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Abstract

The study of the interplay between the testability of properties of Boolean functions and
the invariances acting on their domain which preserve the property was initiated by Kaufman
and Sudan (STOC 2008). Invariance with respect to F2-linear transformations is arguably the
most common symmetry exhibited by natural properties of Boolean functions on the hypercube.
Hence, an important goal in Property Testing is to describe necessary and sufficient conditions
for the testability of linear-invariant properties. This direction was explicitly proposed for in-
vestigation in a recent survey of Sudan. We obtain the following results:

1. We show that every linear-invariant property that can be characterized by forbidding
induced solutions to a (possibly infinite) set of linear equations can be tested with one-
sided error.

2. We show that every linear-invariant property that can be tested with one-sided error can
be characterized by forbidding induced solutions to a (possibly infinite) set of systems of
linear equations.

We conjecture that our result from item (1) can be extended to cover systems of linear equa-
tions. We further show that the validity of this conjecture would have the following implications:

1. It would imply that every linear-invariant property that is closed under restrictions to
linear subspaces is testable with one-sided error. Such a result would unify several previous
results on testing Boolean functions, such as the testability of low-degree polynomials and
of Fourier dimensionality.

2. It would imply that a linear-invariant property P is testable with one-sided error if and
only if P is closed under restrictions to linear subspaces, thus resolving Sudan’s problem.
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1 Introduction

Let P be a property of Boolean functions. A testing algorithm for P is a randomized algorithm
that can quickly distinguish between the case that f satisfies P from the case that f is far from
satisfying P. The problem of characterizing the properties of Boolean functions for which such an
efficient algorithm exists is considered by many to be the most important open problem in this
area. Since a complete characterization seems to be out of reach, several researchers have recently
considered the problem of characterizing the testable properties P that belong to certain “natural”
subfamilies of properties. One such family that has been extensively studied is the family of so
called linear-invariant properties. Our main result is two fold. We first show that every property
in a large family of linear-invariant properties is indeed testable. Next, we conjecture that an
even more general family of properties can be tested and show that such a result would give a
characterization of the linear-invariant properties that are testable with one-sided error.

1.1 Background on property testing

We start with the formal definitions related to testing Boolean functions. Let P be a property of
Boolean functions over the n-dimensional Boolean hypercube. In other words, P is simply a subset
of the set of functions f : {0, 1}n → {0, 1}. Two functions f, g : {0, 1}n → {0, 1} are ε-far if they
differ on at least ε2n of the inputs. We say that f is ε-far from satisfying a property P if it is ε-far
from any function g satisfying P. A tester for the property P is a randomized algorithm which
can quickly distinguish between the case that an input function f satisfies P from the case that
it is ε-far from satisfying P. Here we assume that the input function f is given to the tester as
an oracle, that is, the tester can ask an oracle for the value of the input functions f on a certain
x ∈ {0, 1}n. We say that P is strongly testable (or simply testable) if P has a tester which makes
only a constant number of queries to the oracle, where this constant can depend on ε but should be
independent1 of n. Finally, we say that a testing algorithm has one-sided error if it always accepts
input functions satisfying P. (We always demand that the tester rejects input functions which are
ε-far from satisfying P with probability at least, say, 2/3.)

The study of testing of Boolean functions began with the work of Blum, Luby and Rubinfeld
[BLR93] on testing linearity of Boolean functions. This work was further extended by Rubinfeld
and Sudan [RS96]. Around the same time, Babai, Fortnow and Lund [BFL91] also studied similar
problems as part of their work on MIP=NEXP. These works are all related to the PCP Theorem,
and an important part of it involves tasks which are similar in nature to testing properties of
Boolean functions. The work of Goldreich, Goldwasser and Ron [GGR98] extended these results
to more combinatorial settings, and initiated the study of similar problems in various areas. More
recently, numerous testing questions in the Boolean functions settings have sparked great interest:
testing dictators [PRS02], low-degree polynomials [AKK+05, Sam07], juntas [FKR+04, Bla09],
concise representations [DLM+07], halfspaces [MORS09], codes [KL05, KS07, KS09]. These are
documented in several surveys [Fis04, Rub06, Ron08, Sud10], and we refer the reader to these
surveys for more background and references on property testing.

1Observe that since we aim for asymptotic results (that is, we think of n → ∞), our property P can actually be
described as P =

⋃∞
i=1 Pn, where Pn is the collection of functions over the n-dimensional Boolean hypercube which

satisfy P.
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1.2 Invariance in testing Boolean functions

What features of a property make it testable? One area in which this question is relatively well
understood is testing properties of dense graphs [AS08a, AFNS06, BCL+06]. In sharp contrast, this
question is far from being well understood in the case of testing properties of Boolean functions.
In an attempt to remedy this, Sudan and several coauthors [KS08, GKS08, GKS09, BS09] have
recently begun to investigate the role of invariance in property testing. The idea is that in order
to be able to test if a combinatorial structure satisfies a property using very few queries to its
representation, the property we are trying to test must be closed under certain transformations.
For example, when testing properties of dense graphs, we are allowed to ask if two vertices i and
j are adjacent in the graph, and the assumption is that the property we are testing is invariant
under renaming of the vertices. In other words, if we think of the input as an

(
n
2

)
dimensional

0/1 vector encoding the adjacency matrix of the input, then the property should be closed under
transformations (of the edges) which result from permuting the vertices of the graph.

A natural notion of invariance that one can consider when studying Boolean functions over
the hypercube is linear-invariance, which is in some sense the analogue for graph properties being
closed under renaming of the vertices (we further discuss this analogy in Subsection 1.3). Formally,
a property of Boolean functions P is said to be linear-invariant if for every function f : Fn2 → {0, 1}
satisfying P and for any F2-linear transformation L : Fn2 → Fn2 the function f ◦L satisfies P as well,
where we define (f ◦ L)(x) = f(L(x)). Note that here we identify {0, 1}n with Fn2 , and we will use
this convention from now on throughout the paper. For a thorough discussion of the importance
of linear-invariance, we refer the reader to Sudan’s recent survey on the subject [Sud10] and to the
paper of Kaufman and Sudan which initiated this line of work [KS08].

1.3 The main result

Our main result in this paper (stated in Theorem 3 below) is that a natural family of linear-invariant
properties of Boolean functions can all be tested with one-sided error. The statement requires some
preparation.

Definition 1 ((M,σ)-free) Given an m×k matrix M over F2 and σ ∈ {0, 1}k for integers m > 0
and k > 2, we say that a function f : Fn2 → {0, 1} is (M,σ)-free if there is no x = (x1, . . . , xk) ∈
(Fn2 )k such that Mx = 0 and for all 1 ≤ i ≤ k we have f(xi) = σi.

Remark: By removing linearly dependent rows, we can ensure that rank(M) = m without loss
of generality. We will assume this fact henceforth.

Let us give some intuition about the above definition. Given a function f : Fn2 → {0, 1}, it is
natural to consider the set Sf = {x ∈ Fn2 : f(x) = 1}. Suppose for the rest of this paragraph that
in the above definition σ = 1k. In this case f is (M,σ)-free if and only if Sf contains no solution to
the system of equations Mx = 0, that is, if there is no v ∈ Skf satisfying Mv = 0. Note that when

considering graph properties, the notion of (M, 1k)-freeness is analogous to the graph property of
being H-free2, where H is some fixed graph. Observe that in both cases the property is monotone
in the sense that if f is (M, 1k)-free, then removing elements from Sf results in a set that contains

2If H is a graph on h vertices, then we say that a graph G is H-free if G contains no set of h vertices that contain
a copy of H (possibly with some other edges).
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no solution to Mx = 0. Similarly if G is H-free, then removing edges from G results in an H-free
graph.

Let us now go back to considering arbitrary σ ∈ {0, 1}k in Definition 1, where again the intuition
comes from graph properties. Observe that a natural variant of the monotone graph property of
being H-free is the property of being induced H-free3. Note that being induced H-free is no longer
a monotone property since if G is induced H-free then removing an edge can actually create induced
copies of H. Getting back to the property of being (M,σ)-free, observe that we can think of this
as requiring Sf to contain no induced solution to the system of equations Mx = 0. That is, the
requirement is that there should be no vector v satisfying Mv = 0, where vi ∈ Sf if σi = 1 and
vi ∈ Fn2 \ Sf if σi = 0. So we can think of σ as encoding which elements of a potential solution
vector v should belong to Sf and which should belong to its complement. For this reason we will
adopt the convention of calling (M,σ) a forbidden induced system of equations.

Continuing with the graph analogy, once we have the property of being induced H-free, for some
fixed graph H, it is natural to consider the property of being induced H-free where H is a fixed
finite set of graphs. Several natural graph properties can be described as being induced H-free
(e.g. being a line-graph), but it is of course natural to further generalize this notion and allow
H to contain an infinite number of forbidden induced graphs. One then gets a very rich family
of properties like being Perfect, k-colorable, Interval, Chordal etc. This generalization naturally
motivates the following definition which will be key to our main results.

Definition 2 (F-free) Let F = {(M1, σ1),(M2, σ2),. . . } be a (possibly infinite) set of induced
systems of linear equations. A function f is said to be F-free if it is (M i, σi)-free4 for all i.

Observe that this definition is an OR-AND type restriction, that is, we require that f will not
satisfy any of the systems (M i, σi), where f satisfies (M i, σi) if it satisfies all the equations of M i

(in the sense of Definition 1). We are now ready to state our main result.

Theorem 3 (Main Result) Let F = {(M1, σ1), (M2, σ2), . . . } be a possibly infinite set of induced
equations (that is, all the matrices M i are of rank one), each on more than two variables. Then
the property of being F-free is testable with one-sided error.

Note that, in the above statement, each M i contains a single equation, rather than a system
of equations as in Definition 2. In fact, though, what we prove is quite a bit stronger: Theorem 3
holds when each M i is of complexity 1, instead of just rank 1. The notion of complexity of a linear
system is derived from work by Green and Tao [GT08] (See Section 3.2 for the formal definition.)
There, we also show that any matrix of rank at most two is of complexity 1, and, hence, Theorem 3
is obviously a corollary of this stronger result. But for the sake of simplicity, let us restrict ourselves
to discussing matrices of rank one in this section.

Let us compare this result to some previous works. One work that initiated some of the recent
results on testing Boolean functions was obtained by Green [Gre05]. His result can be formulated
as saying that for any rank one matrix M , the property of being (M, 1k)-free can be tested with
one-sided error. Green conjectured that the same result holds for any system of linear equations.
This conjecture was recently confirmed by Shapira [Sha09] and Král’, Serra and Vena [KSV08].

3If H is a graph on h vertices, then we say that a graph G is induced H-free if G contains no set of h vertices that
contain a copy of H and no other edges.

4In the sense of Definition 1
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In our language, the results of [Sha09, KSV08] can be stated as saying that for any matrix M ,
the property of being (M, 1k)-free is testable with one-sided error. The case of arbitrary σ was
first explicitly considered in [BCSX09] where it was shown that if M is a rank one matrix, then
(M,σ)-freeness is equivalent to a finite set of properties, all of which were already known to be
testable. Tim Austin (see [Sha09]) conjectured that the result of [Sha09] for an arbitrary matrix M
can be extended to show testability of (M,σ)-freeness for every vector σ. Shapira [Sha09] further
conjectured that his result can be extended to the case when we forbid an infinite set of systems
of linear equations as in Definition 2. So Theorem 3 partially resolves the above conjecture, since
it can handle an infinite number of induced equations (but not an infinite number of forbidden
arbitrary systems of equations).

Another way to think of Theorem 3 comes (yet again) from the analogy with graph properties.
Alon and Shapira [AS08a] have shown that for every set of graphs F , the property of being induced
F-free is testable with one-sided error. Since in many ways5, copies of a fixed graph H in a graph
G correspond to finding solutions of a single equation in a set S ⊆ Fn2 , Theorem 3 can be considered
to be a Boolean functions analog of the result of [AS08a]. Just like the graph property of being free
of a particular subgraph H is analogous to being (M,σ)-free where M has rank 1, the hypergraph
property of being free of a particular sub-hypergraph H is analogous to being (M,σ)-free for an
arbitrary M . Now, the result of [AS08a] has been later extended to hypergraphs by Austin and
Tao [AT08] and Rödl and Schacht [RS09]; so, it is natural to expect that one could also handle an
infinite number of forbidden induced systems of equations in the functional case as well. All the
above motivates us to raise the following conjecture.

Conjecture 4 For every (possibly infinite) set of systems of induced equations F , the property of
being F-free is testable with one-sided error.

As the reader can easily convince himself, a graph property P is equivalent to being induced
H-free if and only if P is closed under vertex removal. Such properties are usually called hereditary.
This motivates us to define the following analogous notion for properties of Boolean functions.

Definition 5 (Subspace-Hereditary Properties) A linear-invariant property P is said to be
subspace-hereditary if it is closed under restriction to subspaces. That is, if f is in Pn and H
is a m-dimensional linear subspace of Fn2 , then f |H ∈ Pm also, where6 f |H : Fm2 → {0, 1} is the
restriction of f to H.

When considering linear-invariant properties, one can also obtain the following (slightly cleaner)
view of the properties of Definition 2. This equivalence is analogous to the graph properties men-
tioned above. We stress that this equivalence is a further indication of the “naturalness” of the
notion of linear-invariance and its resemblance to the closure of graph properties under vertex
renaming. We defer its proof to the appendix.

Proposition 6 A linear-invariant property P is subspace-hereditary if and only if there is a (pos-
sibly infinite) set of systems of induced equations F such that P is equivalent to being F-free.

5This analogy is informal, but see [KSV09] and [Sze10] for some formal connections.
6Note that we are implicitly composing f |H with a linear transformation so that it is now defined on Fm2 . Here,

we are using the fact that F is linear-invariant.
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We mention that while the notions of graph properties being hereditary and functions being
subspace-hereditary are somewhat more natural than the equivalent notions of being free of induced
subgraphs and equations respectively, it is actually easier to think about these properties using the
latter notion when proving theorems about them. This was the case in [AS08a], and it will be the
case in the present paper as well. Proposition 6 along with Conjecture 4 implies the following:

Corollary 7 If Conjecture 4 holds, then every linear-invariant subspace-hereditary property is
testable with one-sided tester.

Observe that if Conjecture 4 holds, then Corollary 7 would give yet another surprising similarity
between linear-invariant properties of boolean functions and graph properties, since it is known
[AS08a] that every hereditary graph property is testable. Actually, as we discuss in the next
subsection, if Conjecture 4 holds, then an even stronger similarity would follow.

Many interesting properties of the hypercube that have been studied for testability are linear-
invariant. Important examples include linearity [BLR93], being a polynomial of low degree [AKK+05],
and low Fourier dimensionality and sparsity [GOS+09]. These properties have all been shown to
be testable. Moreover, they all turn out to be subspace-hereditary. Thus, if our Conjecture 4 is
true, as we strongly believe, then we could explain the testability of all these properties through a
unified perspective that uses no features of these properties other than their linear invariance. Note
that our main result, Theorem 3, already shows (yet again!) that linearity is testable but from a
completely different viewpoint than used in previous analysis. Furthermore, to show the testability
of low degree polynomials (a.k.a., Reed-Muller codes), we would only need to resolve Conjecture 4
for a finite 7 family of forbidden induced systems of equations.

1.4 The proposed characterization of testable linear-invariant properties

We now turn to discuss our second result, which based on Conjecture 4 gives a characterization of
the linear-invariant properties of Boolean functions that can be tested with one-sided error using
“natural” testing algorithms. Let us start with formally defining the types of “natural” testers we
consider here.

Definition 8 (Oblivious Tester) An oblivious tester for a property P = {Pn}n is a (possibly 2-
sided error) non-adaptive, probabilistic algorithm, which, given a distance parameter ε, and oracle
access to an input function f : Fn2 → {0, 1}, performs the following steps:

1. Computes an integer d = d(ε). If d(ε) > n, let H = Fn2 . Otherwise, let H ≤ Fn2 be a subspace
of dimension d(ε) chosen uniformly at random.

2. Queries f on all elements x ∈ H.

3. Accepts or rejects based only on the outcomes of the received answers, the value of ε, and its
internal randomness.

We now discuss the motivation for considering the above type of algorithms. The fact that
the tester is non-adaptive and queries a random linear subspace is without loss of generality (see
Proposition 33); this is analogous to the fact [AFKS00, GT03] that one can assume a graph property

7 The characterization of polynomials of degree d using forbidden induced equations is shown in Appendix A.
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tester makes its decision only by inspecting a randomly chosen induced subgraph. The only essential
restriction we place on oblivious testers is that their behavior cannot depend on the value of n, the
domain size of the input function. If we allow the testing algorithm to make its decisions based on
n, then it can do very strange and unnatural things. For example, we can now consider properties
that depend on the parity of n. As was shown in [AS08b], the algorithm can use the size of the
input in order to compute the optimal query complexity. All these abnormalities will not allow
us to give any meaningful characterization. As observed in [AS08a] by restricting the algorithm
to make its decisions while not considering the size of the input, we can still test any (natural)
property while at the same time avoid annoying technicalities. We finally note that all the testing
algorithms for testable properties of Boolean functions in prior works were indeed oblivious, and
that furthermore many of them implicitly consider only oblivious testers. In particular, these types
of testers were considered in [Sud10].

As it turns out, oblivious testers can potentially8 test properties which are slightly more general
than subspace-hereditary properties. These are defined as follows.

Definition 9 (Semi Subspace-Hereditary Property) A property P = {Pn}n is semi subspace-
hereditary if there exists a subspace-hereditary property H such that

1. Any function f satisfying P also satisfies H.

2. There exists a function M : (0, 1) → N such that for every ε ∈ (0, 1), if f : Fn2 → {0, 1} is
ε-far from satisfying P and n ≥M(ε), then f |V does not satisfy H.

The intuition behind the above definition is that a semi subspace-hereditary property can only
deviate from being “truly” subspace-hereditary on functions over a finite domain, where the finite-
ness is controlled by the function M in the definition. Our next theorem connects the notion of
oblivious testing and semi subspace-hereditary properties. Assuming Conjecture 4, it essentially
characterizes the linear-invariant properties that are testable with one-sided error, thus resolving
Sudan’s problem raised in [Sud10].

Theorem 10 If Conjecture 4 holds, then a linear-invariant property P is testable by a one-sided
error oblivious tester if and only if P is semi subspace-hereditary.

Getting back to the similarity to graph properties, we note that [AS08a] obtained a similar
characterization for the graph properties that are testable with one-sided error. Let us close by
mentioning two points. The first is that most linear-invariant properties are known to be testable
with one-sided error, and hence the question of characterizing these properties is well motivated.
In fact, for the subclass of linear-invariant properties which also themselves form a linear subspace,
[BHR05] showed that the optimal tester is always one-sided and non-adaptive. Our second point
is that it is natural to ask if there are linear-invariant properties which are not testable. A linear-
invariant property with query complexity Ω(2n) arises implicitly from the arguments of [GGR98];
see Section 5 for a brief sketch. A second, more natural, example comes from Reed-Muller codes.
[BKS+09] shows that for any 1 � q(n) � n the linear-invariant property of being a log2(q(n))-
Reed-Muller code cannot be tested with o(q(n)) queries. We also conjecture that the property
of two functions being isomorphic upto linear transformations of the variables is not a testable

8The potential relies on the validity of Conjecture 4.
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property. Lower bounds for isomorphism testing have been studied both in the Boolean function
model [FKR+04, BO10] and in the dense graph model [Fis05], but our problem specifically does
not seem to have been examined in a property testing setting.

1.5 Paper overview

The rest of the paper is organized as follows. In Section 2, we discuss the regularity lemma of Green
[Gre05]. Just as the graph regularity lemma of Szemerédi [Sze78] guarantees that every graph can be
partitioned into a bounded number of pseudorandom graphs, Green’s regularity lemma guarantees a
similar partition for Boolean functions. This lemma, whose proof relies on Fourier analysis over Fn2 ,
was used in [Gre05] to show that properties defined by forbidding a single (non-induced) equation
are testable. This basic approach falls short of being able to handle an infinite number of forbidden
non-induced equations or even a single forbidden induced equation. We thus need to develop a
variant of Green’s regularity lemma that is strong enough to allow such applications. This new
variant is described in Section 2. The overall approach is motivated by that taken by Alon et al.
[AFNS06] in their formulation of the functional graph regularity lemma. However, the proof here
is somewhat more involved since we need to develop several tools in order to make the approach
work. One of them is a certain Ramsey type result for Fn2 which is key to our proof and that may be
useful in other settings (see Theorem 19). The approach of [AFNS06] only allows one to handle a
finite number of forbidden subgraphs, which translates in our setting to being able to handle a finite
number of forbidden equations. So, one last technique we employ is motivated by the ideas from
[AS08a] on how to handle an infinite number of forbidden subgraphs. This (somewhat complicated)
technique is described in Section 3. We believe that these set of ideas will prove to be instrumental
in resolving Conjecture 4. Section 5 is devoted to some concluding remarks and open problems.

2 Pseudorandom Partitions of the Hypercube

The support of a Boolean function f refers to the subset of the domain on which f evaluates to
1. If H is a subspace of Fn2 and given function f : H → {0, 1}, let ρ(f), the density of f , denote∑

x∈H f(x)

|H| . Recall that the Fourier coefficients of f , defined for each α ∈ H∗, are:

f̂(α) = E
x∈H

[
f(x) · (−1)〈x,α〉

]
For a parameter ε ∈ (0, 1), we say f is ε-uniform if maxα 6=0 |f̂(α)| < ε. This definition captures the
notion of correlation with a linear function on H, and it will serve as our definition of pseudoran-
domness.

Given a function f : Fn2 → {0, 1}, a subspace H ≤ Fn2 and an element g ∈ Fn2 , define the function
f+g
H : H → {0, 1} to be f+g

H (x) = f(x+g) for x ∈ H. The support of f+g
H represents the intersection

of the support of f with the coset g + H. The following lemma shows that if a uniform function
is restricted to a coset of a subspace of low codimension, then the restriction does not become too
non-uniform and its density stays roughly the same.

Lemma 11 Let f : Fn2 → {0, 1} be an ε-uniform function of density ρ, and let H ≤ Fn2 be a
subspace of codimension k. Then for any c ∈ Fn2 , the function f+c

H : H → {0, 1} is (2kε)-uniform
and of density ρc satisfying |ρc − ρ| < 2kε.
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Proof: Let H⊥ = {α ∈ Fn2 | 〈α, h〉 = 0 ∀h ∈ H} be the dual to the vector space H, and let
H ′ = Fn2/H be the quotient of H in Fn2 . We wish to show that, for every c ∈ H ′, the Fourier
coefficients of f+c

H are small.
For every β ∈ Fn2/H⊥ and α ∈ H⊥:

f̂(β + α) = E
x∈Fn2

[f(x)χβ+α(x)] = E
c′∈H′

E
h∈H

f+c′

H (h)χβ+α(c′ + h) = E
c′∈H′

χβ+α(c′) E
h∈H

f+c′

H (h)χβ(h)

=
1

2k

∑
c′∈H′

χβ+α(c′)f̂+c′

H (β)

Recall that
∑

α∈H⊥ χα(c′) =

{
0, if c′ 6= 0

1, if c′ = 0.
Fixing β ∈ Fn2/H⊥ and c ∈ H ′ and summing up the

quantity computed above over all α ∈ H⊥, we obtain

2k

 ∑
α∈H⊥

χβ+α(c)f̂(β + α)

 =
∑
c′∈H′

∑
α∈H⊥

χβ+α(c+ c′)f̂+c′

H (β)

=
∑
α∈H⊥

χβ+α(0)f̂+c
H (β) +

∑
c′∈H′−{c}

∑
α∈H⊥

χβ+α(c+ c′)f̂+c′

H (β)

= 2kf̂+c
H (β) +

∑
c′∈H′−{0}

∑
α∈H⊥

χβ+α(c′)f̂+c′+c
H (β)

= 2kf̂+c
H (β) +

∑
c′∈H′−{0}

χβ(c′)

 ∑
α∈H⊥

χα(c′)

 f̂+c′+c
H (β)

= 2kf̂+c
H (β).

Furthermore,

∣∣∣f̂+c
H (β)

∣∣∣ =

∣∣∣∣∣∣
∑
α∈H⊥

χβ+α(c)f̂(β + α)

∣∣∣∣∣∣ ≤
∑
α∈H⊥

∣∣∣χβ+α(c)f̂(β + α)
∣∣∣ =

∑
α∈H⊥

∣∣∣f̂(β + α)
∣∣∣

Since f is ε-uniform, setting β = 0 in the above inequality shows that |ρc−ρ| ≤
∑

06=α∈H⊥ |f̂(α)| <
2kε. For nonzero β in Fn2/H⊥, it follows again from ε-uniformity that |f̂+c

H (β)| < 2kε.

For a subspace H ≤ Fn2 , the H-based partition refers to the partitioning of Fn2 into the cosets
in Fn2/H. If H ′ ≤ H, then the H ′-based partition is called a refinement of the H-based partition.
The order of the H-based partition is defined to be [G : H], i.e., the index of H as a subgroup or
the dimension of the quotient space Fn2/H. Using this notation, Green’s regularity lemma can be
stated as follows.

Lemma 12 (Green’s Regularity Lemma [Gre05]) For every m and ε > 0, there exists T =
T12(m, ε) such that the following is true. Given function f : Fn2 → {0, 1} with n > T and H-based
partition of Fn2 with order at most m, there exists a refined H ′-based partition of order k, with
m ≤ k ≤ T , for which f+g

H′ is not ε-uniform for at most ε2n many g ∈ Fn2 .
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Our main tool in this work is a functional variant of Green’s regularity lemma, in which the
uniformity parameter ε is not a constant but rather an arbitrary function of the order of the
partition. It is quite analogous to a similar lemma, first proved in [AFKS00], in the graph property
testing setting. The recent work [GT10] shows a (very strong) functional regularity lemma in the
arithmetic setting but it applies over the integers and not F2.

Lemma 13 (Functional regularity lemma) For integer m and function E : Z+ → (0, 1), there
exists T = T13(m, E) such that the following is true. Given function f : Fn2 → {0, 1} with n ≥ T ,
there exist subspaces H ′ ≤ H ≤ Fn2 that satisfy:

• Order of H-based partition is k ≥ m, and order of H ′-based partition is ` ≤ T .

• There are at most E(0) · 2n many g ∈ Fn2 such that f+g
H is not E(0)-uniform.

• For every g ∈ Fn2 , there are at most E(k) · 2n−k many h ∈ H such that f+g+h
H′ is not E(k)-

uniform.

• There are at most E(0) · 2n many g ∈ Fn2 for which there are more than E(0) · 2n−k many

h ∈ H such that |ρ(f+g
H )− ρ(f+g+h

H′ )| > E(0).

Proof: Let us first give an informal overview of the proof. The basic idea is to repeatedly apply
Lemma 12, at each step refining the partition obtained in the previous step. At each step, Lemma
12 is applied with a uniformity parameter that depends on the order of the partition obtained in
the previous step. We stop when the index of the partitions stop increasing substantially. Given a
subspace H, the index of the H-based partition is defined to be the variance of the densities in the
cosets:

ind(f,H)
def
=

1

2n

∑
g∈Fn2

ρ2(f+g
H )

We show that when the indexes of two successive partitions are close, then on average, each coset
of the finer partitioning has roughly the same density as the coset of the coarser partitioning it is
contained in.

To implement the above ideas, we need the following two claims about the index of partitions.
Their proofs are essentially identical to those for the corresponding Lemmas 3.6 and 3.7 respectively
in [AFKS00], and so we are a bit brief in the following.

Claim 14 Given subspace H ≤ Fn2 and function f : Fn2 → {0, 1}, suppose that there are at least
ε2n many g ∈ Fn2 such that |ρ(f)− ρ(f+g

H )| > ε. Then:

ind(f,H) > ρ2(f) +
ε3

2

Proof: Observe that the average of ρ(f+g
H ) over all g ∈ Fn2 equals ρ(f). From our assumptions,

either there are ε
22n many g ∈ Fn2 such that ρ(f) − ρ(f+g

H ) > ε or there are ε
22n many g ∈ Fn2

such that ρ(f)− ρ(f+g
H ) < −ε. For either case, we can use the defect form of the Cauchy-Schwarz

inequality to prove our claim.
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Claim 15 For function f : Fn2 → {0, 1} and subspaces H ′ ≤ H ≤ Fn2 , suppose the H-based partition

of order k and its refinement, the H ′-based partition, of order ` satisfy ind(f,H ′)− ind(f,H) ≤ ε4

2
for some ε. Then, there are at most ε2n many g ∈ Fn2 for which there are more than ε2n−k many

h ∈ H satisfying |ρ(f+g
H )− ρ(f+g+h

H′ )| > ε.

Proof: Suppose that there are > ε2n many g ∈ Fn2 such that there are > ε2n−k many h ∈ H
satisfying |ρ(f+g

H )− ρ(f+g+h
H′ )| > ε. Use Claim 14 to obtain a contradiction:

ind(f,H ′) =
1

2`

∑
u∈Fn2 /H′

ρ2(f+u
H′ ) =

1

2k

∑
v∈Fn2 /H

1

2`−k

∑
h∈H/H′

ρ2(f+v+h
H′ )

=
1

2k

∑
v∈Fn2 /H

ind(f+v
H )

>
1

2k

 ∑
v∈Fn2 /H

ρ2(f+v
H ) + ε · 2k ε

3

2


= ind(f,H) +

ε4

2

Now we have the pieces needed to prove the lemma. We can assume E(·) is monotone non-
increasing. Let ε = E(0). We define T inductively as follows. Let T (1) = T12(m, ε), and for i > 1,
let:

T (i) = T12

(
T (i−1), E

(
T (i−1)

)
· 2−T (i−1)

)
Set T = T13(m, E)

def
=T (2ε−4+1).

We now show that this choice of T suffices. Given function f : Fn2 → {0, 1}, apply Lemma
12 with m and ε to get a subspace H1, and thereafter repeatedly apply it to get a sequence of
finer subspaces H2, H3, H4, . . . , with H1 ≥ H2 ≥ H3 ≥ H4 ≥ · · · , by invoking Lemma 12 at
each step i > 1 with T (i−1) and E

(
T (i−1)

)
· 2−T (i−1)

as the two input parameters. Stop when

ind(f,Hi+1) − ind(f,Hi) <
ε4

2 . This happens when i is at most 2ε−4 + 1 because the index of any
partition is less than 1. Let H = Hi and H ′ = Hi+1. It’s clear that the codimension k of H at least
m and that the codimension ` of H ′ is at most T . The second item in the lemma follows from the
uniformity guarantee of Lemma 12 and from the fact that E(T (i−1)) < E(0). For the third, note
that Lemma 12 guarantees that there are at most E(k)2−k2n = E(k)2n−k values of g ∈ Fn2 such that
f+g
H′ is not (E(k)2−k)-uniform and, hence, not E(k)-uniform. So, clearly, there are at most so many
g contained in any coset of H. Finally, the fourth item follows from Claim 15. This completes the
proof of Lemma 13.

We use Lemma 13 in two main ways. For one of them, we use the lemma directly. For the
other, we use the following simple but extremely useful corollary which allows us to say that there
are many cosets in a partitioning which, on the one hand, are all uniform, and on the other hand,
are arranged in an algebraically nice structure.

Corollary 16 For every m and E : Z+ → (0, 1), there exist T = T16(m, E) and δ = δ16(m, E)
such that the following is true. Given function f : Fn2 → {0, 1} with n ≥ T , there exist subspaces
H ′ ≤ H ≤ Fn2 and an injective linear map I : Fn2/H → Fn2/H ′ such that:
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• The H-based partition is of order k, where m ≤ k ≤ T . Additionally, |H ′| ≥ δ2n.

• For each u ∈ Fn2/H, I(u) + H ′ lies inside the coset u + H. Note that I(0) = 0 since I is
linear.

• For every nonzero u ∈ Fn2/H, the set f
+I(u)
H′ is E(k)-uniform.

• There are at most E(0)2n many g ∈ Fn2 for which |ρ(f+g
H ) − ρ(f

+I(u)
H′ )| > E(0) where u = g

(mod H).

Proof: We can assume E is a nonincreasing function. Denote E(0) as ε, and set E ′(r) = min(E(r), ε6 ,
1

2r+1 ).

We will show that T = T16(m, E)
def
=T13(m, E ′) and δ = δ16(m, E)

def
= 1/2T suffice for our proof.

Apply Theorem 13 with m and the function E ′ as inputs. Let H and H ′ be the subspaces
obtained there, for the given f : Fn2 → {0, 1}. We find I satisfying the conditions of the claim exists
using the probabilistic method.

Fix k linearly independent elements u1, . . . , uk ∈ Fn2/H (viewing Fn2/H as a vector space over
F2). For every i ∈ [k], choose independently and uniformly at random an element v from H/H ′

and let I(ui) equal ui + v+H ′. The value of I over the rest of Fn2/H is determined by linearity, as
the ui’s form a basis for Fn2/H. It’s immediate that I(u) +H ′ lies inside u+H for every u ∈ Fn2/H.

Observe that unless u = 0, each I(u)+H ′ is uniformly distributed among the cosets of H ′ lying

in u + H. Hence, for any nonzero u, the probability that f
+I(u)
H′ is not E(k)-uniform is at most

1/2k+1, by our choice of parameters. Applying the union bound, the probability that there exists

nonzero u ∈ Fn2/H such that f
+I(u)
H′ is not E(k)-uniform is at most 1/2. Also, the expected number

of g ∈ Fn2 , with u = g (mod H), for which |ρ(f+g
H )− ρ(f

+I(u)
H′ )| > ε is at most ε

62n + ε
62n + 1 ≤ ε

22n,
and hence by the Markov inequality, with probability at least 1

2 , the number of g ∈ Fn2 satisfying
this condition is at most ε2n. Therefore, there must exist a choice of I making both the third and
fourth claims true.

The next lemma is in a similar spirit to Corollary 16. It also obtains a set of uniform cosets which
are structured algebraically, but in this case, all of them are contained inside the same subspace.

Lemma 17 For every positive integer d and γ ∈ (0, 1), there exists δ = δ17(d, γ) such that the
following is true. Given f : Fn2 → {0, 1}, there exists a subspace H ≤ Fn2 and a subspace K of
dimension d in the quotient space Fn2/H with the following properties:

• |H| ≥ δ2n.

• For every nonzero u ∈ K, f+u
H is γ-uniform.

• Either ρ(f+u
H ) ≥ 1

2 for every nonzero u ∈ K or ρ(f+u
H ) < 1

2 for every nonzero u ∈ K.

We need a different set of tools to prove this lemma. Specifically, we use linear algebraic
variants of the classic theorems of Turán and Ramsey. We note that the (classic) Turán and
Ramsey Theorems are key tools in many applications of the graph regularity lemma, for example
in the well known bound on the Ramsey numbers of bounded degree graphs [CRSW83]. Hence,
the variants that we use of these classic results may be useful in other applications of Greens’s
regularity lemma.
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Proposition 18 (Turán theorem for subspaces) For positive integers n, if S is a subset of Fn2
with density greater than 1 − 1

2d−1 , then there exists a subspace H ≤ Fn2 of dimension d such that

H − {0} is contained in S. Moreover, there is a subset of Fn2 with density
(
1− 1

2d−1

)
which does

not contain H − {0} for any subspace H ≤ Fn2 .

Proof: Let S ⊆ Fn2 be a maximal set that does not contain H−{0} for any d-dimensional subspace
H. Since S is maximal, it must contain K − {0} for some (d− 1)-dimensional subspace K (if not,
we can simply add it to S without introducing points of H − {0} for any d-dimensional subspace
H). Let K ′ be an (n− d+ 1)-dimension subspace that intersects K only at {0}.

Now, observe that for any nonzero α ∈ K ′, at least one of the elements of {α + k : k ∈ K}
must not belong to S. Otherwise, S would contain (K − {0}) ∪ {α + k : k ∈ K} = H − {0} for
a d-dimensional subpace H = span(K ∪ {α}), contradicting our assumption for S. Thus, we can
upper-bound the number of points in S by:

|S| ≤ |K ′ − {0}| · (|K| − 1) + |K − {0}| = (2n−d+1 − 1) · (2d−1 − 1) + (2d−1 − 1) = 2n − 2n−d+1

To see that the above bound is tight, let S = Fn2 − K ′ for any (d − 1)-dimensional subspace
K ≤ Fn2 and K ′ as above. It is easy to check that this S does not contain H − {0} for any H ≤ Fn2
with dim(H) = d.

Theorem 19 (Ramsey theorem for subspaces) 9 For every positive integer d, there exists
N = N19(d) such that for any subset S ⊆ FN2 , there exists a subspace H ≤ FN2 of dimension d
such that H − {0} is contained either in S or in S̄.

Proof: We will show a stronger statement, which we describe in the following lemma.

Lemma 20 For every positive integer d1, d2, there exists N(d1, d2) such that for any subset S ⊆
FN(d1,d2)

2 , either there exists a subspace H1 ≤ FN(d1,d2)
2 of dimension d1 such that H1 − {0} is

contained in S or there exists a subspace H2 ≤ FN(d1,d2)
2 of dimension d2 such that H2 − {0} is

contained in S̄.

One can immediately deduce the statement of the theorem by taking d = d1 = d2 in Lemma 20.
To prove Lemma 20 we first prove the following helpful result. For a subspace H ≤ Fn2 we say that
an affine subspace a+H is strict if a ∈ Fn2/H − {0}.

Lemma 21 For every positive integer d, there exists Na = Na(d) such that for any subset S ⊆ FNa2 ,
there exists a strict affine subspace A ≤ FNa2 of dimension d such that A is contained either in S
or in S̄.

Proof: Notice that Na(1) = 1. Assume, by induction that the lemma holds for dimension d− 1,

and let Na(d) = 2Na(d−1)+1 + Na(d − 1). Let S ⊆ FNa(d)
2 be an arbitrary set, let H = FNa(d−1)

2 ,

and H ′ = FNa(d)
2 /H. Notice that |H ′| = 22Na(d−1)+1. For each c ∈ H ′ − {0} consider the set

f+c
H ⊂ H. Since there are 22Na(d−1)+1 − 1 possible such sets, and each set has size at most 2Na(d−1)

9As pointed to us recently by Noga Alon, this theorem might be implied by the Folkman-Rado-Sanders Theorem,
but we include a self-contained proof for the sake of completeness.
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it follows that there exists c1 6= c2 ∈ H ′−{0} such that f+c1
H = f+c2

H . By the induction hypothesis,
either f+c1

H or its complement contains a d − 1 dimensional affine subspace. Assume w.l.o.g. that
f+c1
H contains an affine subspace α+ fd−1 of dimension d− 1 (otherwise replace S by S̄), for some
α ∈ H − fd−1. Then the affine subspaces α + c1 + fd−1 and α + c2 + fd−1 are both contained
in S. Let Ad = (α + c1 + fd−1) ∪ (α + c2 + fd−1) ⊂ S. To conclude the proof, notice that
Ad = α + c1 + span(c2 − c1, fd−1) is a strict affine subspace of dimension d, since α 6= c1 and
c2 − c1 6∈ fd−1.

Proof of Lemma 20: The proof follows by induction on d1 and d2, with the base cases N(0, 1) =
N(1, 0 = 1. Assume that there exists N(d1 − 1, d2) and N(d1, d2 − 1) satisfying the conditions of
the lemma. Define

N(d1, d2) = Na(max(N(d1 − 1, d2), N(d1, d2 − 1))),

where Na(d) is the quantity defined in Lemma 21. We show that for any arbitrary set S ⊆ FN(d1,d2)
2

either it contains a subspace of dimension d1 (except 0) or its complement contains a subspace of
dimension d2 (except 0). Suppose N(d1 − 1, d2) ≥ N(d1, d2 − 1). By definition and by Lemma 21,

there exists a strict affine subspace A ⊆ FN(d1,d2)
2 such that A = a+H ⊆ S or A ⊆ S̄ (where H is

the subspace underlining A). Assume for now that the former holds. Since H ∩S ⊆ FN(d1−1,d2)
2 , by

the induction hypothesis, either H ∩ S contains a subspace of dimension d1 − 1 or H − S contains
a subspace of dimension d2, in which case we are done. If H ∩S contains a subspace fd1−1−{0} of
dimension d1 − 1, then define fd1 = fd1−1 ∪ a+ fd1−1 = span(a, fd1−1). Clearly fd1 ∈ S and it has
dimension d1, which completes the proof of this case. It remains to deal with the case when A ⊆ S̄.
Since N(d1 − 1, d2) ≥ N(d1, d2 − 1), there exists another affine subspace A′ = a′ + H ′ ⊂ A ⊆ S̄
of dimension N(d1, d2 − 1). Again, by the induction hypothesis, the set H ′ ∩ S either contains
a subspace of dimension d1, in which case we are done, or H ′ − S contains a subspace fd2−1 of
dimension d2−1. In the latter case define fd2 = fd2−1∪a′+fd2−1 = span(a′, fd2−1). Finally, notice
that fd2 ∈ S̄ and it has dimension d2.

This concludes the proof of Theorem 19.

Given these results, Lemma 17 follows fairly readily.

Proof of Lemma 17: Set δ = δ17(d, γ)
def
= 2−T12(r,min(2−r−2,γ)) with r = N19(d). Given f : Fn2 →

{0, 1}, apply Lemma 12 with inputs r and min(2−r−2, γ) to obtain a subspace H such that restric-
tions of S to at most 2−r−2 fraction of the cosets of the H-based partition are not γ-uniform. Using
Proposition 18, there exists a subspace L ≤ Fn2/H of dimension r such that for every nonzero u ∈ L,
the set f+u

H is γ-uniform. Furthermore, since L is of dimension N19(d), by Theorem 19, there exists
a subspace K ≤ L ≤ Fn2/H satisfying the final condition of the lemma.

3 Forbidding Infinitely Many Induced Equations

In this section, we prove our main result (Theorem 3) that properties characterized by infinitely
many forbidden induced equations are testable. To begin, let us fix some notation. Given a matrix
M over F2 of size m-by-k, a string σ ∈ {0, 1}k, and a function f : Fn2 → {0, 1}, if there exists
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x = (x1, . . . , xk) ∈ (Fn2 )k such that Mx = 0 and f(xi) = σi for all i ∈ [k], we say that f induces
(M,σ) at x and denote this by (M,σ) 7→ f .

The following theorem is the core of the proof of Theorem 3.

Theorem 22 For every infinite family of equations F = {(E1, σ1), (E2, σ2), . . . , (Ei, σi), . . . } with
each Ei being a row vector [1 1 · · · 1] of size ki and σi ∈ {0, 1}ki a ki-tuple, there are functions
NF (·), kF (·) and δF (·) such that the following is true for any ε ∈ (0, 1). If a function f : Fn2 → {0, 1}
with n > NF (ε) is ε-far from being F-free, then f induces δ · 2n(ki−1) many copies of some (Ei, σi),
where ki ≤ kF (ε) and δ ≥ δF (ε).

Armed with Theorem 22, our main theorem becomes a straightforward consequence. We post-
pone the proof of this, because we will prove a stronger fact in Section 3.2. To start the proof of
Theorem 22, let us relate pseudorandomness (uniformity) of a function to the number of solutions
to a single equation induced by it. Similar and more general statements have been shown previously,
but we need only the following claim for what follows.

Lemma 23 (Counting Lemma) For every η ∈ (0, 1) and integer k > 2, there exist γ = γ23(η, k)
and δ = δ23(η, k) such that the following is true. Suppose E is the row vector [1 1 · · · 1] of size k,
σ ∈ {0, 1}k is a tuple, H is a subspace of Fn2 , and f : Fn2 → {0, 1} is a function. Furthermore,
suppose there are k not necessarily distinct elements u1, . . . , uk ∈ Fn2/H such that Mu = 0 where
u = (u1, . . . , uk), f

+ui
H : H → {0, 1} is γ-uniform for all i ∈ [k], and ρ(f+ui

H ) is at least η if σ(i) = 1
and at most 1 − η if σ(i) = 0 for all i ∈ [k]. Then, there are at least δ|H|k−1 many k-tuples
x = (x1, x2, . . . , xk), with each xi ∈ ui +H, such that f induces (E, σ) at x.

Proof: Fix v1 ∈ u1 + H, v2 ∈ u2 + H, . . . , vk ∈ uk + H such that v1 + v2 + · · · + vk = 0; there
exist such vi’s because u1 +u2 + · · ·+uk = 0 in the quotient space Fn2/H. Define Boolean functions
f1, . . . , fk : H → {0, 1} so that fi(x) = f+vi

H (x) if σ(i) = 1 and fi(x) = 1 − f+vi
H (x) if σ(i) = 0.

By our assumptions, f̂i(0) ≥ η and each |f̂i(α)| < γ for all α 6= 0. Now, observe that, using
γ-uniformity and Cauchy-Schwarz, we have:

E
x1,...,xk−1∈H

[f1(x1)f2(x2) · · · fk−1(xk−1)fk(x1 + x2 + · · ·+ xk−1)]

=
∑
α∈H∗

f̂1(α)f̂2(α) · · · f̂k(α)

≥ ηk −
∑
α 6=0

|f̂1(α)f̂2(α) · · · f̂k(α)|

≥ ηk − γk−2

√∑
α

|f̂1(α)|2
√∑

α

|f̂2(α)|2

≥ ηk − γk−2

Setting γ = γ23(η, k)
def
= (ηk/2)1/(k−2) makes the above expectation at least ηk/2. Now note that

every x1, . . . , xk ∈ H such that x1 + · · · + xk = 0 gives y = (y1, . . . , yk), where yi = vi + xi for all
i ∈ [k], such that f induces (E, σ) at y. Thus, we have from above that there are at least δ|H|k−1

many such y’s, where δ = δ23(η, k)
def
=ηk/2.

14



3.1 Proof of Theorem 22

Before seeing the full technical details of the proof of Theorem 22 we proceed with a more intuitive
overview.

In light of Lemma 23, our strategy will be to partition the domain into uniform cosets, using
Green’s regularity lemma (Lemma 12) in some fashion, and then to use the above counting lemma
to count the number of induced solutions to some equation in F . But one issue that immediately
arises is that, because F is an infinite family of equations, we do not know the size of the equation
we would want the input function to induce. Since Lemma 23 needs different uniformity parameters
to count equations of different lengths, it is not a priori clear how to set the uniformity parameter
in applying the regularity lemma. (If F was finite, one could set the uniformity parameter to
correspond to the size of the largest equation in F .)

To handle the infinite case, our basic approach will be to classify the input function into one
of a finite set of classes. For each such class c, there will be an associated number kc such that
it is guaranteed that any function classified as c must induce an equation in F of size at most
kc. If there is such a classification scheme, then we know that any input function must induce an
equation of size at most maxc kc. How do we perform this classification? We use the regularity
lemma. Consider the following idealized situation. Fix an integer r. Suppose we could modify the
input f : Fn2 → {0, 1} at a small fraction of the domain to get a function F : Fn2 → {0, 1} and then
could apply Lemma 12 to get a partition of order r so that the restrictions of F to each coset was
exactly 0-uniform. F is then a constant function (either 0 or 1) on each of the 2r cosets, and so,
we can classify F by a Boolean function µ : Fr2 → {0, 1} where µ(x) is the value of F on the coset
corresponding to x. Notice that there are only finitely many such µ’s. Since F differs from f at only
a small fraction of the domain and since f is far from F-free, F must also induce some equation in
F . Then, for every such µ and corresponding F , there is a smallest equation in F that is induced
by F . We can let ΨF (r) be the maximum over all such µ of the size of the smallest equation in
F that is induced by the F corresponding to µ. We then might hope that this function ΨF (·) can
be used to tune the uniformity parameter by using the functional variant of the regularity lemma
(Lemma 13).

There are a couple of caveats. First, we will not be able to get the restrictions to every coset
to look perfectly uniform. Second, if F induces solutions to an equation, it does not necessarily
follow that f also does. To get around the first problem, we use the fact that Lemma 23 is not very
restrictive on the density conditions. We think of the uniform cosets which have density neither too
close to 0 nor 1 as “wildcard” cosets at which both the restriction of f and its complement behave
pseudorandomly and have non-negligible density. Thus, the µ in the above paragraph will map into
{0, 1, ∗}r, where a ‘∗’ denotes a wildcard coset. For the second problem, note that it is not really a
problem if F-freeness is known to be monotone. In this case, F inducing an equation automatically
means f also induces an equation, if we obtained F by removing elements from the support of f .
For induced freeness properties, though, this is not the case. Using ideas from [AFKS00] and the
tools from Section 2, we structure the modifications from f to F in such a way so as to force f to
induce solutions of an equation if F induces a solution to the same equation. We elaborate much
more on this issue during the course of the proof.

The observations described in the proof sketch above motivate the following definitions.

Definition 24 Given function µ : Fr2 → {0, 1, ∗}, a m-by-k matrix M and a k-tuple σ ∈ {0, 1}k,
suppose there exist x1, . . . , xk ∈ Fr2 such that Mx = 0 where x = (x1, . . . , xk), and for every i ∈ [k],
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µ(xi) equals either σ(i) or ∗. In this case, we say µ partially induces (M,σ) at x and denote this
by (M,σ) 7→∗ µ.

Definition 25 Given a positive integer r and an infinite family of systems of equations F =
{(M1, σ1), (M2, σ2), . . . } with M i being a mi-by-ki matrix of rank mi and σi ∈ {0, 1}ki a ki-tuple,
define Fr to be the set of functions µ : Fr2 → {0, 1, ∗} such that there exists some (M i, σi) ∈ F with
(M i, σi) 7→∗ µ. Given F and integer r for which Fr 6= ∅, define the following function:

ΨF (r)
def
= max

µ∈Fr
min

{(M i,σi):(M i,σi)7→∗µ}
ki

Proof of Theorem 22: Define the function E by setting E(0) = ε/8 and for any r > 0:

E(r) = δ17(ΨF (r), γ23(ε/8,ΨF (r))) ·min(ε/8, γ23(ε/8,ΨF (r)))

Additionally, let T (ε) = T16(8/ε, E), and set NF (ε)
def
=T (ε). Also, set kF (ε)

def
= ΨF (T (ε)) and

δF (ε)
def
= (δ17(ΨF (r), γ23(ε/8,ΨF (r))) · δ16(8/ε, E))ΨF (ε) · δ23(ε/8,ΨF (T (ε)))

We proceed to show that these parameter settings suffice.
Suppose we are given input function f : Fn2 → {0, 1} with n > NF (ε) = T16(8/ε, E). As

mentioned in the paragraphs preceding the proof, our strategy will be to partition the domain in
such a way that we can find cosets in the partition satisfying the conditions of Lemma 23. To
this end, we apply Corollary 16 with 8/ε and the function E as inputs. This yields subspaces
H ′ ≤ H ≤ Fn2 and linear map I : Fn2/H → Fn2/H ′, where the order of the H-based partition, which
we denote `, satisfies 8/ε ≤ ` ≤ T16(8/ε, E). Recall that I(u) +H ′ is contained in u+H for every
coset u ∈ Fn2/H. Observe that from our setting of parameters, we have that for every nonzero

u ∈ Fn2/H, the restriction f
+I(u)
H′ is (δ17(ΨF (`), γ23(ε/8,ΨF (`))) · γ23(ε/8,ΨF (`)))-uniform.

But we have no such uniformity guarantee for f+0
H′ . This would not pose an obstacle if F-

freeness were a monotone property (i.e., if each σi equalled 1ki). If that were the case, we could
simply make f zero on all elements of H. Since H is still only a small fraction of the domain,
the modified function would still be far from F-free, and we would be guaranteed that remaining
solutions to equations of F induced by f would only use elements from cosets of H for which we
have a guarantee about the corresponding coset of H ′. But if F-freeness is not monotone, such a
scheme would not work, since it’s not clear at all how to change the value of f on H so that any
solution to an equation from F would only involve elements from nonzero shifts of H.

To resolve this issue, we further partition H ′ to find affine subspaces within H ′ on which we
can guarantee that the restriction of f is uniform. The idea is that once we know that there is a
solution involving H, we are going to look not at H ′ itself but at the smaller affine subspace within
H ′ on which f is known to be uniform. Specifically, apply Lemma 17 to f+0

H′ with input parameters
ΨF (`) and γ23(ε/8,ΨF (`)). This yields subspaces H ′′ and W , both of which contained in H ′, such
that |H ′′| ≥ δ17(ΨF (`), γ23(ε/8,ΨF (`)))|H ′| and dim(W/H ′′) = ΨF (`). We further know that for
every nonzero v ∈W/H ′′, the function f+v

H′′ is γ23(ε/8,ΨF (`))-uniform.
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Now, let’s “copy”W on cosets I(u)+H ′ for every u ∈ Fn2/H. We do this by specifying10 another
linear map J : Fn2/H → Fn2 so that for any u ∈ Fn2/H, the coset11 J(u) + W lies inside I(u) + H ′

(which itself lies inside u+H). Each coset J(u)+W also has an H ′′-based partition of order ΨF (`),
just as W itself does. Consider v ∈ Fn2/H ′′ such that v+H ′′ lies inside J(u) +W for some nonzero

u ∈ Fn2/H. Then, because we know the uniformity of f
+I(u)
H′ and we have a lower bound on the

size of H ′′, it follows from Lemma 11 that f+v
H′′ is γ23(ε/8,ΨF (`))-uniform. Thus, for any nonzero

v ∈ Fn2/H ′′ such that v + H ′′ lies inside J(u) + W for some u ∈ Fn2/H, it is the case that f+v
H′′ is

γ23(ε/8,ΨF (`))-uniform.
In the following, we will show how to apply Lemma 23 on some of these cosets f+v

H′′ . We have
already argued their uniformity above. We now need to make sure that the pattern of their densities
allow Lemma 23 to infer many induced copies of some equation in F . To this end, we modify f to
construct a new function F : Fn2 → {0, 1}. F is initially identical to f on the entire domain, but is
then modified in the following order:

1. For every nonzero u ∈ Fn2/H such that |ρ(F+u
H ) − ρ(F

+I(u)
H′ )| > ε/8, do the following. If

ρ(F
+I(u)
H′ ) ≥ 1

2 , then make F (x) = 1 on all x ∈ u + H. Otherwise, make F (x) = 0 on all
x ∈ u+H.

2. For every nonzero u ∈ Fn2/H such that ρ(F
+I(u)
H′ ) > 1− ε/4, make F (x) = 1 for all x ∈ u+H.

On the other hand, if u ∈ Fn2/H is nonzero and ρ(F
+I(u)
H′ ) < ε/4, make F (x) = 0 for all

x ∈ u+H.

3. If for all nonzero v ∈ W/H ′′, ρ(F+v
H′′) ≥

1
2 , then make F (x) = 1 for all x ∈ H. On the other

hand, if for all nonzero v ∈W/H ′′, ρ(F+v
H′′) <

1
2 , them make F (x) = 0 for all x ∈ H. (One of

these two conditions is true by construction.)

The following observation shows that F also must induce solutions to some equation from F ,
since F is ε-far from being F-free.

Claim 26 F is ε-close to f .

Proof: We count the number of elements added or removed at each step of the modification.
For the first step, Corollary 16 guarantees that at most E(0) ≤ ε/8 fraction of cosets u + H have

|ρ(F+u
H ) − ρ(F

+I(u)
H′ )| > ε/8. So, F is modified in at most ε

82n locations in the first step. In the

second step, if 1 > ρ(F
+I(u)
H′ ) > 1 − ε/4, then ρ(F+u

H ) > 1 − 3ε/8 because the first step has been

completed. Similarly, if 0 < ρ(F
+I(u)
H′ ) < ε/4, then ρ(F+u

H ) < 3ε/8. So, F is modified in at most
3ε
4 2n locations in the second step. As for the third step, H contains at most 2n−` ≤ 2n−8/ε < ε

82n

elements for ε ∈ (0, 1). So, in all, F is ε-close to f .

Now, we define a function µ : F`2 → {0, 1, ∗} based on F and argue that it must partially induce
solutions to some equation in F . Since H is of codimension `, Fn2/H ∼= F`2 and we identify the two
spaces. For u ∈ Fn2/H, if F (x) = 1 on the entire coset u+H, let µ(u) = 1. On the other hand, if
F (x) = 0 on the entire coset u+H, then let µ(u) = 0. In any other case, let µ(u) = ∗.

10One way to accomplish this is to define J appropriately for ` linearly independent elements of Fn2 /H and then
use linearity to define it on all of Fn2 /H.

11Note that the image of J is to elements of Fn2 and not Fn2 /W , even though we think of the output as denoting a
coset of W . The reason is that we will find it convenient to fix the shift and not make it modulo W .
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Claim 27 There exists (Ei, σi) ∈ F such that (Ei, σi) 7→∗ µ.

Proof: As already observed, F is not F-free, and let (Ei, σi) ∈ F be some equation whose
solution is induced by F at (x1, . . . , xki) ∈ (Fn2 )ki . Now let y = (y1, . . . , yki) ∈ (F`2)ki where for
each j ∈ [ki], yj = xj (mod H). It’s clear that Eiy = 0. To argue that F partially induces µ at y,
suppose for contradiction that for some j ∈ [ki], µ(yj) = 0 but σij = 1. But if µ(yj) = 0, then F is
the constant function 0 on all of yj +H, contradicting the existence of xj ∈ yj +H with F (x) = 1.
We get a similar contradiction if µ(yj) = 1 but σij = 0.

Using Definition 25, we immediately get that there is some (Ei, σi) ∈ F of size at most ΨF (`)
such that (Ei, σi) 7→∗ µ. Fix x1, . . . , xki ∈ Fn2 where F induces (Ei, σi), and as in the above
proof, let y1, . . . , yki ∈ Fn2/H where each yj = xj (mod H). Also, pick ki − 1 linearly indepen-
dent elements ṽ1, . . . , ṽki−1 from W/H ′′, which is possible since dim(W/H ′′) = ΨF (`) > ki − 1,
and choose v1 ∈ ṽ1 + H ′′, . . . , vki−1 ∈ ṽki−1 + H ′′ such that v1, . . . , vki are linearly independent.

Additionally set vki =
∑ki−1

j=1 vj . Notice that none of v1, . . . , vki are in H ′′. Now, consider the sets

f
+J(y1)+v1
H′′ , f

+J(y2)+v2
H′′ , . . . , f

+J(yki )+vki
H′′ . (Notice these are restrictions of f , not F !) We will show

that these sets respect the density and uniformity conditions for Lemma 23 to apply.
As for uniformity, we have already argued that each of these sets is γ23(ε/8,ΨF (`))-uniform, since

J(yj) + vj is not in H ′′ for every j ∈ [ki]. For density, we argue as follows. For every j ∈ [ki], there
are three cases: µ(yj) = 1, µ(yj) = 0, and µ(yj) = ∗. Consider the first case. If yj +H was affected

by the first modification from f to F , then, ρ(f
+I(yj)
H′ ) ≥ 1

2 , and using the E(`)-uniformity of f
+I(yj)
H′

along with Lemma 11, we get that ρ(f
+J(yj)+vj
H′′ ) ≥ 1

2−E(`)·δ−1
17 (ΨF (r), γ23(ε/8,ΨF (r))) ≥ 1

2−
ε
8 ≥

ε
8 .

If yj + H was affected by the second modification, then, by the same argument, we get that

ρ(f
+J(yj)+vj
H′′ ) ≥ 1 − ε

4 −
ε
8 ≥

ε
8 . Else, if yj + H was affected by the third modification from S

to S′, we are automatically guaranteed that ρ(f
+J(yj)+vj
H′′ ) ≥ 1

2 since J(yj) + vj 6∈ H ′′. The case

µ(yj) = 0 is similar, and the analysis shows that ρ(f
+J(yj)+vj
H′′ ) ≥ 1 − ε

8 . Finally, consider the

“wildcard” case, µ(yj) = ∗. This case arises only if yj 6= 0 and ε/4 ≤ ρ(f
+I(yj)
H′ ) ≤ 1 − ε/4. Again

using E(`)-uniformity of f
+I(yj)
H′ along with Lemma 11, we get that ε/8 ≤ ρ(f

+J(yj)+vj
H′′ ) ≤ 1− ε/8.

Thus, we can apply Lemma 23 with ε/8 and ΨF (`) as the parameters to get that there are at
least δ23(ε/8,ΨF (`))|H ′′|ki−1 tuples z = (z1, . . . , zki) with each zj ∈ J(yj)+vj+H

′′ at which (Ei, σi)
is induced . Finally, each such z1, . . . , zki leads to a distinct z′ = (z′1, . . . , z

′
ki

) ∈ (Fn2 )ki at which

(Ei, σi) is induced by f , by setting each z′j to J(yj) + vj + zj and observing that
∑ki

j=1 J(yj) + vj =

J
(∑ki

j=1 yj

)
+
∑ki

j=1 vj = 0. This completes the proof of Theorem 22.

3.2 Extending to Systems of Equations of Complexity 1

As mentioned in the introduction, the result we actually prove is stronger than Theorem 3. To
describe the full set of properties for which we can show testability, we first need to make the
following definition.

Definition 28 (Complexity of linear system [GT08]) An m× k matrix M over F2 is said to
be of (Cauchy-Schwarz) complexity c, if c is the smallest positive integer for which the following is
true. For every i ∈ [k], there exists a partition of [k]\{i} into c+ 1 subsets S1, · · · , Sc+1 such that
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for every j ∈ [c + 1],
(
ei +

∑
i′∈Sj ei′

)
6∈ rowspace(M), where rowspace(M) is the linear subspace

of Fk2 spanned by the rows of M .

In other words, if we view the rowspace of the matrix M as specifying a collection of linear depen-
dencies on k variables x1, . . . , xk, then M has complexity c if for every variable xi, the rest of the
variables x1, . . . , xi−1, xi+1, . . . , xk can be partitioned into c+1 sets S1, . . . , Sc+1 such that xi is not
linearly dependent on the variables of any single Sj . Let us make a few remarks to illustrate the
definition. Green and Tao show (Lemma 1.6 in [GT08]) that if each of these linear dependencies
involves more than two variables, then the complexity of M is at most rank(M) = m. In particular
then, if M has one row and is nonzero on more than two coordinates, M has complexity 1. This
is the setting we discussed in the introduction. We slightly extend this observation in the claim
below. Before we state it, we observe that in the context of property testing, it is only natural to
exclude matrices which yield linear dependencies involving less than three variables. If the rowspace
of the matrix M contains a vector which is nonzero at only one coordinate i, then for any string σ
of length k, the property of (M,σ)-freeness must contain all functions f such that f(0) = 1 − σi,
and so every function is exponentially close to such a property. Similarly, if rowspace(M) contains
a vector nonzero only at two coordinates i and j, then for any σ ∈ {0, 1}k, either (M,σ)-freeness
is trivial (if σi 6= σj) or it is equivalent to (M ′, σ′)-freeness where σ′ is the string obtained by
removing coordinate j and M ′ is the matrix obtained by removing column j, adding 1 (mod 2) to
every element in column i and row-reducing the resulting matrix.

Claim 29 If M ∈ Fm×k2 is a matrix with two rows such that every vector in its rowspace has at
least three nonzero coordinates, then M has complexity 1.

Proof: Let R1 ⊆ [k] be the set of coordinates for which the first row is nonzero, and R2 ⊆ [k]
those for which the second row is nonzero. We can assume that R1 6⊆ R2 and R2 6⊆ R1, because
if, say, R1 ⊆ R2, we could replace the second row by the sum of the first and second, making R1

and R2 disjoint but preserving the rowspace of the matrix. Also, we we can assume w.l.o.g. that
R1 ∪R2 = [k].

Fix i ∈ [k]. We want to show a partition of [k]\{i} into sets S1, S2 such that ei +
∑

i′∈S1
ei′ /∈

rowspace(M) and similarly for S2. If i ∈ R1\R2, let S1 consist of two elements, one from R2\R1

and one from R1\{i}, and let S2 be the rest. If i ∈ R2\R1, let S1 consist of one element from
R1\R2 and one from R2\{i}, and let S2 be the rest. And finally, if i ∈ R1 ∩ R2, let S1 consist of
one element from R1\R2 and one from R2\R1, and let S2 be the rest. It is straightforward to check
that the definition of complexity 1 is satisfied by these choices.

More generally, an infinitely large class of complexity 1 linear systems is generated by graphic
matroids. We refer the reader to [BCSX09] for definition and details. That this class contains the
class of matrices proved to be of complexity 1 in Claim 29 is easy to show. We proved the claim
separately above only to be self-contained without introducing matroid notation. One final remark
is that if M is the matrix in the characterization of Reed-Muller codes of order d from Appendix
A, then M has complexity exactly d; see Example 3 of [GT08].

Our main result in this section is the extension of Theorem 3 to complexity 1 systems of
equations.
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Theorem 30 Let F = {(M1, σ1), (M2, σ2), . . . } be a possibly infinite set of induced systems of
equations, with each M i of complexity 1. Then, the property of being F-free is testable with one-
sided error.

We next describe how to modify the previous proof to the new setting. The following analog to
Theorem 22 is the core of the proof of Theorem 30.

Theorem 31 For every infinite family F = {(M1, σ1), (M2, σ2), . . . , (M i, σi), . . . }, where each M i

is a mi×ki matrix over F2 of complexity 1, there are functions NF (·), kF (·) and δF (·) such that the
following is true for any ε ∈ (0, 1). If a function f : Fn2 → {0, 1} with n > NF (ε) is ε-far from being
F-free, then f induces δ · 2n(ki−mi) many copies of some (M i, σi), where ki ≤ kF (ε) and δ ≥ δF (ε).

We show how to deduce Theorem 30 from Theorem 31 next. Note that, as promised earlier,
this is also a proof of Theorem 3 assuming Theorem 22.

Proof of Theorem 30: Theorem 31 allows us to devise the following tester T for F-freeness.
T , given input f : Fn2 → {0, 1}, first checks if n ≤ NF (ε), and in this case, it queries f on the entire
domain and decides accordingly. Otherwise, T selects independently and uniformly at random a
set D of d elements from Fn2 , where we will specify d at the end of the argument. It then queries
all points in the linear subspace spanned by the elements of D and then accepts or rejects based
on whether f restricted to this subspace is F-free or not.

Clearly, if f is F-free, then the tester always accepts because the property is subspace-hereditary.
Also, if n ≤ NF (ε), then the correctness of the algorithm is trivial. So, suppose f is ε-far from
F-free and n > NF (ε). For the M i guaranteed to exist from Theorem 31, let K be a ki × c matrix
over F2, where c = ki − mi ≤ kF (ε), such that the columns of K form a basis for the kernel
of M i. Then, every y = (y1, . . . , yc) ∈ (Fn2 )c yields a distinct vector x = (x1, . . . , xk) ∈ (Fn2 )k

formed by letting x = Ky that satisfies M ix = M iKy = 0. Therefore, because of Theorem 31,
the probability that uniformly chosen y1, · · · , yc ∈ Fn2 yield x = (x1, . . . , xk) such that f induces
(M i, σi) at x is at least δF (ε). The probability that D does not contain such y1, . . . , yc is at most
(1− δ)d/c < eδF (ε)d/c < 1/3 if we choose d = O(c/δF (ε)) = O(kF (ε)/δF (ε)). Thus with probability
at least 2/3, span(D) contains x1, . . . , xk such that f induces (M i, σi) at x = (x1, . . . , xk), making
the tester reject.

To prove Theorem 31, the main ingredient that changes is the counting lemma.

Lemma 32 (Counting Lemma for Complexity 1) For every η ∈ (0, 1) and integer k > 2,
there exist γ = γ23(η, k) and δ = δ23(η, k) such that the following is true. Suppose M is an
m × k matrix of complexity 1 and rank m < k, σ ∈ {0, 1}k is a tuple, H is a subspace of Fn2 , and
f : Fn2 → {0, 1} is a function. Furthermore, suppose there are k not necessarily distinct elements
u1, . . . , uk ∈ Fn2/H such that Mu = 0 where u = (u1, . . . , uk), f

+ui
H : H → {0, 1} is γ-uniform for

all i ∈ [k], and ρ(f+ui
H ) is at least η if σ(i) = 1 and at most 1− η if σ(i) = 0 for all i ∈ [k]. Then,

there are at least δ|H|k−m many k-tuples x = (x1, x2, . . . , xk), with each xi ∈ ui + H, such that f
induces (M,σ) at x.

Lemma 32 is a special case of the Generalized von Neumann Theorem (Proposition 7.1 in
[GT08]). The rest of the proof is a straightforward modification of Section 3.1. Namely, whenever
the old proof requires k elements or k cosets x1, . . . , xk to satisfy the equation x1 + · · · + xk = 0,
the new proof would require that they satisfy the equation Mx = 0 where x = (x1, . . . , xk).
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4 Characterization of natural one-sided testable properties

We now turn to showing Theorem 10 which states that for linear-invariant properties, testability
with a one-sided error oblivious tester is equivalent to the property being semi subspace-hereditary
(recall here Definition 9).

First we formalize the discussion from the introduction regarding the fact that it is always
possible to assume that the testing algorithm for a one-sided testable linear-invariant property
makes its decision only by querying the input function on a random linear subspace of constant
dimension.

Proposition 33 Let P be a linear invariant property, and let T be an arbitrary one-sided tester
for P with query complexity d(ε, n). Then, there exists a one-sided tester T ′ for P that selects a
random subspace H of dimension d(ε, n), queries the input on all points of H, and decides based on
the oracle answers, the value of ε and n, and internal randomness12. Note that T ′ is non-adaptive
and has query complexity 2d(ε,n).

Proof: Consider a tester T2 that acts as follows. If the tester T on the input makes queries
x1, . . . , xd, then T ′ queries all points in span(x1, . . . , xd) but makes its decision based on x1, . . . , xd
just as T does. Clearly, T2 is also a one-sided tester for P and with query complexity at most 2d(ε).

Now, define a tester T ′ as follows. Given oracle access to a function f : Fn2 → {0, 1}, T ′ first
selects uniformly at random a non-singular linear transformation L : Fn2 → Fn2 , and then invokes
T2 providing it with oracle access to the function f ◦ L. That is, when T2 makes query x, then
algorithm T ′ makes query L(x). We argue that the sequence of queries made by T ′ are the elements
of a uniformly chosen random subspace of dimension at most d(ε). To see this, fix the input f and
the randomness of T2. Then, for each i ∈ [2d(ε)] for which the i’th query, xi, made by T2 is linearly
independent of the previous i−1 queries, x1, . . . , xi−1, it’s the case that L(xi) is a uniformly chosen
random element from outside span(L(x1), . . . , L(xi−1)). So, for every fixing of the random coins of
T2, the queries made by T ′ span a uniformly chosen subspace of dimension at most d(ε), and hence,
this is also the case when the coins are not fixed. T ′ is a one-sided tester for P because if f ∈ P,
then f ◦L ∈ P by linear invariance, and if f is ε-far from F , then f ◦L is also ε-far from P because
L is a permutation on Fn2 .

An oblivious tester, as defined in Definition 8, differs from the tester T ′ of the above proposition
in that the dimension of the selected subspace and the decision made by the tester are not allowed
to depend on n. As argued there, it is very reasonable to expect natural linear-invariant properties
to have such testers, and indeed, prior works have already implicitly restricted themselves in this
way.

We can now proceed with the proof of Theorem 10.

Proof of Theorem 10: Let us first prove the forward direction of the theorem. Note that for this
direction, we do not need to assume the truth of Conjecture 4. Given a linear-invariant property P
that can be tested with one-sided error by an oblivious tester, we will build a subspace-hereditary
property H containing P, by identifying a (possibly infinite) collection of matrices M i and binary
strings σi such that H is equivalent to the property of being {(M i, σi)}i- free.

12Note here, we leave open the possibility that the decision of the tester may not be based only on properties of
the selected subspace. This gap can be resolved using the same techniques as used by [GT03] for the graph case, but
this point is not relevant for our purposes and so we do not elaborate more here.
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Let S consist of the pairs (H,S), where H is a subspace of Fn2 and S ⊆ H is a subset, that
satisfy the following two properties: (1) dim(H) = d(ε) for some ε, and (2) if for this ε, the tester
rejects its input with some positive probability when the evaluation of its input on the sampled
subspace is 1S . For (H,S) ∈ S let d = dim(H). Consider the matrix AH over F2 with each row
representing an element of H in some fixed basis. Notice that AH is a (2`× `)-sized matrix. Define
MH , a matrix over F2 of size (2` − `) × 2`, such that MHAH = 0. Finally, for each i ∈ [2`] define
σS(i) = 1S(xi), where xi is the element represented in the i’th row of AH . Let M be the set of
pairs (MH , σS) obtained in this way from every (H,S) ∈ S.

We now proceed to verify that H satisfies the conditions of Definition 9. To show that P is
M-free, let f ∈ Pn, and suppose that there exists (MH , σS) ∈ M such that (MH , σS) 7→ f , for
some ε, and for some H with dim(H) = d(ε) and S ⊆ H. We show that f is rejected with some
positive probability, a contradiction to the fact that the test is one-sided. If (MH , σS) is induced
by f at (x1, . . . , x2d(ε)), then these elements necessarily span a d(ε)-dimensional subspace so that

the function restricted to that subspace is 1S ◦ L for some linear transformation L : Fn2 → Fd(ε)
2

(determined by the choice of basis that was used to represent H). Thus, this immediately implies
by the definition of (MH , σS) that the tester rejects f with positive probability.

To verify the second part of the Definition 9, let M(ε) = d(ε). Suppose f : Fn2 → {0, 1}, with
n > M(ε) is ε-far from satisfying P. In this case, in order for the tester to reject f with positive
probability, it must select a d(ε)-dimensional subspace H so that the restriction to H equals the
indicator function on S (upto a linear transformation), for some (H,S) ∈ S. Therefore T is not
M-free, and thus T 6∈ H.

It remains to show the opposite direction of Theorem 10. We here assume Conjecture 4 that
every subspace-hereditary property P is testable by a one-sided tester. Our first observation that,
in this case, it is actually testable by an oblivious one-sided tester. Namely, we show that the clearly
oblivious tester, which checks whether the input function restricted to a random linear subspace
satisfies P or not, is a valid tester. We need to argue that if a non-oblivious tester rejects input
f that is ε-far from P by querying its values on a random d(ε)-dimensional subspace (we already
know the tester is of this type from Proposition 33), then with high probability, the input function
restricted to a random 3d(ε)-dimensional subspace does not satisfy the property P. Suppose it did.
But then, if the original tester first uniformly selected a 3d(ε)-dimensional subspace H and then
uniformly selected a d(ε)-dimension subspace H ′ inside it, and ran its decision based on f |H′ , it will
accept the input with large probability, which is a contradiction to the soundness of the tester since
H ′′ is a uniformly distributed d(ε)-dimensional subspace. Thus, for a testable subspace-hereditary
property, we can assume that the tester simply checks for P on the sampled subspace, and is hence,
oblivious to the value of n. This argument is analogous to one of Alon for graph properties, reported
in [GT03].

Now, assuming that every subspace-hereditary property is testable by an oblivious one-sided
tester (Conjecture 4), we wish to show that every semi subspace-hereditary property is testable by
an oblivious one-sided tester. Let P be a a semi subspace-hereditary property and let H be the
subspace-hereditary property associated to P in Definition 9. By our assumption, H has a one-sided
tester T ′, which on input ε makes Q′(ε) queries and rejects inputs ε-far from H with probability
2/3. The tester T for P makes Q(ε) = max(Q′(ε/2), 2M(ε/2)) queries (where M(·) comes from
Definition 9) and proceeds as follows. If the size of the input is at most Q(ε), then by definition, T
receives the evaluation of the function all of the input and in this case, it simply checks if the input
belongs to P. Otherwise T emulates T ′ with distance parameter ε/2 and accepts if and only if T ′
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accepts.
Notice that T is one-sided. Indeed, if the input f satisfies P then f ∈ H and thus T ′ always

accepts, causing T to always accept. To prove soundness, we first argue that if f is ε-far from P
then it is ε/2-far from H. Suppose otherwise, and modify f in at most an ε/2 fraction of the domain
in order to obtain a function g ∈ H. Thus g is still ε/2-far from P, and by Definition 9 g 6∈ H, a
contradiction. Finally, since f is ε/2-far from H and since T ′ mistakenly accepts such inputs with
probability at most 1/3 so does T ′.

5 Concluding Remarks and Open Problems

Obviously, the main open problem we would like to see resolved is Conjecture 4. One appealing
way to prove the conjecture would be to proceed as we have but to obtain a stronger notion of
pseudorandomness in the regularity lemma. The notion of ε-uniformity obtained from Green’s reg-
ularity lemma corresponds to the Gowers U2 norm, whereas in order to be able to prove Conjecture
4 in its full generality, we would presumably need a similar regularity lemma with respect to the
Gowers Uk norm [Gow01] for any fixed k. Such a higher order regularity lemma has been very
recently obtained by Green and Tao [GT10] over the integers and over fields of large characteristic.
However, it is not yet available over F2, as the inverse conjectures for the Gowers norms over F2

have not yet been completely clarified [Gre10].
Let us mention some other observations and open problems related to this work.

• As we have mentioned in Subsection 1.4, it is not too hard to construct linear-invariant
properties which are not testable. Actually, there are properties of this type that cannot be
tested with o(2n) queries. One example can be obtained from a variant of an argument used
in [GGR98] as follows; it is shown in [GGR98] (see Proposition 4.1) that for every n there

exists a property of Boolean functions that contains 2
1
10

2n of the Boolean functions over Fn2
and cannot be tested with less than 1

202n queries. This family of functions is not necessarily
linear invariant, so we just “close” it under linear transformation, by adding to the property
all the linear-transformed such functions. Since the number of these linear transformation is
bounded by 2n

2
(corresponding to all possible n × n matrices over F2) we get that the new

property contains at most 2n
2
2

1
10

2n ≤ 2
1
5

2n Boolean functions. One can verify that since this
new family contains a small fraction of all possible functions the argument of [GGR98] caries
over, and the new property cannot be tested with o(2n) queries.

• The upper bound one obtains from the general result given in Theorem 3 is terrible in terms
of its dependence on 1/ε. A natural open problem would be to find a characterization of these
properties that can be tested with a number of queries that depends polynomially on ε. This,
however, seems to be a very hard problem. Even if the only forbidden equation is x+ y = z
it is not known if such an efficient test exists. This question was raised by Green [Gre05]; see
[BX10] for current best bounds.

• Our result here gives a (conjectured) characterization of the linear-invariant properties of
Boolean functions that can be tested with one-sided error. It is of course natural to try to
extend our framework to other families of properties, characterized by other or more general
invariances. For instance, can we carry out a full characterization for testable affine invariant
properties of Boolean functions on the hypercube?
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• It would be valuable to understand formally why the technology developed for handling graph
properties can be extended so naturally to linear-invariant properties. This “coincidence”
seems part of a larger trend in mathematics where claims about subsets find analogs in
claims about vector subspaces. See [Coh04] for an interesting attempt to shed light on this
puzzle.
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A Proofs omitted from Section 1

Characterization of Reed Muller codes by forbidding systems of induced equations
First recall that Reed Muller codes of order d are defined as

RM(d) =

f : Fn2 → F2 : f(x) =
∑

S⊂[n],|S|≤d

∏
i∈S

xi.


The most common characterization of RM(d) (see for example [AKK+05]) is that f ∈ RM(d)

if and only if f satisfies

∑
S⊂[n],|S|≤d+1

f

(
α+

∑
i∈S

αi

)
= 0, for all (α, α1, . . . , αd+1) ∈ (Fn2 )d+2.

We use this description to obtain a matrix M ∈ F(2d+1−d−2)×(2d+1)
2 and a collection of σi ∈

{0, 1}2d+1
such that RM(d) is {(M,σi)}i- free. Intuitively, we want M to encode all the linear

relations between the elements of the set A = {α+
∑

i∈S αi}0≤|S|≤d+1, and we want to use the σi’s
to enforce the fact f should evaluate to 1 on an even number of elements of A.

More exactly, assume that B = {α, α + α1, . . . , α + αd+1} are linearly independent. For every
β ∈ A−B, add to M the row which is the vector representing β in the basis B. Further, consider
all the σi ∈ {0, 1}2d+1

such that |{j : σij = 1}| is odd. Clearly the number of such σi’s is finite, and

the patterns allowed by forbidding all (M,σi) are only those that satisfy the above characterization.
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Finally, notice that setting d = 1 the resulting matrix M contains only one row, and thus
Theorem 3 applies to testing linearity.

We conclude with the proof of Proposition 6 which was also omitted from the Introduction.

Proof of Proposition 6: In one direction, it is easy to check that F-freeness is a subspace-
hereditary linear-invariant property, for any fixed family F .

Now, we show the other direction. For a subspace-hereditary linear-invariant property P, let
Obs denote the collection of pairs (d, S), where d ≥ 1 is an integer and S ⊆ Fd2 is a subset, such
that 1S does not have property P and is minimal with respect to restriction to subspaces. In other
words, (d, S) is contained in Obs iff 1S 6∈ Pd but for any vector subspace U ⊆ Fd2 of dimension
d′ < d, 1S|U ∈ Pd′ where S|U ⊆ U is the restriction of S to U .

For every (d, S) ∈ Obs, we construct a matrixMd and a tuple σS such that any f with property P
is (Md, σS)-free. Define Ad to be the 2d-by-d matrix over F2, where each of the 2d rows corresponds
to a distinct element of Fd2 represented using some choice of bases. Now, define Md to be a (qd−d)-
by-qd matrix over F, such thatMdAd = 0 and rank(Md) = qd−d. Define σS as (σ(1), σ(2), . . . , σ(2d))
where σ(i) = 1S(xi) with xi being the element of Fd2 represented in the ith row of Ad. We observe
now that any f : Fn2 → {0, 1} having property P is (Md, σS)-free. Suppose the opposite, so that
there exists x = (x1, . . . , xqd) ∈ (Fn2 )d satisfying Mx = 0 and f(xi) = σ(i). Then, by definition of
Md, the x1, . . . , x2d are the elements of a d-dimensional subspace V over F2, and by definition of
σS , Sf |V = S where Sf is the support of f . Thus f |V 6∈ P which is a contradiction to the fact that
f has property P because P is subspace-hereditary.

Finally, define FP = {(Md, σS)}. We have just seen that any f having property P is FP -free.
On the other hand, suppose f does not have property P. Then, because of heredity, there must be
a d-dimensional subspace V such that the support of f |V is isomorphic to S for some (d, S) ∈ Obs
under linear transformations, which means by the same argument as above, that f will not be
(Md, σS)-free.
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