively. By takingΘ(ε−2`2 log `) samples,E3 occurs with probability at least8/9.

Let p andq be as described in Case 1, i.e.‖p − q‖1 > 13ε. Suppose the algorithm acceptsp and
q. Conditioned onE1 ∩ E3, this implies that for each partitionRi for which Steps 8 - 10 were preformed,

which are those for whichq(Ri) ≥ ε/`, we have‖p|Ri
‖22 ≤

(1+ε2)2

|Ri| ·
1

1−ε2
, which is at most1+4ε2

|Ri| for
0 < ε ≤ 1/3. Thus, by Lemma 17 it follows that

‖p|Ri
− U|Ri

‖22 = ‖p|Ri
‖22 − ‖U|Ri

‖22 ≤
4ε2

|Ri|
. (83)

30



Algorithm 2: Test-Tolerant-Identity
Input : Sampling access top, and explicit description ofq, and parametersn, ε

1 R def= {R0, · · · , R`} = Bucket (q, n, ε/n, ε/24) ;
2 Let S be a set of̃Θ(

√
nε−5 log n) samples fromp ;

3 Let H be the set of allx such thatq(x) > ε(1 + ε)/n;
4 foreachRi ⊆ H do
5 Let Si = S ∩Ri ;
6 if q(Ri) ≥ ε/` then
7 Let c be the constant from Theorem 13 ;
8 if |Si| < c

√
nε−4 log ` then output REJECT ;

9 Let mi = coll(Si)/
(|Si|

2

)
;

10 if mi > (1+ε2)2

|Ri| then output REJECT ;

11 TakeΘ(ε−2` log `) samples and obtain aε/(4`)-additive approximations̃p〈R〉 andq̃〈R〉 of p〈R〉
andq〈R〉, respectively;

12 if ‖p̃〈R〉 − q̃〈R〉‖1 > 3ε/2 then output REJECT ;
13 output ACCEPT ;

Figure 2: The algorithm for tolerant identity testing

From the bucketing definition we have that for everyi ∈ [`],

‖q|Ri
− U|Ri

‖22 ≤
ε2

|Ri|
. (84)

By the triangle inequality we obtain from Equations (83) and (84) that‖p|Ri
− q|Ri

‖22 ≤ 9ε2

|Ri| and thus
‖p|Ri

− q|Ri
‖1 ≤ 3ε. We also have that the sum ofq(Ri) over all Ri for which Steps 8 - 10 were not

preformed is at most̀·(ε/`)+n·(ε(1+ε)2/n) < 4ε. For thoseRi we use the trivial bound‖p|Ri
−q|Ri

‖1 ≤
2. Also, ‖p〈R〉 − q〈R〉‖1 ≤ 2ε by Step 12. So by Lemma 18 we get that‖p − q‖1 ≤ 13ε in contradiction
to our assumption. Therefore, the test acceptsp andq with probability at most1/3 (the bound on the
probability ofĒ1 ∪ Ē2 ∪ Ē3).

We next turn to proving the second item in the theorem. Supposeq is an(ε/n, (ε/24))-multiplicative
approximation of someq′ such thatp is 72ε2

`
√

n
-close toq′. Conditioned onE2, everyRi that enters Step 8

also passes this step, since otherwise we get, in contradiction to our assumption, thatq(Ri) ≥ ε/` while
p(Ri) ≤ 2ε/(3`). From the bucketing definition we have that for everyi ∈ [`] and for everyx ∈ Ri,

1
(1 + (ε/24))

· q(Ri)
|Ri|

≤ q(x) ≤ (1 + (ε/24)) · q(Ri)
|Ri|

. (85)

Sinceq is an(ε/n, ε/24)-multiplicative approximation ofq′, we get by Lemma 19 that for for everyRi ⊆ H
and everyx ∈ H,

q′(x)
q′(Ri)

· (1− (ε/24))
(1 + (ε/24))

≤ q(x)
q(Ri)

≤ q′(x)
q′(Ri)

· (1 + (ε/24))
(1− (ε/24))

(86)
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Combining Equations (85) and (86) we get that

(1− (ε/24))
(1 + (ε/24))2

· q
′(Ri)
|Ri|

≤ q′(x) ≤ (1 + (ε/24))2

(1− (ε/24))
· q

′(Ri)
|Ri|

, (87)

and thus for0 < ε ≤ 1/2,
(1− (ε/2))
|Ri|

≤ q′(x)
q′(Ri)

≤ (1 + (ε/2))
|Ri|

. (88)

By Equation (88) we obtain that for everyRi ⊆ H

‖q′|Ri
− U|Ri

‖2 ≤ ε/(2
√
|Ri|) . (89)

For all subsetsRi ⊆ H with q(Ri) ≥ ε/` we have thatq′(Ri) ≥ ε/((1 + ε)`), combined with the fact that
‖p− q′‖1 ≤ 72ε2

`
√

n
we get by Lemma 16 (for sufficiently largen) that

‖p|Ri
− q′|Ri

‖1 ≤ ε/(2
√

n) . (90)

This implies that

‖p|Ri
− q′|Ri

‖2 ≤ ‖p|Ri
− q′|Ri

‖1 ≤ ε/(2
√

n) < ε/(2
√
|Ri|) . (91)

By the triangle inequality we get that

‖p|Ri
− U|Ri

‖2 ≤ ‖p|Ri
− q′|Ri

‖2 + ‖q′|Ri
− U|Ri

‖2 ≤ ε/
√
|Ri| . (92)

Therefore, by Lemma 17 it follows that

‖p|Ri
‖22 = ‖p|Ri

− U|Ri
‖22 + ‖U|Ri

‖22 ≤ (1 + ε2)/|Ri| . (93)

Therefore, conditioned onE1 ∩ E2 all such subsets will pass Step 10. Sinceq is ε/2-close toq′, by the
triangle inequalityp is ε-close toq and thus conditioned onE3 the algorithm will pass Step (12) as well.
Thus the algorithm accepts with probability at least2/3.

Finally, the sample complexity is̃O(
√

nε−5) from Step (2), which dominates the sample complexity of
Step (11).

6.2 An Algorithm for Tolerant Testing of Equivalence in the Known-Weights Sampling
Model

In this section we prove Theorem 14. We note that in the proof of the theorem we essentially describe a
tolerant tester for the property of independence of two random variables.

Theorem 14 LetD be a list of[m] distributions over[n] and let ~w be a weight vector over[m]. Denote by
QD, ~w the joint distribution over[n] × [m] such thatQD, ~w(i, j) = wj ·Dj(i). There is a test that works in
the Known-Weights sampling model, which takesÕ((n1/2m1/2 +n)poly(1/ε)) samples fromD, and whose
output satisfies the following:

• If D is ε2

24`
√

n
-close to being inPeq, where` = log(n/ε)/ log(1 + ε), or if QD, ~w is an (ε/n, ε/120)-

multiplicative approximation ofπ1Q
D, ~w × π2Q

D, ~w, then the test accepts with probability at least
2/3
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• If D is 19ε-far from being inPeq, then the test rejects with probability at least2/3.

In the proof of Theorem 14 we shall use the following lemma:

Lemma 20 LetQ be a joint distribution over[n]× [m]. LetQ̃1 be a(α1, β1)-multiplicative approximation
of π1Q. LetQ̃2 be a(α2, β2)-multiplicative approximation ofπ2Q. Denote byA1 the set of alli ∈ [n] such
that Q̃1(i) ≥ α1(1 + β1). Denote byA2 the set of allj ∈ [m] such thatQ̃2(i) ≥ α2(1 + β2). For every

B1 ⊆ A1 and everyB2 ⊆ A2,
(
Q̃1 × Q̃2

)
|B1×B2

is a
(
0, 2(β1+β2)

(1−β1)·(1−β2)

)
-multiplicative approximation of

(π1Q× π2Q)|B1×B2
.

Proof: For every(i, j) ∈ B1 ×B2 we have that

π1Q(i) · π2Q(j) · (1− β1) · (1− β2) ≤ Q̃1(i) · Q̃2(j) ≤ π1Q(i) · π2Q(j) · (1 + β1) · (1 + β2) . (94)

From the facts that(1+β1)·(1+β2)
(1−β1)·(1−β2) = 1 + 2(β1+β2)

(1−β1)·(1−β2) and (1−β1)·(1−β2)
(1+β1)·(1+β2) > 1 − 2(β1+β2)

(1−β1)·(1−β2) , and from
Lemma 19 the lemma follows.

Algorithm 3: Tolerant Testing of Equivalence in the Known-Weights Sampling Model

Input : Parameter0 < ε ≤ 1/3, sampling access to a list of distributions,D, over[n], in the
Known-Weights sampling model

1 Let Q denoteQD, ~w;

2 TakeΘ(ε−3n log n) samples and obtain a (ε/n, ε/120)-multiplicative approximation,̃Q1, of
π1Q ;

3 Let H be the set of alli ∈ [n] such thatQ̃1(i) > ε(1 + ε)/n and letL be[n] \H;

4 Call Test-Tolerant-Identity with parameters:QH×[m],
(
Q̃1 × ~w

)
|H×[m]

, |H| ·m, ε, 1/9 ;

5 if Test-Tolerant-Identity rejectsthen output REJECT ;

6 I def= {H × [m], L× [m]};
7 TakeΘ(ε−2) samples and obtain a(ε/2)-additive approximations̃Q1×2

〈I〉 andQ̃〈I〉 of

(π1Q× π2Q)〈I〉 andQ〈I〉, respectively;

8 if
∥∥∥Q̃1×2

〈I〉 − Q̃〈I〉

∥∥∥
1

> 2ε then output REJECT ;

9 output ACCEPT;

Figure 3: The algorithm for tolerant testing of equivalence in the known-weights sampling model

Proof of Theorem 14: The test referred to in the statement of the theorem is Algorithm 3 (see Figure 3). Let
E1 be the event that̃Q1 is an (ε/n, ε/120)-multiplicative approximation ofπ1Q, as defined in Definition 2.
By applying Chernoff’s inequality and the union bound,E1 occurs with probability at least8/9 (for a
sufficiently large constant in theΘ(·) notation for the sample size). By Lemma 20, conditioned onE1,

we have that
(
Q̃1 × ~w

)
|H×[m]

is a (0, ε/24)-multiplicative approximation of(π1Q× π2Q)|H×[m]. Thus,∥∥∥∥(Q̃1 × ~w
)
|H×[m]

− (π1Q× ~w)|H×[m]

∥∥∥∥
1

≤ ε . Let E2 be the event that the application ofTest-Tolerant-

Identity returned a correct answer, as defined by Theorem 12. We run the amplified version ofTest-
Tolerant-Identity , therefore the additional parameter, which is the confidence parameter, is set to1/9,
i.e. E2 occurs with probability at least8/9.
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Let D be19ε-far from being inPeq and assume the test accepts. Conditioned onE2 this implies that∥∥∥∥Q|H×[m] −
(
Q̃1 × ~w

)
|H×[m]

∥∥∥∥
1

≤ 13ε . By the triangle inequality, we obtain that conditioned onE1∩E2,∥∥∥Q|H×[m] − (π1Q× ~w)|H×[m]

∥∥∥
1
≤ ε + 13ε < 14ε . (95)

Conditioned onE1 we have thatQ(L× [m]) ≤ ε, and therefore

Q(L× [m]) ·
∥∥∥QL×[m] − (π1Q× ~w)L×[m]

∥∥∥
1
≤ 2ε . (96)

Let E3 be the event that̃Q1×2
〈I〉 and Q̃〈I〉 are ε/2-additive approximations of(π1Q × π2Q)〈I〉 andQ〈I〉,

respectively. By takingΘ(ε−2) samples,E3 occurs with probability at least8/9. Conditioned onE3, we
have that ∥∥(π1Q× π2Q)〈I〉 −Q〈I〉

∥∥
1
≤ 3ε . (97)

Combining Equations (95) - (97), by Lemma 18, we have that

‖(π1Q× π2Q)−Q‖1 ≤ 3ε + 14ε + 2ε = 19ε . (98)

HenceD is 19ε-close to being inPeq, in contradiction to our assumption. It follows that the test accepts
with probability at most1/3.

On the other hand, consider the case that eitherD is ε2

24`
√

n
-close to being inPeq, or thatπ1Q

D, ~w ×
π2Q

D, ~w is an (ε/n, ε/120)-multiplicative approximation ofQD, ~w, and assume that the test rejects. In case

the test rejects in Step (5) then conditioned onE2, we get by Theorem 12 that
(
Q̃1 × ~w

)
|H×[m]

is not

an (ε/n, ε/24)-multiplicative approximation of anyq′ such that
∥∥Q|H×[m] − q′

∥∥
1
≤ 72ε2

`
√

n
. Conditioned

on E1, we have that
(
Q̃1 × ~w

)
H×[m]

is an(ε/n, ε/24)-multiplicative approximation of(π1Q× ~w)H×[m].

Thus, conditioned onE1 ∩ E2, we obtain that‖Q− π1Q× ~w‖1 > 72ε2

`
√

n
. By Proposition 8 this implies that

D is 24ε2

`
√

n
-far from being inPeq. By settingq′ = Q|H×[m] we also have that

(
Q̃1 × ~w

)
|H×[m]

is not an

(ε/n, ε/24)-multiplicative approximation ofQ|H×[m]. For the sake of simplicity, denote
(
Q̃1 × ~w

)
by A

and(π1Q× ~w) by B. Hence, there exists(i, j) ∈ H × [m] that satisfies either

A|H×[m](i, j) > (1 + (ε/24))Q|H×[m](i, j) (99)

or
A|H×[m](i, j) < (1− (ε/24))Q|H×[m](i, j) . (100)

By Lemma 20, we get thatA|H×[m] is a(0, ε/30)-multiplicative approximation ofB|H×[m]. Therefore, by
Equations (99) and (99), either it holds that

Q|H×[m](i, j) <
1 + (ε/30)
1 + (ε/24)

B|H×[m](i, j) (101)

or that

Q|H×[m](i, j) >
1− (ε/30)
1− (ε/24)

B|H×[m](i, j) . (102)
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SinceQ(H × [m]) = B(H × [m]), we obtain from Equations (101) and (102) that eitherQ(i, j) <
1+(ε/30)
1+(ε/24)B(i, j) or Q(i, j) > 1−(ε/30)

1−(ε/24)B(i, j), which by a simple calculation implies thatQ is not a
(ε/n, ε/120)-multiplicative approximation ofπ1Q× ~w.

Alternatively, in case the test rejects in Step 8 then by the triangle inequality we get that conditioned on
E3, Q is ε-far from π1Q × π2Q. In both cases we get a contradiction to our assumption and therefore the
algorithm acceptsD with probability at most1/3 (which is the upper bound on the probability ofĒ1∪ Ē2∪
Ē3).

The sample complexity of Step 5 is bounded byÕ(n1/2m1/2poly(ε−1)) so the overall sample complex-
ity is Õ((n1/2m1/2 + n)poly(ε−1)).

6.3 An Algorithm for Tolerant Testing of Equivalence in the Unknown-Weights Sampling
Model

In this section we prove the following theorem:

Theorem 15 LetD be a list ofm distributions over[n]. It is possible to distinguish between the case that
D is 36ε3

`
√

n
-close to being inPeq, where` = log(n/ε)/ log(1 + ε) and the case thatD is 25ε-far from being

in Peq in the unknown-weights sampling model using a sample of sizeÕ((n2/3m1/3 + m) · poly(1/ε)).

Proof of Theorem 15: The algorithm referred to in the statement of the theorem is Algorithm 4
(given in Figure 4). We note that we run the amplified version ofTest-Tolerant-Identity andBounded-
`∞-Closeness-Testand that the additional parameter in the application ofTest-Tolerant-Identity and
Bounded-̀ ∞-Closeness-Testis the confidence parameter. LetE1 to be the event that̃Q1 is an (ε/n2/3m1/3,
ε/250)-multiplicative approximation ofπ1Q. For a sample of sizeΘ(ε−3n2/3m1/3 log n), we get, by Cher-
noff’s inequality, thatE1 occurs with probability at least20/21. Let E2 be the event that̃Q2 is an (ε/m,
ε/250)-multiplicative approximation ofπ2Q. By taking a sample of sizeΘ(ε−3m log m), E2 occurs with
probability at least20/21. By Lemma 20, for every0 < ε ≤ 1/3, we get, condition onE1 ∩ E2, that(
Q̃1 × Q̃2

)
|H1×H2

is a(0, ε/24)-multiplicative approximation of(π1Q× π2Q)|H1×H2
. Thus, conditioned

onE1 ∩ E2, we have that∥∥∥∥(Q̃1 × Q̃2
)
|H1×H2

− (π1Q× π2Q)|H1×H2

∥∥∥∥
1

≤ ε . (103)

Let E3 be the event that the application ofTest-Tolerant-Identity returned a correct answer, as defined by
Theorem 12.E3 occurs with probability at least20/21.

Let D be 25ε-far from being inPeq and assume the algorithm accepts. Then eitherTest-Tolerant-
Identity returns accept orγ < 3ε/2. Consider the case thatTest-Tolerant-Identity returns accept. Con-

ditioned onE3, by Theorem 12, we have that

∥∥∥∥(Q̃1 × Q̃2
)
|H1×H2

−Q|H1×H2

∥∥∥∥
1

≤ 13ε. By the triangle

inequality and Equation (103) we obtain that∥∥∥(π1Q× π2Q)|H1×H2
−Q|H1×H2

∥∥∥
1
≤ 13ε + ε = 14ε . (104)

Consider the caseγ < 3ε/2. LetE4 be the event that|γ −Q(H1 ×H2)| ≤ ε/2. By takingΘ(ε−2) samples,
E4 occurs with probability at least20/21. Then we have that

Q(H1 ×H2) ≤ 2ε . (105)
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Algorithm 4: Tolerant Testing of Equivalence in the Unknown-Weights Sampling Model

Input : Parameter0 < ε ≤ 1/8, sampling access to a list of distributions,D, over[n], in the
Unknown-Weights sampling model

1 Let Q denoteQD, ~w;
2 TakeΘ(ε−3n2/3m1/3 log n) samples and obtain an (ε/(n2/3m1/3), ε/250)-multiplicative

approximationQ̃1 of π1Q ;

3 Let H1 be the set of alli ∈ [n] such thatQ̃1(i) > ε(1 + ε)/(n2/3m1/3) and letL1 = [n] \H1;

4 TakeΘ(ε−3m log m) samples and obtain an (ε/m, ε/250)-multiplicative approximatioñQ2 of π2Q ;

5 R def= {R0, · · · , R`} = Bucket (Q̃2,m, (1 + ε)ε/m, ε) ;
6 Let L2 = R0 and letH2 = [m] \ L2;
7 TakeΘ(ε−2) samples and letγ be the fraction of samples inH1 ×H2;
8 if γ ≥ 3ε/2 then
9 Call Test-Tolerant-Identity with parameters:Q|H1×H2

, (Q̃1 × Q̃2)|H1×H2
, |H1| · |H2| ,ε, 1/21 ;

10 if Test-Tolerant-Identity rejects then output REJECT ;

11 Let S be a set of̃Θ(`2ε−2) samples;
12 foreachRi do
13 Let Si = S ∩ (L1 ×Ri);
14 if |Si|/|S| ≥ ε/` then
15 Call Bounded-̀ ∞-Closeness-Testwith parameters:(π1Q× π2Q)|L1×Ri

, Q|L1×Ri
,

4`/(εn2/3m1/3|Ri|), 2`/(εn2/3m1/3), |L1| · |Ri|, ε, 1/(21`);
16 if Bounded-̀ ∞-Closeness-Testrejects then output REJECT ;

17 I def= {H1 ×H2,H1 × L2, L1 ×R0, · · · , L1 ×R`};
18 TakeΘ(ε−2`2 log `) samples and obtain anε/(2`)-additive approximations̃Q1×2

〈I〉 andQ̃〈I〉 of

(π1Q× π2Q)〈I〉 andQ〈I〉, respectively;

19 if
∥∥∥Q̃1×2

〈I〉 − Q̃〈I〉

∥∥∥
1

> 2ε then output REJECT ;

20 output ACCEPT;

Figure 4: The algorithm for tolerant testing of equivalence in the unknown-weights sampling model

Let E5 be the event that all applications ofBounded-̀ ∞-Closeness-Testreturned a correct answer, as
defined by Theorem 9. By the union bound,E5 occurs with probability at least20/21. Conditioned onE5,
we obtain that everyRi that passes Step 16 satisfies the following∥∥(π1Q× π2Q)|L1×Ri

−Q|L1×Ri

∥∥
1
≤ ε . (106)

Let E6 to be the event that for everyi in [`] we have that|(|Si|/|S|)−Q(Ri × L1)| ≤ ε/(2`). By Hoeffd-
ing’s inequalityE6 occurs with probability at least20/21 for |S| = Ω̃(`2ε−2). From the fact that for every
Ri that doesn’t enter Step 16 we have that|Si|/|S| < ε/`, we obtain, conditioned onE6, that

Q(L×Ri) ≤ 3ε/(2`) . (107)

Let E7 be the event that̃Q1×2
〈I〉 andQ̃〈I〉 areε/(2`)-additive approximations of(π1Q × π2Q)〈I〉 andQ〈I〉,

respectively. By takingΘ(ε−2`2 log `) samples,E7 occurs with probability at least20/21. Since we assume
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that the algorithm acceptsD then, in particular,D passes Step 19. Therefore, conditioned onE7, we have
that ∥∥(π1Q× π2Q)〈I〉 −Q〈I〉

∥∥
1
≤ 3ε . (108)

Conditioned onE1 ∩ E2, for 0 < ε ≤ 1/5 we have that

Q(H1 × L2) ≤ 3ε/2 . (109)

For everyI ∈ I we have the following trivial bound∥∥(π1Q× π2Q)|I −Q|I
∥∥

1
≤ 2 . (110)

Combining Equations (104) - (110), by Lemma 18, we have that

‖(π1Q× π2Q)−Q‖1 ≤ 3ε + 14ε + 2ε + ` · 3ε/(2`) · 2 + 3ε/2 · 2 = 25ε . (111)

Therefore,D is 25ε-close to being inPeq in contradiction to our assumption. It follows that the algorithm
acceptsD with probability at most1/3.

On the other hand, letD be 36ε3

`
√

n
-close to being inPeq and assume the algorithm rejects. Conditioned on

E1∩E2, we have that(Q̃1×Q̃2)|H1×H2
is a(0, ε/24)-multiplicative approximation of(π1Q×π2Q)|H1×H2

.
Therefore, conditioned onE1 ∩ E2 ∩ E3 ∩ E4, if we reject in Step 10, then we obtain by Theorem 12 that∥∥Q|H1×H2

−
(
π1Q× π2Q

)
|H1×H2

∥∥
1

> 72 · ε2

`
√

n
. (112)

It follows, by Lemma 16, that‖π1Q× π2Q−Q‖1 > π1Q(H1)·π2Q(H2)
2 · 72 · ε2

`
√

n
≥ 36ε3

`
√

n
. If we reject in

Step 16, then conditioned onE5∩E6, there isRi such thatQ(L1×Ri) ≥ ε/` in which the following holds,∥∥∥(π1Q× π2Q)|L1×Ri
−Q|L1×Ri

∥∥∥
1

> ε/(2
√

n) . (113)

Thus, by Lemma 16,‖π1Q× π2Q−Q‖1 > Q(L1×Ri)
2 · ε/(2

√
n) ≥ ε2/(4`

√
n) . If we reject in Step 19,

then conditioned onE7 it follows that ‖π1Q× π2Q−Q‖1 > ε . Thus we get a contradiction to our
assumption (that the algorithm rejects), which implies that the algorithm acceptsD with probability at
least2/3. To achieve(1 − δ) confidence, the amplified algorithm takes the majority result ofΘ(log 1/δ)
applications of the original algorithm. In addition, both algorithms are applied on restricted domains (H1 ×
H2 in Test-Tolerant-Identity and L1 × Ri in Bounded-̀ ∞-Closeness-Test). This affects the sample
complexity only by a factor ofpoly(1/ε, log n). For everyRi that enters Step 15, the number of required
samples from the domainL1 ×Ri in that step is bounded bỹO((n2/3 · |Ri|1/2/m1/6 + n2/3 · |Ri|/m2/3) ·
poly(1/ε)). Thus, sincè is logarithmic inn and1/ε, the number of samples required by all the applications
of Bounded-̀ ∞-Closeness-Testis bounded bỹO(n2/3m2/3 ·poly(1/ε)). Therefore, the sample complexity
is Õ((n2/3m1/3 + m) · poly(1/ε)) as required.

7 Testing(k, β)-Clusterability in the Query Model

In this section we consider an extension of the propertyPeq
m,n studied in the previous sections. Namely,

rather than asking whether all distributions in a listD are the same, we ask whether there exists a partition
of D into at mostk lists, such that within each list all distributions are the the same (or close). That is, we
are interested in the following aclusteringproblem:
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Definition 6 LetD be a list ofm distributions over[n]. We say thatD is (k, β)-clusterableif there exists a
partition ofD to k lists ,{Di}ki=1 such that for everyi ∈ [k] and everyD,D′ ∈ Di, ‖D −D′‖1 ≤ β.

In particular, fork = 1 andβ = 0, we get the propertyPeq
m,n. We study testing(k, β)-clusterability (for

k ≥ 1) in the query model. The question fork > 1 in the (uniform) sampling model remains open.
We start by noting that if we allow a linear (or slightly higher) dependence onn, then it is possible (by

adapting the algorithm we give below), to obtain a tester that works for anyε andβ. The complexity of this
tester isÕ(n · k · poly(1/ε))). However, if we want a dependence onn that grows slower thann1−o(1), then
it is not possible to get such a result even form = 2 (andk = 1). This is true since distinguishing between
the case that a pair of distributions areβ-close and the case that they areβ′-far for constantβ andβ′ requires
n1−o(1) samples [Val08b]. We also note that forβ = 0 the dependence onn must be at leastΩ(n2/3) (for
m = 2 andk = 1) [Val08b]. Our algorithm works forβ = 0 and slightly more generally, forβ = O(ε/

√
n),

has no dependence onm, has almost linear dependence onk, and its dependence onn grows likeÕ(n2/3).

Theorem 16 Algorithm 5 (see Figure 5) is a testing algorithm for(k, β)-clusterability of a list of distribu-
tions in the query model, which works for everyε > 8βn1/2, and performsÕ(n2/3 ·k ·poly(1/ε)) sampling
queries.

We build on the following theorem.

Theorem 17 ([BFR+10]) Given parameterδ, and sampling access to distributionsp,q over[n], there is a
test,`1-Distance-Test(p, q, ε, δ), which takesO(ε−4n2/3 log n log δ−1) samples from each distribution and
for which the following holds.

• If ‖p− q‖1 ≤ ε/(4n1/2), then the test accepts with probability at least1− δ.

• If ‖p− q‖1 > ε, then the test rejects with probability at least1− δ.

Our algorithm is an adaptation of the diameter-clustering tester of [ADPR03], which applies to clustering
vectors inRd, and is given in Figure 5. While often clustering algorithms rely on a method of evaluating
distances between the objects that they cluster, the algorithm from [BFR+00] only distinguishes pairs of
distributions that are very close from those that areε-far (in `1 distance). Still, this is enough information in
conjunction with the algorithm of [ADPR03] to construct a good distribution(k, b)-clusterability tester. In
addition, by applying a small change, the algorithm can find an approximately good clustering, as described
in the proof of Theorem 16.
Proof of Theorem 16: Assume all applications of̀1-Distance-Testreturned a correct answer, as defined
by Theorem 17. By the union bound, this happens with probability at least5/6. Let us refer to this event
asE1. Conditioned onE1, the clustering algorithm rejects only if it findsk + 1 distributions inD such that
the`1 distance between every two of them is greater thanε/2

4n1/2 ≥ β. Thus, ifD is (k, β)-clusterable, then
it will be accepted with probability at least5/6.

We thus turn to the case thatD is ε-far from being(k, β)-clusterable. In this case we claim that as
long as there aret ≤ k representatives,rep1, . . . , rept, the number of distributionsDj ∈ D such that
‖Dj− rep`‖1 > ε/2 is at leastεm/2. To verify this, assuming in contradiction that there are less thanεm/2
such distributions. But then, by modifying each of these distributions so that it equalsrep1, and modifying
each of the other distributions so that it equals the representative it is most close it, we get a list that is
(k, 0)-clusterable (at a total cost of less thanεm).

Since in each iteration of the while loop, there are less thank+1 representative distributions, at leastεm
2

of the distributions inD are ε
2 -far from any of the former representative distributions. Therefore, conditioned
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Algorithm 5: Testing Clusterability
Input : Parametersk, β andε, and access in the query model to a listD of m distributions over

[n]
1 Pick rep1 uniformly fromD;
2 i := 1;
3 find new rep := true;
4 while (i < k + 1) and(find new rep = true) do
5 Uniformly and independently select2 ln(6(k + 1))/ε distributions fromD;
6 foreach selected distributionD do
7 find new rep := true;
8 for ` := 1 to i do
9 Call `1-Distance-Testwith parameters:D, rep`, ε/2, ε/12(k + 1) ln(6(k + 1));

10 if `1-Distance-Testacceptsthen find new rep := false;

11 if find new rep = true then
12 i := i + 1;
13 repi = D;
14 break;

15 if i ≤ k then output ACCEPT ;
16 else outputREJECT ;

Figure 5: The algorithm for testing clusterability

onE1, for every iteration of the while loop, the probability that a new representative is not found is less than

(1− ε/2)
2 ln(6(k+1))

ε < eln(6(k+1)) = 1
6(k+1) . By applying the union bound, the algorithm rejectsD with

probability greater than2/3. Since there areO(log k/ε) iterations, and in each there is a single application
of the `1-distance test, by Theorem 17 the total number of samples used is as stated. We note that if we
change the algorithm to continue finding new representatives even after findingk + 1 representatives then
the algorithm would find a set of representatives,S, such that at mostεm of the distributions inD areε-far
from any representatives inS.
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