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Abstract

We consider fault-tolerant computation with formulas composed of noisy Boolean
gates with two input wires. In our model all gates fail independently of each other and
of the input. When a gate fails, it outputs the opposite of the correct output. It is
known that if all gates fail with probability at least β2 = (3−

√
7)/4 ≈ 8.856%, fault-

tolerant computation is not possible. On the other hand, if all gates fail with probability
ε < β2 and ε is the same for all gates, then fault-tolerant computation is possible. The
assumption that all gates fail with exactly the same probability is pretty strong and
unrealistic in real-world scenarios. Furthermore, one might be tempted to think that it
can be removed easily, since making gates “better” should not hurt. Surprisingly, this
is not the case, as we show in this work: there is a constant α2 < β2 such that almost
all functions cannot be computed by formulas, if the noise rate of each individual gate
is selected adversarially in the range [0, α2]. Hence, while a hardware manufacturer
who consistently produces bad gates with noise rate α2 can always achieve reliable
computation, a manufacturer who can only ensure that all gates have noise rates at
most α2 cannot.

1 Introduction

Essentially all physical devices for information processing can fail. It was realized early
on by von Neumann [19] that it is still possible to combine unreliable devices in such
a way that arbitrary computation is possible. Since then, a huge amount of work
in many different areas has been devoted to the design of systems that still perform
reliably even if some of their parts fail, but also to finding the limitations of such
fault-tolerant designs.

In this work we consider computation by formulas, which are circuits in which
each gate has exactly one output wire. Each gate has two Boolean input wires and
computes a Boolean output. Every gate G fails independently of the other gates (and
independently of the input) with some error probability εG, i.e. with probability 1− εG
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it outputs the correct result, and with probability εG it outputs the opposite. For this
model there is a noise bound of β2 = (3−

√
7)/4 ≈ 8.856% in the following way: if all

gates fail with probability at least β2, then fault-tolerant computation is not possible
[32]. If all gates fail with the same probability ε < β2, then fault-tolerant computation
is possible, see Evans and Pippenger [6]. The assumption that all gates fail with
the same probability is somewhat unsatisfactory, since this means that a hardware
manufacturer who can only produce unreliable gates must do so in a reliable way, i.e.
all gates must have the same error rate. At first, one might be tempted to think that
the requirement that all gates fail with the same probability is easy to remove, since
if a computation works correctly if all gates have noise rate ε < β2, then lowering the
noise rates of some gates should not hurt. We show that this intuition is wrong.

Theorem 1. There is a 0 ≤ α2 < β2 such that for any ∆ > 0 and almost all Boolean
functions1 there is no formula F that computes f with bias ∆, if the noise rate of each
individual gate in F is chosen adversarially in {0, α2}.

We mentioned earlier that this implies that a hardware manufacturer who can only
ensure an upper bound of α2 on the noise rates cannot ensure that the hardware always
works, while a hardware manufacturer who produces consistently bad gates with error
exactly α2 can always achieve reliable computation.

Note that a hardware manufacturer, who can first produce gates, then test them
(i.e. determine their noise rate) and use only gates with similar noise rates, is not
affected by our result.2 Our result would however apply to a manufacturer who cannot
test their gates before deciding whether to use them. In particular, this applies to the
way modern computer chips are produced, where gates are “printed” to a sample, and
once there, they cannot easily be removed.

It is possible to consider more adversarial settings. For example, the noise rate of
a gate might depend on the input to the gate (and previous gates) and also on the
input to the function being computed. Also in these models with an adaptive adversary
(see Pippenger [23] for exact definitions) it is possible to do fault-tolerant computation
with constant noise rates. In particular, this also means that the smallest α2 which
satisfies Theorem 1 is greater than zero, and hence our model does allow fault-tolerant
computation. We do not know what the smallest possible value for α2 is.

More adversarial models will almost certainly lead to much lower acceptable noise
rates. In the example model mentioned above, the adversary might decide not to apply
noise, if the inputs to the gate are already “wrong”, and hence prevent that the output
of the gate flips back to its “correct” value. The surprising fact about Theorem 1
is that even a non-adaptive adversary who can essentially only make gates “better”,
can prevent fault-tolerant computation. Incidentally, we also do not know about any
previous results which establish a better upper bound on the acceptable noise rate than
β2 for any other (more adversarial) model.

1“Almost all” means all Boolean functions that depend on more than a constant number C(∆) of input
bits.

2It is not shown explicitly in [6] that this will work, but inspecting their proof one can see that their
scheme also works if all gates have noise rate less than β2 and the noise rates are similar enough.
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We prove our result only for formulas but not for circuits. Generally, the known
noise bounds for fault-tolerant computation are weaker for circuits, see Section 1.1.
However, we believe that the only reason for this is that circuits are harder to analyze
and that in particular Theorem 1 is also true for circuits.

More discussion of our result and model is deferred to Section 3.6.

1.1 Context and related work

Noise and fault-tolerance has been studied in many contexts, for example fault-tolerant
computation by circuits [19, 5, 22, 28, 11] with threshold analyses for classical com-
putation in [19, 14, 9, 8, 6, 32, 15, 12] and for quantum computation in [1, 17, 18, 2,
27, 25, 16, 3, 26], communication protocols [24, 29, 20], decision trees [28, 20, 7, 10],
learning theory [30, 31, 13, 4] but also others (some referenced in the cited work).

Most of these are positive results, showing that also under noise the desired tasks
can be accomplished. We do not know about any previous results which prove that
fault-tolerant computation becomes impossible if the noise rates of some gates become
too small. However, there are results which suggest that in other settings a similar
phenomenon might occur, some of which we review now.

In the same model as ours, but for formulas with gates of fan-in k and k odd,
Evans and Schulman [9] proved the tight noise bound βk = 1

2 −
2k−2

k( k−1
k/2−1/2)

: if all gates

fail independently with the same fixed probability ε < βk, then any function can be
computed, and if each gate fails with some probability at least βk (which does not need
to be the same for all gates), universal computation is not possible. For k = 3 the result
was first established by Hajek and Weller [14]. To establish the lower bound for βk they
also strongly rely on the assumption that all gates have the same error probability and
it is likely that also for gates with fan-in k > 2 this assumption is necessary. For even
k > 2 tight noise bounds in the above sense are not known. However, we believe that a
similar approach to ours (previously used in [32]), using a suitable potential function,
can also lead to tight (non-adversarial) noise bounds.

It is also worth noticing that all results mentioned—including the present—only
work for formulas. The best upper bounds on the acceptable noise rates for circuits
with at most k input wires are 1

2−
1

2
√
k

by Evans and Schulman [8]. We believe that the

bounds for formulas also hold for circuits, and that the only reason why upper bounds
for circuits are worse is because they are harder to analyze.

An area in which fault-tolerance is particularly important is quantum computation,
since here the physical components in which the information is stored have to be very
small, and with current technology it is very hard to operate on them accurately. It
is likely that results similar to ours also hold for quantum computers. Apart from
the fact that this would be in analogy with our result, another small indicator is that
among the currently best rigorous lower bounds on the fault-tolerance threshold [2, 27]
the higher bound by Reichardt [27] is also proven under the assumption that gates fail
independently of each other and the noise rates are the same for all gates.

It is also worth mentioning that a certain “guaranteed” amount of noise might be
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helpful to speed up computation. For example, if P 6=BPP,3 then circuits in which all
gates are guaranteed to have some (small enough) amount of noise could use this noise
to distill random bits and hence these circuits would be able solve problems in BPP\P
more efficiently than noise-free (deterministic) circuits. Thus, also in this setting lower
noise rates might be harmful.

Also in learning theory a similar phenomenon is known: without giving any precise
definitions, we simply state that Goldman and Sloan [13] show that certain concept
classes are not PAC-learnable, if the samples provided to the learning algorithm un-
dergo some noise process, in which the exact noise rates are not known, only an upper
bound on them. However, Decatur and Gennaro [4] show that if the noise rates are
known to the learning algorithm, then these concept classes become PAC-learnable.

Our proof extends an approach in [32], in which it is shown that fault-tolerant
computation is not possible if all gates fail with probability at least β2. This result can
easily be reproved from one of our Lemmas. However, the potential function we are
using in this paper (see later) is nicer and leads to simpler calculations.

1.2 Organization of the paper

Section 2 contains some standard definitions. Section 3 contains the proof Theorem 1.
In Section 3.1 we explain the proof on a high level and also provide some important
notation. Section 3.6 contains some extensions and final remarks.

2 Definitions

A circuit is composed of gates. Each gate has a certain number of input wires, which is
called the fan-in of the gate. The wires can take Boolean values 0 or 1. A gate computes
an output bit as a Boolean function of its input bits. A formula is a particular type
of circuit in which the gates are connected in a tree, with the output gate at the root
and the input bits at the leaves. In particular, this means that each gate has exactly
one output wire.

A (perfect) PARITY gate with input bits x1 and x2 outputs 0 if x1 = x2 and 1
otherwise. A (perfect) NOR gate outputs 1 if x1 = x2 = 0 and 0 otherwise. We say
that a gate G with fan-in 2 is of NOR-type if it can be obtained from a NOR gate by
applying NOT gates to the input / output wires, i.e. there is an odd number of inputs
x1, x2 ∈ {0, 1} which are mapped to 1.

We call a gate ε-noisy if it outputs the correct result with probability 1 − ε and
with probability ε it outputs the opposite. For any ε ≤ 1/2 we define the function

ηε(x) = (1− 2ε)x+ ε.

If x is the probability that some Boolean variable is 0, then ηε(x) is the probability
that it is 0 after it has gone through an ε-noisy bit-flip channel. Most of the time we
use ηε with ε = β2, in which case we will omit the subscript, i.e. η(x) = (1−2β2)x+β2.

3P is the class of all functions which can be efficiently computed by deterministic algorithms. BPP is
the class of functions which can be efficiently computed by randomized algorithms. It is widely believed [21]
that P=BPP, but the final answer is not yet known.
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We say that a formula F with noisy gates computes the function f with bias ∆ > 0
if for all x ∈ f−1(0), y ∈ f−1(1): Pr[F (x) = 0] ≥ ∆ + Pr[F (y) = 0].

A Boolean function f : {0, 1}n → {0, 1} depends on the i-th input bit xi if there is
some setting of the other bits, such that flipping xi flips the function value.

3 Proof

3.1 Outline and notation

In our proof we will show that under the conditions of Theorem 1 all Boolean functions
f : {0, 1}n → {0, 1} that depend on sufficiently many input bits cannot be computed
with bounded bias ∆ > 0. For such functions, we will fix a particular input bit xi
which f depends on, and fix all other bits such that flipping xi flips the output, see
the proof of Theorem 1 later. Assume that f is computed by a formula F with noisy
gates that fail independently. Then, for each gate in F with input wires A and B and
output wire C we can define

a =
1

2
Pr[A = 0 | xi = 0] +

1

2
Pr[A = 0 | xi = 1] (1)

δa = Pr[A = 0 | xi = 0]− Pr[A = 0 | xi = 1] (2)

and analogously for B and C. The variable a can be seen as the average probability of
A being 0. We call δa the bias of A. It is clear that for every wire A we always have
|δa| ≤ min{2a, 2(1− a)}, an observation we will use repeatedly.

The lemmas in the next section will use this notation, and implicitly assume a
function f and a particular choice of an input bit xi. Our lemmas hold for all f , F
and xi. In the proof of Theorem 1 we will instantiate f , F and xi.

We define a potential function q as

q(x) =
1

(1− x)x+ (11− 4
√

7)/18
, (3)

where (11− 4
√

7)/18 ≈ 0.023. See Figure 1 for a plot.
It is convex, symmetric around 1/2 and bounded between positive constants for

x ∈ [0, 1]. In particular, qmax := maxx∈[0,1] q(x) = q(0) = 18/(11 − 4
√

7) < 50 and
qmin := minx∈[0,1] q(x) = q(1/2) > 2. Furthermore, 1/q(·) is concave and also bounded
between positive constants for x ∈ [0, 1].

The main argument in our proof (Lemma 1) is that for any ε-noisy gate G with
input wires A,B and output wire C it holds

|δc|q(c) ≤ θmax{|δa|q(a), |δb|q(b)}. (4)

for θ = 1 if ε ≥ β2. For wire A we also say that |δa|q(a) is the extractable information,
i.e. the information about xi that can be extracted by noisy formulas. We can inter-
pret (4) as saying that a gate with noise at least β2 cannot increase the “extractable
information”. Furthermore, we will see that this inequality is only tight if δa, δb → 0,
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Figure 1: Graph of q(x)

G is a NOR gate (or of NOR-type) and a, b satisfy certain properties, e.g. if G is a
NOR gate then a = b = x̂ with

x̂ =
1 +
√

7

6
≈ 0.61.

We will chop the formula F into subformulas S, of depth 2D, where D is given in
Lemma 2. We then show that if an S satisfies all the above conditions approximately
(i.e. it is composed of NOR gates and for the input wires Ai of the subformula it
holds δai ≈ 0 and ai ≈ x̂), then the output wire O of the subformula will have much
smaller extractable information then any of its input wires if all gates are noise-free, see
Lemma 2. If S does not satisfy these conditions, then we use (in the proof of Lemma
3) that for some gate in S inequality (4) will hold for some fixed 0 ≤ θ < 1, if all gates
have noise at least β2. Then some small additional technical arguments (Claim 5) will
also imply that the extractable information |δo|q(o) of the output wire O must have
decreased sufficiently. A continuity argument (Lemma 4) will then imply that this also
holds if all gates fail with probability α2, for some 0 ≤ α2 < β2. This implies that the
extractable information of any wire decreases “on average” over blocks of depth 2D.

3.2 Noisy gates

The following lemma is the main technical lemma. A similar lemma was used in [32],
in which it was shown that fault-tolerant computation is not possible if all gates fail
with probability at least β2. The current version is slightly stronger, as this will be
needed for our later result, and its proof is simpler, which is mainly due to the fact
that the potential function q(·) we are using here is nicer.

Lemma 1. Assume an ε-noisy gate G, with input wires A and B and output wire C.
Define a, b, c and δa, δb, δc as in Section 3.1. The following inequality

∀β2≤ε≤1/2 : |δc|q(c) ≤ θmax{|δa|q(a), |δb|q(b)}. (5)

holds in all of the following cases:
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1. Inequality (5) holds with θ = 1.

2. If G is not of NOR-type then ∃0≤θ<1 such that inequality (5) holds.

3. ∀0≤r<1∃0≤θ<1 ineq. (5) holds if min{|δa|q(a), |δb|q(b)} ≤ rmax{|δa|q(a), |δb|q(b)}.
4. ∀δ>0∃0≤θ<1 inequality (5) holds if

(a) |δa| ≥ δ or |δb| ≥ δ or

(b) G is a NOR gate and |a− x̂| ≥ δ or |b− x̂| ≥ δ

The proof of this lemma is a bit tedious and technical, we suggest to skip it during
a first read. Essentially, we are optimizing real polynomials.

Before we prove Lemma 1 we show some simple statements. Our first observation
says that instead of analyzing a gate G directly, we may analyze G with additional NOT
gates on its input / output wires, if we also change the input / output distributions
appropriately.

Observation 1. Let G be a gate as in Lemma 1. Let G′ be as G, but with an additional
NOT on wire A. Then any of the statements of Lemma 1 (apart from (4b)) hold for
G, a, b, c and δa, δb, δc if and only if they also hold for G′ and a, δa “negated”, i.e.
a′ := 1− a, b′ := b, c′ := c and δ′a := −δa, δ′b := δb, δ

′
c := δc. The same holds analogously

for wires B and C.

Proof. Note that q(a) = q(1 − a) and hence |δ′a|q(a′) = |δa|q(a). Therefore, the ex-
tractable information on all wires is the same for G and G′. For wires B and C an
analogous argument works.

The next observation is a monotonicity statement about the extractable information
|δc|q(c) of a wire C. It basically says that moving the quantities Pr[C = 0|xi = 0] and
Pr[C = 0|xi = 1] apart cannot decrease |δc|q(c).

Observation 2. Let C be a wire whose information content about xi is parameterized
by y, z as follows:

y = min{Pr[C = 0|xi = 0],Pr[C = 0|xi = 1]}
z = max{Pr[C = 0|xi = 0],Pr[C = 0|xi = 1]}.

Let C ′ be another wire and let y′ ≤ z′ be defined analogously. Then it holds that if
y′ ≤ y and z ≤ z′ then |δc|q(c) ≤ |δc′ |q(c′) .

Proof. We prove that the first derivative of |δc|q(c) with respect to z is positive for
0 ≤ y ≤ z ≤ 1 − 0. This implies that moving z up to z′ cannot decrease |δc|q(c).
Analogously, one can show that moving y to y′ cannot decrease |δc|q(c) either, which
then implies the statement of the observation.

One can calculate that

|δc|q(c) = (z − y)q(
y + z

2
) =

36(y − z)
9y2 + 18(z − 1)y + 9z2 − 18z + 8

√
7− 22

.
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The first derivative with respect to z is − 36(27y2+18zy−36y−9z2+8
√
7−22)

(−9y2−18zy+18y−9z2+18z−8
√
7+22)

2 . Hence, we

need to show
27y2 + 18zy − 36y − 9z2 + 8

√
7− 22 < 0 (6)

From 0 ≤ y ≤ z ≤ 1 it is easy to see that the following inequalities hold 27y2−27y ≤ 0,
9zy − 9z2 ≤ 0, 9zy − 9y ≤ 0 and −0.83 ≈

√
7 − 22 < 0. Adding these together gives

(6).

Proof. (Lemma 1) First we note that it is enough to prove the lemma for ε = β2,
because increasing ε decreases |δc| and moves c closer to 1/2, i.e. it also decreases q(c).
We will assume throughout that |δb|q(b) ≤ |δa|q(a).

G is not of NOR-type It is enough to prove item 2. We may assume that G is
a (noisy) PARITY gate: the cases that G is constant (outputting noisy 0 or 1) or G
outputs one of its input wires or a NOT of it, can be reduced to a PARITY gate with
δa = 0 and a ∈ {0, 1} or δb = 0 and b ∈ {0, 1}. This leaves us with the case that G is
a (noisy) PARITY gate, but with additional (noise-free) NOT gates on its wires: note
that a NOT gate on an input wire of a PARITY gate is equivalent to a NOT gate on
the output wire. Hence, using Observation 1 we may assume that G is a PARITY
gate, and also further that a ≥ 1/2, b ≥ 1/2.

If the two input wires of a noiseless PARITY gate are independently 0 with prob-
ability p resp. q, then the output wire will be 0 with probability pq + (1 − p)(1 − q).
Thus, in our case

Pr[C = 0 | xi = 0] = η((a+ δa/2) (b+ δb/2) + (1− a− δa/2) (1− b− δb/2))
Pr[C = 0 | xi = 1] = η((a− δa/2) (b− δb/2) + (1− a+ δa/2) (1− b+ δb/2))

which implies

c = η (ab+ (1− a)(1− b) + δaδb/2)

δc = ((2a− 1)δb + (2b− 1)δa) (1− 2β2).

Hence, we need to show ∃θ < 1:

|(2a− 1)δb + (2b− 1)δa| (1− 2β2)q(η (ab+ (1− a)(1− b) + δaδb/2)) ≤ θ|δa|q(a). (7)

We may assume δa ≥ 0 because flipping the sign of both δa and δb does not change the
statement.

Next we show that we may replace the q(...)-term on the lhs of (7) by the rhs of
(8), by showing

q(η (ab+ (1− a)(1− b) + δaδb/2)) ≤ q(η (ab+ 3(1− a)(1− b))). (8)

We first notice that η (ab+ (1− a)(1− b) + δaδb/2) = η (ab+ (1− a)(1− b)) + (1 −
2β2)δaδb/2. We also have ab + (1 − a)(1 − b) ≥ 1/2 (since a, b ≥ 1/2) and hence also
η (ab+ (1− a)(1− b)) ≥ 1/2. Then we notice that ∀x ≥ 1/2, y ≥ 0 : q(x+y) ≥ q(x−y).
Using this with x = η (ab+ (1− a)(1− b)) and y = (1− 2β2)δaδb/2 we see that the lhs
of (8) is maximized for δaδb ≥ 0. Furthermore, ∀x ≥ 1/2, y ≥ 0 : ∂q(x + y)/∂y ≥ 0,
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hence the lhs of (8) is maximized if δaδb is maximal. Using that δa/2 ≤ 1 − a and
δb/2 ≤ 1− b, we get inequality (8).

Furthermore, we may also replace the first occurrence of δb in (7) by its maxi-
mum δaq(a)/q(b), since a, b ≥ 1/2. After doing these two replacements, dividing by
q(a)q(η (ab+ 3(1− a)(1− b))) and cancelling δa, inequality (7) follows from the follow-
ing claim. Its proof is provided after the Lemma.

Claim 1. ∃0≤θ<1∀1/2≤a,b≤1 :(
2a− 1

q(b)
+

2b− 1

q(a)

)
(1− 2β2) ≤

θ

q(η (ab+ 3(1− a)(1− b)))
. (9)

G is of NOR-type W.l.o.g. we may assume that G is a NOR gate, by Observation
1. We have

Pr[C = 0 | xi = 0] = 1− η ((a+ δa/2) (b+ δb/2)) (10)

Pr[C = 0 | xi = 1] = 1− η ((a− δa/2) (b− δb/2)) , (11)

which implies

δc = − (aδb + bδa) (1− 2β2) (12)

c = 1− η (ab+ δaδb/4) . (13)

W.l.o.g. we may assume δa ≥ 0: in case δa < 0 we can flip the sign of both δa
and δb, which will change neither |δc| nor c. Furthermore, we may then also assume
δb ≥ 0: using that 1− η(·) is monotonically decreasing, we see from (10) and (11) that
min{Pr[C = 0 | xi = 0],Pr[C = 0 | xi = 1]} is minimized and max{Pr[C = 0 | xi =
0],Pr[C = 0 | xi = 1]} is maximized when δb ≥ 0. Hence, by Observation 2 we may
assume δb ≥ 0.

Using q(c) = q(1− c) and (12) and (13) we see that (5) is equivalent to

(1− 2β2)(aδb + bδa)q (η (ab+ δaδb/4)) ≤ θδaq(a). (14)

In order to prove items 1 and 4 it is enough to show (14) where we replace the
first occurrence of δb by its maximum δaq(a)/q(b). Canceling δa and dividing by
q(a)q (η (ab+ δaδb/4)) gives

(1− 2β2)

(
a

q(b)
+

b

q(a)

)
≤ θ

q (η (ab+ δaδb/4))
. (15)

In order to show (15), we show the following claim. Its proof is provided after this
Lemma.

Claim 2. For all 0 ≤ a, b ≤ 1 the inequality

(1− 2β2)

(
a

q(b)
+

b

q(a)

)
≤ θ1

q (η (ab))
(16)

always holds for θ1 = 1 and under the conditions of item 4b it holds for fixed 0 ≤ θ1 < 1.
Furthermore, there is a 0 ≤ θ2 < 1 for which

(1− 2β2)

(
a

q(b)
+

b

q(a)

)
≤ θ2

q (η (ab+ (1− a)(1− b)))
. (17)
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The two inequalities in Claim 2 implies (15) for items 1 and 4b by concavity of
1/q(·), 0 ≤ δa/2 ≤ 1− a and 0 ≤ δb/2 ≤ 1− b.

With this we can also show item 3: if our parameters satisfy the conditions in
item 4b we are done. Otherwise, we have |a − x̂| ≤ 1/1000. We already know that
(14) always holds with θ = 1 (by item 1 of our Lemma) if the first δb is replaced
by δaq(a)/q(b) (which yielded inequality (15)). Hence, if δb ≤ rδaq(a)/q(b) for some
0 ≤ r < 1, then we see that if the first occurrence of δb is replaced by rδaq(a)/q(b)
, then |a − x̂| ≤ 1/1000 and the fact that q(·) is bounded between positive constants
implies that there is a θ < 1 such that (14) holds after this replacement.

To get item 4a we will show that δaδb/4 > δ2/200. This will immediately imply (15)
for a 0 ≤ θ < 1 by (16), (17) and concavity of 1/q(·). If δb > δ, then δa > δq(b)/q(a) ≥
δ
minx∈[0,1] q(x)

maxx∈[0,1] q(x)
> δ

25 . Hence, δaδb/4 > δ2/100. If δa > δ we argue: if δbq(b) ≤ δaq(a)/2,

then item 4a follows already from item 3 with r = 1/2. Otherwise, we can bound

δb > δ q(a)2q(b) ≥
δ
2

minx∈[0,1] q(x)

maxx∈[0,1] q(x)
> δ/50, and hence δaδb/4 > δ2/200.

We now provide the proofs of the claims in Lemma 1. They are not difficult, but
some of the calculations are a bit tedious to do by hand. Alternatively, one can use a
computer algebra system that can manipulate terms symbolically.

Proof. (of Claim 1) Since ∀x∈[0,1] : 2 < q(x) < 50, it is enough to show

0.04 ≤ 1

q(η (ab+ 3(1− a)(1− b)))
−
(

2a− 1

q(b)
+

2b− 1

q(a)

)
(1− 2β2). (18)

Changing variables as x = ab, y = a + b and multiplying by 72 the right-hand side
becomes the polynomial 576

√
7x2 − 2304x2 − 792

√
7yx+ 3384yx+ 648

√
7x− 2808x+

288
√

7y2 − 1260y2 − 564
√

7y + 2280y + 269
√

7 − 994. Since 288
√

7 − 1260 < 0, we
see that the second derivative with respect to y is always negative, so the polynomial
is minimized for extremal y. Given x, the maximal y is y = 1 + x, and then the
polynomial becomes 36

(
−5 + 2

√
7
)
x2 +

(
336− 132

√
7
)
x−7

√
7 + 26, whose minimum

is 1859−703
√
7

5−2
√
7
≈ 3.30 at x = 28−11

√
7

30−12
√
7
≈ 0.63. The minimal y is y = 2

√
x. Sub-

stituting this the polynomial becomes 576
(
−4 +

√
7
)
x2 − 144

(
−47 + 11

√
7
)
x3/2 +

72
(
−109 + 25

√
7
)
x− 24

(
−190 + 47

√
7
)√

x+ 269
√

7− 994, which is a polynomial of
degree 4 in

√
x, for which one can show that it is always lower bounded by 3.07 for

x = ab ∈ [1/4, 1]. Then (18) follows by 3.07/72 > 0.04.

Proof. (of Claim 2) Since ∀x∈[0,1] : 2 < q(x) < 50, it is enough to show

κ ≤ 1

q (η (ab))
− (1− 2β2)

(
a

q(b)
+

b

q(a)

)
(19)

0.0001 ≤ 1

q (η (ab+ (1− a)(1− b)))
− (1− 2β2)

(
a

q(b)
+

b

q(a)

)
(20)

with κ = 0 and with κ > 0 under the conditions of item 4b.
We first show (19). Changing variables x = ab and y = a + b and multiply-

ing by 72 the rhs of (19) becomes 36
(
−4 +

√
7
)
x2 + 36

((
−1 +

√
7
)
y − 3

√
7 + 6

)
x +
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(
78− 30

√
7
)
y−7
√

7+26, which is linear in y. It is minimized when y is extremal. Given

x, the maximal y is y = 1+x, in which case the polynomial becomes 36
(
−5 + 2

√
7
)
x2−

6
(
−43 + 17

√
7
)
x − 37

√
7 + 104, whose minimum is 4012−1517

√
7

10−4
√
7

> 2. The mini-

mal y is y = 2
√
x. Substituting this the polynomial becomes 36

(
−4 +

√
7
)
x2 +

36
(
2
(
−1 +

√
7
)√

x− 3
√

7 + 6
)
x+2

(
78− 30

√
7
)√

x−7
√

7+26 = 36
(
−4 +

√
7
)

(
√
x−

√
x̂)2(
√
x−√x3)(

√
x−√x4) with x̂ = 1

6

(
1 +
√

7
)

and x3/4 = 1
6

(
1 +
√

7± 2
√

15− 3
√

7
)

,

i.e. x3 ≈ 1.49 and x4 ≈ −0.28. This implies (19).
Now we show (20). Setting x = ab and y = a + b and multiplying by 72 the rhs

of (20) becomes
(
−576 + 144

√
7
)
x2 +

(
540− 108

√
7
)
yx− 216x+

(
−144 + 36

√
7
)
y2 +(

222− 66
√

7
)
y − 7

√
7 + 26. Since −144 + 36

√
7 < 0, we see that its second deriva-

tive with respect to y is always negative, so it is minimized when y is extremal.
Given x, the maximal y is y = 1 + x. Substituting this the polynomial becomes
36
(
−5 + 2

√
7
)
x2− 6

(
−43 + 17

√
7
)
x− 37

√
7 + 104. We have calculated the minimum

of this polynomial before, it is 4012−1517
√
7

10−4
√
7

> 2 . The minimal y is y = 2
√
x and then

the polynomial becomes 144
(
−4 +

√
7
)
x2− 216

(
−5 +

√
7
)
x3/2 + 72

(
−11 + 2

√
7
)
x+(

444− 132
√

7
)√

x−7
√

7 + 26, which is a polynomial of degree 4 in
√
x. One can show

that for x ∈ [0, 1] it is always at least 0.014. Hence, the right-hand side of (20) is
always at least 0.014/72 > 0.0001.

3.3 Composition of noise-free NOR gates

Lemma 2. There is a D > 0 such that the following holds: Consider a full tree NOR2D

of depth 2D of noise-free NOR gates with input wires A1, . . . , A22D and output wire B
at the top. If

∀1≤i≤22D : |x̂− ai| ≤ 1/1000 ∧ δai ≤ 1/1000 (21)

then |δb|q(b) ≤ 1
2 max1≤i≤22D |δai |q(ai).

Proof. We define a function f as f(y1, . . . , y4) = 1 − (1 − y1y2)(1 − y3y4) = y1y2 +
y3y4 − y1y2y3y4. For a tree of NOR gates of depth 2, whose four input wires are
independently 0 with probabilities y1, . . . , y4, f(y1, . . . , y4) is the probability that the
output wire at the root is 0. We also define its k-fold composition, by setting f (1) = f
and f (k+1)(y1, . . . , y4k+1) = f(f (k)(y1, . . . , y4k), . . . , f (k)(y3·4k+1, . . . , y4k+1)). It is easy
to see that f is monotonically increasing in each argument if ∀i : yi ∈ [0, 1], and so is
f (k). Furthermore,

δb = f (D)(a1 + δa1/2, . . . , a4D + δa
4D
/2)− f (D)(a1 − δa1/2, . . . , a4D − δa4D /2). (22)

We want to compute an upper bound on |δb|. Define δ̂ = maxi |δai |. Since f is
monotonically increasing in each argument, it is clear that the absolute value of the
rhs is maximized if all δai have the same sign, so w.l.o.g. we assume ∀i : δai ≥ 0. It
implies δb ≥ 0. Similarly, we can upper bound δb by replacing each δai by δ̂.

Claim 3. ∀0≤y1,...,y4≤x̂+3/2000 : f(y1, . . . , y4) ≤ max{y1, . . . , y4}.

11



Proof. We noted before that f is monotonically increasing in each argument, so it is
enough to prove the statement for y := y1 = y2 = y3 = y4. We compute f(y, y, y, y)−
y = y(2y− y3− 1) = −y(y− 1)(y+ 1+

√
5

2 )(y+ 1−
√
5

2 ) ≤ 0 for y ∈ [0,
√
5−1
2 ]. Noting that

x̂+ 3/2000 <
√
5−1
2 proves the claim.

Claim 4. ∀0≤y1,...,y4∀0≤δ :

f(y1 + δ/2, . . . , y4 + δ/2)− f(y1 − δ/2, . . . , y4 − δ/2) ≤ 4δmax{y1, . . . , y4}.

Proof. Let y = max{y1, . . . , y4}. Note that
∏
i(yi + δ/2) ≥

∏
i(yi − δ/2). Looking

at the definition of f , we see that the lhs of the inequality can be upper bounded by
(y1 + δ/2)(y2 + δ/2) + (y3 + δ/2)(y4 + δ/2)− (y1− δ/2)(y2− δ/2) + (y3− δ/2)(y4− δ/2).
The term (y1 + δ/2)(y2 + δ/2)− (y1 − δ/2)(y2 − δ/2) is maximized when both y1 and
y2 are maximally equal to y. The same holds analogously for y3 and y4. Plugging this
in gives 2(y + δ/2)2 − 2(y − δ/2)2 = 4yδ.

With a pocket calculator we compute f (11)(x̂+ 3/2000, . . . , x̂+ 3/2000) ≈ 0.021 ≤
1/40. Furthermore, (21) implies that for each input wire Ai it holds max{ai + δai , ai−
δai} ≤ x̂ + 3/2000. Then by Claim 3 we have that for each s ≥ 11 and for each wire
W that is exactly 2s levels away from the inputs

w ≤ 1/40. (23)

Claim 4 and (21) implies that for all wires W that are exactly 2×11 levels away from
the inputs δw ≤ 411(x̂+1/1000)11δ̂. Using Claim 4 and (23), we see that for all wires W
that are 2(11+6) levels ways from the bottom we have δw ≤ 411(x̂+1/1000)11(4· 140)6δ̂ ≤
δ̂/50, which we verify with a pocket calculator. Setting D = 11 + 6 = 17 we thus have
δb ≤ maxi{δai}/50 and then with ∀x∈[0,1] : 2 ≤ q(x) ≤ 50 we get our Lemma.

3.4 Blocks of Depth D

We now show that for every formula of depth 2D (with D from Lemma 2), one can set
the noise rate of all gates to either 0 or β2, such that the output wire at the root will
have smaller extractable information than any of the input wires.

Lemma 3. There is a constant 0 ≤ γ < 1 such that for any formula Q of depth 2D
(with D as in Lemma 2) which is composed of gates with fan-in 2, has input wires
A1, . . . , A22D , output wire B and for every input distribution {ai}i, {δai}i on the Ai it
holds that either (a) if all gates have noise rate 0 or (b) if all gates have noise rate β2,
then

|δb|q(b) ≤ γmax
i
|δai |q(ai). (24)

The following fact will be helpful in the proof of the lemma. It defines an interval
[s, t] which is stable under the action of a noisy NOR-gate. It implies that if we
have a tree of noisy NOR-gates, and all of its input wires are zero with a probability
in [x̂ − 2/1000, x̂ + 2/1000] ⊆ [s, t], then the output wire of the tree is zero with a
probability in [s, t].
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Fact 1. Consider any NOR gate with noise β2, whose input wires are independently
0 with probabilities y1 resp. y2 and whose output wire is 0 with probability y3. Define

s = 250496−499
√
7

250000(−1+
√
7)

and t = x̂ + 2/1000. It holds s < x̂ − 2/1000 and if y1, y2 ∈ [s, t]

then also y3 ∈ [s, t].

Proof. We calculate miny1,y2∈[s,t] y3(y1, y2) = miny1,y2∈[s,t] 1 − (1 − 2β2)y1y2 − β2 =
1 − (1 − 2β2)t

2 − β2 = s. Furthermore, with a pocket calculator we can check that
maxy1,y2∈[s,t] y3(y1, y2) = 1− (1− 2β2)s

2 − β2 < t.

The next claim will be useful in the proof of Lemma 3, because it implies that it is
enough to find a single “bad” wire W in Q, for which |δw|q(w) ≤ θ′maxi |δai |q(ai).

Claim 5. For every 0 ≤ θ′ < 1, there is a 0 ≤ γ < 1 such that for every Q and every
input distribution {ai, δai}i from the statement of Lemma 3 and when all gates have
noise β2 it holds: if there is one wire W in Q with |δw|q(w) ≤ θ′maxi |δai |q(ai) then
|δb|q(b) ≤ γmaxi |δai |q(ai).

Proof. Let depth(W ) be the number of gates between W and the output wire of Q.
We do induction on depth(W ) = 0, . . . , 2D, where our induction hypothesis is: The
statement of Claim 5 is true if we restrict to wires W with depth(W ) ≤ j. Clearly, this
is true for j = 0.

Assume that for some wireW at depth j+1 it holds that |δw|q(w) ≤ θ′maxi |δai |q(ai).
Let G be the gate that has W as an input wire. Let the other input wire of G be V and
U its output wire. Note that by item 1 of Lemma 1 we have |δv|q(v) ≤ maxi |δai |q(ai).
We show that

∃0≤θ<1 : |δu|q(u) ≤ θmax
i
|δai |q(ai). (25)

If |δw|q(w) ≤ |δv|q(v)/2, then item 3 of Lemma 1 implies (25). If |δw|q(w) > |δv|q(v)/2,
then item 1 of Lemma 1 implies that |δu|q(u) ≤ |δw|q(w) and (25) holds with θ = θ′.

Note that depth(U) = j. Hence, using (25) and our induction hypothesis for depth
j (and wire U) we see that the induction hypothesis is also true for the wire W at
depth j + 1.

Proof. (Lemma 3) First we note that by repeatedly applying item 1 of Lemma 1 we
have that for all wires X in Q

|δx|q(x) ≤ max
i
|δai |q(ai) (26)

Hence, if one gate in Q is not of NOR-type then by setting all noise rates to β2 there
must be one wire W , for which

|δw|q(w) ≤ θmax
i
|δai |q(ai), (27)

where θ is given by item 2 in Lemma 1. Then our lemma follows by Claim 5.
Otherwise, all gates in Q are of NOR-type. We assume that Q is in canonical form:

each gate G is a NOR gate with possibly additional NOT gates on its input wires
but not on its output wire, because if G has an additional NOT on its output wire,

13



we can propagate this NOT into the gate whose input is the output of G. (If G is
the output gate, we may just apply a NOT gate on its output wire, as this does not
change |δb|q(b).) Similarly, we demand that all lowest gates G (who have wires Ai as
input) are NOR gates (without additional NOT’s on its input wire), because if G has
an additional NOT on its input wire Ai, we can remove this NOT and set ai := 1− ai
and δai := −δai . This will not change the output of G.

Now, assume that

∀i : |ai − x̂| ≤ 1/1000 ∧ |δai | ≤ 1/1000 (28)

was not true, let us say because of wire Ai. Let G be the gate with input wire Ai.
Let its output wire be W . Then by item 4 of Lemma 1 inequality (27) follows for
0 ≤ θ < 1 given in item 4 of Lemma 1 if all gates have noise rate β2. Then Claim 5
implies our Lemma. Hence, for the remainder we may assume (28) is true and that Q
is in canonical form.

If all gates in Q are NOR gates, then our lemma follows by Lemma 2 when setting
all noise rates to 0. Otherwise, there must be at least one gate G which is a NOR
gate, but has at least one additional (noise-free) NOT gate on one of its input wires,
called it D. Let W be the output wire of G. We break up G into a NOR gate G′

and the additional NOT gates on its input wires. Let D′ be the output of the NOT
gate with input D. Note that below D the formula is a complete binary tree of NOR
gates. For any of its input wires Aj it holds by (28) that Pr[Aj = 0|xi = 0] ∈ [s, t],
where s, t are as in Fact 1. Hence, applying Fact 1 repeatedly, we see that also Pr[D =
0|xi = 0] ∈ [s, t]. Analogously, Pr[D = 0|xi = 1] ∈ [s, t], and hence d ∈ [s, t] and then
d′ = 1− d ≤ 1− s < 4/10. Therefore, |d′ − x̂| > 1/1000, which satisfies the conditions
of item 4b in Lemma 1. This also implies (27) for a θ given in item 4b in Lemma 1.
Again, Claim 5 then implies our Lemma.

Lemma 4. There is a constant 0 ≤ α2 < β2 such that the statement of Lemma 3 also
holds for some 0 ≤ γ < 1 if we replace β2 by α2.

Proof. For each formula Q the outputs δb and q(b) are polynomials in the noise rate ε
(and δai , ai). The derivatives of these polynomials with respect to ε are bounded (for
valid inputs), as is the derivative of q. Hence, also ∂δbq(b)/∂ε is bounded, and then
the claim follows from Lemma 3.

3.5 Proof of main theorem

Proof of Theorem 1. Let D be given by Lemma 2. Let α2 < β2 and 0 ≤ γ < 1 be as
in Lemma 4. Choose l ∈ N such that 50γl ≤ ∆. Choose a function f which depends
on at least 22lD many input bits. Almost all functions have this property.

Let F be any formula “attempting” to compute f fault-tolerantly. For each wire
W in F let depth(W ) be the number of gates between W and the output wire of F and
let the depth of a gate be the depth of its output wire. Note that there is at least one
input variable xi which f depends on such that all input wires of F carrying xi have
depth at least 2lD. Fix all other input bits of f such that flipping xi flips the output.
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W.l.o.g. we may assume that up to depth 2lD F is a full binary tree, i.e. all gates up
to depth l are gates of fan-in exactly 2.4

We argue inductively that for all j = l, . . . , 0 it is possible to choose individual noise
rates in {0, α2} for all gates with depth between 2jD and 2(j−1)D, such that for wires
W with depth(w) = 2jD: |δw|q(w) ≤ 50γl−j . This follows by noting that for j = l
we have |δw| ≤ 1 and then |δw|q(w) ≤ maxy∈[0,1] q(y) ≤ 50. For the inductive step we

repeatedly use Lemma 4. Hence, for the output wire O of F we have |δo|q(o) ≤ 50γl ≤
∆. And since miny∈[0,1] q(y) = q(1/2) > 1/2 we have |δo| < ∆/2.

3.6 Remarks

There is nothing special about the choice εG ∈ {0, α2} for the adversary in the state-
ment of Theorem 1. It is also true that for any 0 ≤ κ ≤ 1/2 there is an α < β2 such that
an adversary who can only choose noise rates in {κ, α} can also prevent fault-tolerant
computation, although we do not show this explicitly.

Note that our adversary is actually quite simple, since he only looks at small blocks
of gates and then sets all noise rates of the gates in this block to the same value 0 or
α2. Furthermore, the adversary is fault-tolerant himself, i.e. he does not need to get
exactly the noise rates he wants. It is enough that whenever the adversary chooses a
noise rate ε for a gate, that the actual noise rate of that gate is in [ε, ε + χ], for some
small enough χ > 0. This follows by a simple continuity argument similar to the one
in the proof of Lemma 4.

Also, it would be interesting to find the smallest α2 which satisfies Theorem 1. We
have proven that α2 < β2, giving a proof of principle. However, it would be practically
interesting to see how far the smallest possible α2 is away from β2.

So far we have not given any idea of why we chose this particular potential function.
In fact, this choice is not unique. In [32] another, but more complicated potential
function was used. In the end of [32] there is some explanation of how q must be chosen
and there q was basically engineered to satisfy these criteria. Our current potential
function also satisfies these criteria, but is much nicer and might suggest a satisfactory
interpretation in standard information-theoretic terms. It would be interesting to find
such an interpretation.
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