
Sparse Selfreducible Sets and Nonuniform Lower

Bounds

Harry Buhrman1,2, Leen Torenvliet2, Falk Unger1, Nikolay Vereshchagin3

1 CWI Amsterdam, 2 Universiteit van Amsterdam,

3 Moscow State University

July 15, 2010

Abstract

It is well-known that the class of sets that can be computed by

polynomial size circuits is equal to the class of sets that are polynomial

time reducible to a sparse set. It is widely believed, but unfortunately

up to now unproven, that there are sets in EXPNP, or even in EXP

that are not computable by polynomial size circuits and hence are

not reducible to a sparse set. In this paper we study this question

in a more restricted setting: what is the computational complexity of

sparse sets that are selfreducible? It follows from earlier work of Lozano

and Toran [LT91] that EXPNP does not have sparse selfreducible hard

sets. We define a natural version of selfreduction, tree-selfreducibility,

and show that NEXP does not have sparse tree-selfreducible hard sets.

We also construct an oracle relative to which all of EXP is reducible

to a sparse tree-selfreducible set. These lower bounds are corollaries

of more general results about the computational complexity of sparse

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 163 (2010)

sets that are selfreducible, and can be interpreted as super-polynomial

circuit lower bounds for NEXP.

Keywords Computational Complexity, Sparseness, Selfreducibility

1 Introduction

Finding techniques to separate complexity classes is one of the, if not the,
main open problem in complexity theory. Our understanding towards solv-
ing problems like the P versus NP problem is very limited. Not only do we
not know how to separate P from NP, we don’t even know how to separate
EXPNP from the class of sets that have polynomial size circuits. 1 Work
on derandomization assumes much stronger separations than this, like for
example that EXP requires exponential size circuits.

It is long known that the class of sets that have polynomial size circuits
equals the class of sets that are polynomial time Turing reducible to a sparse
set [Mey77]. In this paper we address the question of whether EXPNP and
smaller classes are Turing reducible to a sparse set by restricting the sparse
set to be selfreducible and even tree selfreducible (see Section 4). A set S
is selfreducible if there exists a polynomial time machine that can decide
membership of x in S by making queries to S that are smaller than x in
some well-defined way (see Definition 2.2). A selfreduction is a tree selfre-
duction if the pattern of queries generated by expanding all selfreductions is
a tree. For example, the well-known selfreduction of satisfiability (explained
again in more detail below) where queries are obtained by replacing vari-
ables by constants until all variables have been replaced and thus a leaf in
the reduction is reached. Is a 2-disjunct tree selfreduction.

We do not know of any examples of selfreductions that are not essentially
tree-selfreductions.

It follows from work of Lozano and Toran [LT91] that there are no sparse
selfreducible sets that are hard for EXPNP. We extend this result by showing
that NEXP does not have sparse hard sets that are tree-selfreducible. This

1Formally, the reader might notice, these questions are independent. They are related

however as follows. If EXPNP or even NEXP has polynomial size circuits then P 6= NP

follows. Therefore, it seems that it should be easier to settle the former question, in the

negative, than it does to settle the latter

2

result is optimal 2 with respect to relativizing proof techniques, since we also
obtain a relativized world where EXP has a sparse tree-selfreducible hard
set. These results can be interpreted as super-polynomial lower bounds for
NEXP with respect to a restricted class of circuits.

These lower bounds are consequences of more general results on the
complexity of sparse selfreducible sets. Lozano and Toran showed that sparse
selfreducible sets are in PNP, we give a different proof of this result that
allows us to generalize it to sets of smaller density. We also show a relativized
world in which this result is optimal, i.e., we construct an oracle relative to
which there exists a sparse selfreducible set that cannot be recognized by
a P oracle machine that has only a linear number of queries to put to its
NP oracle (but has unlimited direct access to the oracle constructed). We
further show that tree-selfreducible sparse sets are in PNP[O(log n)], the class
of languages that can be decided with logarithmically many queries to an
NP oracle. It follows from this result, that NEXP does not have sparse
tree-selfreducible hard sets. Connecting this with recent results of Fortnow
et al. [FK05, SU04] it follows that if EXP has a sparse tree-selfreducible
hard set, then it is in NP/log. We next exhibit a relativized world where
there exists a sparse 2-parity selfreducible set in PNP[O(log n)] that is not in
any lower complexity class. This solves an open question from [LT91].

A 2-parity selfreduction is a selfreduction where membership can of a
string in the set can be computed by computing the parity of the answers
to the two queries generated by the reduction, i.e., the answer is yes if and
only if exactly one of the answers to the two queries is yes. Not in any lower
complexity class means here that the total number of queries to compute
the set by a PNP machine is Ω(log n).

We also show a relativized world where there is a sparse Turing selfre-
ducible set that is not truth-table selfreducible, and present some absolute
results about the complexity of selfreducible sets that have sub-polynomial
densities. Finally, we discuss log-sparse selfreducible sets and show sharp
upper bounds on their computational complexity. Bounded truth-table, i.e.,
the number of queries is bounded by some constant, log-sparse selfreducible
sets are even in P. Summarizing our results:

2In several places in this paper we use “optimal” where this is not an exact statement.

If we prove a problem to be in NEXP and show an oracle relative to which it is not in

EXP then it could still be in many intermediate classes, and even a non-relativizing proof

might still show it to be in EXP. Though we always make the exact meaning of optimal

precise in theorems following the statement, the reader should be cautioned.

3

• Every sparse set that is tree-selfreducible can be computed in PNP[O(log n)]

(Theorem 3.3). This allows us to prove that NEXP does not have
sparse tree-selfreducible hard sets (Theorem 4.1). On the other hand
we show a relativized world where EXP does have tree-selfreducible
sparse hard sets (Theorem 4.2).

• We construct a relativized world where there exists a sparse (tree)
selfreducible set in PNP[log n], that can not be computed with fewer
queries to NP (Theorem 3.7). This partially answers an open question
from [LT91].

• We construct a relativized world where there is a sparse selfreducible
set that cannot be recognized by a P machine that has only a linear
number of queries for its NP oracle (Corollary 3.4).

• Every log-sparse selfreducible set is in PNP[O(log n)2] (Theorem 5.1), and
every log-sparse btt-selfreducible set is in P (Theorem 5.2).

2 Definitions and Notation

We assume the reader to be familiar with standard complexity theory no-
tation, as for example in [Pap94, BDG88]. Let Σ = {0, 1}. We write λ for
the empty word. For a set A ⊆ Σ∗, let A=n be the set of strings from A of
length n and A≤n =

⋃n
i=0 A=i. Note that Σn = (Σ∗)=n by this notation.

Pairing functions will be denoted by 〈., .〉 and concatenation of strings x and
y by xy. Implicitly using a standard mapping between numbers and strings
in binary, we will use numbers as arguments to functions where strings are
required and vice versa.

Definition 2.1 A partial order ≺ on Σ∗ is called polynomially related if

and only if there exists a k such that for all x, y ∈ Σ∗

1. y ≺ x → |y| ≤ |x|k

2. x ≺ y is decidable in time (|x| + |y|)k

3. Every descending chain starting with x has length at most |x|k.

4

Let ≺ be polynomially related. The Directed Acyclic Graph that repre-
sents the weak initial segment dominated by x, i.e., the graph with nodes
{y | y ∈ Σ∗ ∧ y ≺ x} ∪ {x} and edges between y and y′ if y ≺ y′, is denoted
by Sx. In this paper we will happily make use of type-conflicting notations,
like Y ⊆ Sx where Y is a set of strings and Sx is the graph just defined.
Here we mean that the strings from Y are nodes in Sx. First we define
selfreducibility for some ordering ≺.

Definition 2.2 Let r be some reduction type, e.g., btt, tt, T etc. A set

S ⊆ Σ∗ is called ≤P
r -selfreducible with respect to the polynomially related

ordering ≺ on Σ∗ if and only if

1. S ≤P
r S and

2. For any input x ∈ Σ∗ the reduction queries only elements y with y ≺ x

An example of a selfreducible set is SAT, the set of satisfiable boolean
formulas. There exists a well-known two-query disjunctive selfreduction for
SAT, which is even length decreasing, where queries are formed by assigning
values to variables.

At this point it may help the intuition to consider the different in-
terpretations of selfreduction. First there is the definition where the sel-
freduction is performed by an oracle Turing machine that, on the basis
of the answers of the oracle to a polynomial number of queries that are
smaller in the polynomially related order, decides whether or not the string
is in the set. Here we consider only one step of the reduction. In the
case of SAT this translates to: A formula φ(x1, . . . , xn) is satisfiable if and
only if φ(0, x2, . . . , xn) is satisfiable or φ(1, x2, . . . , xn) is satisfiable. Both
φ(0, x2, . . . , xn) and φ(1, x2, . . . , xn) are smaller than φ(x1, . . . , xn) in the
order that simply counts the number of free variables. Then, there is the
picture where the queries themselves are reinserted to the oracle machine
and new queries are produced, until queries can be answered without the
intervention of the oracle. This pictures a graph with polynomial length
paths. In the case of SAT, this graph is obtained by putting edges between
the reduced formulae. All paths end in two nodes, 0 and 1. Any selfreduc-
tion can be represented by such a graph, with at most exponentially many
nodes, in which paths are at most of polynomial length. Such a graph can
be explored in PSPACE and in fact this outlines the proof that any selfre-
ducible set is in PSPACE as can be found in many textbooks. The graph

5

just mentioned can often be transformed into a tree. In fact, we know of
no natural selfreducible problem where this cannot be done. In the case of
SAT, this can be achieved by not reducing intermediate queries. The leaves
of the tree then consist of exponentially many formulae without free vari-
ables (that can be easily valued true or false). Finally, it is worth noting that
the polynomially related ordering of Definition 2.1 is often just the length
of the queries, though it is unlikely that this is always the case (see [FO05]).

We will say that a reduction M that witnesses the selfreducibility of S
obeys ≺, if queries by M respect the ordering ≺, i.e., y is queried on input
x only if y ≺ x. We will denote the set of strings that is queried by oracle
machine M on input x—the query set of M on input x—by QM (x). If M
is a non-adaptive machine then this query set is independent of the oracle.
If M is an adaptive machine then this notation is sometimes enriched with
the oracle, e.g., QA

M (x), or, if the oracle is left out, the set of all potential
queries is meant by this notation (of exponential size for polynomial time
bounded oracle machines, but sometimes even bigger). This notation can
also be used to denote an even bigger set. If V is a set of strings, then
QM (V) =

⋃

v∈V QM (v).
We now define a very natural variant of self-reductions, see further below

for some comments. Given a string x and a selfreducible set S, we can
define a graph on S “around x”, consisting of all strings y that are smaller
than x in the ordering. We put an edge between two strings y and z if
z may be queried by the selfreduction on input y. Note that this may
depend on a particular oracle. In the case of SAT this structure is rather
simple and straightforward, since the question whether y can be queried on
input z is not dependent on the outcome of other queries, but this can be
more complicated. Note also that this definition deals with the “one step”
interpretation of the selfreduction.

Definition 2.3 Let S be a self-reducible set, witnessed by the deterministic

polynomial time oracle machine M , which obeys the ordering ≺. For a string

x define the graph G as follows:

1. The nodes of G are all strings y with y ≺ x.

2. for y, z ∈ G, there is a edge from y to z if and only if z ∈ QO
M (y) for

some oracle O.

6

Let SM
x be the (connected) component of G that contains x. We say that M

is a tree-selfreduction if for all x, SM
x is always a tree.

If L(MS) = S for some tree-selfreduction M , then this S is called tree-

selfreducible. Note SM
x ⊆ Sx for all x and M .

Note that SM
x contains all strings y which could be possibly queried in the

self-reduction of x, no matter which (possibly wrong) answers M gets.

Definition 2.4 Let M be a selfreduction obeying ≺ and T some set. Con-

sider a labeling l : T 7→ {0, 1} of T . We call l consistent with M , or M -

consistent, if and only if (∀y ∈ T)[l(y) = 1 ⇔ M(y) accepts when queries of

M(y) in T are answered according to l and queries outside T are answered

NO].

Definition 2.5 Let ≺ be a polynomially related order and let Tx ⊆ Sx be a

tree that has root x. For y ∈ Tx we define the depth of y as dx(y) = #nodes

on the path from x to y in Tx. Consider a labeling l : Tx 7→ {0, 1}. Let TD

be the set of nodes from l−1(1) that are minimal w.r.t. ≺, i.e., TD = {y ∈

l−1(1)| there is no z ∈ l−1(1) − {y} such that y is on the path from z to the

root x}. We define the weight of Tx as weight(Tx) =
∑

y∈TD
dx(y).

Note that for each set T there is a unique M -consistent labeling for T ,
which can be easily found in a bottom-up fashion, i.e., starting from the
leaves and working towards the root.

We want to mention that all selfreducible sets we know of can be made
(or even are) tree-selfreducible. Take SAT as a simple example. Consider
the standard reduction which on input φ(x1, . . . , xn) with n > 0 queries
φ(0, x2, . . . , xn) and φ(1, x2, . . . , xn), but does not simplify the terms, and
accepts iff one of the queries is true. For n = 0 it outputs the truth value of
φ. Then this reduction is obviously a tree-selfreduction.

We call a set S ⊆ Σ∗ sparse if and only if ||S≤n|| ∈ O(Pol(n)). S is called
log-sparse if and only if ||S≤n|| ∈ O(log(n)).

It is well-known that the class PNP[O(log n)] (P-machines that can make
O(log n) adaptive queries to an NP-oracle) is equivalent to the class PNP||

7

(P-machines that can only make non-adaptive queries to an NP-oracle),
see [Wag88]. This class is commonly referred to as ΘP

2 . The class PNP is
commonly referred to as ∆P

2 .

3 Sparse selfreducible sets

3.1 Upper Bounds

We start by citing a result from [LT91].

Theorem 3.1 If S ⊆ Σ∗ is sparse and selfreducible then S is in PNP.

We will later state a theorem (Theorem 5.1), whose proof can be easily
adapted to yield the same result, thus giving an alternative proof for Theo-
rem 3.1.

An open question from [LT91] is whether PNP in Theorem 3.1 is opti-
mal. We will show in Corollary 3.4 that this is true at least for relativizing
techniques, by constructing a relativized world where there is a sparse self-
reducible set that is not in PNP[n]. Concerning tree selfreducibility, we will
show in Theorem 3.3 that for the natural case of sparse, tree-selfreducible
sets we can find a better bound than PNP, namely PNP[O(log n)]. Optimality
of this result is supported by Corollary 3.9 that shows a relativized world
in which a sparse, tree-selfreducible set S exists such that S ∈ PNP[O(log n)]

but S is not in any lower class. This will follow from Theorem 3.7 and
Lemma 3.8. We will first isolate and prove a crucial lemma.

Lemma 3.2 Let M be a tree-selfreduction obeying ≺ and witnessing the

selfreducibility of some set S and let x be some input. Let T ⊆ SM
x be a tree

with root x that has maximal weight among all trees T ⊆ SM
x , which can be

labeled M -consistently. Then it holds that S ∩ SM
x ⊆ T . 3

Proof Let l be the M -consistent labeling of T . Assume that (S ∩ SM
x)− T

is nonempty. Let y be the deepest node in (S ∩ SM
x) − T . Note, that this

implies that y has no children in S. Let p be the (unique) path from y to
the root x in SM

x . Let p = poutpin such that pout is the part of p outside of
T and pin is the part of P inside T . Note that pout contains at least y. Let

3Here SM
x resp. T denote the nodes of the graphs SS,M

x , T .

8

T ′ be the same as T , but with path pout added and let l′ be the (unique)
M -consistent labeling of T ′. Note that l′(y) = 1, because y has no children
in S. For nodes in T , labelings l and l′ differ at most on the path pin. The
total weight that pin contributes to the weight of T can be at most |pin|.
Path pout contributes |p| > |pin| to the weight of T ′, so the weight of T ′ is
larger than that of T . �

Theorem 3.3 If S is sparse and ≤P
T -tree-selfreducible then S ∈ PNP[O(log n)].

Proof Fix x and a selfreduction machine M . We will give a PNP[O(log n)]-
algorithm to compute x ∈ S. First find the maximum weight wmax(x) of any
M -consistently labeled T . It is clear that wmax(x) ∈ O(Pol(|x|)). Further,
there is a k > 0 such that for any x there is a maximally weighted tree
T ⊆ SM

x with ||T || ≤ |x|k. We can find wmax(x) with logarithmically many
queries to an NP oracle of the following type: “Given a weight w, guess a
tree T of size at most |x|k, a labeling l such that weight(T) ≥ w. Accept if
the labeling of l is M -consistent.”

Lemma 3.2 guarantees that any tree T of maximum weight will contain
all nodes in SM

x ∩S. Recall that there is only one M -consistent labeling for
any T . The true labeling of such maximally weighted T , i.e. l(y) = 1 ↔
y ∈ S, is of course M -consistent, so the (unique) M -consistent labeling of T
labels all nodes correctly.

The final query will then be “Guess a tree T of size at most |x|k and
an M -consistent labeling l such that weight(T) = wmax(x). Accept iff
l(x) = 1.” Our PNP[O(log n)]-algorithm then just outputs the result of this
query. �

3.2 Polynomial Lower Bounds

In this section we will show that there can be no relativizing proof that
shows sparse selfreducible sets to be in PNP[n].

Theorem 3.4 There exists an oracle A and a sparse selfreducible relative

to A set S such that S is not in PA,NPA[n].

In the rest of this section we prove this theorem. We will first show
how to fool one pair (M,N), where M is a deterministic poly time oracle
machine and N is a non-deterministic poly time oracle machine.

9

We start with explaining how the set S and the oracle A are related. We
will define a P-set X ⊂ {0}∗ and for each 0n ∈ X we will define a circuit Cn

without inputs. The oracle A will encode all the circuits Cn, n ∈ X, and S
will encode the values of all the gates in Cn, n ∈ X. Moreover we let 0n ∈ S
iff the value of the output gate of Cn is 1.

We will use the following definition of a circuit without outputs. A circuit
C is identified by (1) a number k of gates, (2) a mapping that assigns to
each gate gi of C a Boolean function fi computed in that gate and called the
type of gi and (3) a mapping that assigns to each gate gi a tuple of preceding
gates gj1 , . . . , gjl

, called inputs to gi, where l the arity of fi. We say that
gate gi precedes gate gk if i < k. As functions fi we will use constants 0, 1,
and-of-nots of fan-in at most n + 2, ¬x1 ∧ · · · ∧ ¬xi, and ORs of fan-in two,
x1 ∨ x2. The value of a gate gi is defined by induction on i. We will call a
gate g a 1-gate, if its value is 1 and 0-gate otherwise.

The circuit Cn will have 2p(n) gates for some polynomial p. We will thus
identify gates of Cn with binary strings of length p(n). The type of gate gi

will be computable in polynomial time given n and gi. An the oracle A(Cn)
will provide the information about the inputs to x: when queried a pair
〈n, g〉 the oracle provides the sequence of inputs to g.

Let S(Cn) stand for the set of all 〈n, g〉 such that g is a 1-gate in Cn.
There will be a fixed polynomially related order ≺ such that 〈n, u〉 ≺ 〈n, v〉
for all gates u and w in Cn such that u is an input to v. In particular, the
depth of Cn will by bounded by a polynomial of n. Clearly this implies that
the set S =

⋃

n∈X S(Cn) is selfreducible relative to oracle A =
⋃

n∈X A(Cn).
Indeed, given a string x = 〈n, g〉 we can find in polynomial time the type of
g. Querying the oracle A, we find inputs g1, . . . , gl to g. Then by querying S
for 〈n, g1〉, . . . , 〈n, gl〉 we can find values of g1, . . . , gl and compute the output
of g.

The density of S is bounded by the number of 1-gates in the family of
circuits Cn. Our construction below will ensure that this number is polyno-
mially bounded. This partially explains the choice of OR and and-of-nots
functions, as the only non-constant functions allowed in Cn. Indeed, the
functions x1 ∨ · · · ∨ xk and ¬x1 ∧ · · · ∧ ¬xk have the following feature: both
values 0,1 can be forced by assigning only one 1 to x1, . . . , xk. One can
notice that the second function is the negation of the first one. However,
we cannot replace the and-of-not gate ¬x1 ∧ · · · ∧ ¬xk by a circuit with the
NOT gate on the top applied to a tree of k − 1 ORs. Indeed, in the case
when x1 ∨ · · · ∨ xk = 1 some gates in this circuit will evaluate to 1, whereas
the gate ¬x1 ∧ · · · ∧ ¬xk evaluates to 0. As Cn has exponentially many
and-of-not gates, such a replacement would add exponentially many strings

10

in S.
The oracle model presented here is for convenience of the proof only. It

can be replaced by the standard model by storing the inputs in the form of
sequences 〈n, g, L〉 where L is a list of inputs to g. If we also store 〈n, g,K〉
for all K that are prefixes of L, then a standard YES, NO polynomial time
bounded oracle machine can recover L using a number of queries linear in
|L|. Clearly the number of queries in the standard model is lower bounded
by the number of queries in our preferred model.

Now we are able to present the first theorem stating that using such
technique we can fool one pair (M,N) of a deterministic poly time oracle
machine M and a non-deterministic poly time oracle machine N .

Theorem 3.5 For every deterministic polynomial time bounded Turing ma-

chine M and every nondeterministic polynomial time bounded Turing ma-

chine N for all sufficiently large n there exists a circuit C = Cn as described

above such that the value of output gate of C differs from MA(C),NA(C)[n](0n).

The number of 1-nodes in Cn is at most O(n3).

Proof We will start with defining a class of circuits, called normal circuits,
which will contain all circuits Cn for n ∈ X. Describing the design of a
normal circuit we will provide intuitive reasons for it.

Let us first try the following. Let C = Cn be a binary tree of depth n
consisting of OR gates where inputs to leaves are constants 0 and 1. Such
a design suffices to fool the pair (M,N) provided M does not query N .
Indeed, the only information provided by A(C) is the information about
inputs to leaves of C. Run MA(C)(0n) and answer all the queries by saying
that the queried input is connected to constant 0. When M has halted and
returned a result, fool M as follows. If the result is 1 then connect all yet
unconnected leaves to constant 0. Otherwise pick a non-queried leaf (if n is
large enough there is such a leaf) and connect it to constant 1, and connect
all other yet unconnected leaves to constant 0. Notice that the number of
1-nodes in the constructed circuit Cn is at most n + 1.

This design does not work, if M can query N . Indeed, one NP query
is enough to find the output of C (“is there a leaf in C connected to 1?”).
Nevertheless OR trees of depth n are helpful and we use them as sub-circuits
of Cn. Intuitively, evaluating a root of an OR tree costs one NP query even
if the enemy can evaluate in polynomial time each its leaf. Another useful

11

property of OR trees of depth n is the following: we can force its root
evaluate to one by setting only n + 1 its gates to 1.

Let us outline the coarse structure of Cn. It consists of an OR tree T of
depth n on the top, n copies of a special circuit Sn (to be defined later) and
two constants 0,1. Constants 0,1 sit on the bottom level 0 of Cn. The next
level 1 contains a copy of Sn, called S1

n, inputs to which are constants 0,1
from level 0. The next n− 1 levels contain the remaining n− 1 copies of Sn

so that the inputs to Si+1
n are certain outputs of Si

n or the constant 0. The
OR tree is on the top level n + 1 and its inputs are certain outputs of Sn

n or
the constant 0. The circuit Sn will depend on m only. Its property is stated
in the following Lemma 3.6. Thus the only freedom in designing Cn consists
in choosing a mapping from inputs of the OR tree T and inputs of all copies
of Sn to outputs of copies of Sn and constants 0,1. If we decide that input g
is mapped to output g′ we will say that g′ and g are connected. If we decide
that input g is mapped to constant 0 or 1 we say that it is connected to 0
or 1.

To state the desired properties of Sn let us introduce the following no-
tation. For a set P of inputs of Sn let 1P stand for the assignment of 0/1
to inputs of Sn where we set all inputs in P to 1 and all remaining inputs
to 0. In the next lemma we call a set small if it has less than 2n elements
and tiny if it has less than 2n−1 elements.

Lemma 3.6 There is an explicit circuit Sn that has the following property.

For every tiny set O of outputs of Sn there are outputs v,w /∈ O such that

for every small set I of inputs to Sn there is a set P disjoint with I such

that for every small set J ⊃ of inputs to Sn there is a set Q disjoint with J

with the following properties. (1) For assignment 1P outputs v,w evaluate

to 1 all other outputs evaluate to 0. (2) For assignment 1P∪Q the output v

evaluates to 1 and all other outputs evaluate to 0. (3) For both assignments

1P , 1P∪Q the total number of 1-gates in Sn is O(n2).

We will assume the lemma and finish the proof. A circuit that has the
design as explained above is called normal if for every i = 1, . . . , n an output
si of Si

n is singled out (called the distinguished 1-output) so that si evaluates
to 1 and each other output of Si

n evaluates to 0 or has zero fan-out (that is,
si is the only 1-node of Cn connected to inputs of Si+1

n). A normal circuit
is shown in Fig. 1.

12

OR

OR

OR

OROR OR

01

10 0 0

0 0 1 1

S2

S2

level 3

level 2

level0

level 1

OR

Figure 1: A normal circuit for n = 2. 1-gates are marked grey. 1s and 0s

indicate values of outputs of Sn.

A normal circuit Cn satisfying the theorem, is built in steps. Fix a large
n and drop the subscript n. Roughly speaking, after step i−1 we will have a
“partial” circuit Ci−1, a circuit where some inputs have not been connected.
On step i we will construct a partial circuit Ci extending Ci−1 so that to
“fix” the answer of M(0n) to ith query to oracle NA. That means that
for some ai ∈ {0, 1} for every normal circuit C extending Ci the answer of
NA(C) to ith query is ai. We will pay for that by connecting all inputs of Si

and connecting at most polynomially many inputs of Si+1, . . . , Sn and T . To
construct Ci we will apply Lemma 3.6 to the set O of all already connected
outputs of Si and the set I of all already connected inputs of Si. Thus both
v,w will have zero fan-out and we will be able to apply Lemma 3.6 for Si+1.

Now we proceed to the formal proof. W.l.o.g. we may assume that the
only allowed queries to oracle A(C) have the form “which output is assigned
to x?”, where x is an input of Si or of the OR tree T .

13

We will define by induction a sequence C0, . . . , Cn of “partial circuits”,
the sequence of distinguished outputs s0, . . . , sn and a sequence a1, . . . , an

of answers to queries to NA that have the following properties.

(1) In the partial circuit Ci all inputs of S1, . . . , Si are connected to some
outputs and also at most ip(n) remaining inputs are connected to some
outputs (with p a fixed polynomial).

(2) si is an output of Si that evaluates to 1 in Ci and all outputs of Si

evaluating to 1 (including si) have zero fan-out in Ci.

(3) All outputs of Si−1 evaluating to 1, except si−1, have zero fan-out in
Si.

(4) The answers a1, . . . , ai are the actual answers to first i queries of
MA(C)(0n) to NA(C) for every normal circuit C extending Ci.

See Fig. 2 for possible connections in C1.
Initially C0 is the partial circuit with no connections yet specified, the

sequence a1, . . . , ai is empty and s0 is the constant 1 in level 0. Thus all
conditions (1)–(4) are satisfied for i = 0.

Step i. Assume that Ci−1, a1, . . . , ai−1, s1, . . . , si−1 satisfy conditions
(1)–(4). Let Ci = Ci−1 and let O be the set of all outputs of Si that have
positive fan-out in Ci. Let I be the set of all inputs of Si that are connected
in Ci. By assumption (1) both |I|, |O| are at most (i− 1)p(n). Thus we can
apply Lemma 3.6 to O, I provided n is large enough. Let P,Q, v,w be set
of outputs and inputs existing by Lemma 3.6. Connect each j ∈ P to si−1

and connect each input j /∈ P ∪ I to 0. Enter in Ci all connections made.
Note that all inputs from I are connected to 0-gates (assumption (3)). Thus
both v,w evaluate to 1 in Ci and all other outputs of Si evaluate to 0. And
by construction v,w have zero fan-out in Ci.

Run MA(Ci)(0n) and answer all queries to A about not yet connected
inputs by saying that they are connected to 0. Update Ci according to these
answers. During this run answer a1, . . . , ai−1 to queries to NA. Proceed in
this way until MA(Ci)(0n) makes the ith query qi to NA. Then consider two
cases.

case 1: For every normal circuit C extending Ci such that v has zero
fan-out in C we have qi /∈ NA(C). We then let si = w. As v evaluates
to 1 in Ci, it has zero fan-out in every normal circuit extending Ci.
Thus the condition (4) is satisfied with ai = 0.

14

OR

OR

OR OR

01

0 0 1

S

S

level 3

level 2

level0

level 1

0

OR

OR

OR

2

2

Figure 2: Possible connections inside C1 for n = 2.

case 2: There is a normal circuit C extending Ci such that v has zero
fan-out in C and qi ∈ NA(C). Then pick such a C and an accepting
computation of NA(C)(qi) and include in Ci all connections of inputs in
C queried along this computation; call W the set of all of those inputs
that belong to Si. Notice that we have added in Ci at most p(n)
connections, where p is a polynomial. Thus property (1) holds. For
every normal circuit C extending Ci we will certainly have qi ∈ NA(C),
thus property (4) holds for ai = 1. Let si = v. We can do it, as v
has zero fan-out in Ci. Now we have a problem: the output w may
have non-zero fan-out and it evaluates to 1 in Ci. Thus property (3)
may be violated by the output w. To resolve the problem we use the
set Q from the lemma. Apply the lemma for J = I ∪ W and obtain
Q. Re-connect each input j ∈ Q to si−1. As Q is disjoint with W ,
we still will have qi ∈ NA(C) for every normal circuit C extending Ci.
Moreover, as Q is disjoint with I, Ci extends Ci−1. Therefore every

15

normal circuit extending Ci extends Ci−1 as well and thus property
(4) holds. Now v is the only output of Si that evaluates to 1 and it
has zero fan-out in Ci.

Note that in both cases Ci has acquired at most O(n2) 1-gates in level
i on step i. After n steps we have processed all n queries to NA and have
defined Cn and sn so that Cn has O(n3) 1-gates.

Besides, the output sn of Sn evaluates to 1 and has zero fan-out. Con-
tinue running MA(0n) saying that all queried leaves of the OR tree are
connected to constant 0. When M has halted we obtain a partial circuit
Cn+1 such that for every normal circuit C extending Cn+1 all the queries to
both its oracles are fixed. However we still can force the circuit C output 0
(connect all yet non-connected leaves of T to constant 0) or 1 (connect one
yet non-connected leaf of T to sn and others to constant 0). We thus can
fool M,N by choosing C to output the negation of M ’s result. �

Proof of Lemma 3.6 We first construct a circuit Gn that satisfies the
property of Lemma 3.6 for “small” meaning empty (and unchanged meaning
of “tiny”). This basically means that there we are free in putting any inputs
to P,Q. The design of Gn is shown in Fig. 3 (a). It has 2n+1 − 1 inputs
and 2n outputs and consists of not-of-ands gates only. They are arranged
into a binary tree of depth n. Every gate of the tree is and-of-nots of all its
ancestors and of an input to Gn.

Let us show that Gn satisfies Lemma 3.6 (with “small” meaning empty).
Indeed, fix a tiny set O of outputs of Gn. Partition all outputs of Gn into
2n−1 pairs of outputs; each pair (v,w) consists of outputs of two leaves of
the tree that have common father. Obviously, there is a pair (v,w) that is
disjoint with O. Pick such a pair. Let the set P consist of all input wires to
all the gates g that are inputs to v or w. Let the set Q consist of only one
wire — the input wire to w. (See Fig. 3 (b) and (c).)

Now we construct Sn. Its design is shown in Figure 4. Circuit Sn is
obtained from Gn by connecting an OR tree of depth n to each input of
Gn. The resulting circuit has (2n+1 − 1)2n inputs. For all small sets I and
J ⊃ I of inputs to Sn each OR tree Ti has at least one input outside I and
one input outside J . Setting each of these two inputs to 1 we will set to 1
the corresponding input i to Gn. Since Gn satisfies Lemma 3.6 (for “small”
meaning empty), Sn satisfies Lemma 3.6 as written. �

Proof of Theorem 3.4 We construct normal circuits for numbers n suffi-
ciently far apart, such that the ith pair (Mi,Ni) of deterministic and non-
deterministic polynomial time machines fails on input 0n(i) as is standard

16

AN AN

AN

AN AN

00000 1 1

1 0 0

(b)

AN

AN

1

AN AN

AN

AN AN

0 0 0 01 1 1

1 0 0 0

(c)

AN

AN

AN AN

(a)

AN

AN AN

AN

AN

wv v w

Figure 3: (a) Circuit Gn for n = 2. (b) Assignment 1P . (c) Assignment

1P∪Q. All 1-gates are marked grey.

in diagonalizations. The sequence n(0), n(1), . . . is chosen so that Mi(0
n(i))

cannot query strings of length n(i + 1) and Ni(q) cannot query strings of
length n(i + 1) for any query q of Mi(0

n(i)). It is not hard to choose such a
sequence in such a way that the set X = {n(i) | i = 0, 1, . . . } is in P. Assume
that the pairing function is chosen so that |〈n, x〉| > n. Then all strings in
the oracle A(Cn) have length at least n, and thus Mi(0

n(i)), Ni(q) cannot
make any queries in A encoding Cn(i+1). So we can apply Theorem 3.5 for
all pairs independently and then let A =

⋃

i A(Cn(i)) and S =
⋃

i S(Cn(i)).
�

Remark We can easily improve the lower bound n for the number of queries
in Theorem 3.4 to nk for every constant k. Indeed, instead of the circuit Cn

in the construction of A and S we can use Cnk .

17

OR OR

OR OR OR

OR

OR

OR

OROR OR

OR

OR OR OR OR

OR

OROR

2G

OR

OR

OR

OR

OR

OR

Figure 4: Circuit Sn for n = 2.

3.3 Exponential Lower Bounds

Let us now prove a relativized lower bound on sparse, tree-selfreducible
sets, see Corollary 3.9. The proof follows easily from Theorem 3.7 and
Lemma 3.8. In Theorem 3.7 we show that if there are NE-machines with
a certain structural property, then one can easily derive an S as desired.
In Lemma 3.8 we will then show that there is a relativized world in which
NE-machines have this property.

Theorem 3.7 Assume there is an NE-machine M and a set B such that

1. M has at most 2n accepting paths for all inputs of length n

2. x ∈ B if and only if the number of accepting paths of M(x) is odd

3. B 6∈ EXPNP[n].

Then there is a sparse, tree-selfreducible set with S ∈ PNP[log n+1]−PNP[log n].

Proof Define
S′ := {〈x, Pad′(x)〉 | x ∈ B},

where Pad′(x) and the pairing function are chosen such that |〈x, Pad′(x)〉| =
2|x|. First note that S′ is sparse.

Conditions 1 and 2 suggest the following PNP[log n+1]-algorithm A for
S′ on input 〈x, y〉: If y 6= Pad′(x) reject. Set n = |x| and m = 2n =

18

|〈x, Pad′(x)〉|. Then M(x) runs in time m and has at most m accepting
paths. Therefore the number of accepting paths of M(x) can be computed
with log m+1 queries to a suitable NP-oracle. Accept if this number is odd,
otherwise reject.

Let us now prove S′ 6∈ PNP[log n]. Assume there was a PNP[log n]-algorithm
A′ which decides S′. Then the following EXPNP[n]-algorithm for B shows a
contradiction to condition 3. On input x compute 〈x, Pad′(x)〉, which has
length m = 2n. Start A′ on 〈x, Pad′(x)〉 which can by assumption decide
x ∈ B with log m = n queries to an NP-oracle, using binary search.

Now we define the selfreducible set S.

S := {〈x, Pad(x), v〉 | ⊕||{w | vw is an accepting path of M(x)}|| = 1},

where this time Pad and 〈·, ·, ·〉 are chosen such that 〈x, Pad(x), λ〉 = 2|x|.
We have

χS(〈x, Pad(x), v〉) = χS(〈x, Pad(x), v0〉) ⊕ χS(〈x, Pad(x), v1〉),

which means that S is 2-parity-selfreducible (χS is the characteristic function
of S). The fact that S ∈ PNP[log n+1] − PNP[log n] follows immediately from
the proof for S′. �

Lemma 3.8 There is an oracle O, an NE-machine M and a set B such

that

1. MO has at most 2n accepting paths for all inputs of length n

2. x ∈ B if and only if the number of accepting paths of MO(x) is odd

3. B 6∈ EXPO,NPO[n]

Proof First we define the NE-machine M . On input 0n it non-deterministically
guesses all paths y with |y| = 2n and accepts on path y iff y ∈ O. On in-
puts other than 0n it always rejects. Each oracle O defines B uniquely by
condition 2.

Now we use a diagonalization argument to construct O such that con-
ditions 1 and 3 hold. For any oracle O let KO be the standard linear time
NPO-complete set

〈x, i, 1t〉 ∈ KO ↔ the i-th NPO-machine accepts x after ≤ t steps.

19

Let NO be an NPO-machine accepting KO which runs in time O(n) on

inputs of length n. We will prove that B 6∈ EXPO,NO[n] and by our choice
of N this is equivalent to condition 3.

Let {Mi}i be an enumeration of all exponential time bounded oracle

machines such that Mk on inputs of length n runs in time 2nk
and for any

oracle O makes at most 2nk
queries to O and at most n queries to NO.

We now describe the k-th stage of the diagonalization. Set the function
m(k) to

m(k) = 22m(k−1)
+ m(k − 1) (1)

where m(0) = 2. For ease of notation we also write m for m(k). We will
ensure that

MO,NO

k (0m) accepts ↔ 0m 6∈ B. (2)

As will be clear from the construction none of the later stages will change
this property. This implies condition 3.

Initially set F := ∅. In each stage of the diagonalization we will add
elements to F . These elements are “frozen” and are not allowed to be put
into O later.

Let u be an m-bit string. Since Mk asks at most m queries to NO, this

string induces a computation of MO,NO

k (0m), if we define that the answer
of the i-th query to NO is given by the i-th bit of u. Let Qm be the set

of all possible queries of MO,NO

k (0m) to NO, for any such u. Note that
|Qm| ≤ 1 + 2 + 4 + . . . 2m−1 = 2m − 1. For any such u, freeze all direct

queries from Mk to O in MO,NO

k (0m) and put them into F .
We now put some elements of length 2m into O such that we get (2).

1. Q := Qm

2. WHILE there is w ∈ (Σ2m
−F)∪{λ} and q ∈ Q such that NO∪{w}(q) =

1 DO

(a) Q := Q − {q};O := O ∪ {w}

(b) Add all queries on the left-most accepting path of NO∪{w}(q) to
F

3. IF
(

MO,NO

k (0m) accepts and |O=2m

| = odd
)

or
(

MO,NO

k (0m) rejects and |O=2m

| = even
)

THEN take any w ∈ Σ2m

− F and set O := O ∪ {w}

The idea behind this algorithm is very simple: In the WHILE-loop we try
to find as many potential queries q ∈ Q to NO, for which NO(q) already

20

accepts (w = λ) or NO(q) becomes accepting if we add one element w of
length 2m to O. We do not want to undo the acceptance of NO(q) in later
iterations, so we “freeze” all queries on the left-most accepting path and put
them into F .

Note that the WHILE-loop terminates after at most |Qm| ≤ 2m − 1
iterations. Observe that after the completion of the WHILE-loop adding
one of these unfrozen elements of length 2m to O also cannot change the
acceptance of NO(q) for any of the remaining q ∈ Q. Since all direct queries

from Mk to O in MO,NO

k (0m) were also frozen initially, the acceptance of

MO,NO

k (0m) cannot change in step 3. On the other hand, adding a 2m-
long element to O adds an accepting path to MO(0m), which changes the
predicate 0m ∈ B. Thus, line 3 ensures (2) if we show that

CLAIM 1 There is at least one unfrozen string of length 2m at the begin-

ning of line 3.

Proof We first observe that by (1) none of the 22m
strings of length 2m

were frozen in one of the previous stages. We then freeze at most 2m × 2mk

direct queries of Mk to O and in each of the at most 2m − 1 iterations of
the WHILE-loop at most 2mk

strings, altogether less than 2mk+m+1 strings.
This is smaller than 22m

by (1). �

Now, condition 3 follows from (2), since in the k-th stage we add only
elements to O, which by (1) are too long to be queried anywhere in any

MO,NO

l (0ml) for l < k . Furthermore, our procedure adds at most 2m

elements of size 2m to O and thus by construction of M condition 1 also
holds. Condition 2 holds by definition. �

From Theorem 3.7 and Lemma 3.8 we get

Corollary 3.9 There is an oracle O and a sparse set S, which is 2-parity-

tree-selfreducible in the relativized world O, but S 6∈ PO,NPO[log n].

4 Applications: lower bounds for NEXP

In this section we apply the results about sparse tree selfreducible sets to
obtain lower bounds for NEXP. It is well-known that PSPARSE = P/poly.

21

However the question whether EXPNP is contained in P/poly is still open.
The best known lower bound along these lines shows that MAexp, the class
of languages that allow for exponentially long Arthur-Merlin games, is not
in P/poly [BFT98].

We will show that Theorem 3.3 can be used directly to show that NEXP
does not reduce to a sparse set that is tree selfreducible. The class of sets
that reduce to sparse tree-selfreducible sets can be interpreted as sets that
are computed by some restricted form of polynomial size circuits, and hence
this result yields some lower bound for NEXP with respect to this class of
polynomial size circuits. We will show moreover that there exists a rela-
tivized world where EXP has a sparse tree-selfreducible hard set.

Theorem 4.1 Let K be a Turing complete set for NEXP. There is no

sparse tree-selfreducible set S such that K ≤p
T S.

Proof This follows directly from [Moc93], where it is shown that NEXP is
not contained in PNP[O(log n)] and Theorem 3.3, which relativizes. �

We next show that with relativizing techniques, considering only stan-
dard complexity classes, this is optimal.

Theorem 4.2 There exists an oracle A and a sparse tree-selfreducible set

S such that for every set B ∈ EXPA, B ≤pA

T S.

Proof It is sufficient to show that KA, the standard 2n-time complete set
for EXPA, reduces to S. The proof goes along the same lines as [Wil85],
where an oracle is constructed relative to which EXP is in P/poly.

For length n we will code for all the 2n strings xi of length n, KA(xi)
into A. Assume that we correctly coded all strings of length ≤ n − 1 into
A. Let M be such that L(MX) = KX for all X. Since MA runs in time
2n it can query at most 2n strings to A on any input xi of length ≤ n. Let
Q = QA

M ((Σ∗)≤n).
Then ||Q|| ≤ 23n and so (∃zn ∈ Σ4n)(∀v)[〈zn, v〉 /∈ Q]. Now we are able

to code for every string xi of length n, KA(xi) into A as follows.

〈zn, xi〉 ∈ A ↔ KA(xi) = 1

It is clear that the above construction will yield a zn for every length n. We
now will code zn into a sparse tree selfreducible set S as follows:

S = {〈0n, v〉 | ∃w : vw = zn}

22

It is easy to see that given access to S one can recover zn and then decide
for every string x of length n whether it is in KA by querying 〈zn, x〉. In
order to make the set S tree-selfreducible we put 〈zn, λ〉 in A as well. The
selfreduction for S is now as follows: on input 〈0n, v〉 query whether 〈0n, v0〉
or 〈0n, v1〉 is in S, if |v| < 4n, otherwise decide 〈0n, v〉 for |v| = 4n by
querying whether 〈zn, λ〉 ∈ A. �

We don’t know how to prove that EXP does have a sparse tree-selfreducible
hard set, but we can connect this question to a recent line of research by
Fortnow, Klivans, Shaltiel, and Umans [FK05, SU04]. The argument runs
as follows. If EXP has a sparse tree-selfreducible hard set, then from Theo-
rem 3.3 we would get that EXP ⊆ PNP[O(log n)]. It then follows from [FK05]
that EXP ⊆ NP/log.

5 Log-sparse selfreducible sets

We will next prove that log-sparse selfreducible sets are in L ∈ PNP[O(log2 n)].
The proof of the theorem can easily be adapted to yield Theorem 3.1, which
was first proven in [LT91] with a different proof. The proof idea is the
following. Given a log-sparse selfreducible set S and a string x, then Sx ∩S
has at most O(log|x|) elements. We will show a PNP[O(log2 n)] algorithm that
recovers these elements in a “depth first” fashion. The structure Sx is now
no longer a tree, since different paths can lead to the same element, but with
the help of an NP oracle, the longest path to such a string can be recovered.
The length of such a longest path is the depth of this string. Note that there
can be different strings with the same depth in Sx, but if there are, then
their longest paths from x split. Having recovered all elements in Sx ∩ L in
this way, there can be only one string in this set of depth 0, namely x.

Theorem 5.1 Let L ⊆ Σ∗ be log-sparse and ≤P
T -selfreducible. It follows

that L ∈ PNP[O(log2 n)].

Proof Choose a constant c′ such that ||L∩ (Σ∗)≤n|| ≤ c′ log n. Let ≺ be the
underlying polynomially related ordering and let M be a polynomial-time
oracle machine witnessing the selfreduction. Fix some input x. Choose s
such that Sx ⊆ (Σ∗)≤|x|s. Now ||Sx ∩ L|| ≤ c′s log n. Let c′s = c.

For y ≺ x let dx(y) = max{d | x ≻ a1 ≻ · · · ≻ ad−1 ≻ y}, where
dx(x) = 0. We call dx(y) the depth of y.

23

We define oracle O as 〈x, d1, . . . , dl〉 ∈ O if and only if there are distinct
strings a1, . . . , al such that (∀1 ≤ i < j ≤ l)[(di ≥ dj) ∧ (ai ≺ x) ∧ (dx(ai) ≥
di) ∧ (M{a1,...,ai−1}(ai) = 1)].

Clearly, O ∈ NP. We now give a PNP[log2 n]-algorithm that decides
whether x ∈ L.

1. i := 0

2. WHILE 〈x, d1, . . . , di, 0〉 ∈ O DO

(a) i := i + 1

(b) Use binary search to find the maximum value di such that 〈x, d1, . . . , di−1, di〉 ∈
O

3. ACCEPT if i > 0 and di = 0; otherwise REJECT

The following claim is immediate.

CLAIM 2 After the i-th iteration of line 2b, the algorithm has recovered

d1, . . . , di such that (∀y ∈ L ∩ Sx)[(∃j ≤ i)[dj = d(y)] or (d(y) < di]).

CLAIM 3 The algorithm stops after at most c log|x| iterations.

Proof After c log|x| iterations, it has built a string of c log|x| values di, The
query in step 2b requires L ∩ Sx to have c log|x| distinct strings that are
accepted by M using this set of strings as an oracle. By Claim 2 these are
the deepest strings in L ∩ Sx since the second part of the disjunct can no
longer be true. Hence acceptance of M means that these strings are indeed
in L ∩ Sx. So after ||Sx|| − 1 < c log|x| iterations, the next query requires
recovering all strings in L∩ Sx. Furthermore, there is at most one string of
depth 0. �

The proof of the theorem is now completed by observing that the depth of
any string in Sx is at most polynomial in |x|. Hence binary search can be
performed in O(log|x|) steps. �

If in Theorem 5.1 we assume ≤P
btt-selfreducibility then we get a stronger

conclusion.

Theorem 5.2 If L is log-sparse and ≤P
btt-selfreducible then L ∈ P.

24

Proof Let c be a constant such that ||L≤n|| ≤ c log n and let s be a constant
such that (∀x)[Sx ⊆ (Σ∗)≤|x|s]. This implies that ||Sx∩L|| ≤ cs log |x|. Let M
be an oracle machine that witnesses the ≤P

btt reduction and assume that M
asks no more than b queries on any input. Because of the fact that queries are
asked non-adaptively, we can limit the structure Sx to queries “of interest,”
i.e., we can assume that the set of nodes that are direct descendants of x
is QM (x), the set of nodes that are direct descendants of these nodes is
QM (QM (x)) etc. This is what will make the algorithm below polynomial
time bounded.

Of course, a string may be queried on different paths and therefore Sx

is still a DAG. For a node y in Sx this time define the depth dx(y) as the
minimal length of a path from x to y in Sx, where dx(x) = 0. Let Sk

x be the
part of Sx which contains all nodes up to depth k (inclusive). Set levelx(k) =
{y ∈ Sx : dx(y) = k}. Note that for i 6= j it holds levelx(i) ∩ levelx(j) = ∅.
Nodes in level k of Sk

x can only have nodes in level k or k − 1 as ancestors.
Therefore nodes in level k are the sinks in the DAG Sk

x.

CLAIM 4 Consider a partial labeling l : Sk
x 7→ {0, 1}. Call l correct if

l(x) = 1 ⇔ x ∈ L. If all nodes in level k are labeled correctly, then Sk
x can

be labeled correctly using M .

Proof With induction on the number of unlabeled nodes remaining. It is
clear that if this number is 1, i.e., only x remains unlabeled, then we know
the answer to the queries QM (x), so we can label x correctly. If this number
is m, then starting from x we can walk down a path to end up in a node
y that has only (correctly labeled) sinks as descendants, i.e., we know the
answers to the queries QM (y) and therefore can label y correctly. The DAG
Sk

x
′
that is Sk

x with y additionally labeled has one less unlabeled node. �

Surprisingly, the fact that makes the proof complete is that, for large enough
k, x can also be labeled correctly if some or all nodes in level k of Sk

x

are labeled incorrectly . Therefore, the following algorithm decides whether
x ∈ L.

1. FOR k = 2cs log|x| to 3cs log|x| DO

(a) Compute the DAG Sk
x .

(b) Label all nodes in Sk
x as follows. Label all nodes in Sk

x of depth
k with 0. Compute from that the labels of all nodes in Sk

x with
lower depth using the selfreduction.

25

(c) IF the root, i.e., x is labeled 1 and Sk
x does not contain more than

cs log |x| 1-nodes THEN accept and HALT.

2. Reject.

Note that each Sk
x contains at most b3cs log |x|+1−1

b−1 ∈ O(Pol(|x|)) nodes. Thus,
this algorithm works in polynomial time. We now show that it is also correct.

CLAIM 5 If x ∈ L then A accepts

Proof It is clear that (the correct) selfreduction-DAG Sx always contains a
level k with 2cs log |x| ≤ k ≤ 3cs log |x| such that levelx(k)∩L = ∅, because
there can be at most cs log |x| elements from L in Sx. For such k A labels
the nodes in levelx(k) correctly. The claim now follows from Claim 4. �

CLAIM 6 If A accepts then x ∈ L.

Proof Assume contrarily that A accepts an x 6∈ L, during iteration k. By
Claim 4 this can only happen if levelx(k) is not correctly labeled, which
means:

levelx(k) ∩ L 6= ∅.

Let Sk
x be labeled as given by step 1b. Since Sk

x contains k ≥ 2cs log |x| + 1
levels and A accepts x, the condition in 1c implies that Sk

x contains at least
cs log |x| + 1 levels whose nodes are all labeled with 0. Assume we now
change the labels of the nodes in levelx(k) ∩ L (correctly) from 0 to 1 and
compute from that the labels of all other levels in Sk

x. By Claim 4 Sx
k is then

correctly labeled. We now want to prove that this cannot have an effect on
the label of x.

Suppose it changes the label of the root x. Changing the label of a node
y only has an effect if this changes the label of at least one of the parents
of y and nodes in level i can only have parents in levels ≤ i − 1. So for
each i = k − 1, . . . , 0 there must be at least one node in levelx(i) which
is changed. Thus, the changed Sk

x has at least one 1-node in each of the
≥ cs log |x|+ 1 levels which before were completely labeled with 0. But this
contradicts that Sx contains at most cs log|x| 1-nodes. �

This completes the proof of Theorem 5.2. �

The same proof idea also establishes that log-sparse sets L, which are
≤P

tt-selfreducible can be decided in time O(nlog n).

26

6 Conclusions

Selfreducible sets are all in PSPACE. In fact many natural PSPACE com-
plete sets, like Quantified Boolean Formulae and infinite versions of two-
player games are selfreducible. There is no upper bound on the compu-
tational complexity of sparse sets. The intersection of these classes turns
out to be of considerably less computational complexity. Since selfreducibil-
ity, and in particular tree-selfreducibility, is a property that many problems
share and it is a crucial property that allows for recursive programs and
divide and conquer strategies, it is interesting to investigate properties of
selfreducible sets in different complexity classes and of different densities.
Many open questions remain here, especially with respect to different forms
of selfreducibility and the corresponding upper bounds on the computational
complexity of problems. This paper is just a starting point that shows some
interesting and sometimes unexpected cases.

Our results are also somewhat surprising with respect to structural prop-
erties of complexity classes. Sparse sets show, concerning their structural
and computational properties, great resemblance to P-selective sets [HT02].
Sparse sets and P-selective sets 4. are equivalent with respect to polynomial-
time Turing reductions [Sel79, Sel82]. Both P-selective sets [Ko83] and
Sparse sets have polynomial size circuits [Mey77] and their difference in low-
ness (if any) is limited (see [KS85]). Both P-selective sets [AA96, BKS95,
Ogi95] and Sparse sets [OW91] have the property that if NP btt reduces to
such a set, then P = NP. The situation becomes drastically different when
we limit these classes to their selfreducible subclasses. Where the class of
selfreducible P-selective sets is just another name for P [BT96], the compu-
tational complexity of the sparse selfreducible sets is quite a different matter
as we have shown in this paper.

Some specific open problems are the following:

1. Does there exist a sparse selfreducible set that is not in PNP[log n]? This
would yield a sparse selfreducible set that is not tree-selfreducible.

2. Does there exist a relativized world where NEXP has a sparse selfre-
ducible hard set?

3. Prove that EXP does not have a sparse tree selfreducible hard set.
This proof needs to be non-relativizing, but it may be within reach

4A set S is called P-selective if there exists a polynomial time function f such that

f(x, y) ∈ {x, y} and [x ∈ S ∨ y ∈ S] ⇒ f(x, y) ∈ S

27

using non-relativizing techniques from for example the MIP = NEXP
proof.

4. Can the super polynomial lower bounds for NEXP be used to prove
some kind of derandomization result? Is the selfreducibility restriction
on the sparse set a real restriction or could one show that if NEXP
has a sparse hard set then there also is a sparse hard set that is (tree)
selfreducible?

References

[AA96] M. Agrawal and V. Arvind. Quasi-linear truth-table reductions to
p-selective sets. Theoretical Computer Science, 158:361–370, 1996.

[BDG88] J. Balcázar, J. D́ıaz, and J. Gabarró. Structural Complexity I.
Springer-Verlag, 1988.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing sepa-
rations. In IEEE Conference on Computational Complexity, pages
8–12. IEE Computer Society Press, 1998.

[BH77] L. Berman and H. Hartmanis. On isomorphisms and density of
NP and other complete sets. SIAM J. Comput., 6:305–322, 1977.

[BKS95] R. Beigel, M. Kummer, and F. Stephan. Approximable sets. In-
formation and Computation, 120(2):304–314, 1995.

[BT96] H. Buhrman and L. Torenvliet. P-selective self-reducible sets: A
new characterization of P. J. Computer and System Sciences,
53(2):210–217, 1996.

[FK05] L. Fortnow and A. Klivans. NP with small advice. In Proceedings
of the 20th IEEE Conference on Computationa Complexity. IEEE
Computer Society Press, 2005. to appear.

[FO05] Piotr Faliszewski and Mitsunori Ogihara. Separating the notions
of self- and autoreducibility. In MFCS, pages 308–315, 2005.

[HT02] L.A. Hemaspaandra and L. Torenvliet. Theory of Semi-Feasible
Algorithms. Monographs in Theoretical Computer Science.
Springer-Verlag, Heidelberg, 2002.

28

[Ko83] K.-I. Ko. On self-reducibility and weak P-selectivity. J. Comput.
System Sci., 26:209–211, 1983.

[KS85] K. Ko and U. Schöning. On circuit-size and the low hierarchy in
NP. SIAM J. Comput., 14(1):41–51, 1985.

[LT91] A. Lozano and J. Torán. Self-reducible sets of small density. Math-
ematical Systems Theory, 1991.

[Mey77] A. Meyer. oral communication. cited in [BH77], 1977.

[Moc93] S. Mocas. Separating Exponential Time Classes from Polynomial
Time Classes. PhD thesis, Northeastern University, 1993.

[Ogi95] M. Ogihara. Polynomial-time membership comparable sets. SIAM
Journal on Computing, 24(5):1168–1181, 1995.

[OW91] M. Ogiwara and O. Watanabe. On polynomial time bounded
truth-table reducibility of NP sets to sparse sets. SIAM J. Com-
put., 20:471–483, 1991.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison Wesley,
1994.

[Sel79] A. Selman. P-selective sets, tally languages, and the behavior
of polynomial time reducibilities on NP. Math. Systems Theory,
13:55–65, 1979.

[Sel82] A. Selman. Analogues of semicursive sets and effective reducibil-
ities to the study of NP complexity. Information and Control,
52(1):36–51, January 1982.

[SU04] R. Shaltiel and C. Umans. Pseudorandomness for approximate
counting and sampling. Technical Report TR04-086, ECCC, 2004.

[Wag88] K. Wagner. Bounded query computations. In Proc. 3rd Structure
in Complexity in Conference, pages 260–278. IEEE Computer So-
ciety Press, 1988.

[Wil85] C.B. Wilson. Relativized circuit complexity. J. Comput. System
Sci., 31:169–181, 1985.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

