
Verifying Computations with Streaming Interactive Proofs

Graham Cormode

AT&T Labs—Research
graham@research.att.com

Justin Thaler ∗

SEAS, Harvard University
jthaler@seas.harvard.edu

Ke Yi

HKUST, Hong Kong
yike@cse.ust.hk

Abstract

Applications based on outsourcing computation require guarantees to the data owner that the desired
computation has been performed correctly by the service provider. Methods based on proof systems can
give the data owner the necessary assurance, but previous work does not give a sufficiently scalable and
practical solution, requiring a lot of time, space or computational power for both parties. In this paper,
we develop new proof protocols for verifying computations which are streaming in nature: the verifier
(data owner) needs only a single pass over the input storing a logarithmic amount of information, and
follows a simple protocol with a prover (service provider) that takes a logarithmic number of rounds.
A dishonest prover fools the verifier with only polynomially small probability, while an honest prover’s
answer is always accepted.

We first observe that some existing constructions for interactive proof systems can be modified to
work with streaming verifiers. The consequences are powerful: these constructions imply that all prob-
lems in the complexity class NP have computationally sound streaming protocols requiring a polylog-
arithmic communication and space, and that all problems in log-space uniform NC have statistically
sound protocols with the same space and communication requirements.

We then seek to bridge the gap between theory and practice by developing improved and simplified
protocols for a variety of problems of central importance in streaming and database processing. All of our
protocols achieve statistical soundness and most require only logarithmic communication between prover
and verifier. We also experimentally demonstrate their practicality and scalability. All these problems
require linear space in the traditional streaming model, showing that adding a prover can exponentially
reduce the effort needed by the verifier.

1 Introduction

Efficient proof verification has long played a central role in complexity theory. For example, the class
NP can be equivalently defined as the set of languages with proofs of membership that can be verified in
polynomial time. The most general proof verification model is the interactive proof system where there
is a resource-limited verifier V and an all-powerful prover P . To solve a problem, the verifier initiates a
conversation with the prover, who solves the problem and proves the validity of his answer, following an
established (randomized) protocol.

This model is directly relevant to the setting of outsourcing computations to a (potentially untrusted)
service provider. A wide variety of scenarios fit this template: in one extreme, a large business outsources its
data to another company to store and process; at the other end of the scale, a hardware co-processor performs
some computations within an embedded system. In both these situations, the data owner (the verifier in our

∗Supported by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2010)

model) wants to be assured that the computations performed by the service provider (the prover) are correct,
without having to take the effort to perform the computation himself. A natural approach is to use a proof
protocol to prove the correctness of the answer. However, existing protocols in complexity theory are mostly
of theoretical interest, requiring a lot of time and space for both parties. Historically, protocols have required
that the verifier must retain the full input, whereas in many practical situations the verifier can only process
the input in a one-pass streaming fashion.

In this paper we introduce a proof system over data streams. That is, the verifier sees a data stream and
tries to solve a (potentially difficult) problem with the help of a more powerful prover who sees the same
stream. At the end of the stream, they conduct a conversation following an established protocol, through
which an honest prover will always solve the problem and make the verifier accept its results, whereas any
dishonest prover will not be able to fool the verifier into accepting a wrong answer with probability more
than 1

3 .1 In the streaming setting, we are most interested in the space complexity (of the verifier). At the
same time we want the other costs of the verification process to be bounded. So we define an (s, t)-protocol
to be one where the space usage of V is O(s) and the total communication cost of the conversation between
P and V is O(t). We will measure both s and t in terms of words, where each word can represent quantities
polynomial in u, a measure of the size of universe of the computations.

Note that if t = 0 the model degenerates to the standard streaming model. We are interested in whether
it is possible to increase the computing power by communicating with a third party, and verifiably solve
some problems that are known to be hard in the standard streaming model. This paper presents positive
answers to a suite of problems, all of which require linear space in the streaming model. We begin by
observing that a variation of Probabistically Checkable Proofs (PCPs) due to Kilian (Universal Arguments)
[15] as well as a construction of Goldwasser, Kalai, and Rothblum [12] can be modified to work with
streaming verifiers. This implies that all problems in the complexity class NP have computationally sound
(poly logu,poly logu) protocols, meaning that a computationally bounded dishonest prover cannot fool the
verifier under standard cryptographic assumptions. It also implies that all problems in NC have statistically
sound (poly logu,poly logu) protocols. The power and generality of these results can be contrasted with
most results in the streaming literature, which normally apply only to one or a few problems at a time.
These results demonstrate in principle the power of the streaming interactive proof model, but they may not
yield practical verification protocols.

We then improve upon the construction of Goldwasser et al. by providing protocols that are not only
asymptotically more efficient in both space and communication, but also easy to implement and highly
practical, for the following problems: self join size, inner product, frequency moments, various sketches,
range query, range-sum query, dictionary, predecessor, and index. These problems are all of considerable
importance and many have been studied extensively in the standard streaming model and shown to require
linear space. As a result, approximations have to be allowed if sub-linear space is desired (for the first 3
problems); some of the problems do not have even approximate streaming algorithms (the last 5 problems).
On the other hand, we solve them all exactly in our model. Formal definitions of these problems are given
in Section 1.3.

Although our focus is to minimize the space usage of the verifier and the communication cost of the
verification, these new protocols are also very efficient in terms of both parties’ running time. In particular,
when processing the stream, the verifier spends O(logu) time per element. During verification the verifier
spends O(logu) time while the (honest) prover runs in near-linear time. So although the model allows
a prover with unlimited power, an honest prover can execute our protocols efficiently. This makes our
protocols simple enough to be deployed in real computation-outsourcing situations. Meanwhile, the model

1In fact, our protocols let this probability be set arbitrarily small.

2

as defined ensures that even a computationally unbounded dishonest prover will not be able to fool the
resource-limited verifier.

1.1 Theoretical significance

Proof verification lies at the heart of complexity theory. Many classical results show that the variations of
this verifier-prover setting characterize many complexity classes. In the most general case where there are no
restrictions on the interaction, beyond that the verification (hence also communication) is done in polynomial
time, the resulting class IP, can be shown to be equivalent to PSPACE [22]. If only a constant number
of rounds of interaction between prover and verifier are allowed, the class AM (short for Arthur-Merlin
protocols) results.2 It is known that AM⊆ Π2P⊆ PSPACE = IP. The (possibly) smaller class MA⊆ AM
restricts the communication to be one-way from the prover to the verifier. Finally, if there is no probability
of failure on the verifier’s side allowed, the class boils down to NP. These classes all generalize the case
without communication, captured by RP or P, depending on whether a probability of failure is allowed. The
concept of probabilistically checkable proofs [3] is also closely related: here, the prover is replaced by a
proof in redundant form, and the verifier need access only a few (randomly chosen) bits of the proof.

All these classical results are for the non-streaming setting; indeed, most data streaming results are
concerned with the complexity of solving or approximating problems known to be in P. The difficulty
comes from the additional constraints imposed by the streaming model: sublinear space, ideally logarithmic
or polylogarithmic, and a single pass over the data. This severely reduces the computational power, and
there are many seemingly easy problems (such as the problems considered in this paper) that are provably
“hard” for this model, i.e., they require at least linear space if only one pass is allowed. Although prior work
on interactive proofs has studied the verifier’s space complexity [10, 12], these constructions did not restrict
the verifier to make only one pass over the data. Such extra passes can make a significant difference in terms
of the difficulty of the problem. For example, streaming problems considered in this paper, such as index,
dictionary, range query, range-sum query, predecessor, become trivial if just one extra pass is allowed over
the whole input data.

Therefore, our goal is to extend the computational power of the streaming model by considering it in the
interactive proof framework, hoping for an improvement as significant as from RP to PSPACE. Our results
show that by allowing only a logarithmic amount of interaction between the verifier and the prover, the space
cost of many problems can be improved exponentially: from linear to logarithmic for the problems we focus
on. We therefore obtain a strong separation result, since the proof that these problems require linear space in
the standard streaming model is independent of any complexity-theoretic conjectures. Further characterizing
the class of problems that can be solved in the streaming interactive proof model remains a challenging open
question.

Our work is motivated by prior work [24, 6] on verification of streaming computations that had stronger
constraints. In the first model [24], the prover may send only the answer to the computation, which must
be verified by V using a small sketch computed from the input stream of size n. Protocols were defined to
verify identity and near-identity, and so because of the size of the answer, had s = 1 and t = n. Subsequent
work showed that problems of showing a matching and connectedness in a graph could be solved in the
same bounds, in a model where the prover’s message was restricted to be a permutation of the input alone
[20].

[6] introduced the notion of a streaming verifier, who must read first the input and then the proof under

2Strictly speaking, in AM the verifier is required to reveal his random bits, but it is known that this does not affect the model’s
power [13, 4].

3

space constraints. This can be thought of as the MA model in the streaming setting. However, this does not
dramatically improve the computational power. In this model, INDEX (see the definition in Section 1.3) can
be solved using a (

√
n,
√

n)-protocol and there is also a matching lower bound of st = Ω(n) [6]; note that
both (n,1)- and (1,n)-protocols are trivial, so the contribution of [6] is achieving a tradeoff between s and
t. In this paper, we show that allowing more interaction between the prover and the verifier exponentially
reduces st for this and other problems that are hard in the standard streaming model.

1.2 Practical implications

Our study is motivated by developing applications in data outsourcing and trustworthy computing in gen-
eral. In the increasingly popular model of “cloud computing”, individuals or small businesses delegate the
storage and processing of their data to a powerful but potentially untrusted third party, the “cloud”. This
results in cost-savings, since the data owner no longer has to maintain expensive data storage and processing
infrastructure. However, it is important that the data owner is assured that their data is processed accurately
and completely by the cloud. Already, there has been work on “proofs of retrievability” in the cryptography
community to verify that the data is stored correctly by the cloud [14]. In this paper, we provide “proofs of
queries” which allow the cloud to demonstrate that the results of queries are correct while keeping the data
owner’s computational effort minimal.

Our “proofs of queries” only need the data owner (taking the role of verifier V) to make a single stream-
ing pass over the original data. This fits the cloud setting well: the pass over the input can take place
incrementally as the verifier uploads data to the cloud. So the verifier may never need to hold the entirety of
the data, since it can be shipped up to the cloud to store as it is collected. Without these new protocols, the
verifier would either need to store the data in full, or retrieve the whole data from the cloud for each query:
either way negates the benefits of the cloud model. Instead, our methods require the verifier to track only a
logarithmic amount of information and follow a simple protocol with logarithmic communication to verify
each query.

Query verification/authentication for data outsourcing has been a popular topic recently in the database
community. The majority of the work is in the non-streaming setting; see [23] and the references therein.
More recently, there have been a few works which adopt a streaming-like model for the verifier, although
they still require linear memory resources. For example, maintaining a Merkle tree [18] (a binary tree
where each internal node is a cryptographic hash of its children) takes space linear in the size of the tree.
Li et al. [17] considered verifying queries on a data stream with sliding windows via Merkle trees, hence
the verifier’s space is proportional to the window size. The protocol of Papadopoulos et al. [19] verifies a
continuous query over streaming data, again requiring linear space on the verifier’s side in the worst case.
Lastly, we distinguish the two types of security guarantees provided: guarantees based on cryptographic
assumptions (termed computational soundness), and probabilistic guarantees (termed statistical soundness).
Our main results guarantee statistical soundness: even if a (dishonest) prover has unlimited computing
power, it is not possible to fool the verifier with high probability because one cannot ensure collisions for
randomly chosen hash functions known only to the verifier [24, 6]. In contrast, the cryptographic setting
assumes the prover is unable to break certain cryptosystems (typically, is unable to find collisions under
cryptographic hash functions such as SHA, as in [17, 19]). This is weaker than the statistical case: a
determined adversary could eventually find hash collisions and fool the verifier.

Although interactive proof systems and other notions of proof verification have been extensively studied,
they are primarily used to establish complexity results and hardness of approximation. Because they are usu-
ally concerned with answering “hard” problems, the (honest) prover’s time cost is usually super-polynomial.
As such, these schemes have had very little practical impact thus far. More recently, there has been work

4

aimed at reducing the cost of the prover to polynomial [12]. As mentioned above, the protocols designed
there allow the verifier to make multiple passes over the data, but it turns out that this construction also
works with a streaming (one pass) verifier. Although of striking generality, the protocols that result are still
complex, and require (polylogarithmically) many words of space and rounds of interaction between prover
and verifier. In contrast, our protocols for the problems defined in Section 1.3 require only logarithmic space
and communication (and nearly linear running time for both prover and verifier). Thus we claim that they
are highly practical for use in verifying outsourced query processing.

1.3 Problems

We now define some canonical problems, chosen to demonstrate the power of the interactive proof setting,
and are suitably abstract to capture a wide variety of possible applications. Let [u] = {0, . . . ,u− 1} be the
universe from which all data elements are drawn.

INDEX: Given a stream of u bits b1, . . . ,bu, followed by an index q, the answer is bq.

PREDECESSOR: Given a stream of n elements in [u], followed by a query q ∈ [u], the answer is the largest p
in the stream such that p≤ q. We assume that 0 always appears in the stream.

DICTIONARY: The input is a stream of n≤ u (key, value) pairs, where both the key and the value are drawn
from the universe [u], and all keys are distinct. The stream is followed by a query q ∈ [u]. If q is one of the
keys, then the answer is the corresponding value; otherwise the answer is “not found”.

RANGE QUERY: Given a stream of n elements in [u], followed by a range query [qL,qR], the answer is the
set of all elements in the stream between qL and qR inclusive.

RANGE-SUM: The input is a stream of n (key, value) pairs, where both the key and the value are drawn from
the universe [u], and all keys are distinct. The stream is followed by a range query [qL,qR]. The answer is
the sum of all the values with keys between qL and qR inclusive.

SELF-JOIN SIZE: Given a stream of n elements from [u], compute ∑i∈[u] a2
i where ai is the number of

occurrences of i in the stream. This is also known as the second frequency moment.

FREQUENCY MOMENTS: In general, for any integer k ≥ 1, ∑i∈[u] ak
i is called the k-th frequency moment of

the vector a, written Fk(a).

INNER PRODUCT (or JOIN SIZE): Given two streams A and B with frequency vectors (a1, . . . ,au) and
(b1, . . . ,bu), respectively, compute ∑i∈[u] aibi.

These queries are broken into two groups. The first four are reporting queries, which ask for elements
from the input to be returned. INDEX is a classical problem that in the streaming model requires Ω(u) space
[16]. It is clear that PREDECESSOR, DICTIONARY, RANGE QUERY, RANGE-SUM are all more general
than INDEX and hence, also require linear space. These problems would be trivial if the query were fixed
before the data is seen. But in most applications, the user (the verifier) forms queries in response to other
information that is only known after the data has arrived.

The remaining queries are aggregation queries, computations that combine multiple elements from the
input. SELF-JOIN SIZE requires linear space in the streaming model [1] to solve exactly (although there are
space-efficient approximation algorithms). Since FREQUENCY MOMENTS and INNER PRODUCT are more
general than SELF-JOIN SIZE, they also require linear space.

Outline. In Section 2, we describe how the Universal Arguments of Kilian as well as the construction
of Goldwasser, Kalai, and Rothblum can be modified to work with streaming verifiers, thereby providing

5

space- and communication-efficient streaming protocols for all of NP and NC respectively. Subsequently,
we improve upon these protocols for many problems of central importance in streaming and database pro-
cessing. In Section 3 we give more efficient protocols to solve the aggregation queries (exactly), and in
Section 4 we provide protocols for the reporting queries. In both cases, our protocols require only O(logu)
space for the verifier V , and the total size of the interaction between the two parties is O(logu) over logu
rounds. In Section 5 we extend this approach to a class of frequency-based functions; this results in proto-
cols requiring O(logu) space and logu rounds, at the cost of more communication. An experimental study
in Section 6 shows that these protocols are practical. Concluding remarks are made in Section 7.

2 Proofs and Streams

Arithmetization and Low-Degree Extensions. Given a function f ′, arithmetization involves extending
the domain of f ′ to a field and replacing f ′ with its low-degree extension (LDE) f as a polynomial over
the field. The low-degree extension f can be interpreted as a high-distance encoding of f ′, and the error-
detecting properties of this code typically give the verifier considerable power over the prover.

More precisely, let integer ` be a parameter, and assume for presentation purposes that u = `d is a power
of `. Let a = (a1, . . . ,au) be a vector in [u]u. Later, we will think of a as the frequency-vector of a stream, or
sometimes as the (unaggregated) stream itself. We may interpret a as a function f ′ : [`]d → [u] as follows:
letting (i)`

k denote the k-th least significant digit of i in base-` representation, we associate each i ∈ [u] with
a vector ((i)`

1,(i)
`
2, . . . ,(i)

`
d) ∈ [`]d , and define f ′(i) = ai.

Pick a prime p such that u≤ p. The low-degree extension (LDE) of f ′ is a d-variate polynomial f over
the field Zp so that f (x) = f ′(x) for all x ∈ [`]d ; we alternatively refer to f as the LDE of a. Notice since
f is a polynomial over the field Zp, f (x) is defined for all x ∈ [p]d ; f essentially extends the domain of
f ′ from [`]d to [p]d . We can define the polynomial f : [p]d → Zp in a constructive manner as follows. Let
x = (x1, . . . ,xd) ∈ [p]d . First, note that the polynomial corresponding to a function which is 1 at location
v = (v1, . . . ,vd) ∈ [`]d and zero elsewhere in [`]d is

χv(x) =
d

∏
j=1

χv j(x j)

where χk(x j) is the Lagrange basis polynomial given by

(x j−0) · · ·(x j− (k−1))(x j− (k +1)) · · ·(x j− (`−1))
(k−0) · · ·(k− (k−1))(k− (k +1)) · · ·(k− (`−1))

,

which has the property that χk(x j) = 1 if x j = k and 0 for all x j 6= k,x j ∈ [`]. We then define

f (x) = ∑
v∈[`]d

avχv(x).

One can easily verify that such an f satisfies the requirement above.

Streaming Computation. Let a ∈ [u]u be an input; in the context of this paper, a will be a data stream,
and we seek to compute a query or statistical aggregate of a. Our first observation is that, in a number
of important constructions in the theory of proof systems, the verifier only needs access to a in order to
evaluate one or several randomly chosen locations in the LDE f of a (we explain in more detail why this
is true later). That is, the only information V need extract from the input is f (r) for a small number of

6

randomly chosen locations r ∈ [p]d . In particular, this is the case for a suitable instantiation of Kilian’s
Universal Arguments [15] and the “Interactive Proofs for Muggles” construction of Goldwasser et al. [12].
Moreover, in both cases, the location(s) r only depend on the random coin tosses of V , and do not depend
on the interaction with P . Therefore, to determine the value(s) r, V may toss all coins before observing the
input a (V remembers the coin tosses and keeps them private from P). V may then compute the values f (r)
while observing the input, and only afterward does V need to communicate with P .

We now make a second observation: given one-way access to a, a constant space verifier can compute
f (r) in a streaming fashion. Indeed, we may write f (r) = ∑

v∈[`]d
avχv(r).

V can therefore make one pass over the vector a, and each time V observes a new entry av of the input,
V may update

f (r)← f (r)+av ·χv(r).

Note that in order to maintain f (r), V only needs to keep f (r) and r, which takes d +1 words in [p].
It is already known that the construction of [12] (respectively, Universal Arguments) yield small-space

non-streaming verifiers and polylogarithmic communication for all problems in log-space uniform NC (re-
spectively, NP), and achieve statistical (respectively, computational) soundness. Below, we describe the
insights necessary to show that these results also hold for a streaming verifier.3

Streaming Universal Arguments. Recall that a probabilistically checkable proof (PCP) is a proof in redun-
dant form, such that the verifier need access only a few (randomly chosen) bits of the proof before deciding
whether to accept or reject. A Universal Argument effectively simulates a PCP while ensuring P need not
send the entire proof to V . We first describe this simulation, before describing a particular PCP system that,
when simulated by a Universal Argument, can be executed by a streaming verifier.

For a language L on input a, a Universal Argument consists of four messages: First, V sends P a
collision-resistant hash function h. Next, an honest P constructs a PCP π for a, and then constructs a
Merkle tree of π using h (the leaves of the tree are the bits of π) [18]. P then sends the value of the root of
the tree to V . This effectively “commits” P to the proof π; P cannot subsequently alter it without finding
collisions for h. Third, V sends P a list of the locations of π he needs to query. Finally, for each bit bi that is
queried, P responds with the value of all nodes on bi’s authentication path in the Merkle tree (note this path
has only logarithmic length). V checks, for each bit bi that the authentication path is correct relative to the
value of the root; if so, V is convinced P returned the correct value for bi as long as P cannot find a collision
for h. The theorem follows by combining this construction with the fact that there exist PCP systems in
which V only needs access to a in order to evaluate O(1) locations in the LDE f of a. We now justify this
last claim by describing such a PCP system.

In [5], Ben-Sasson et al. describe for any language in NP a PCP system in which V is not given explicit
access to the input; instead, V has oracle access to an encoding of the input a under an arbitrary error-
correcting code (to simplify a little). In their PCP system, V runs in polylogarithmic time and queries only
O(1) bits of the encoded input, and O(1) bits of the proof π . Moreover, these bits are determined non-
adaptively (specifically, they do not depend on a). We show this implies a PCP system that satisfies the
claim for any L ∈ NP. Indeed, let LDE(a) denote the truth-table of f ; i.e. LDE(a) is a list of elements in
the field Zp, one for each r ∈ Zd

p. There are (two-stage) concatenated codes whose first stage applies the
LDE operation to the input a (and whose second stage applies a code to turn the field elements in LDE(a)
into bits) that suffice as encodings of a [2]. Therefore, a streaming verifier with explicit access to the input
a may simulate the verifier V in the PCP system of Ben-Sasson et al: each time V queries a bit bi of the

3This fact was observed by Guy Rothblum; here, we present the details of the construction for completeness.

7

encoded input, there is a location r such that bi can be extracted from f (r).
A Universal Argument based on the PCP of the previous paragraph has two additional properties worth

mentioning. First, since V need only query O(1) bits of LDE(a) and otherwise runs in poly log time, we
obtain a streaming verifier that runs in near-linear time. Second, since V need only query O(1) bits of the
proof, and the authentication path of each bit in the Merkle tree is of length O(logu), it follows that the
communication complexity of the Universal Argument is O(logu) words. Putting all these pieces together
yields the following theorem:

Theorem 1. There are computationally sound (poly logu, logu) protocols for any problem in NP.

Theorem 1 implies that Universal Arguments can be implemented with a streaming verifier, but we
are not suggesting that this actually yields a practical proof system, even if we are satisfied with security
guarantees based on cryptographic assumptions. Indeed, even ignoring the complexity of constructing a
PCP, the prover in a Universal Argument may need to solve an NP-hard problem just to determine the
correct answer! However, Theorem 1 does demonstrate that in principle it is possible to have extremely
efficient verification systems with streaming verifiers even for problems that are computationally difficult in
a non-streaming setting.

Streaming “Interactive Proofs for Muggles”. In [12], V and P first agree on a circuit C of fan-in 2 that
computes the function of interest; C is assumed to be in layered form. P begins by claiming a value for
the output gate of the circuit. The protocol then proceeds iteratively from the output layer of C to the input
layer, with one iteration for each layer. Let v(i) be the vector of values that the gates in i-th layer of C take
on input x, with layer 1 corresponding to the output layer, and let f (i) be the LDE of v(i).

At a high level, in iteration 1, V reduces verifying the claimed value of the output gate to verifying
f (2)(r) for a random location r. Likewise, in iteration i, V reduces verifying f (i)(r) to verifying f (i+1)(r′)
for a random r′. Critically, the verifier’s final test requires only f (d)(r), the low-degree extension of the
input at the random location r, which can be chosen at random independent of the data or the circuit, and
hence computed by a streaming verifier. Note that each iteration takes logarithmically many rounds, with a
constant number of words of communication in each round. Therefore the protocol requires O(d logu) com-
munication in total. In particular, all problems that can be solved in log-space by non-streaming algorithms
(i.e. algorithms that can make multiple passes over the input) possess circuits of depth log2 u, and hence
there are (log3 u, log3 u) protocols for these problems.

Theorem 2 (Extending Theorem 3 in [12]). There are statistically sound (poly logu, poly logu) protocols
for any problem in log-space uniform NC.

Here, NC is the class of all problems decidable by circuits of polynomial size and polylogarithmic
depth; equivalently, the class of problems decidable in polylogarithmic time on a parallel computer with a
polynomial number of processors. This class includes, for example, many fundamental matrix problems
(e.g. determinant, product, inverse), and graph problems (e.g. minimum spanning tree, shortest paths) (see
[2, Chapter 6]).

Despite its powerful generality, the protocol implied by Theorem 2 is not optimal for many of the low-
complexity functions of most importance in streaming and database applications. The remainder of this
paper obtains improved, practical protocols for the fundamental problems listed in Section 1.3.

8

3 Interactive Proofs for Aggregation Queries

We describe a protocol for the aggregation queries with a quadratic improvement over that obtained from
Theorem 2. We describe our protocol over a more general stream where each element in the stream is an
(i,δ) pair. Initialize the vector a = (a0, . . . ,au−1) to be 0. A pair (i,δ) in the stream updates ai← ai +δ .

3.1 SELF-JOIN SIZE

We first explain the case of SELF-JOIN SIZE, which is F2 = ∑i∈[u] a2
i . In the SELF-JOIN SIZE problem we

have δ = 1 for all updates, but our protocol allows any δ , positive or negative. This generality is useful for
other queries considered later.

As in Section 2, let integer ` ≥ 2 be a parameter to be determined. We assume that u is a power of `
for ease of presentation. Pick a prime p such that u ≤ p ≤ 2u (by Bertrand’s Postulate, such a p always
exists). We also assume that p is chosen so that F2 = O(p), to keep the analysis simple. The protocol we
propose is similar to sum-check protocols in interactive proofs (see [2, Chapter 8]); given any d-variate
polynomial g over Zp, a sum-check protocol allows a polynomial-time verifier V to compute ∑z∈Hd g(z) for
any H ⊆ Zp, as long as V can evaluate g at a randomly-chosen location in polynomial time. A sum-check
protocol requires d rounds of interaction, and the length of the i’th message from P to V is equal to degi(g),
the degree of g in the i’th variable.

Let a2 denote the entry-wise square of a. A natural first attempt at a protocol for F2 is to apply a sum-
check protocol to the LDE g of a2 i.e. g = ∑v∈[l]d a2

vχv. However, a streaming verifier cannot evaluate g at
a random location because a2 is not a linear transform of the input. The key observation for our protocol
is that a streaming verifier can work with a different polynomial of slightly higher degree that also agrees
with a2 on [`]d . Specifically, this polynomial is f 2 =

(
∑v∈[l]d avχv

)2, where as usual f is the LDE of a. That
is, V can evaluate the polynomial f 2 at a random location r: V computes f (r) as in Section 2, and uses
the identity f 2(r) = f (r)2. We are therefore able to apply a sum-check protocol to f 2 in our model; details
follow.

The protocol. Before observing the stream, the verifier picks a random location r = (r1, . . . ,rd)∈ [p]d . Both
the prover and the verifier observe the stream which defines a. The verifier V evaluates f (r) in incremental
fashion, as described in Section 2.

After observing the stream, the verification protocol proceeds in d rounds as follows. In the first round,
the prover sends a polynomial g1(x1), and claims that

g1(x1) = ∑
x2,...,xd∈[`]d−1

f 2(x1,x2, . . . ,xd). (1)

Observe that if g1 is as claimed, then

F2(a) = ∑
x1∈[`]

g1(x1).

Since the polynomial g1(x1) has degree 2(`−1), it can be described in 2(`−1)+1 words.
Then, in round j > 1, the verifier sends r j−1 to the prover. In return, the prover sends a polynomial

g j(x j), and claims that

g j(x j) = ∑
x j+1,...,xd∈[`]d− j

f 2(r1, . . . ,r j−1,x j,x j+1, . . . ,xd). (2)

9

The verifier compares the two most recent polynomials by checking

g j−1(r j−1) = ∑
x j∈[`]

g j(x j)

and rejecting otherwise. The verifier also rejects if the degree of g is too high: each g should have degree
2(`−1).
In the final round, the prover has sent gd which is claimed to be

gd(xd) = f 2(r1, . . . ,rd−1,xd)

The verifier can now check that gd(rd) = f 2(r) (recall that the verifier tracked f (r) incrementally in the
stream). If this test succeeds (and so do all previous tests), then the verifier accepts, and is convinced that
F2(a) = ∑x1∈[`] g1(x1).

Proof of correctness. We now argue in detail that the verifier is unlikely to be fooled by a dishonest prover.

Lemma 1. If the prover follows the above protocol then the verifier will accept with certainty. However,
if the prover sends any polynomial which does not meet the required property, then the verifier will accept
with probability at most 2dl/p, where this probability is over the random coin tosses of V .

Proof. The first part is immediate from the following discussion: if each g j is as claimed, then the verifier
can easily ensure that each g j is consistent with g j−1.

For the second part, the proof proceeds from the dth round back to the first round. In the final round,
the prover has sent gd , of degree 2`− 2, and the verifier checks that it agrees with a precomputed value at
xd = rd . This is an instance of the Schwartz-Zippel polynomial equality testing procedure [21]. If gd is
indeed as claimed, then the test will always be passed, no matter what the value of rd . But if gd does not
satisfy the equality, then Pr[gd(rd) = f 2(r)] ≤ 2`−2

p . Therefore, if p was chosen so that p� `, then the
verifier is unlikely to be fooled.

The argument now proceeds inductively. Suppose that the verifier is convinced (with some small proba-
bility of error) that g j+1(x j+1) is indeed as claimed, and wants to be sure that g j(x j) is also as claimed. The
prover has claimed that

g j(x j) = ∑
x j+1,...,xd∈[`]d− j

f 2(r1, . . . ,r j−1,x j,x j+1, . . . ,xd).

We again verify this by a Schwartz-Zippel polynomial test: we evaluate g j(x j) at a randomly chosen point
r j, and ensure that the result is correct. Observe that

g j(r j) = ∑
x j+1,...,xd∈[`]d− j

f 2(r1, . . . ,r j,x j+1, . . .xd)

= ∑
x j+1∈[`]

∑
x j+2,...,xd∈[`]d− j−1

f 2(r1, . . . ,r j,x j+1,x j+2, . . . ,xd)

= ∑
x j+1∈[`]

g j+1(x j+1).

Therefore, if the verifier V believes that g j+1 is as claimed, then (provided the test passes) V has enough
confidence to believe that g j is also as claimed. More formally,

Pr
[

g j 6≡ ∑
x j+1,...,xd∈[`]d− j

f 2(r1, . . .r j−1,x j, . . . ,xd)
∣∣∣∣ g j+1 ≡ ∑

x j+2,...,xd∈[`]d− j+1

f 2(r1, . . .r j,x j+1, . . . ,xd)
]

<
2`

p
.

10

In the final step, the verifier is satisfied that g1 is consistent with g2, and so g1 is as claimed. The
probability that g1 is not as claimed can be bounded as the probability that the verifier was fooled in any
intervening step. This is at most 2d`/p, by a union bound.

Intuitively, the key reason for the prover’s inability to fool the verifier is that the prover must commit
to a particular g j before r j is revealed to him. So while the prover could then choose a g j+1 which causes
the test on that pair to pass, g j+1 is also “dishonest”. But ultimately, the prover must provide gd , which V
can check based on information that is known to V alone. The prover is very unlikely to have included a
dishonest g j along the way and passed all the subsequent tests to generate a gd which is consistent with the
final test using rd (which remains unknown to P).

Analysis of space and communication. The communication cost of the protocol is dominated by the
polynomials being sent by the prover. Each polynomial can be sent in O(`) words, so over the d rounds, the
total cost is O(d`) communication. The space required by the verifier is bounded by having to remember
r, f (r) and a constant number of polynomials (the verifier can “forget” intermediate polynomials once they
have been checked). The total cost of this is O(d + `) words. Probably the most economical tradeoff is
reached by picking ` = 2 and d = logu, yielding both communication and space cost for V of O(logu)
words. 4 Combining these settings with Lemma 1, we have:

Theorem 3. There is a (logu, logu)-protocol for SELF-JOIN SIZE with probability of failure O(logu
u).

Remarks. The failure probability can be set as low as O(logu
uc) for any constant c, by choosing p larger than

uc, which does not affect the space and communication by more than a constant factor.
Notice that the smallest-depth circuit computing F2 has depth Θ(logu), as any function that depends

on all bits of the input requires at least logarithmic depth. Therefore, Theorem 2 yields a (log2 u, log2 u)-
protocol for F2, and our protocol represents a quadratic improvement in both parameters.

Analysis of other costs. Besides the primary concerns of the verifier’s space and communication, this
protocol is also quite efficient in terms of the other costs. Let us fix ` = 2. As the stream is being processed
the verifier has to update f (r). The updates are very simple, since χ0(x) = 1− x and χ1(x) = x, so

χv(r) =
d

∏
j=1

((1− v j)(1− r j)+ v jr j).

Thus processing each update in the stream O(d) = O(logu) time.
The prover has to retain the input vector a, which can be done efficiently in space O(min(u,n)). In the

verification process it is clear that the verifier spends O(1) time per round evaluating a degree-2 polynomial,
so the total time is O(logu). On the prover side, it might appear costly to compute each g j(x j) naively
following the definition. But observe that g j(x j) is a polynomial of degree 2, so it is sufficient to evaluate
g j(x j) at three locations, say at x j = 0,1,2, to determine g j(x j). For a location x j = c, we rewrite

g j(c) = ∑
x j+1,...,xd∈[`]d− j

f 2(r1, . . . ,r j−1,c,x j+1, . . .xd) = ∑
x j+1,...,xd∈[`]d− j

(
∑

v∈[`]d
avχv(r1, . . . ,r j−1,c,x j+1, . . .xd)

)2

= ∑
x j+1,...,xd∈[`]d− j

∑
v1,v2∈[`]d

av1av2 χv1(r1, . . . ,r j−1,c,x j+1, . . .xd) ·χv2(r1, . . . ,r j−1,c,x j+1, . . .xd)

4It is possible to tradeoff smaller space for more communication by, say, setting ` = logε u and d = logu
ε log logu for any small

constant ε > 0, which yields a protocol with O(logu
log logu) space and O(log1+ε u) communication.

11

= ∑
v1,v2∈[`]d

(
av1av2

j−1

∏
k=1

χv1,k(rk) ·χv1, j(c) ·
j−1

∏
k=1

χv2,k(rk) ·χv2, j(c) · ∑
x j+1...xd∈[`]d− j

(d

∏
k= j+1

χv1,k(xk)χv2,k(xk)
))

.

Note that χvk(xk) = 1 iff xk = vk and 0 for any other value in [`], for any pair of v1,v2, we have

∑
x j+1,...,xd∈[`]d− j

(d

∏
k= j+1

χv1,k(xk)χv2,k(xk)
)

= 1

if and only if ∀ j +1≤ k ≤ d : v1,k = v2,k, and 0 otherwise. Thus,

g j(c) = ∑
v1,v2∈[`]d ,∀ j+1≤k≤d:v1,k=v2,k

(
av1av2

j−1

∏
k=1

χv1,k(rk) ·χv1, j(c)
j−1

∏
k=1

χv2,k(rk)χv2, j(c)
)

= ∑
v j+1,...,vd∈[`]d− j

(
∑

v1,...,v j∈[`] j

(
avχv j(c)

j−1

∏
k=1

χvk(rk)
))2

.

P maintains av

j−1

∏
k=1

χvk(rk) for each nonzero av, updating with the new rk in each round as it is revealed

in constant time. Thus the total time spent by the prover for the verification process can be bounded via
O(n logu), where n is the number of nonzero av’s.

We make one further simplification. At the heart of the computation is a summation over [`] j for each
v j+1, . . . ,vd ∈ [`]d− j. As we set ` = 2,

∑
v1,...,v j∈[`] j

(
avχv j(c)

j−1

∏
k=1

χvk(rk)
)

=
1

∑
v j=0

(
χv j(c) · ∑

v1,...,v j−1∈[`] j−1

(
av

j−1

∏
k=1

χvk(rk)
))

And for each v j, . . . ,vd ∈ [`]d− j+1, we can decompose

∑
v1,...,v j−1∈[`] j−1

(
av

j−1

∏
k=1

χvk(rk)
)

=
1

∑
v j−1=0

(
χv j−1(r j−1) ∑

v1,...,v j−2∈[`] j−2

(
av

j−2

∏
k=1

χvk(rk)
))

.

By storing A j[v j . . .vd] = ∑
v1...v j−1∈[`] j−1

(
av

j−1

∏
k=1

χvk(rk)
)
, P computes

A j+1[v j+1 . . .vd] = χ0(r j)A j[0,v j+1 . . .vd]+ χ1(r j)A j[1,v j+1, . . .vd]

in time O(u/2 j). The total time is now linear: O(min(n log(u/n), u)). Note that computing the F2 already
takes Θ(min(n,u)) time, so there is at most a logarithmic factor more work than simply providing the answer.

3.2 Other problems

Our protocol for F2 can be easily modified to support the other aggregation queries listed in Section 1.3.

Higher frequency moments. The protocol outlined above naturally extends to higher frequency moments,
or the sum of any polynomial function of ai. For example, we can simply replace f 2 with f k in (1) and (2)

12

to compute the k-th frequency moment Fk (again, assuming u is chosen large enough so Fk < u). The com-
munication cost increases to O(k logu), since each g j now has degree O(k) and so requires correspondingly
more words to describe. However, the verifier’s space bound remains at O(logu) words.

Inner product. Given two streams defining two vectors a and b, their inner product is defined by a ·b =
∑i∈[u] aibi. Observe that F2(a + b) = F2(a) + F2(b) + 2a · b. Hence, the inner product can be verified by
verifying three F2 computations.

More directly, the above protocol for F2 can be adapted to verify the inner product: instead of providing
polynomials which are claimed to be sums of f 2, now define polynomials fa and fb which encode a and
b respectively. The verifier again picks a random r, and evaluates fa(r) and fb(r) over the stream. The
prover now provides polynomials that are claimed to be sums of fa fb. This observation is useful for the
RANGE-SUM problem and sketches.

Range-sum. It is easy to see that RANGE-SUM is a special case of INNER PRODUCT. Here, every (key,
value) pair in the input stream can considered as updating i =key with δ =value to generate a. When the
query [qL,qR] is given, the verifier defines bqL = · · ·= bqR = 1 and bi = 0 for all other i. One technical issue is
that computing fb(r) directly from the definition requires O(u logu) time. However, the verifier can compute
it much faster. Again fix ` = 2. Decompose the range [qL,qR] into O(logu) canonical intervals where each
interval consists of all locations v where v j+1, . . . ,vd are fixed while all possible (v1, . . . ,v j) ∈ [2] j for some
j occur. The value of fb(r) in each such interval is

fb(r) = ∑
(v1,...,v j)∈[2] j

χ(v1,...,vd)(r) = ∑
(v1,...,v j)∈[2] j

j

∏
k=1

χvk(rk) ·
d

∏
k= j+1

χvk(rk) =
d

∏
k= j+1

χvk(rk) ·
(

∑
(v1,...,v j)∈[2] j

j

∏
k=1

χv j(r j)
)

=
d

∏
k= j+1

χvk(rk) ·
(j

∏
k=1

(
χ0(r j)+ χ1(r j)

))
=

d

∏
k= j+1

χvk(rk),

which can be computed in O(logu) time. The final evaluation is found by summing over the O(logu)
canonical intervals, so the time to compute fb(r) is O(log2 u). This is used to determine whether gd(rd) =
fa(r) fb(r). Hence, the verifier can continue the rest of the verification process in O(logu) rounds as before.

4 Interactive Proofs for Reporting Queries

We first present an interactive proof protocol for a class of SUB-VECTOR queries, which is powerful enough
to incorporate INDEX, DICTIONARY, PREDECESSOR, and RANGE QUERY as special cases.

4.1 SUB-VECTOR queries

Let a = (a1, . . . ,au) be a vector in [u]u, initialized to 0. We are first given a stream of length n consisting of
(i,δ) pairs, which sets ai← ai + δ . In the end, a SUB-VECTOR query is specified by a range [qL,qR], and
the required answer is the nonzero entries in the sub-vector (aqL , . . . ,aqR). Let the number of such nonzero
entries be k.

The protocol. Let p be a prime such that u < p≤ 2u. The verifier V conceptually builds a tree T of constant
degree ` on the vector a. V first generates logu independent random numbers r1, . . . ,rlog` u uniformly from
[p]. For simplicity, we describe the case for ` = 2. Each node v of the tree is a number defined as follows.
For the i-th leaf v, set v = ai. For an internal node v at level j (the leaves are at level 0), define

v = vL + vRr j, (3)

13

20

3 8 34671

135

14

9

34

7

2

Figure 1: Example tree T over input vector [2,3,8,1,7,6,4,3] and sub-vector query (1,5).

where vL and vR are the left and right child of v, respectively. Additions and multiplications are done over
the field Zp as in Section 3. Denote the root of the tree by t. The verifier is only required to keep r1, . . . ,rlogu
and t. Later we show that V can compute t without materializing the binary tree T .

We first present the interactive verification protocol between P and V after the input has been observed
by both. The verifier only needs r1, . . . ,rlogu, t, and the query range [qL,qR] to carry out the protocol. First
V sends qL and qR to P , and P returns the claimed sub-vector, say, a′qL

, . . . ,a′qR
(P actually only needs to

return the nonzero entries). In addition, if qL is even, P also returns a′qL−1; if qR is odd, P also returns a′qR+1.
Then V tries to verify whether ai = a′i for all qL ≤ i ≤ qR using the following protocol. The general idea is
to reconstruct T using information provided by P . If P is honest, the reconstructed root, say t ′, should be
the same as t; otherwise with high probability t ′ 6= t and V will reject. Define γ(j)(i) to be the ancestor of
the i-th leaf of T on level j. The protocol proceeds in logu−1 rounds, and maintains the invariant that after
the j-th round, V has reconstructed γ(j+1)(i) for all qL ≤ i≤ qR. The invariant is easily established initially
(j = 0) since P provides a′qL

, . . . ,a′qR
and the siblings of a′qL

and a′qR
if needed. In the j-th round, V sends

r j to P . Having r1, . . . ,r j to hand, P can construct the j-th level of T . P then returns to V the siblings of
γ(j)(qL) and γ(j)(qR) if they are needed by V . Then V reconstructs γ(j+1)(i) for all qL ≤ i≤ qR. At the end
of the (logu− 1)-th round, V has reconstructed γ(logu)(i) = t ′, and checks that t = t ′. If so, then the initial
answer provided by P is accepted, otherwise it is rejected.

Example. Figure 1 shows a small example on the vector a = [2,3,8,1, 7,6,4,3]. We fix the hash function
parameters r = [1,1,1] to keep the example simple (in practice these parameters are chosen randomly), and
show the hash value inside each node. For the range (2,6), in the first round the prover reports the sub-vector
[3,8,1,7,6] (shown highlighted). Since the left end of this range is even, P also reports a1 = 2. From this,
V is able to compute some hashes at the next level: 5, 9 and 13. After sending r1 to P , V received the fact
that the hash of the range (7,8) is 7. From this, V can compute the final hash values and check that they
agree with the precomputed hash value of t, 34.

Theorem 4. There is an interactive (logu, logu + k)-protocol for SUB-VECTOR, with failure probability
O(logu

u).

Proof. Correctness. It is clear that with an honest P , V always accepts. Next, we argue that if P returns
a wrong value in any round, then t ′ 6= t with high probability. P first sends back a′i for all qL ≤ i ≤ qR and
their siblings (if they are outside of the range). Consider any pair of siblings, say a′i and a′i+1. Consider the
functions f (x) = ai + ai+1x and f ′(x) = a′i + a′i+1x in the field Zp. If ai 6= a′i or ai+1 6= a′i+1, the two linear
functions will not be identical, and they will intersect at no more than one point in [p]. Since we choose r1

14

uniformly randomly from [p], the probability that f (r1) = f ′(r1) is at most 1/p. Thus, if P’s first message
is not correct, with probability at least 1− 1/p, there will be at least one error in the computed γ(1)(i),
qL ≤ i≤ qR. The same argument applies to each of the following (logu−1) rounds: if either of the siblings
of γ(j)(qL) and γ(j)(qR) returned by V is wrong or some γ(j)(i),qL ≤ i ≤ qR is already wrong previously,
then with probability at most 1/p, the reconstructed γ(j)(i) will be all correct. By the union bound, the
probability that an incorrect response from V will lead to a correct t ′ is at most logu

p .

Analysis of costs. We first argue that V can compute t in small space. Expanding t, we have

t = ∑
i

(
ai

logu

∏
j=1

r(i−1) j
j

)
, (4)

where (i−1) j denotes the j-th least significant bit of the binary representation of i−1. Initially when a = 0,

we have t = 0; when we have ai← ai + δ , t is incremented (modulo p) by ∆t = δ ·∏logu
j=1 r(i−1) j

j , which is
easily computed in O(logu) time. Thus V can maintain t by just keeping t, r1, . . . ,rlogu.

The verifier’s space requirement during the protocol is also bounded by O(logu) words. Given the query
range, as the sub-vector result arrives at V , the verifier can keep track of only O(logu) hash values of internal
nodes, corresponding to at most one child of γ j(qL) and γ j(qR) for each j. Combining these with the hash
values provided by P will be sufficient to run the checking protocol. Each of these can be maintained in
small space in the same manner as the root t via (4) above. Thus the space to carry out the protocol is
O(logu).

The communication cost consists of the initial query result of size k sent by the prover, plus O(1) nodes
per level of the binary tree T . So the total communication cost is O(logu+ k).

Now we analyze the prover’s cost. As the stream is received the prover clearly needs linear space and
O(1) time per element to construct the vector a. At verification time the prover essentially reconstructs the
binary tree T . Note that T has at most n nonzero leaves, so it has size O(min(u, n log(u/n))). Computing
this tree in a bottom-up fashion costs O(1) time per node, hence O(min(u, n log(u/n))) time in total.

Remarks. As in Section 3 the failure probability can be driven down to O(logu
uc) for any constant c by

picking p greater than uc, without changing the asymptotic bounds. From the description above a dishonest
prover may cause excessive communication by sending more than k nonzero entries in the initial answer.
To guarantee the O(logu+ k) bound with any P , we could first verify the value of k, i.e., a RANGE-COUNT

query, with O(logu) communication using the protocol in Section 3. Then if P sends more than k nonzero
entries V will reject immediately.

We note that by modifying the hash function to (1−r j)vL +r jvR, it is possible to show that t is equivalent
to f (r), while the same analysis holds. This provides a connection between the two approaches, although
the proofs are quite different in nature.

4.2 Answering reporting queries

We now show how to answer the reporting queries using the solution to SUB-VECTOR.

• It is straightforward to solve RANGE QUERY using SUB-VECTOR: each element i in the stream is
interpreted as a vector update with δ = 1, and vector entries with non-zero counts intersecting the
range give the required answer.

• INDEX can be interpreted as a special case of RANGE QUERY with qL = qR = q.

15

• For DICTIONARY, we need to distinguish between “not found” and a value of 0. This can be done
by using a universe size of [u + 1] for the values: each value is incremented on insertion. At query
time, if the retrieved value is 0, the result is “not found”; otherwise the value is decremented by 1 and
returned.

• For PREDECESSOR, we interpret each key in the stream as an update with δ = 1. In the protocol V first
asks for the index of the predecessor of q, say q′, and then verifies that the sub-vector (aq′ , . . . ,aq) =
(1,0, . . . ,0), with communication cost O(logu) (since k = 0).

Corollary 1. There is a (logu, logu)-protocol for DICTIONARY, INDEX and PREDECESSOR, and a (logu, log(u)+
k)-protocol for RANGE QUERY.

5 Extensions

We next consider how to treat other functions in the streaming interactive proof setting. We first consider
some functions which are of interest in streaming, such as heavy hitters, k-largest, and sketch computations.
We then extend the framework to handle a more general class of “frequency-based functions”.

5.1 Other Specific Functions

Heavy Hitters. The heavy hitters (HHs) are those items whose frequencies exceed a fraction φ of the total
stream length n. In verifying the claimed set of HHs, V must ensure that all claimed HHs indeed have high
enough frequency, and moreover no HHs are omitted. To convince V of this, P will combine a succinct
witness set with a generalization of the SUB-VECTOR protocol to give a (1/φ logu, 1/φ logu) protocol for
verifying the heavy hitters and their frequencies. As in our SUB-VECTOR protocol, V conceptually builds
a binary tree T with leaves corresponding to entries of a, and a random hash function associated with each
level of T . We augment each internal node v with a third child cv. cv is a leaf whose value is the sum of the
frequencies of all descendents of v, the subtree count of v. The hash function now takes three arguments as
input. It is evident that V can still compute the hash t of the root of this tree in logarithmic space.

In the lth round, the prover lists all leaves at level l whose sub-tree count is at least φn, their siblings, as
well as their hash value and their subtree counts (so the hash of their parent can be computed). In addition,
P provides all leaves whose subtree count is less than φn but whose parent has subtree count at least φn;
these nodes serve as witnesses to the fact that none of their descendants are heavy hitters, enabling V to
ensure that no heavy hitters are omitted. This procedure is repeated for each level of T ; note that for each
node v whose value P provides, all ancestors of v and their siblings (i.e. all nodes on v’s “authentication
path”) are also provided, because the subtree count of any ancestor is at least as high as the subtree count
of v. Therefore, V can compare the hash of the root (calculated while observing the stream) to the value
provided by P , and the proof of soundness is analogous to that for the SUB-VECTOR protocol.

In total, there are at most O(1/φ logu) nodes provided by P: for each level l, the sum of the sub-tree
counts of nodes at level l is n, and therefore there are O(1/φ) nodes at each level which have sub-tree count
exceeding φn or whose parent has subtree count exceeding φn. Hence, the size of the proof is at most
O(1/φ logu).

With a little effort, the protocol cost is improved to (logu, 1/φ logu), i.e. we do not require V to store the
heavy hitter nodes. This is accomplished by having the prover, at each level of T , “replay” the hash values of
all nodes listed in the previous round. V can keep a simple fingerprint of the identities and hash values of all
nodes listed in each round (computing their hash values internally), and compare this to a fingerprint of the

16

hash values and identities listed by P . If these fingerprints match for each level, V is assured that the correct
information was presented. Note each node is repeated just once, so this only doubles the communication
cost. This reduced cost protocol is used in Section 5.2.

k-largest. Given the same set up as the PREDECESSOR query, the k-th largest problem is to find the largest
p in the stream such that there are at least k− 1 larger values p′ also present in the stream. This can be
solved by the prover claiming that the kth largest item occurs at location j, and performing the range query
protocol with the range (j,u), allowing V to check that there are exactly k distinct items present in the range.
This has a cost of (logu,k + logu). For large values of k, alternative approaches via range sum (assuming
all keys are distinct) can reduce the cost to (logu, logu).

Sketch computations. In situations where the verifier only requires an approximate answer to the query,
the prover can use a sketch algorithm which produces a data structure that is more compact than storing
the entire stream. For a given approximation error ε , these sketches typically have size O(ε−c ·poly log(u))
for some constant c > 0. Many of the sketches defined in the streaming literature map every element in
[u] to a smaller space [v] by some compact hash function h, and compute the frequency vector for the
reduced universe [v], i.e., a′j = ∑h(i)= j ai, for all j ∈ [v]. Then the desired quantity can be derived from
a′ = (a′0, . . . ,a

′
v−1). Examples include the (fast) AMS sketch for F2 [1], the FM sketch for the number of

distinct items [9], the Count-Min sketch [8], etc. A technical issue is that some of these sketches run the
basic scheme multiple times with different h’s. This can be treated as a single h that maps each i ∈ [u] to
multiple values in a (larger) [v].

For a pre-agreed ε (hence v) and h, both the prover and verifier can do exactly the same as before, except
that now the calculations are over the transformed stream whose elements are the h(i)’s. The verifier still
only needs space O(logu). At the time of verification the exact function to verify depends on the sketch. We
very briefly outline some of the variations, and postpone further discussion.

• If the desired quantity is a sum of a polynomial function of the a′j’s, such as the AMS sketch, then the
verification process follows the outline of Section 3, and the communication cost is O(logv).

• For the Count-Min sketch, the query probes a small number of entries in the sketch and finds the
minimum: these can be recovered efficiently using the protocols described in Section 4 in O(logv)
communication.

• For the FM sketch, a large fraction of the vector a′ may need to be recovered and checked by the
verifier. In this case the communication cost is O(v).

5.2 Frequency-based functions

Given the approach described in Section 3, it is natural to ask what other functions can be computed via
sum-check protocols applied to carefully chosen polynomials. By extending the ideas from the protocol
of Section 3, we get protocols for any statistic F of the form F(a) = ∑i∈[u] h(ai). Here, h : N0 → N0 is a
function over frequencies. Any statistic F of this form is called a frequency-based function. Such functions
occupy an important place in the streaming world. For example, setting h(x) = x2 gives the self-join size.
We will subsequently show that using functions of this form we can obtain non-trivial protocols for problems
including:

• F0, the number of distinct items in stream A.

• Fmax, the frequency of the most-frequent item in A.

17

• Point queries on the inverse distribution of A. That is, for any i, we will obtain protocols for determin-
ing the number of tokens with frequency exactly i.

The Protocol. A natural first attempt to extend the protocols of Section 3 to this more general case is to
have V compute f (r) as in Section 3, then have P send polynomials which are claimed to match sums
over h(f (x)). In principal, this approach will work: for the F2 protocol, this is essentially the outline with
h(x) = x2. However, recall that when this technique was generalized to Fk for larger values of k, the cost
increased with k. This is because the degree of the polynomial h increased. In general, this approach yields
a solution with cost deg(h) logn. This does not yet yield interesting results, since in general, the degree of
h can grow arbitrarily high, and the resulting protocol is worse than the trivial protocol which simply sends
the entire vector a at a cost of O(min(n,u)).

To overcome this obstacle, we modify this approach to use a polynomial function h̃ with bounded degree
that is sublinear in n and u. At a high level, we “remove” any very heavy elements from the stream A before
running the protocol of Section 3.1, with f 2 replaced by h̃ ◦ f for a suitably chosen polynomial h̃. By
removing all heavy elements from the stream, we keep the degree of h̃ (relatively) low, thereby controlling
the communication cost. We now make this intuition precise.

Assume n=O(u) and let φ =u−1/2. The first step is to identify the set H of φ -heavy hitters (i.e. the set
of elements with frequency at least u1/2) and their frequencies. We accomplish this via the (logu,1/φ logu)
protocol described in Section 5.1. V runs this protocol and, as the heavy hitters are reported, V incrementally
computes F ′ :=∑i∈H h(ai), which can be understood as the contribution of the heaviest elements to F , the
statistic of interest.

In parallel with the heavy hitters protocol, V also runs the first part of the protocol of Section 3.1 with
d = logu. That is, V chooses a random location r = (r1, . . . ,rd) ∈ [p]d (where p is a prime chosen larger
then the maximum possible value of F), and while observing the stream V incrementally evaluates f (r). As
in Sections 2 and 3.1, this requires only O(d) additional words of memory.

As the heavy hitters are reported, V “removes” their contribution to f by subtracting avχv(r) from
f (r) for each v ∈ H. That is, let f̃ denote the polynomial implied by the derived stream obtained by
removing all occurrences of all φ -heavy hitters from A. Then V may compute f̃ (r) via the identity f̃ (r) =
f (r)−∑v∈H χv(r). Crucially, V need not store the items in H to compute this value; instead, V subtracts
χv(r) each time a heavy hitter v is reported, and then immediately “forgets” the identity of v.

Now let h̃ be the unique polynomial of degree at most u1/2 such that h̃(i) = h(i) for i = 0, . . . ,u1/2; V next
computes h̃(f̃ (r)) in small space. Note that this computation can be performed without explicitly storing h̃,
since we can compute

h̃(x) = ∑
i=0,...u1/2

h(i)χi(x)

(assuming h() has a compact description as in the examples below).
The second part of the verification protocol can proceed in parallel with the first part. In the first round,

the prover sends a polynomial g1(x1) claimed to be

g1(x1) = ∑
x2,...,xd∈[`]d−1

h̃◦ f̃ (x1,x2, . . . ,xd).

Observe that if g1 is as claimed, and we assume (without loss of generality) that h(0) = 0, then

F(a) = ∑
x1∈[`]

g1(x1)+F ′.

Since the polynomial g1(x1) has degree at most u1/2, it can be described in u1/2 words.

18

10-2

10-1

100

101

102

103

104

104 105 106 107 108 109 1010

Ti
m

e
/ s

Size of u

Verifier’s Time

One Round
Multiround

(a) Verifier’s time

10-2

10-1

100

101

102

103

104 105 106 107 108 109 1010

Ti
m

e
/ s

Size of u

Time to create proof

One Round
Multiround

(b) Prover’s time

102

103

104

105

106

104 105 106 107 108 109 1010

By
te

s

Size of u

Size of communication and working space

One Round: Space
Multi Round: Space

One Round: Proof
Multi Round: Proof

(c) Space complexity

Figure 2: Experimental results

Then, as in Section 3.1, V sends r j−1 to P in round j > 1. In return, the prover sends a polynomial
g j(x j), and claims

g j(x j) = ∑
x j+1,...,xd∈[`]d− j

h̃◦ f̃ (r1, . . . ,r j−1,x j,x j+1, . . . ,xd).

The verifier conducts tests for correctness that are completely analogous to those in Section 3.1, which
completes the description of the protocol. The proof of completeness and soundness of this protocol is
analogous to those in Section 3.1 as well.

Analysis of space and communication. V requires logu words to run the heavy hitters protocols, and
O(d) = O(logu) space to store r1, . . . ,rd , f (r), f̃ (r), and to compute and store h̃(f̃ (r)). The communication
cost of the heavy hitters protocol is u1/2 logu, while the communication cost of the rest of the protocol is
bounded by the du1/2 = u1/2 logu words used by P to send a polynomial of degree at most u1/2 in each
round. Thus, we have the following theorem:

Theorem 5. There is a (logu,u1/2 logu)-protocol for any statistic F of the form F(a) = ∑i∈[u] h(ai), with
probability of failure O(logu

u). The protocol requires logu rounds of interaction.

Using this approach yields protocols for the following problems:

• F0, the number of items with non-zero count. This follows by observing that F0 is equivalent to
computing ∑i∈[u] h(ai) for h(0) = 0 and h(i) = 1 for i > 0.

• More generally, we can compute functions on the inverse distribution, i.e. queries of the form “how
many items occur exactly k times in the stream” by setting, for any fixed k, h(k) = 1 and h(i) = 0 for
i 6= j. One can build on this to compute, e.g. the number of items which occurred between k and k′

times, the median of this distribution, etc.

• We obtain a protocol for Fmax = maxi ai, with a little more work. P first claims a lower bound lb on
Fmax by providing the index of an item with frequency Fmax, which V verifies by running the INDEX

protocol from Section 4. Then V runs the above protocol with h(i) = 0 for i ≤ lb and h(i) = 1 for
i > lb; if ∑i∈[u] h(ai) = 0, then V is convinced no item has frequency higher than lb, and concludes
that Fmax = lb.

Corollary 2. There is a (logu,u1/2 logu)-protocol that requires just logu rounds of interaction for F0, Fmax,
and queries on the inverse distribution.

19

Comparison. Compared to the previous protocols, the methods above increase the amount of communica-
tion between the two parties by a u

1
2 factor. The number of rounds of interaction remains logu, equivalent to

V’s space requirement. So arguably these bounds are still good from the verifier’s perspective. In contrast,
the construction of [12] requires Ω(log2 u) rounds of interaction and communication, which may be large
enough to be offputting. To make this concrete, for a terabyte-size input, logu rounds is of the order of 40,
while log2 u is of the order of thousands. Meanwhile, the u

1
2 communication is of the order of a megabyte.

So although the total communication cost is higher, one can easily imagine scenarios where the latency of
network communications make it more desirable to have fewer rounds with more communication in each.

6 Experimental Study

We performed a brief experimental study to evaluate the effectiveness of the protocols we have described
in practice. We compared the multi-round protocols for F2 we described in Section 3 to the single round
protocol given in [6], which can be seen as a protocol in our setting with d = 2 and ` =

√
u. A prototype

implementation was made in C++: it simulated the computations of both parties, and measured the time and
resources consumed by the protocols. For the data, we generated synthetic streams where the number of
occurrences of each item was picked uniformly in the range [0,1000]. Note that the choice of data does not
affect the behavior of the protocols: their guarantees do not depend on the data, but rather on the random
choices of the verifier. The computations were made over the field of size p = 261−1, implying a very low
probability of the verifier being fooled by a dishonest prover.

We evaluated the protocols on a single core of a multi-core machine with 64-bit AMD Opteron proces-
sors and 32 GB of memory available. The large amount of memory allowed us to experiment with universes
of size several billion, with the prover able to store the entire frequency vector in memory. We measured
the time for V to compute the check information from the stream, for P to generate the proof, and for V to
verify this proof. We also measured the space required by V , and the size of the proof provided by P .

6.1 Experimental Results

When the prover was honest, both protocols always accepted the proof. We also tried modifying the prover’s
messages, by changing some pieces of the proof, or computing the proof for a slightly modified stream.
In all cases, the protocols caught the error, and rejected the proof. We conclude that the protocols work
as analyzed, and the focus of our experimental study is to understand how they scale to potentially large
volumes of data.

Figure 2 shows the behavior of the protocols as the size of the domain u varies. First, Figure 2(a) shows
the time for the verifier to process the stream as the domain size increases. Both show a linear trend (here,
plotted on log scale). Moreover, both take roughly the same time, with the multi-round verifier processing
4-5 million updates per second, and the single round verifier processing 7.5-8.5 million. The similarity is not
surprising: both methods are taking each element of the stream and computing the product of the frequency
with a function of the element’s index i and the random parameter r. The effort in computing this function
is roughly similar in both cases. The single round verifier has a slight advantage, since it can compute and
use lookup tables within the O(

√
u) space bound, while the multi-round verifier limited to logarithmic space

must recompute some values multiple times. The time to check the proof is essentially negligible: less than
a millisecond across all data sizes. Hence, we do not consider this to be a significant cost.

Figure 2(b) shows a clear separation between the two methods in P’s effort in generating the proof.
Here, we measure the total time across all rounds in the multi-round case, against the effort to generate the

20

single round proof. The cost in the multiround case is dramatically lower than the single round case: it takes
minutes to process input with u = 220 in the single round case, whereas the same data requires less than
a third of a second when using the multi-round approach. Worse, this cost grows with u3/2, as seen with
the steeper line: doubling the input size increases the cost by a factor of 2.8. In contrast, the multiround
cost grew only linearly with u. Across all values of u, the multiround prover processed 3-4 million updates
per second. Meanwhile, at u = 216, the single-round prover processed roughly 30,000 updates per second,
while with u = 220, P processed only 8,000. Thus the chief bottleneck of these protocols seems to be P’s
time cost to make the proof.

The trend is similar for the space resources required to execute the protocol. In the single round case,
both the verifier’s space and size of the proof grow proportional to

√
u. This is not impossibly large: Figure

2(c) shows that for u of the order of 1 billion, both these quantities are comfortably under a megabyte.
Nevertheless, it is still orders of magnitude larger than the sizes seen in the multiround protocol: there, the
space required and proof size are never more than 1KB even when handling gigabytes of data.

In summary, we observe that the methods we have developed are applicable to genuinely large data sets,
defined over a domain of size hundreds of millions to billions. Our implementation is capable of processing
such datasets within a matter of minutes.

7 Concluding Remarks

We have presented interactive proof protocols for various problems that are known to be hard in the stream-
ing model. By delegating the hard computation task to a possibly dishonest prover, the verifier’s space
complexity is reduced to O(logu). We now outline directions for future study.

Multiple Queries. Many of the problems considered are parameterized by values that are only specified at
query time. The results of these queries could cause the verifier to ask new queries with different param-
eters. However, re-running the protocols for a new query with the same choices of random numbers does
not provide the same security guarantees. The guarantees rely on P not knowing these values; with this
knowledge a dishonest prover could potentially find collisions under the polynomials, and fool the verifier.

Two simple solutions partially remedy this issue: firstly, it is safe to run multiple queries in parallel
round-by-round using the same randomly chosen values, and obtain the same guarantees for each query.
This can be thought of as a ‘direct sum’ result, and holds also for the Goldwasser et al. construction [12].
Secondly, V can just carry out multiple independent copies of the protocol. Since each copy requires only
O(logu) space (more precisely logu+1 integers), the cost per query is low. Nevertheless, it remains of some
practical interest to find protocols which can be used repeatedly to support an larger number of queries.
Related work based on strong cryptographic assumptions has recently appeared [7, 11] but is currently
impractical.

Distributed Computation. A motivation for studying this model arises from the case of cloud computa-
tion, which outsources comptutation to the more powerful “cloud”. In practice, the cloud may in fact be a
distributed cluster of machines, implementing a model such as Map-Reduce. We have so far assumed that
the prover operates a traditional centralized computational entity. The next step is to study how to create
proofs over large data in the distributed model. A first observation is that the proof protocols we give here
naturally lend themselves to this setting: observe that the prover’s message in each round can be written as
the inner product of the input data with a function defined by the values of r j revealed so far. Thus, we claim
that these protocols fit into Map-Reduce settings very naturally; it remains to demonstrate this empirically,
and to establish similar results for other protocols.

21

Complexity Questions. From a complexity perspective, the main open problem, as indicated in Section 1.1,
is to more precisely characterize the class of problems that are solvable in this interactive proof model. We
have shown how to modify the construction of [12] to obtain (poly logu,poly logu) streaming protocols
for all of NC, and we showed that a wide class of reporting and aggregation queries possess (logu, logu)
protocols. It is of interest to establish what other natural queries possess (logu, logu) protocols: F0 and Fmax
are the prime candidates to resolve. Determining whether problems outside NC possess interactive proofs
(streaming or otherwise) with poly logu communication and a verifier that runs in nearly linear time is a
more challenging problem of considerable interest. This question asks, in essence, whether parallelizable
computation is more easily verified than sequential computation.

Acknowledgements

We thank Roy Luo for providing prototype protocol implementations. We also thank Salil Vadhan, Kai-Min
Chung and Guy Rothblum for several helpful discussions.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.
J. Comp Sys Sci, 58:137–147, 1999.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press,
2009.

[3] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM,
45(1):70–122, 1998.

[4] L. Babai and S. Moran. Arthur-merlin games: a randomized proof system, and a hierarchy of com-
plexity class. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Short PCPs verifiable in polyloga-
rithmic time. In CCC 2005.

[6] A. Chakrabarti, G. Cormode, and A. McGregor. Annotations in data streams. In ICALP, 2009.

[7] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully homomorphic
encryption. In CRYPTO, 2010.

[8] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its
applications. J. Algorithms, 55(1):58–75, 2005.

[9] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. J. of Comp
Sys Sci, 31(2):182–209, 1985.

[10] L. Fortnow and C. Lund. Interactive proof systems and alternating time-space complexity. Theoretical
Computer Science, 113(1):55–73, 1993.

[11] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation
to untrusted workers. In CRYPTO, 2010.

22

[12] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for
Muggles. In STOC, 2008.

[13] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. In STOC,
1986.

[14] A. Juels and B. Kaliski. PORs: Proofs of retrievability for large files. In Computer and Communica-
tions Security, 2007.

[15] J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC,
1992.

[16] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[17] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-infused streams: Enabling authentication of
sliding window queries on streams. In VLDB, 2007.

[18] R. Merkle. Secrecy, authentication, and public key systems. PhD thesis, Electrical Engineering, Stan-
ford, 1979.

[19] S. Papadopoulos, Y. Yang, and D. Papadias. Continuous authentication on relational streams. VLDB
J., 19(2):161–180, 2010

[20] A. D. Sarma, R. J. Lipton, and D. Nanongkai. Best-order streaming model. In TAMC, 2009.

[21] J. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701–
717, 1980.

[22] A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[23] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Authenticated indexing for outsourced spatial
databases. VLDB J., 18(3):631–648, 2009.

[24] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and D. Srivastava. Small synopses for
group-by query verification on outsourced data streams. ACM Transactions on Database Systems,
34(3), article 15, 2009.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

