
Realizable Paths and the NL vs L Problem

Shiva Kintali

College of Computing,
Georgia Institute of Technology,

Atlanta, GA 30332-0765.
kintali@cc.gatech.edu

Abstract

A celebrated theorem of Savitch [Sav70] states that NSPACE(S) ⊆ DSPACE(S2). In partic-
ular, Savitch gave a deterministic algorithm to solve ST-CONNECTIVITY (an NL-complete problem)
using O(log2n) space, implying NL ⊆ DSPACE(log2n). While Savitch’s theorem itself has not
been improved in the last four decades, studying the space complexity of several special cases of ST-
CONNECTIVITY has provided new insights into the space-bounded complexity classes.

In this paper, we introduce new kind of graph connectivity problems which we call graph real-
izability problems. All of our graph realizability problems are generalizations of UNDIRECTED ST-
CONNECTIVITY. ST-REALIZABILITY, the most general graph realizability problem, is LogCFL-
complete. We define the corresponding complexity classes that lie between L and LogCFL and study
their relationships.

As special cases of our graph realizability problems we define two natural problems, BALANCED
ST-CONNECTIVITY and POSITIVE BALANCED ST-CONNECTIVITY, that lie between L and NL. We
present a deterministic O(lognloglogn) space algorithm for BALANCED ST-CONNECTIVITY. More
generally we prove that SGSLogCFL, a generalization of BALANCED ST-CONNECTIVITY, is con-
tained in DSPACE(lognloglogn). To achieve this goal we generalize several concepts (such as graph
squaring and transitive closure) and algorithms (such as parallel algorithms) known in the context of
UNDIRECTED ST-CONNECTIVITY.

Keywords: auxiliary pushdown automata, LogCFL, parallel graph algorithms, Savitch’s theorem,
space-bounded computation, st-connectivity, symmetric Turing machines.

Electronic Colloquium on Computational Complexity, Report No. 158 (2010)

ISSN 1433-8092

mailto:kintali@cc.gatech.edu

1 Introduction

A celebrated theorem of Savitch [Sav70] states that NSPACE(S) ⊆ DSPACE(S2). In particular, Sav-
itch gave a deterministic algorithm to solve ST-CONNECTIVITY (an NL-complete problem) usingO(log2n)

space, implying NL ⊆ DSPACE(log2n). Savitch’s algorithm runs in time 2O(log2n). It has been a long-
standing open problem to improve Savitch’s theorem i.e., to prove (i) NL ⊆ DSPACE(o(log2n)) or (ii)
NL ⊆ SC2, i.e., ST-CONNECTIVITY can be solved by a deterministic algorithm in polynomial time and
O(log2n) space.

While Savitch’s theorem itself has not been improved in the last four decades, studying the space com-
plexity of several special cases of ST-CONNECTIVITY has provided new insights into the space-bounded
complexity classes. Allender’s survey [All07] gives an update of progress related to several special cases of
ST-CONNECTIVITY. Recently ST-CONNECTIVITY in planar DAGs with O(logn) sources is shown to be
in L [SBV10]. Stolee and Vinodchandran proved that ST-CONNECTIVITY in DAGs with 2O(

√
logn) sources

embedded on surfaces of genus 2O(
√

logn) is in L [SV10].
All the connectivity problems considered in the literature so far are essentially special cases of ST-

CONNECTIVITY. In the first half of this paper, we introduce new kind of graph connectivity problems
which we call graph realizability problems. All of our graph realizability problems are generalizations of
UNDIRECTED ST-CONNECTIVITY. ST-REALIZABILITY, the most general graph realizability problem is
LogCFL-complete. We define the corresponding complexity classes that lie between L and LogCFL and
study their relationships. As special cases of our graph realizability problems we define two natural prob-
lems, BALANCED ST-CONNECTIVITY and POSITIVE BALANCED ST-CONNECTIVITY, that lie between L
and NL.

In the second half of this paper, we study the space complexity of SGSLogCFL (see Section 4.1 for
definition). We define generalizations of graph squaring and transitive closure, present efficient parallel
algorithms for SGSLogCFL and use the techniques of Trifonov [Tri08] to show that SGSLogCFL is
contained in DSPACE(lognloglogn). This implies that BALANCED ST-CONNECTIVITY, a natural graph
connectivity problem which lies between L and NL, is contained in DSPACE(lognloglogn).

1.1 Preliminaries, Related Work and Our Results

Auxiliary Pushdown Automata : A language is accepted by a non-deterministic pushdown automaton
(PDA) if and only if it is a context-free language. Deterministic context-free languages are those accepted
by the deterministic PDAs. LogCFL is the set of all languages that are log-space reducible to a context-free
language. Similarly, LogDCFL is the set of all languages that are log-space reducible to a deterministic
context-free language. There are many equivalent characterizations of LogCFL. Sudborough [Sud78] gave
the machine class equivalence. Ruzzo [Ruz80] gave an alternating Turing machine (ATM) class equivalent
to LogCFL. Venkateswaran [Ven91] gave a circuit characterization and showed that LogCFL = SAC1.
For a survey of parallel complexity classes and LogCFL see Limaye’s thesis [Lim05].

An Auxiliary Pushdown Automaton (NAuxPDA or simply AuxPDA), introduced by Cook [Coo71],
is a two-way pushdown automaton augmented with a S(n)-space bounded working tape. If a determin-
istic two-way PDA is augmented with a S(n)-space bounded working tape then we get a Deterministic
Auxiliary Pushdown Automaton (DAuxPDA). We present the formal definitions in the appendix (see Sec-
tion A). Let NAuxPDA-SpaceTime (S(n),T (n)) be the class of languages accepted by an AuxPDA with
S(n)-space bounded working tapes and the running time bounded by T (n). Let the corresponding deter-
ministic class be DAuxPDA-SpaceTime (S(n),T (n)). It is easy to see that NL ⊆ NAuxPDA-SpaceTime
(O(logn), poly(n)). It is shown by Sudborough that NAuxPDA-SpaceTime (O(logn), poly(n)) = LogCFL

1

and DAuxPDA-SpaceTime (O(logn),poly(n)) = LogDCFL [Sud78]. Using ATM simulations, Ruzzo
showed that LogCFL ⊆ NC2 [Ruz80]. Simpler proofs of DAuxPDA-SpaceTime (O(logn),poly(n)) =
LogDCFL and LogCFL = SAC1 are given in [MRV99].

Many proof techniques and results obtained in the context of NL, are generalized to obtain the corre-
sponding results for LogCFL. For example : (i) Borodin [Bor77] proved that NL⊆NC2. Ruzzo [Ruz80]
introduced tree-size-bounded alternating Turing machines, gave a new characterization of LogCFL, and
proved that LogCFL ⊆ NC2. (ii) Immerman [Imm88] and Szelepcsényi [Sze87] proved that NL = co-
NL. Borodin et. al. [BCD+89] generalized their inductive counting technique and proved that LogCFL
= co-LogCFL. In fact, they proved a stronger result showing that SACi is closed under complementa-
tion for i > 0. (iii) Wigderson [Wig94] proved that NL ≤r ⊕NL. Gál and Wigderson [GW96] proved
that LogCFL ≤r ⊕LogCFL. (iv) Nisan [Nis94] proved that BPL ⊆ SC2. Venkateswaran [Ven06]
proved that BPLogCFL ⊆ SC2 and BPLogCFL ⊆NC2. Here BPLogCFL (resp. RLogCFL and
ZPLogCFL) is the bounded error (resp. one-sided error and zero error) probabilistic version of LogCFL.
All the above results are elegant and non-trivial generalizations of the corresponding results in the logspace
setting.

Throughout this paper, we consider O(logn)-space bounded and polynomial-time bounded AuxPDAs.
The surface configuration (introduced by Cook [Coo71]) of an AuxPDA, on an inputw, consists of the state,
contents and head positions of the work tapes, the head position of the input tape and the topmost symbol
of the stack i.e., the rightmost symbol of the pushdown tape. Note that for a space S(n)-bounded AuxPDA,
its surface configurations take only O(S(n)) space. In the rest of the paper, we will refer to surface configu-
rations as configurations. For an input w, a pair of configurations (C1, C2) is realizable if the AuxPDA can
move from C1 to C2 ending with its stack at the same height as in C1, and without popping its stack below
its level in C2 for any of the intermediate configurations. An AuxPDA M accepts an input w iff there is a
realizable pair (I, A), where I is the initial configuration and A is the unique accepting configuration.

Realizable Paths : ST-CONNECTIVITY (resp. UNDIRECTED ST-CONNECTIVITY) is the problem of de-
termining whether there exists a path between two distinguished vertices s and t in a directed (resp. undi-
rected) graph. These two graph connectivity problems played a central role in understanding the complexity
classes L, SL and NL [LP82, NSW92, SZ99, ATWZ00, NT95, AKL+79, BCD+89, KW93, Tri08, RVW00,
Rei08].

In Section 2, we introduce a new graph connectivity problem, which we call ST-REALIZABILITY and
prove that ST-REALIZABILITY is complete for LogCFL. ST-REALIZABILITY is a generalization of ST-
CONNECTIVITY, which is NL-complete. Our definition of ST-REALIZABILITY is motivated by (i) Hardest
CFL [Gre73, Sud78, Har78], (ii) Labeled Acyclic GAP, which is LogCFL-complete [GHR95] (iii) CFL-
reachability, which is P-complete [MR00, AP87, Rep96, UG86] and (iv) the insights from Niedermeier and
Rossmanith’s parsimonious simulation of LogCFL by SAC1 circuits [NR95].

Unlike ST-CONNECTIVITY, using breadth-first search (or) depth-first search and keeping track of “vis-
ited” vertices does not result in a polynomial time algorithm for ST-REALIZABILITY. In Section 5, we gen-
eralize the notions of transitive closure and graph squaring. Using these generalizations we present a natural
polynomial time algorithm to compute the generalized transitive closure, thus solving ST-REALIZABILITY.

Symmetric AuxPDAs : In Section 3, we define UNDIRECTED ST-REALIZABILITY, a “symmetric” version
of ST-REALIZABILITY. To study the space complexity of UNDIRECTED ST-REALIZABILITY we define
symmetric auxiliary pushdown automata, a natural generalization of symmetric Turing machines, introduced
by Lewis and Papadimitriou [LP82]. We introduce a new complexity class called SLogCFL, a generaliza-

2

tion of SL and show that LogDCFL ⊆ SLogCFL ⊆ LogCFL.

Graph Realizability Problems : In Section 4, we study several variants of ST-REALIZABILITY and the
corresponding complexity classes. All of these complexity classes lie between L and LogCFL. In par-
ticular, BALANCED ST-CONNECTIVITY and POSITIVE BALANCED ST-CONNECTIVITY are natural graph
connectivity problems that lie between L and NL. Figure 1 summarizes the relationship among the newly
defined classes.

Space Efficient Algorithms : The L vs SL question (i.e., is there a log space algorithm for solving UNDI-
RECTED ST-CONNECTIVITY) motivated an exciting series of new concepts and techniques. Prior to the
work of Lewis and Papadimitriou [LP82], Aleliunas et. al. [AKL+79] proved that UNDIRECTED ST-
CONNECTIVITY ∈ RL, implying SL ⊆ RL. Nisan, Szemeredi and Wigderson [NSW92] showed that
UNDIRECTED ST-CONNECTIVITY can be solved deterministically in spaceO(log

3
2n). This result was later

subsumed by a beautiful result of Saks and Zhou, showing that BPHSPACE(S) ⊆ DSPACE(S3/2)

[SZ99]. Armoni, et. al. [ATWZ00] showed that UNDIRECTED ST-CONNECTIVITY ∈ DSPACE(log
4
3n).

Trifonov [Tri08] gave anO(lognloglogn)-space deterministic algorithm for UNDIRECTED ST-CONNECTIVITY.
Independently at the same time, using completely different techniques, Reingold [Rei08] settled the space
complexity of UNDIRECTED ST-CONNECTIVITY and proved that SL = L. The zig-zag graph product,
introduced by Reingold, Vadhan and Wigderson [RVW02], played a crucial role in Reingold’s algorithm.

Our space efficient algorithm for SGSLogCFL (see Section 7) is based on Trifinov’s technique [Tri08],
which is based on Chong-Lam’s parallel algorithm [CL95] solving UNDIRECTED ST-CONNECTIVITY in
O(lognloglogn) time on EREW PRAM. This necessitates the development of such a parallel algorithm for
SGSLogCFL.

Parallel Algorithms : Hirschberg, Chandra and Sarwate [HCS79] presented an O(log2n) time parallel
algorithm using n2/logn processors on a CREW PRAM to find connected components of an undirected
graph. Their algorithm remained the best known for almost a decade. In a breakthrough work, Johnson
and Metaxas [JM97] presented a CREW algorithm running in O(log

3
2n) time using n + m processors.

Subsequently they improved their algorithm to run on an EREW PRAM with the same time complexity and
number of processors [JM95]. Chong and Lam [CL95] presented an O(lognloglogn) time deterministic
EREW PRAM algorithm with O(m + n) processors. Chong, Han, and Lam [CHL99] showed that the
problem can be solved on the EREW PRAM in O(logn) time with O(m+ n) processors.

In Section 6, we generalize the algorithms of [HCS79], [JM97] and [CL95] and design the corresponding
parallel algorithms for SGSLogCFL. In Section 7, we use these algorithms to prove that SGSLogCFL
is contained in DSPACE(lognloglogn).

2 Realizable Paths

2.1 ST-REALIZABILITY

We are given a directed graph G(V,E), a vertex labeling function LV : V→{α1, α2, . . . , αk} and an edge
labeling function LE : E→{push, pop, ε}. The ordered pair (s, t), where s, t ∈ V , is said to be realizable
if the following two conditions hold :

• There is a directed path (say P) from s to t.

3

• The concatenation of the vertex and edge labels along the path P is a realizable string (see Definition
2.1).

Definition 2.1. Let A = {push, pop, ε, α1, α2, . . . , αk} be the set of alphabets. A realizable string is a
nonempty string of alphabets from A, defined in the following recursive manner :

• for all 1 ≤ i ≤ k, “αi” is a realizable string.

• for all 1 ≤ i ≤ k, “αi ε αi” is a realizable string.

• if S is a realizable string then so is “αi push S pop αi”, for all 1 ≤ i ≤ k.

• for all 1 ≤ i ≤ k, if “αi S1 αi” and “αi S2 αi” are realizable strings then so is “αi S1 αi S2 αi”.

ST-REALIZABILITY : Given a directed graph G(V,E) with vertices labeled from {α1, α2, . . . , αk} and
edges labeled from {push, pop, ε} and two distinguished nodes s and t, decide if there is a realizable
path from s to t in G.

We use the notation (u v) to denote that there is a realizable path from u to v. If all the vertices of
G are labeled α1 (i.e., k = 1) and all the edges are labeled ε, we get an instance of ST-CONNECTIVITY.
Hence, ST-REALIZABILITY is a generalization of ST-CONNECTIVITY.

Theorem 2.2. ST-REALIZABILITY is LogCFL-complete.

Corollary 2.3. ST-REALIZABILITY with no ε-edges is LogCFL-complete.

2.2 Graph Representation

We now discuss the representation of an instance of ST-REALIZABILITY i.e., a directed graph G with the
vertex and edge labels. Let this graph be G(V,E) with |V | = n. For simplicity we assume that there are
no multi-edges. We represent G as a 4-tuple G = 〈L,Ppush,Ppop, E〉, where L is an integer array of length
n, Ppush, Ppop and E are n×n boolean matrices. L is an integer array of length N representing the vertex
labels. L[u] represents the label of vertex u i.e., L[u] = i iff the label of u is αi. The [u, v]th entry of the
matrix Ppush (resp. Ppop and E) is 1 if and only if the directed edge (u, v) is labeled push (resp. pop and ε).
We may assume that LE(u, u) = ε for all u ∈ V i.e., E [u, u] = ε for all u ∈ V .

2.3 Gap Matrix

Definition 2.4. (Niedermeier and Rossmanith [NR95]) : Let a,b,c,d be four configurations such that : a and
b have same pushdown heights, c and d have same pushdown heights and there exists a computation path
from a to c and one from d to b. The level of the pushdown must not go below the level of a and b during
the computation. We say that (a,b) is realizable with gap (c,d).

In the context of ST-REALIZABILITY, we relax the above definition as shown below. This allows us
to define a natural repeated squaring algorithm to solve ST-REALIZABILITY. For the rest of this paper, we
will use the following definition.

4

Path with gap : A path with gap consists of four vertices a, b, c, d such that (i) there is a computation
path P1 from a to c and P2 from d to b (ii) the vertex labels of a and b are the same (iii) the vertex labels
of c and d are the same (iv) let P be the path formed by concatenating P1 and P2 i.e., identifying c and
d (iv) the concatenation of the vertex and edge labels along the path P is a realizable string. We denote
such a “path with gap” by (a (c, d) b) and say that (a,b) is realizable with gap (c,d).

Pair-with-gap (a (c, d) b) is interpreted as if the two surface configurations c and d were the same,
i.e., as if a realizable path from c to d would exist. To keep track of paths with gaps, we maintain a boolean
gap matrix Υ, indexed by 4-tuple of vertices [a, (c, d), b] such that if Υ[a, (c, d), b] = 1 then (a (c, d) b).
We initialize the gap matrix Υ with the labels from the matrices L,Ppush and Ppop as follows.

InitializeGapMatrix(Υ)
for all a, b, c, d ∈ V Υ[a, (c, d), b] = 0
for all a, b, c, d ∈ V

if ((Ppush[a, c] == 1)&&(Ppop[d, b] == 1)&&(L[a] == L[b])&&(L[c] == L[d]))
then Υ[a, (c, d), b] = 1

for all a ∈ V Υ[a, (a, a), a] = 1
for all a, b ∈ V Υ[a, (a, b), b] = 1

All the required information from the matrices L,Ppush and Ppop is now present in the gap matrix Υ.
Note that we are implicitly removing the “unnecessary” edges as follows.

Removing unnecessary edges : If s and t are realizable in G along a path P then the push and pop edges
along P have to “match” i.e., every push label has a corresponding pop label. In other words, if there is a
push edge (a, c) such that the label of a is αi and the label of c is αj then there is a corresponding pop edge
(d, b) along the path P such that the label of d is αj and the label of b is αi. Hence, we can remove the
unnecessary edges as follows :

• Let (u, v) be a push edge in G such that the label of u is αi and the label of v is αj . If there is no pop
edge in G (other than (v, u)) with the vertex labels (αj , αi), then remove the edge (u, v).

• Let (u, v) be a pop edge in G such that the label of u is αi and the label of v is αj . If there is no push
edge in G (other than (v, u)) with the vertex labels (αj , αi), then remove the edge (u, v).

We call E the standard matrix and Υ the gap matrix and assume that an instance of ST-REALIZABILITY,
H, is represented by an n × n standard matrix E and an n2 × n2 gap matrix Υ and denote this by H =
〈Υ, E〉. The rows and columns of Υ are indexed by pairs of vertices of H. Υ[a, (c, d), b] corresponds to the
[(a, b), (c, d)]th entry in the n2 × n2 matrix.

3 UNDIRECTED ST-REALIZABILITY and Symmetric AuxPDAs

3.1 UNDIRECTED ST-REALIZABILITY

We are given an undirected graph G(V,E), a vertex labeling function LV : V→{α1, α2, . . . , αk} and an
edge labeling function LE : E→{push, pop, ε}. Moreover, the edge labels are “symmetric” i.e., they satisfy

5

the following properties : (i) LE(u, v) = push if and only if LE(v, u) = pop and (ii) LE(u, v) = ε if and
only if LE(v, u) = ε.

The pair (s, t), where s, t ∈ V , is said to be realizable if there is an undirected path (say P) from s to
t and the concatenation of the vertex and edge labels along the path P is a realizable string. Since the edge
labels are symmetric, (s, t) is realizable if and only if (t, s) is realizable. We denote this by (s!t).

UNDIRECTED ST-REALIZABILITY : Given an undirected graph G(V,E) with vertices labeled from
{α1, α2, . . . , αk} and symmetric edge labels from {push, pop, ε} and two distinguished nodes s and t,
decide if s and t are realizable in G.

If all the vertices of G are labeled α1 (i.e., k = 1) and all the edges are labeled ε, we get an instance
of UNDIRECTED ST-CONNECTIVITY. Hence, UNDIRECTED ST-REALIZABILITY is a generalization of
UNDIRECTED ST-CONNECTIVITY. To study the space complexity of UNDIRECTED ST-REALIZABILITY

we introduce symmetric AuxPDAs in the following subsection.

3.2 Symmetric AuxPDAs

Intuitively, a symmetric AuxPDA is a nondeterministic multi-tape Turing machine which has an extra tape
called pushdown tape, with an additional requirement that every move of the machine is “reversible”. In
other words, the “yields” relation between its (surface) configurations is symmetric. Such a machine is
allowed to scan two symbols at a time on each of its tapes. We present the formal definitions, properties
of symmetric AuxPDAs and the proofs of the following theorems in the appendix (see Appendix A). We
define SLogCFL to be the class of languages accepted by a log space bounded and polynomial time
bounded symmetric AuxPDA.

Theorem 3.1. LogDCFL ⊆ SLogCFL ⊆ LogCFL.

Theorem 3.2. UNDIRECTED ST-REALIZABILITY is SLogCFL-complete.

Corollary 3.3. UNDIRECTED ST-REALIZABILITY with no ε-edges is SLogCFL-complete.

4 More Realizability Problems between L and LogCFL

As noted earlier, an instance H of ST-REALIZABILITY is represented by an n × n standard matrix E and
an n2 × n2 gap matrix Υ. The vertices ofH are labeled with {α1, . . . , αk}. In this section, we define more
graph realizability problems based on the symmetry of the matrices Υ and E and the number of distinct
vertex labels (i.e., number of stack symbols, denoted by k). We define the corresponding complexity classes
as the set of all languages that are logspace reducible to the corresponding graph realizability problem. Table
1 summarizes all the definitions. The prefix S is used to denote the symmetry of the standard matrix. The
prefix SGS is used to denote the symmetry of the standard and gap matrix. A moment of thought would
reveal that the case of symmetric gap matrix and asymmetric standard matrix does not make much sense.
The prefix 1 is used to denote that there is only one vertex label.

6

Complexity class Number of stack symbols Standard Matrix Gap Matrix
LogCFL k ≥ 2 asymmetric asymmetric
SLogCFL k ≥ 2 symmetric asymmetric
SGSLogCFL k ≥ 2 symmetric symmetric
1LogCFL k = 1 asymmetric asymmetric
1SLogCFL k = 1 symmetric asymmetric
1SGSLogCFL k = 1 symmetric symmetric

Table 1: Graph realizability problems between L and LogCFL.

4.1 Realizability with Symmetric Gap

We are given an undirected graph G(V,E), a vertex labeling function LV : V→{α1, α2, . . . , αk} and an
edge labeling function LE : E→{push, pop, ε}. The edge labels are “symmetric” as defined in Section 3.
The pair (s, t), where s, t ∈ V , is said to be realizable with symmetric gap if the following two conditions
hold :

• There is an undirected path (say P) from s to t.

• The concatenation of the vertex and edge labels along the path P is a realizable string with symmetric
gap (see Definition 4.1).

Definition 4.1. Let A = {push, pop, ε, α1, α2, . . . , αk} be the set of alphabets. A realizable string with
symmetric gap is a nonempty string of alphabets from A, defined in the following recursive manner :

• for all 1 ≤ i ≤ k, “αi” is a realizable string.

• for all 1 ≤ i ≤ k, “αi ε αi” is a realizable string.

• if S is a realizable string then so is “αi push S pop αi”, for all 1 ≤ i ≤ k.

• if S is a realizable string then so is “αi pop S push αi”, for all 1 ≤ i ≤ k.

• for all 1 ≤ i ≤ k, if “αi S1 αi” and “αi S2 αi” are realizable strings then so is “αi S1 αi S2 αi”.

Since the edge labels are symmetric, (s, t) is realizable if and only if (t, s) is realizable. We initialize
the gap matrix as described in Section 2.3. By the definition of realizable string with symmetric gap,
(a (c, d) b) if and only if (c (a, b) d). Hence the corresponding n2×n2 gap matrix Υ is a symmetric
matrix. We denote this symmetry by (a!(c, d)!b).

SYMMETRIC GAP UNDIRECTED ST-REALIZABILITY : Given an undirected graph G(V,E) with ver-
tices labeled from {α1, α2, . . . , αk} and symmetric edge labels from {push, pop, ε} and two distin-
guished nodes s and t, decide if s and t are realizable with symmetric gap in G.

SGSLogCFL is the class of languages that are logspace reducible to SYMMETRIC GAP UNDIRECTED

ST-REALIZABILITY.

7

4.2 Realizability with one stack symbol

The complexity classes 1LogCFL, 1SLogCFL and 1SGSLogCFL are obtained by restricting LogCFL,
SLogCFL and SGSLogCFL respectively to use only one stack symbol i.e., by insisting that k = 1 in the
above definitions. Since the vertices are all labeled with one label, we may omit the vertex labels in the def-
initions. After omitting the vertex labels, the corresponding realizability can be defined using a context-free
language as shown below.

4.2.1 1LogCFL

1LogCFL is the class of languages that are logspace reducible to the following graph realizability problem.
We are given a directed graph G(V,E), with edges labeled from {push, pop, ε}. The ordered pair (s, t),
where s, t ∈ V , is said to be realizable if the following two conditions hold :

• There is a directed path (say P) from s to t.

• The concatenation of the edge labels on the path P is a string produced by the following context-free
grammar : S → S S; S → push S pop; S → ε; S → ∅. Here ∅ denotes the empty string.

4.2.2 1SLogCFL

We are given an undirected graph G(V,E), with the edges labeled from {push, pop, ε}. Moreover, the edge
labels are “symmetric” as defined in Section 3. The pair (s, t), where s, t ∈ V , is said to be realizable
if there is an undirected path (say P) from s to t and the concatenation of the edge labels along the path
P is a string produced by the context-free grammar mentioned in Section 4.2.1. Since the edge labels are
symmetric, (s, t) is realizable if and only if (t, s) is realizable. 1SLogCFL is the class of languages that
are logspace reducible to this undirected graph realizability problem.

4.2.3 1SGSLogCFL

1SGSLogCFL is the class of languages that are logspace reducible to the following graph realizability
problem. We are given an undirected graph G(V,E), with the edges labeled from {push, pop, ε}. The edge
labels are “symmetric” as defined in Section 3. The pair (s, t), where s, t ∈ V , is said to be realizable if the
following two conditions hold :

• There is a simple undirected path (say P) from s to t.

• The concatenation of the edge labels on the path P is a string produced by the following context-free
grammar : S → S S; S → push S pop; S → pop S push; S → ε; S → ∅. Here ∅ denotes the empty
string.

4.3 Relationship among the Realizability Problems

By definition, we have the following inclusions.

• SGSLogCFL ⊆ SLogCFL ⊆ LogCFL

• 1SGSLogCFL ⊆ 1SLogCFL ⊆ 1LogCFL

• 1LogCFL ⊆ LogCFL

8

• 1SLogCFL ⊆ SLogCFL

• 1SGSLogCFL ⊆ SGSLogCFL

Independent to our work, Allender and Lange [AL10] defined symmetric AuxPDAs and proved that
every language accepted by a nondeterministic auxiliary pushdown automaton in polynomial time can be
accepted by a symmetric auxiliary pushdown automaton in polynomial time. Their definition of symmetric
AuxPDAs is equivalent to ours [All]. Borodin et. al. [BCD+89] proved that LogCFL = co-LogCFL.
The following theorem and its corollary are immediate.

Theorem 4.2. (Allender and Lange [AL10]). SLogCFL = LogCFL.

Corollary 4.3. SLogCFL = co-SLogCFL.

4.4 Realizability Problems between L and NL

All the realizability problems defined above are generalizations of UNDIRECTED ST-CONNECTIVITY.
Hence, the corresponding complexity classes contain L. We now prove that NL = 1LogCFL. Hence,
L = SL ⊆ 1SGSLogCFL ⊆ 1SLogCFL ⊆ 1LogCFL = NL. We introduce two natural graph connec-
tivity problems characterizing 1SGSLogCFL and 1SLogCFL.

Theorem 4.4. NL = 1LogCFL.

Corollary 4.5. L = SL ⊆ 1SGSLogCFL ⊆ 1SLogCFL ⊆ 1LogCFL = NL.

Let G(V,E) be a directed graph. Let G′(V,E′) be the underlying undirected graph of G. Let P be a path
in G′. Let e = (u, v) be an edge along the path P . Edge e is called neutral edge if both (u, v) and (v, u)
are in E. Edge e is called forward edge if (u, v) ∈ E and (v, u) /∈ E. Edge e is called backward edge if
(u, v) /∈ E and (v, u) ∈ E.

A path (say P) from s ∈ V to t ∈ V in G′(V,E′) is called balanced if the number of forward edges
along P is equal to the number of backward edges along P . A balanced path might have any number of
neutral edges. By definition, if there is a balanced path from s to t then there is a balanced path from t to
s. The path P may not be a simple path. We are concerned with balanced paths of length at most n. See
Section C in the appendix for more details and variants of balanced connectivity problems.

BALANCED ST-CONNECTIVITY : Given a directed graph G(V,E) and two distinguished nodes s and
t, decide if there is balanced path (of length at most n) between s and t.

Let P be a path from s ∈ V to t ∈ V in G(V,E). We say v ∈ P if the vertex v is on the path P . For
v ∈ P we denote by Pv the subpath of P starting from s and ending at v. We say that P is positive if the
number of forward edges of Pv is at least the number of backward edges of Pv, for all v ∈ P . In other
words, the number of forward edges minus the number of backward edges of Pv is positive, for all v ∈ P .
We say that P is positive balanced if P is positive and balanced. By definition, if there is a positive balanced
path from s to t then there is a positive balanced path from t to s.

9

POSITIVE BALANCED ST-CONNECTIVITY : Given a directed graph G(V,E) and two distinguished
nodes s and t, decide if there is positive balanced path (of length at most n) between s and t.

Theorem 4.6. BALANCED ST-CONNECTIVITY is 1SGSLogCFL-complete.

Theorem 4.7. POSITIVE BALANCED ST-CONNECTIVITY is 1SLogCFL-complete.

Figure 1 summarizes the relationship among the above defined classes.

Figure 1: Relationship between complexity classes. A directed edge from class A to class B shows that
A ⊆ B. In addition, RL ⊆ RLogCFL and BPL ⊆ BPLogCFL. BALANCED ST-CONNECTIVITY is
1SGSLogCFL-complete and POSITIVE BALANCED ST-CONNECTIVITY is 1SLogCFL-complete.

5 Transitive Closure

The definitions and theorems in this section apply to all the graph realizability problems defined above. We
present the definitions and theorems for ST-REALIZABILITY, the most general graph realizability problem.

Definition 5.1. Let G = 〈Υ, E〉 be an instance of ST-REALIZABILITY. The transitive closure of G, denoted
by G∗ = 〈Υ∗, E∗〉, is a pair of gap and standard matrix such that for all a, b, c, d ∈ V ,

(i) E∗[a][b] = 1 iff (a b) and
(ii) Υ∗[a, (c, d), b] = 1 iff (a, b) is realizable with gap (c, d).

10

5.1 Tensor Products

We now present several tensor products acting on E and Υ. The products ⊗1 to ⊗5 are introduced in
[Ven06]. We introduce ⊗6 and ⊗7. These products update the standard matrix E and the gap matrix Υ with
new “connectivity information” of G. Let E , E1, E2 represent standard matrices and Υ, Υ1, Υ2 represent
gap matrices. Let a, b, c, d, z represent the vertices of G. Matrices indexed by two (resp. four) indices
are standard (resp. gap) matrices. When we are dealing with boolean matrices, all the summations (resp.
multiplications) are interpreted as boolean ∨ (resp. boolean ∧).

1. If (a z) and (z b) then (a b) :

(E1 ⊗1 E2)[a, b] =
∑
z

E1[a, z]·E2[z, b].

2. If (a (c, d) b) and (c d) then (a b) :

(Υ⊗2 E)[a, b] =
∑
c,d

Υ[a, (c, d), b]·E [c, d].

3. If (a (c, d) b) and (b z) then (a (c, d) z) :

(Υ⊗3 E)[a, (c, d), z] =
∑
b

Υ[a, (c, d), b]·E [b, z].

4. If (z a) and (a (c, d) b) then (z (c, d) b) :

(E ⊗4 Υ)[z, (c, d), b] =
∑
a

E [z, a]·Υ[a, (c, d), b].

5. If (a (c, d) b) and (c (e, f) d) then (a (e, f) b) :

(Υ1 ⊗5 Υ2)[a, (e, f), b] =
∑
c,d

Υ1[a, (c, d), b]·Υ2[c, (e, f), d].

6. If (a (c, d) b) and (z d) then (a (c, z) b) :

(Υ⊗6 E)[a, (c, z), b] =
∑
d

Υ[a, (c, d), b]·E [z, d].

7. If (a (c, d) b) and (c z) then (a (z, d) b) :

(Υ⊗7 E)[a, (z, d), b] =
∑
c

Υ[a, (c, d), b]·E [c, z].

11

5.2 Computing Transitive Closure

Given G = 〈Υ, E〉 the following algorithm computes Square(G). This algorithm is based on a parsimo-
nious simulation of LogCFL by SAC1 circuits given by Niedermeier and Rossmanith [NR95]. Imple-
mentation of Square(〈Υ, E〉) using the above mentioned tensor products is shown below. The following
theorem implies a natural polynomial time algorithm to solve ST-REALIZABILITY.

Square(〈Υ, E〉)

for all a, b ∈ V update E as follows :

E [a, b] =
∑

c,e,f,g,d

Υ[a, (c, d), b]·Υ[c, (e, f), g]·E [e, f]·E [g, d]

for all a, b, c, d ∈ V update Υ as follows :

Υ[a, (c, d), b] =
∑

c′,e′,f ′,g′,d′

Υ[a, (c′d′), b]·Υ[c′, (e′, f ′), g′]·Υ[e′, (c, d), f ′]·E [g′, d′]

+
∑

c′,e′,f ′,g′,d′

Υ[a, (c′d′), b]·Υ[c′, (e′, f ′), g′]·E [e′, f ′]·Υ[g′, (c, d), d′]

return 〈Υ, E〉

Square(〈Υ, E〉)
E = (Υ⊗2 ((Υ⊗2 E)⊗1 E))
Υ = (Υ⊗5 ((Υ⊗5 Υ)⊗3 E)) + (Υ⊗5 ((Υ⊗2 E)⊗4 Υ))
return 〈Υ, E〉

Theorem 5.2. Let G be an instance of ST-REALIZABILITY. G∗ = 〈Υ∗, E∗〉 can be computed usingO(logn)
repeated applications of Square(G).

5.3 Simple Squaring Operation

The following algorithm SimpleSquare is a more intuitive squaring operation. It plays a crucial role in
the proofs of correctness of parallel and space efficient algorithms for SGSLogCFL (see Section 6 and
Section 7).

SimpleSquare(〈Υ, E〉)
E = E ⊗1 E
E = Υ⊗2 E
Υ = Υ⊗3 E
Υ = E ⊗4 Υ

12

Υ = Υ⊗5 Υ
Υ = Υ⊗6 E
Υ = Υ⊗7 E

return 〈Υ, E〉

Theorem 5.3. Let G be an instance of ST-REALIZABILITY. G∗ = 〈Υ∗, E∗〉 can be computed usingO(logn)
repeated applications of SimpleSquare(G).

6 Parallel algorithms for SGSLogCFL

Let G = 〈Υ, E〉 be an instance of SYMMETRIC GAP UNDIRECTED ST-REALIZABILITY. Let the vertices
of G be V = {1, 2, . . . , n}. G is represented by an n × n standard matrix E and an n2 × n2 gap matrix
Υ. In this section, we present parallel algorithms to compute G’s transitive closure G∗ = 〈Υ∗, E∗〉. Let
V 2 = V × V be the set of pairs of vertices. In the rest of this paper the term “vertex” refers to elements
from V as well as V 2. Let V 4 = V × V × V × V . G has two types of edges. The standard edges from V 2

are present in E and the gap edges from V 4 are present in Υ. In the rest of this paper the term “edge” refers
to elements from V 2 as well as V 4.

Definition 6.1. A subset of vertices S ⊆ V is a standard component (s-component) of G iff for all u, v ∈ S
it holds that (u v) and (v u).

Definition 6.2. A subset S ⊆ V 2 is a gap component (g-component) of G iff for all (a, b), (c, d) ∈ S it
holds that (a (c, d) b) and (c (a, b) d).

In the rest of this paper the term “component” refers to both standard and gap components. If there is
ambiguity we will explicitly say s-component or g-component.

A pseudotree P = (C,D) is a maximal connected directed graph with |C| = k vertices and |D| = k
arcs for some k, for which each vertex has outdegree one. Note that every pseudotree has exactly one simple
directed cycle (which may be a self-loop). The number of arcs in the cycle of a pseudoree P is its circum-
ference. A rooted tree is a pseudotree whose cycle is a loop on some vertex r called the root. A rooted star
R with root r, is a rooted tree whose arcs are of the form (x, r) with x ∈ R. A pseudoforest is a collection
of pseudotrees.

Symmetric Squaring : We first present a simplified squaring algorithm when the input graph is an in-
stance of SYMMETRIC GAP UNDIRECTED ST-REALIZABILITY. Note that the matrices E and Υ are
symmetric i.e., E [a, b] = E [b, a] and Υ[(a, b), (c, d)] = Υ[(c, d), (a, b)]. Moreover, Υ[(a, b), (c, d)] =
Υ[(a, b), (d, c)] = Υ[(b, a), (c, d)] = Υ[(b, a), (d, c)]. Due to this symmetry, the products ⊗3, ⊗4, ⊗6 and
⊗7 are equivalent. Corollary 6.3 follows from Theorem 5.3.

SymmetricSquare(〈Υ, E〉)
E = E ⊗1 E
E = Υ⊗2 E
Υ = Υ⊗3 E
Υ = Υ⊗5 Υ

return 〈Υ, E〉

13

Corollary 6.3. Let G be an instance of SYMMETRIC GAP UNDIRECTED ST-REALIZABILITY. G∗ can be
computed using O(logn) repeated applications of SymmetricSquare(G).

6.1 An O(log2n) time parallel algorithm

Connect(G = 〈Υ, E〉)
1: E∗ ← E
2: Υ∗ ← Υ
3: for all i do XE(i) = i
4: for all i do XΥ(i, j) = (i, j)

5: for O(logn) iterations do

6: for all i do TempE(i)← StandardHook(i)
7: for all i do TempE(i)← minj{TempE(j) | XE(j) = i and TempE(j) 6= i}
8: if none then TempE(i)← XE(i)

9: for all i do TempΥ(i, j)← GapHook(i, j)
10: for all i do TempΥ(i, j)← min(k,l){TempΥ(k, l) | XΥ(k, l) = (i, j) and TempΥ(k, l) 6= (i, j)}
11: if none then TempΥ(i, j)← XΥ(i, j)

12: for all i do XE(i)← TempE(i)
13: for all (i, j) do XΥ(i, j)← TempΥ(i, j)

14: for O(logn) iterations do
15: for all i do TempE(i)← TempE(TempE(i))
16: for all (i, j) do TempΥ(i, j)← TempΥ(TempΥ(i, j))
17: end for

18: for all i do XE(i)← min{TempE(i), XE(TempE(i))}
19: for all (i, j) do XΥ(i, j)← min{TempΥ(i, j), XΥ(TempΥ(i, j))}

20: for all i, j do if XE(i) = XE(j) then E∗[i, j]← 1.
21: for all i, j, k, l do if XΥ(i, j) = XΥ(k, l) then Υ∗[i, (k, l), j]← 1.

22: end for

23: return G∗ = 〈Υ∗, E∗〉

We will assume that there is one processor Pi assigned to each vertex i ∈ V , one processor Pij assigned
to each edge (i, j) ∈ V 2 and one processor Pijkl assigned to each gap edge (i, j, k, l) ∈ V 4. We use a vector
XE of length n to specify the s-components of G as follows : if Vc ⊆ V is any s-component, then for all
i ∈ Vc, XE(i) equals the least element of Vc. We use an n× n matrix XΥ to specify the g-components of G
as follows : if Wc ⊆ V 2 is any g-component, then for all (i, j) ∈Wc, XΥ(i, j) equals the lexicographically
least element of Wc.

The algorithm Connect iteratively computes the vectors XE and XΥ from the input G = 〈Υ, E〉 and
updates Υ∗ and E∗. It is based on a hook and contract algorithm [HCS79] that works as follows. The
algorithm deals with “components”, which are sets of “vertices” found to belong to the same (standard or
gap) component of G. Each component is equipped with an edge-list, a linked list of edges that connect

14

StandardHook(i)
1: S1 ← {XE(j) | E∗[i, j] = 1 and XE(j) 6= XE(i)}
2: S2 ← {XE(j) | Υ∗[i, (k, k), j] = 1 and XE(j) 6= XE(i)}
3: S = S1 ∪ S2

4: if S = ∅ then
5: return XE(i)
6: else
7: return min(S)
8: end if

GapHook(i, j)
1: S1 ← {XΥ(k, l) | Υ∗[i, (k, l), j] = 1 and XΥ(k, l) 6= XE(i, j)}
2: S2 ← {XΥ(k, j) | E∗[i, k] = 1 and XΥ(k, j) 6= XΥ(i, j)}
3: S = S1 ∪ S2

4: if S = ∅ then
5: return XΥ(i, j)
6: else
7: return min(S)
8: end if

it to other components. Initially each element from V is an s-component by itself. Their edge-lists corre-
spond to the undirected edges of E . These components will eventually grow and become the corresponding
s-components. Initially each element from V 2 is a g-component by itself. Their edge-lists correspond
to the undirected edges of Υ. These components will eventually grow and become the corresponding g-
components. The algorithm proceeds as follows :

repeat until there are no edges left :

1. Each component picks an edge pointing to a lexicographically minimum vertex from its edge-list
leading to a neighboring component and hooks by pointing to it. If a component has an empty edge-
list, it hooks to itself. The details of hooking are presented in StandardHook and GapHook. Note
that both these hooking steps use the previously computed connectivity information from both Υ∗ and
E∗. These hooking processes create clusters of components called pseudotrees. The s-components
form pseudotrees on the vertex set V and g-components form pseudotrees on the vertex set V 2.

2. Each pesudotree is identified as a new component with one of its vertices as its representative. Each
representative receives into its edge-list all the edges contained in the edge-lists of its pseudotree. At
this stage the matrices E∗ and Υ∗ are updated with “new” edges.

3. Edges internal to components are removed implicitly.

During the first iteration the edges connecting each vertex to neighboring vertices are examined (steps
6-11), and sets of vertices which are known to be connected are identified (steps 14-17). In effect, each such
set of vertices is merged into a “supervertex” which are specified by the vectors XE(i) and XΥ(i, j). For
each i in a supervertex, XE(i) equals the smallest-numbered vertex in the supervertex. For each (i, j) in a
supervertex, XΥ(i, j) equals the lexicographically first vertex in the supervertex. In succeeding iterations,

15

the edges connecting each supervertex to neighboring supervertices are examined in steps 6-11, and sets of
supervertices are merged in steps 14-17. The process continues until all the vertices in a (standard and gap)
component have been merged into one gigantic supervertex.

Theorem 6.4. The algorithm Connect finds G∗ = 〈Υ∗, E∗〉 in parallel time O(log2n) using n4 processors
in the CREW PRAM model.

Connect algorithm is a generalization of the parallel algorithm presented in [HCS79]. We added two
hooking procedures (one for growing s-components and one for growing g-components). Unlike [HCS79]
the new edges found after contraction step are added in the matrices Υ∗ and E∗ before starting the next
hooking step.

The algorithms of [JM97] and [CL95] can similarly be generalized to compute G∗ = 〈Υ∗, E∗〉 in parallel
time O(log3/2n) and O(lognloglogn) respectively. The processor bounds in all these algorithms is polyno-
mial in n, the number of vertices of G. We now present an outline of the parallel algorithms of [JM97] and
[CL95] and the necessary modifications to apply them to SGSLogCFL.

6.2 An O(log3/2n) time parallel algorithm

In the algorithm presented in the previous section the size of the components formed after hooking phase
may vary a lot. A slow growing component may consist of as few as two vertices, whereas a fast-growing
component may have as many as n vertices for an s-component and n2 vertices for a g-component. As
a result the contraction (steps 14-17) requires Θ(logn) time in order to allow the biggest component to
contract to a single vertex. The algorithm must iterate logn times so that a slow-growing component, which
may only double its size in each iteration, can eventually grow to its full size. An crucial observation of
[JM97] is that slow-growing components need little time to contract and fast-growing components require
fewer iterations to grow to their full size.

Johnson and Metaxas [JM97] presented an algorithm in which components are scheduled to hook and
contract according to their growth rate. Their algorithm schedules every component to grow by a factor of at
least 2

√
logn in a phase of O(logn) time. Hence,

√
logn phases suffice to find all connected components in

the graph, for a total of O(log3/2n) time. Within a phase slow-growing components are scheduled to hook
and contract in o(logn) time repeatedly until they catch up with fast-growing components. Fast-growing
components are left idle once they have achieved the intended size.

• In the algorithm of [HCS79] the vertices hook to a lexicographically minimum vertex. In Johnson-
Metaxas algorithm vertices hook to the first edge in their edge-list. This creates pseudotrees of arbi-
trary circumference i.e., pseudotrees can have large cycles which are to be contracted properly in the
contraction phase. Since exclusive writing is required, the usual pointer doubling technique will not
terminate when applied to a cycle. Johnson and Metaxas [JM97] introduced cycle-reducing shortcut-
ting technique to solve this problem. This technique (i) contracts a pseudotree into a rooted tree in
time logarithmic in its circumference, (ii) contracts a rooted tree into a rooted star in time logarithmic
in the length of its longest path.

• It is expensive to compute the set of edges of all the components in a pseudtree without concurrent
writing. Potentially there are a large number of components that hook together in the first step and
therefore a large number of components that are ready to give their edge-lists simultaneously to the
new super-component’s edge-list. Johnson and Metaxas [JM97] introduced edge-plugging scheme
which achieves the objective in constant time, irrespective of whether the component is yet contracted
to a rooted star.

16

• It is also expensive to have a component pick a mate. There may be a large number of edges internal
to the component. The number of such edges grows every time components hook. These internal
edges cannot be used to find a mate. Hence, a component may attempt to find a mate several times
and unsuccessful if it picks an internal edge. Removing all the internal edges before picking an edge
may also take a lot of time. Johnson and Metaxas [JM97] introduced a growth-control schedule.
Components grow in size in a uniform way that controls their minimum sizes as long as continued
growth is possible. The internal edges are identified and removed periodically to make hooking more
efficient. The algorithm recognizes whether a component is growing too fast and therefore can be
ignored.

For implementation details of the above algorithm see [JM97]. As mentioned earlier, to get the cor-
responding parallel algorithm for SGSLogCFL we add two hooking procedures (one for growing s-
components and one for growing g-components). After each contraction step the newly found edges are
added in the matrices Υ∗ and E∗ .

6.3 An O(lognloglogn) time parallel algorithm

The Chong Lam algorithm [CL95] is also based on a hook and contract approach. The hooking process
uses an ordering <d of the vertices such that u <d v iff the degree of u is less than the degree of v (or) the
degrees are the same, but u is less than v in their lexicographic ordering. Before every phase, every vertex
of the current supergraph is either active, inactive or done. All active and inactive vertices have nonzero
degree, the done vertices have zero degree, and there are no multiedges between active vertices; the inactive
vertices are organized in a set of hooking trees. Initially all vertices with nonzero degree are active, and the
rest are done.

To choose their hooking edges, the active vertices of the graph perform the following steps in parallel.
(i) if a vertex v has a neighbor larger according to <d than itself, then v hooks to the largest such neighbor.
(ii) if after the first step all neighbors of v are hooked to it, then v hooks to itself. Otherwise, if after the first
step a neighbor u of v is hooked to a vertex different from v, then v hooks to u.

Some of the current hooking trees are contracted to a representative vertex in a contraction phase. The
representative vertex is the only vertex in the tree which is hooked to itself. Whether a tree is contracted
is determined by a parameter. This parameter depends on the phase and sets an upper bound on the sum
of the degrees of the vertices of the trees which are contracted. For every contracted tree, its representative
becomes a new active vertex and the rest of its vertices become done. All multiedges between new active
vertices are removed. The vertices of every uncontracted tree become inactive.

The processing required by a hooking phase is performed in parallel timeO(logd), where d is the degree
of the active vertex, using pointer jumping. Checking the degree of a hooking tree during the contraction
phase is done in parallel time O(logc), where c is the contraction parameter, by using pointer jumping and
a constant time edge-list plugging technique.

Connect(k)
MaxHook;
if k > 0 then

Connect(22k)
Connect(k − 1)
Connect(k − 1)

17

Contract(22k+1
)

A call to Connect(dloglogne) contracts every connected component of the graph to a single vertex and
all the other vertices are organized in a set of rooted parent trees such that the root of the tree of a vertex u
is the vertex to which the connected component of u is contracted.

To generalize this algorithm to SGSLogCFL, we make the following modifications : (i) add two
hooking procedures (one for growing s-components and one for growing g-components) (ii) the new edges
found after every call Contract are added in the matrices Υ∗ and E∗ and the new degrees of the vertices are
recomputed. The correctness of the algorithm follows by using Corollary 6.3 in the correctness argument of
[CL95], implying an O(lognloglogn) time EREW parallel algorithm computing G∗ = 〈Υ∗, E∗〉.

7 SGSLogCFL ⊆ DSPACE(lognloglogn)

In this section we present an outline of Trifonov’s O(lognloglogn)-space algorithm for UNDIRECTED ST-
CONNECTIVITY [Tri08]. Trifonov’s algorithm is based on the O(lognloglogn) time deterministic EREW
PRAM algorithm with O(m + n) processors of Chong and Lam [CL95] outlined in the previous section.
This parallel algorithm is first simulated sequentially in linear space. Using this sequential algorithm a
mathematical structure called configuration is defined. This configuration corresponds to the state of the
sequential algorithm at a certain point of its execution. An ordering on the edges incident to a vertex is
fixed, and the hooking is done sequentially for all active vertices. Using the sequence of configurations an
O(log2n) space algorithm, which instead of storing all of its current state recomputes parts of it when it
needs them. This algorithm works pretty much like Savitch’s algorithm [Sav70].

The max-degree hooking scheme of [CL95] ensures that small trees have small neighborhoods. Using
the exploration walks on trees defined by Koucky [Kou02], the levels of recursion of [CL95] are imple-
mented so that they process small trees in o(logn) space. These walks essentially play the role of the
edge-list plugging technique and pointer jumping techniques employed by the Chong-Lam algorithm. They
allow us to traverse trees space-efficiently.

The O(logn) space per level is mainly due to storing vertices in the local variables of the functions,
since each vertex takes Θ(logn) space. To overcome this bottleneck the functions are redefined so that
they never keep a vertex in their local variables. The vertex v is removed from the argument list of the
functions. Instead of this argument, one current vertex is maintained in a global variable. All functions
are programmed to return some “information” about this vertex. A function which otherwise must return
a vertex is defined so that after its execution the current vertex is its result. If needed the calling function
keeps enough information locally to restore the original current vertex. The crucial part of the optimization
is to avoid storing vertices locally and be able to move the current vertex temporarily, perform something
at the new current vertex, and then return to the original current vertex. Instead of this going back and
forth between the two vertices, using the reversibility of the moves along the edges and the exploration
walks on the trees, the comparison is performed bit by bit. Aside from the information stored for the
ways back, this takes only the Θ(lognloglogn) space necessary to store the index of a bit. In this way the
bottleneck of Ω(logn) space is reduced to Ω(lognloglogn). The introduction of one global current vertex
and always returning information about this vertex, mimics the implementation and correctness of Chong-
Lam algorithm with minor modifications to the hooking scheme. The current vertex is an implicit argument
to all functions describing a configuration.

To generalize this algorithm to SGSLogCFL, we make the following modifications : (i) add two

18

hooking procedures (one for growing s-components and one for growing g-components) (ii) the new edges
found after every call Contract are added in the matrices Υ∗ and E∗ and the new degrees of the vertices
are recomputed and (iii) the exploration walks and the bit by bit comparison are done on the hooking trees
generated by s-components and g-components.

Theorem 7.1. Let G = 〈Υ, E〉 be an instance of SYMMETRIC GAP UNDIRECTED ST-REALIZABILITY.
G∗ = 〈Υ∗, E∗〉 can be computed inO(lognloglogn) space i.e., SGSLogCFL∈DSPACE(lognloglogn).

Corollary 7.2. BALANCED ST-CONNECTIVITY ∈ DSPACE(lognloglogn).

8 Open Problems

In a recent work [Kin10], we proved that BALANCED ST-CONNECTIVITY, SGSLogCFL and POSITIVE

BALANCED ST-CONNECTIVITY are all closed under complementation. Several interesting research direc-
tions arise from our work :

• Balanced Connectivity: BALANCED ST-CONNECTIVITY and POSITIVE BALANCED ST-CONNECTIVITY

are natural graph connectivity problems that lie between L and NL. Studying their space complexity
is an interesting research direction towards improving the space complexity of ST-CONNECTIVITY.
In particular, it would be interesting to improve Theorem 7.1. Is BALANCED ST-CONNECTIVITY ∈
L ? Less ambitiously, is BALANCED ST-CONNECTIVITY ∈ SC2 ?

• An alternate proof of Theorem 7.1 using the techniques of [RVW02, Rei08] or [RV05] seems to be a
challenging task.

• SLogCFL vs LogDCFL: In the logspace setting we have L = SL ⊆ NL. In the LogCFL set-
ting, we have LogDCFL ⊆ SLogCFL = LogCFL (see Theorem 4.2). By definition, we have
NL ⊆ LogCFL. It is known that LogDCFL ⊆ SC2 [Coo79]. This motivates the study of the
relationship between LogDCFL and SLogCFL. It would be interesting to generalize the tech-
niques of [RVW02, Rei08] to prove LogDCFL = SLogCFL. This would imply NL ⊆ SC2, i.e.,
ST-CONNECTIVITY can be solved by a deterministic algorithm in polynomial time and O(log2n)
space.

• SLogCFL vs RLogCFL: We have LogDCFL ⊆ SLogCFL = LogCFL and LogDCFL ⊆
RLogCFL ⊆ LogCFL implying RLogCFL ⊆ SLogCFL. In the logspace setting, prior to
Reingold’s work, Aleliunas et. al. [AKL+79] proved that SL ⊆ RL, using random walks. It would
be interesting to generalize their techniques to prove SLogCFL⊆RLogCFL. Since BPLogCFL
⊆ SC2 [Ven06], a proof of SLogCFL ⊆RLogCFL would imply NL ⊆ SC2.

• Is there a circuit characterization of SGSLogCFL ? What is the relationship between (i) SGSLogCFL
and NL ? (ii) SGSLogCFL and LogDCFL ? (iii) SGSLogCFL and DET1 ?

• Allender and Lange [AL10] proved that SLogCFL = LogCFL. Is 1SLogCFL = 1LogCFL ?
i.e., is POSITIVE BALANCED ST-CONNECTIVITY NL-complete ?

1DET is the class of problems NC1 Turing reducible to the determinant [Coo85].

19

Acknowledgements : This project is partially funded by the NSF grant CCF-0902717. I gratefully ac-
knowledge helpful discussions with Eric Allender, Klaus-Jörn Lange, Nutan Limaye, Richard J. Lipton, H.
Venkateswaran and Dieter van Melkebeek.

References

[AKL+79] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Lászlo Lovász, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. FOCS,
pages 218–223, 1979.

[AL10] Eric Allender and Klaus-Jörn Lange. Symmetry coincides with nondeterminism for time-
bounded auxiliary pushdown automata. To appear in 25th Computational Complexity Con-
ference, 2010.

[All] Eric Allender. Personal communication.

[All07] Eric Allender. Reachability problems: An update. In CiE, pages 25–27, 2007.

[AP87] Foto N. Afrati and Christos H. Papadimitriou. The parallel complexity of simple chain queries.
In PODS, pages 210–213, 1987.

[ATWZ00] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, and Shiyu Zhou. An (log()4/3) space algorithm
for (s, t) connectivity in undirected graphs. J. ACM, 47(2):294–311, 2000.

[BCD+89] Allan Borodin, Stephen A. Cook, Patrick W. Dymond, Walter L. Ruzzo, and Martin Tompa.
Two applications of inductive counting for complementation problems. SIAM J. Comput.,
18(3):559–578, 1989.

[Bor77] Allan Borodin. On relating time and space to size and depth. SIAM J. Comput., 6(4):733–744,
1977.

[CHL99] Ka Wong Chong, Yijie Han, and Tak Wah Lam. On the parallel time complexity of undirected
connectivity and minimum spanning trees. In SODA, pages 225–234, 1999.

[CL95] Ka Wong Chong and Tak Wah Lam. Finding connected components in o(lognloglogn) time on
the erew pram. J. Algorithms, 18(3):378–402, 1995.

[Coo71] Stephen A. Cook. Characterizations of pushdown machines in terms of time-bounded comput-
ers. J. ACM, 18(1):4–18, 1971.

[Coo79] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time and log
squared space. In STOC, pages 338–345, 1979.

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64(1-3):2–21, 1985.

[GHR95] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford University Press, 1995.

[Gre73] Sheila A. Greibach. The hardest context-free language. SIAM J. Comput., 2(4):304–310, 1973.

20

[GW96] Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arithmetic analogs. Random
Struct. Algorithms, 9(1-2):99–111, 1996.

[Har78] Michael A. Harrison. Introduction to formal languages theory. Addison-Wesley series in com-
puter science, 1978.

[HCS79] Daniel S. Hirschberg, Ashok K. Chandra, and Dilip V. Sarwate. Computing connected compo-
nents on parallel computers. Commun. ACM, 22(8):461–464, 1979.

[Hen77] F. Hennie. Introduction to computability. Addison-Wesley, Reading, MA, 1977.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17:935938, 1988.

[JM95] Donald B. Johnson and Panagiotis Takis Metaxas. A parallel algorithm for computing minimum
spanning trees. J. Algorithms, 19(3):383–401, 1995.

[JM97] Donald B. Johnson and Panagiotis Takis Metaxas. Connected components in o(log3/2n) parallel
time for the crew pram. J. Comput. Syst. Sci., 54(2):227–242, 1997.

[Kin10] Shiva Kintali. Realizable Paths and the Closure Under Complementation. Under Preparation,
2010.

[Kou02] Michal Koucký. Universal traversal sequences with backtracking. J. Comput. Syst. Sci.,
65(4):717–726, 2002.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Complexity Theory
Conference, pages 102–111, 1993.

[Lim05] Nutan Limaye. Parallel complexity classes centered around LogCFL. M.Sc. thesis, Anna Uni-
versity, 2005.

[LP82] Harry R. Lewis and Christos H. Papadimitriou. Symmetric space-bounded computation. Theo-
retical Computer Science, 19:161–187, 1982.

[MR00] David Melski and Thomas W. Reps. Interconvertibility of a class of set constraints and context-
free-language reachability. Theoretical Computer Science, 248(1-2):29–98, 2000.

[MRV99] Pierre McKenzie, Klaus Reinhardt, and V. Vinay. Circuits and context-free languages. In
COCOON, pages 194–203, 1999.

[Nis94] Noam Nisan. RL ⊆ SC. Computational Complexity, 4:1–11, 1994.

[NR95] Rolf Niedermeier and Peter Rossmanith. Unambiguous auxiliary pushdown automata and semi-
unbounded fan-in circuits. Information and Computation, 118(2):227–245, 1995.

[NSW92] Noam Nisan, Endre Szemerédi, and Avi Wigderson. Undirected connectivity in O(log3/2n)
space. In FOCS, pages 24–29, 1992.

[NT95] Noam Nisan and Amnon Ta-Shma. Symmetric logspace is closed under complement. STOC,
pages 140–146, 1995.

21

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[Rep96] Thomas W. Reps. On the sequential nature of interprocedural program-analysis problems. Acta
Inf., 33(8):739–757, 1996.

[Ruz80] Walter L. Ruzzo. Tree-size bounded alternation. J. Comput. Syst. Sci., 21(2):218–235, 1980.

[RV05] Eyal Rozenman and Salil P. Vadhan. Derandomized squaring of graphs. In APPROX-RANDOM,
pages 436–447, 2005.

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In FOCS, pages 3–13, 2000.

[RVW02] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. Annals of Mathematics, 155(1), 2002.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970.

[SBV10] Derrick Stolee, Chris Bourke, and N. V. Vinodchandran. A log-space algorithm for reachability
in planar acyclic digraphs with few sources. In IEEE Conference on Computational Complexity,
pages 131–138, 2010.

[Sud78] Ivan Hal Sudborough. On the tape complexity of deterministic context-free languages. J. ACM,
25(3):405–414, 1978.

[SV10] Derrick Stolee and N. V. Vinodchandran. Space-efficient algorithms for reachability in surface-
embedded graphs. Electronic Colloquium on Computational Complexity, TR10-154, 2010.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Com-
puter and System Sciences, 58(2):376–403, 1999.

[Sze87] Róbert Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin of EATCS,
33:96–100, 1987.

[Tri08] Vladimir Trifonov. An O(lognloglogn) space algorithm for undirected st-connectivity. SIAM
J. Comput., 38(2):449–483, 2008.

[UG86] Jeffrey D. Ullman and Allen Van Gelder. Parallel complexity of logical query programs. In
FOCS, pages 438–454, 1986.

[Ven91] H. Venkateswaran. Properties that characterize LogCFL. J. Comput. Syst. Sci., 43(2):380–404,
1991.

[Ven06] H. Venkateswaran. Derandomization of probabilistic auxiliary pushdown automata classes.
IEEE Conference on Computational Complexity, pages 355–370, 2006.

[Wig94] Avi Wigderson. NL/poly ⊆ ⊕L/poly (preliminary version). In Structure in Complexity Theory
Conference, pages 59–62, 1994.

22

Appendix

A Symmetric AuxPDAs

An auxiliary pushdown automaton (AuxPDA) is a multi-tape Turing machine with a two-way read-only
input tape, a pushdown tape, and one or more work tapes. The pushdown alphabet has a distinguished sym-
bol (say $) which is initially pushed on the pushdown tape. The machine is designed so that the pushdown
head never shifts left of $ or changes $. Further, the pushdown head can never shift left when scanning
any tape symbol unless it first erases (i.e., pops) that symbol, and it can never shift right from a square
unless it first prints (i.e., pushes) a nonblank symbol on that square. Space on an AuxPDA is the space used
on the work tapes without counting the space on the pushdown tape. Formally, an AuxPDA is an 8-tuple
M = (Q,Σ,Σ0,Σα, l,∆, s, F), where Q is a finite set of states, Σ is a finite tape alphabet, Σ0 ⊆ Σ is the
input alphabet, Σα ⊆ Σ is the pushdown alphabet, l is the number of tapes, s ∈ Q is the initial state, F ⊆ Q
is the set of final states and ∆ is a finite set of transitions.

We first define the transition of an AuxPDA that enable the AuxPDA to “peek” one square right or left
on the input and work tapes and one square below the top symbol of the pushdown tape while changing its
configuration. A transition is of the form (p,S, t1, . . . , tl, q), where p and q are states, S is a stack triple, l
is the number of tapes, and t1, . . . , tl are tape triples. A stack triple is either of the form (i) (αaαb, P, αcαd),
where αa, αb, αc, αd ∈ Σα and P is +1 or -1 ; or is of the form (ii) (αa, 0, αb), where αa, αb ∈ Σα. A
tape triple is either of the form (i) (ab,D, cd), where a, b, c, d ∈ Σ and D is +1 or -1; or is of the form (ii)
(a, 0, b), where a, b ∈ Σ.

A transition of the form (p,S, t1, . . . , tl, q) signifies that M moves from state p to state q according to
the stack and tape triples. The tape triple ti = (ab,+l, cd) signifies that when M is scanning symbol a on
tape ti, and with the square just to the right of the scanned square containing symbol b, M may rewrite these
two squares to contain symbols c and d, respectively, move its tape head one square to the right. Similarly,
a transition (ab,−1, cd) signifies a potential left movement of the tape head, except that now the scanned
symbol must be b and the one to its left a and these are rewritten as d and c, respectively. The tape triple
(a, 0, b) signifies that M replaces the symbol a with b without moving its head position. The stack triple is
defined analogously with P = +1 (resp. P = −1) corresponding to a push (resp. pop) operation on the
pushdown tape.

The surface configuration (introduced by Cook [Coo71]) of an AuxPDA on an input w consists of the
state, contents and head positions of the work tapes, the head position of the input tape and the topmost
symbol of the stack. Note that for a space S(n)-bounded AuxPDA, its surface configurations take only
O(S(n)) space. In the rest of this section, we will refer to surface configurations as configurations. Let
C(M) denote the set of all configurations of M . For an input w, and C1, C2 ∈ C(M) we write C1 `M C2 to
denote that C1 “yields” C2. A computation by M is a sequence C0 `M C1`M . . . `M Cn, where n ≥ 0 and
C0, . . . , Cn ∈ C(M). The reflexive, transitive closure of `M is denoted by `∗M and the transitive closure
is denoted by `+

M . An AuxPDA M is nondeterministic (resp. deterministic) if `M is multi-valued (resp.
single-valued).

Since the tape triples and stack triples ofM enable it to peek into only a constant number of symbols,M
can be simulated by a standard AuxPDA extending the notion of big-headed Turing machines [Hen77]. The
“peeking” version ofM enables us to define symmetric computation. Each transition δ = (p,S, t1, . . . , tl, q)
has an inverse δ−1 = (q,S−1, t−1

1 , . . . , t−1
l , p) where if S = (α, P, β) then S−1 = (β,−P, α) and for

i = 1, . . . , k if ti = (a,D, b) then ti−1 = (b,−D, a).
The inverse of an AuxPDA M = (Q,Σ,Σ0,Σα, l,∆, s, F) is M−1 = (Q,Σ,Σ0,Σα, l,∆

−1, s, F),

23

where ∆−1 = {δ−1 : δ ∈ ∆}. An AuxPDA is symmetric if it is its own inverse i.e., if δ−1 ∈ ∆ whenever δ ∈
∆. The symmetric closure of an AuxPDAM = (Q,Σ,Σ0,Σα, l,∆, s, F) isM = (Q,Σ,Σ0,Σα, l,∆∪∆−1, s, F).
Note that the symmetric closure of an AuxPDA is symmetric and a symmetric AuxPDA is its own symmetric
closure. We now define the complexity class SLogCFL.

SLogCFL is the class of languages accepted by log space bounded and polynomial time bounded
symmetric AuxPDA.

Let # be a new special symbol in the tape alphabet that does not belong to input alphabet. For an
AuxPDA M , M# is its normal form such that (1) M and M# accept the same language in the same space
bound, and have the same number of tapes; (2) M# has no transitions into its initial state or out of any final
state; (3) for any configurations C1, C2 ∈ C(M#) if C1`M#C2 then |C1| ≤ |C2|, where |C| represents the
space of C. M# is constructed from M by adding a new initial state and transitions from it to the old initial
state; eliminating any transitions out of final states; and introducing a new pseudoblank symbol which M#

writes instead of writing (or rewriting) a blank on a worktape, and which M# treats as indistinguishable
from a blank when seen on a worktape. M# is the symmetric closure of M#.

The following lemma is proved by Lewis and Papadimitriou [LP82] in the context of symmetric Turing
machines. By our definition of symmetric AuxPDA’s, its proof follows by treating the “configurations” of
a symmetric Turing machine as the “surface configurations” of a symmetric AuxPDA and augmenting the
transitions with stack triples. We skip its proof since it is essentially the proof of [LP82].

Lemma A.1. Let M = (Q,Σ,Σ0,Σα, l,∆, s, F) be any AuxPDA, and let A ⊆ C(M). Suppose that
(a) for any A1, A2 ∈ A, if A1 `+A

M A2 then A2 `+A
M A1

(b) for any A ∈ A ∪ I(M), and B /∈ A and any C1, C2, C3, if A `∗AM C1 a∗AM C2 aM B `M C3, then
C2 = C3

(c) for any A1 ∈ A ∪ I(M), any A2 ∈ A, and any B, if A1 `∗AM B a∗AM A2 then A1 = A2.
Then M# accepts the same language as M in the same space as M .

Theorem 3.1 LogDCFL ⊆ SLogCFL ⊆ LogCFL.

Proof. Let M be a deterministic logspace bounded AuxPDA accepting a language L ∈ LogDCFL. Then
M satisfies the hypothesis of Lemma A.1, withA = ∅. M satisfies the hypothesis (a) and (c) trivially. Since
M is deterministic it satisfies the hypothesis (b). Hence M# accepts L. Hence, LogDCFL⊆ SLogCFL.
The second inclusion is trivial, since nondeterminism is more general than symmetry.

Now that we have the definition and properties of SLogCFL, the proofs of the following theorem and
its corollary are similar to those of Theorem 2.2 and Corollary 2.3. It is routine to check that the AuxPDA
thus constructed, satisfies the properties of Lemma A.1.

Theorem 3.2 UNDIRECTED ST-REALIZABILITY is SLogCFL-complete.

Corollary 3.3 UNDIRECTED ST-REALIZABILITY with no ε edges is SLogCFL-complete.

B Proofs

Theorem 2.2 ST-REALIZABILITY is LogCFL-complete.

24

Proof. We first show that ST-REALIZABILITY is in LogCFL. Let 〈G(V,E), s, t〉 be an instance of ST-
REALIZABILITY. An AuxPDA (sayM) deciding ST-REALIZABILITY operates by starting at node s and
nondeterministically guessing the nodes of a directed path from s to t.M records the position of the current
node at each step on the work tape. If the current node is u, M nondeterministically selects the next node
v such that (u, v) is a directed edge in H . Let the labels of u and v be αu and αv respectively. If (u, v) is
labeled push,M pushes αv onto its pushdown tape. If (u, v) is labeled pop, it pops αu from its pushdown
tape and verifies that the new symbol on the stack is αv. If not, it terminates and rejects. If (u, v) is labeled
ε then M checks if αu and αv are equal. If not, it terminates and rejects. M repeats this action until it
reaches node t with an empty pushdown tape and accepts, or until it has gone on for N steps and rejects,
where |V | = N is the number of nodes in G. Hence ST-REALIZABILITY is in LogCFL.

We now show a log space reduction from any language L in LogCFL to ST-REALIZABILITY. LetM
be an AuxPDA deciding L in log space. Given an input w, we construct a directed graph H along with the
vertex and labels and two special vertices s and t such thatH has a realizable path from s to t if and only if
M accepts w.

The nodes of H are the configurations of M on w. For configuration A and B of M on w, the pair
(A,B) is an edge ofH ifB is one of the possible next configurations ofM starting atA. We say thatA yields
B. The vertices of H are labeled with the topmost symbol of the stack in the corresponding configuration
ofM. The edge (A,B) is labeled push (resp. pop) ifM performs a push (resp. pop) operation to reach
from A to B. IfM reaches from A to B without a push or pop then the edge (A,B) is labeled ε. Node
s is the start configuration ofM on w. We may assume thatM has a unique accepting configuration, and
we designate this configuration to be node t. This mapping reduces L to ST-REALIZABILITY because,
whenever M accepts w, some branch of its computation accepts, which corresponds to a realizable path
from s to t in H. Conversely, if some realizable path exists from s to t in H, some computation branch
accepts when M runs on input w. The reduction can be performed by a log space transducer which, on
input w, outputs a description ofH along with the vertex and edge labels.

Corollary 2.3 ST-REALIZABILITY with no ε edges is LogCFL-complete.

Proof. We replace each directed edge (u, v) labeled with ε with two directed edges (u,w) and (w, v), where
w is a new node. The label of (u,w) (resp. (w, v)) is set to push (resp. pop). Repeat this for every edge,
adding a new node every time. We introduce a new label αk+1 and label all the new nodes with αk+1. It is
easy to see that a path from s to t is realizable in the original graph if and only if it is realizable in the new
graph. Hence ST-REALIZABILITY reduces to ST-REALIZABILITY with no ε edges.

Equivalently, we may assume that an AuxPDA always pushes or pops a symbol at every step. If an
AuxPDA doesn’t push or a pop at every step then we introduce an extra alphabet in its stack alphabet which
is pushed onto the stack when nothing is done to the stack. This alphabet is first popped before performing
a valid stack move.

Theorem 4.4 NL = 1LogCFL.

Proof. 1LogCFL⊆NL: An NL-machine (sayM) non-deterministically guesses an s-t path (say P).M
traverses the edges along P and maintains a counter C. M increments (resp. decrements) C if the current
edge is labeled push (resp. pop). If C was ever negative then M rejects. M accepts iff C = 0 when it
reaches t.

25

NL ⊆ 1LogCFL: We replace each directed edge (say (u, v)) of ST-CONNECTIVITY by two directed
edges (u,w) and (w, v) and label them push and pop respectively. We add a new vertex w for each edge
(u, v). There is an s-t path in the original graph iff there is a realizable path (according to the definition
from Section 4.2.1) in the modified graph.

Theorem 4.6 BALANCED ST-CONNECTIVITY is 1SGSLogCFL-complete.

Proof. BALANCED ST-CONNECTIVITY ∈ 1SGSLogCFL: Let G(V,E) be an instance of BALANCED

ST-CONNECTIVITY. Let G′(V,E′) be the underlying undirected graph of G. If (u, v) ∈ E and (v, u) ∈ E
then we label the edges (u, v) and (v, u) of G′ with ε. If (u, v) ∈ E and (v, u) /∈ E then we label the
edge (u, v) of G′ with push and label the edge (v, u) of G′ with pop. Note that the edge labels of G′ are
symmetric. There is a balanced s-t path in G iff there is a realizable s-t path (according to the definition
from Section 4.2.3) in G′.
BALANCED ST-CONNECTIVITY is 1SGSLogCFL-hard: An instance of 1SGSLogCFL is an undi-
rected graph (say G) with edges labeled from {push, pop, ε}. These edge labels are symmetric as defined
in Section 3. We construct a directed graph H on the same vertex set. If the edge (u, v) of G is labeled ε
we add the edges (u, v) and (v, u) in H . If the edge (u, v) is labeled push (by symmetry the edge (v, u) is
labeled pop) we add a directed edge u, v in H . There is a realizable s-t path in G iff there is a balanced s-t
path in H .

Theorem 4.7 POSITIVE BALANCED ST-CONNECTIVITY is 1SLogCFL-complete.

Proof. Similar to the proof of Theorem 4.6.

Theorem 5.2 Let G be an instance of ST-REALIZABILITY. G∗ = 〈Υ∗, E∗〉 can be computed using O(logn)
repeated applications of Square(G).

Proof. We first state the relevant definitions and lemmas from [NR95]. A path description is a triple
(A,B, i) consisting of two surface configurations A and B and an even natural number i. A description
is realizable if A and B are realizable. By Corollary 2.3 we may assume that there are no ε edges in an
instance of ST-REALIZABILITY, and hence i can only be an even number. In particular, (A,B, i) represents
several paths of length i between A and B.

The relation ` shows how to split computation paths recursively into shorter and shorter paths until we
end up with trivial paths. Let x = (A,B, i), y = (C,D, j), and z = (E,B, k) be path descriptions. Then
we write y, z ` x and z, y ` x if and only if

(1) the level of the pushdown is equal for A, E and B;
(2) there exists a computation from A to C in one step, pushing a symbol α onto the pushdown tape

during this step;
(3) there exists a computation from D to E in one step, popping α from the pushdown tape; and
(4) j + k = i− 2.
Note that identical pushdown heights of A, E and B imply that C and D have same pushdown height.

Also, j and k are always even. In this way we can reduce the checking of realizability of x to the checking
of the realizability of smaller paths y and z. We now state two crucial lemmas from [NR95] that gives a

26

“balanced” partition of realizable computation. The proofs of these lemmas are based on a recursive descent
using the properties of the decomposition relation `.

Lemma B.1. (Niedermeier and Rossmanith [NR95]) Let (A,B, i) denote a realizable path description for
a fixed computation path of length i ≥ 2 between A and B. Then there exist uniquely determined subpaths
(C,D, i1), (E,F, i2) and (G,D, i3) of (A,B, i) such that (E,F, i2), (G,D, i3) ` (C,D, i1) and i2, i3 ≤
i/2 < i1.

Lemma B.1 splits a fixed computation path into three paths. The first two paths are the subpaths
(E,F, i2) and (G,D, i3) and the third one is the path (A,B, i) with gap (C,D, i1). This means that the
verification of the realizability of (A,B, i) can be reduced to showing that (E,F, i2), (G,D, i3) and the
pair-with-gap (A, (C,D, i1), B, i) are realizable.

A description for a path with gap (A, (C,D, j), B, i) consists of four surface configurations A,B,C,D
and two even numbers i and j with j ≤ i. A path with gap (A, (C,D, j), B, i) is called realizable iff
(A (C,D) B) and there exists a computation path from A to C and one from D to B with total
number of steps j − i. Now we generalize the decomposition relation ` to computation paths with gap.
Let x = (A, (C,D, j), B, i) and, first, let y = (E, (C,D, j), F, k) and z = (G,B, l) or, second, let
y = (E,F, k), z = (G, (C,D, j), B, l). Then we write y, z ` x and z, y ` x if and only if

(1) the level of the pushdown is equal for A,G and B;
(2) there exists one step from A to E pushing a symbol α onto the pushdown tape;
(3) there is one step from F to G popping α from the pushdown tape; and
(4) k + l = i− 2.

The following lemma is the analogue to Lemma B.1 for a fixed computation path with gap.

Lemma B.2. (Niedermeier and Rossmanith [NR95]) Let (A, (C,D, j), B, i), i− j ≥ 2 denote a realizable
path with gap. Then there exist uniquely determined paths y = (E, (C,D, j), F, i1) and either

(1) z1 = (G, (C,D, j), H, i2) and z2 = (I, F, i3), such that z1, z2 ` y and i2 − j ≤ (i− j)/2 < i1 − j
or

(2) z1 = (G,H, i2) and z2 = (I, (C,D, j), F, i3), such that z1, z2 ` y and i3 − j ≤ (i− j)/2 < i1 − j.

Lemma B.2 is used to decompose paths with gaps in a balanced way. To check the realizability of
(A, (C,D, j), B, i) we examine the realizability of (A, (E,F, i1), B, i), z1 and z2. Both possible subpaths
with gap have length less than or equal to half of the lenght of the whole path with gap (A, (C,D, j), B, i).
The arising subpath without gap may have a maximum length of i − j − 2 and will be split in a balanced
way using Lemma B.1.

Square(〈Υ, E〉)

for all a, b ∈ V update E as follows :

E [a, b] =
∑

c,e,f,g,d

Υ[a, (c, d), b]·Υ[c, (e, f), g]·E [e, f]·E [g, d]

27

for all a, b, c, d ∈ V update Υ as follows :

Υ[a, (c, d), b] =
∑

c′,e′,f ′,g′,d′

Υ[a, (c′d′), b]·Υ[c′, (e′, f ′), g′]·Υ[e′, (c, d), f ′]·E [g′, d′]

+
∑

c′,e′,f ′,g′,d′

Υ[a, (c′d′), b]·Υ[c′, (e′, f ′), g′]·E [e′, f ′]·Υ[g′, (c, d), d′]

return 〈Υ, E〉

Square(〈Υ, E〉)
E = (Υ⊗2 ((Υ⊗2 E)⊗1 E))
Υ = (Υ⊗5 ((Υ⊗5 Υ)⊗3 E)) + (Υ⊗5 ((Υ⊗2 E)⊗4 Υ))
return 〈Υ, E〉

Our Square algorithm is based on Lemma B.1 and Lemma B.2. Since the summation is taken over all
possible intermediate surface configurations, the matrices E and Υ are populated in a bottom-up manner.
Based on the above lemmas, Niedermeier and Rossmanith [NR95] constructed an SAC1 circuit simulating
the corresponding AuxPDA. The circuit consists of gates denoted by 〈A,B, i〉 and 〈A, (C,D, j), B, i〉 that
compute the realizability of the corresponding path descriptions. Our Square algorithm is inspired by
their approach. Translating the sum symbols into (unbounded) OR-gates and multiplication symbols into
(bounded) AND-gates we get the corresponding SAC1 circuit for a given vertices s and t of the graph G.
Each Square operation on the graph G = 〈Υ, E〉 reduces the depth of the corresponding circuit by O(1).
Since our squaring operation is used to update all the entries of E and Υ, after O(logn) repeated squaring
operations, we can decide the s-t realizability for any two given vertices s and t. Similar argument holds for
paths with gap.

Hence, we can compute the transitive closure G∗ = 〈Υ∗, E∗〉 using O(logn) repeated squaring opera-
tions on G = 〈Υ, E〉.

Theorem 5.3 Let G be an instance of ST-REALIZABILITY. G∗ = 〈Υ∗, E∗〉 can be computed using O(logn)
repeated applications of SimpleSquare(G).

Proof. For realizable paths (both standard and gap paths) of length at most four, it is easy to verify that an
application of SimpleSquare reduces the path length by a factor of at least 3

4 . For paths of length greater
than four, we divide the path into three smaller paths using Lemma B.1 for standard paths and Lemma B.2
for path with gaps and use induction. This implies that one applcation of SimpleSquare reduces the path
length by a constant factor. HenceO(logn) repeated applications of SimpleSquare(G) suffice to compute
the transitive closure G∗.

Theorem 6.4 The algorithm Connect finds G∗ = 〈Υ∗, E∗〉 in parallel time O(log2n) using n4 processors in
the CREW PRAM model.

28

Proof. The following observations state that the hooking process creates pseudotrees on vertices from V
and V 2. A closer look at the contraction step reveals that it is essentially simulating SymmetricSquare.
Hence the overall running time of the contraction step is O(logn) time.

Observation : Let Vs ⊆ V denote an s-component of G such that |Vs| ≥ 2 and define the function
C : Vs → Vs by C(i) = StandardHook(i). The function C defines a directed graph Gs(C) = (Vs, F)
where F = {(i, C(i)) | i ∈ Vs}. Then Gs(C) is a collection of pseudotrees with circumference one, and
the smallest-numbered vertex in each pseudotree is in the cycle of the pseudotree.

Observation : Let Vg ⊆ V 2 denote a g-component of G such that |Vg| ≥ 2 and define the function
C : Vg → Vg by C(i, j) = GapHook(i, j). The function C defines a directed graph Gg(C) = (Vg, F)
where F = {((i, j), C(i, j)) | (i, j) ∈ Vg}. Then Gg(C) is a collection of pseudotrees with circumference
one, and the lexicographically smallest vertex in each pseudotree is in the cycle of the pseudotree.

Time and Processor Bounds : The main loop of the Connect program is executed O(log n) times. Within
the loop, the iteration at step 14 is executed O(log n) times. Thus the algorithm requires Ω(log2n) time.
Steps 3, 12, 18 require O(1) time using Ω(n) processors. Steps 4, 13, 19 require O(1) time using Ω(n2)
processors. Steps 14-17 require O(logn) time using Ω(n2) processors. StandardHook and GapHook
are essentially computing minimum of at most O(n2) integers (accessing both E and Υ) and hence can be
programmed to execute in O(logn) time using O(n2) processors. Hence the total running time is O(log2n).
The total number of processors used is O(n4). The correctness of the algorithm follows from Corollary
6.3.

C BALANCED ST-CONNECTIVITY

In all the algorithms presented in this paper we are only looking for balanced paths of length at most n.
The example in Figure 2 shows an instance of BALANCED ST-CONNECTIVITY where the only balanced
path between s and t is of length Θ(n2). The directed simple path from s to t is of length n/2. There is a
cycle of length n/2 at the vertex v. All the edges (except (v, u)) on this cycle are undirected. The balanced
path from s to t is obtained by traversing from s to v, traversing the cycle clockwise for n/2 times and then
traversing from v to t. This path is not simple.

Figure 2: Example.

We now define two more connectivity problems. A path P from s to t is called k-balanced if the number

29

of forward edges along P minus the number of backward edges along P is equal to k. A path P from s to t
is called positive k-balanced if P is positive and k-balanced.

K-BALANCED ST-CONNECTIVITY : Given a directed graph G(V,E) and two distinguished nodes s
and t, decide if there is k-balanced path (of length at most n) between s and t.

POSITIVE K-BALANCED ST-CONNECTIVITY : Given a directed graph G(V,E) and two distinguished
nodes s and t, decide if there is positive k-balanced path (of length at most n) between s and t.

K-BALANCED ST-CONNECTIVITY can be solved as follows : Add a new vertex t′ and a directed path
(with all new vertices) of length k from t′ to t. Find a balanced path from s to t′ in this modified graph.
POSITIVE K-BALANCED ST-CONNECTIVITY can be solved similarly.

30

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

