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Quantum Fingerprints that Keep Secrets
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Abstract

We introduce a new type of cryptographic primitive that wk bading fingerprinting

A (quantum) fingerprinting scheme translates a binary gtoihlengthn to d (qu)bits, typi-
cally d < n, such that given any stringand a fingerprint of, one can decide with high accuracy
whetherz = y. Classical fingerprinting schemes cannot hide informatieny well: a classical
fingerprint ofz that guarantees errer = necessarily reveald(log(1/¢<)) bits aboutz. We call a
schemehidingif it revealso(log(1/¢)) bits; accordingly, no classical scheme is hiding.

For any constant, we construct two kinds of hiding fingerprinting schemeghlbmapping
x € {0,1}" to O(logn) qubits and guaranteeing one-sided error probability att has°. The
first kind uses pure states and leaks at ndd@t) bits, and the second kind uses mixed states and
leaks at most /n° bits, where the “leakage” is bounded via accessible inftionaThe schemes
are computationally efficient.

Our mixed-state scheme is optimal, as shown via a genesitegly that extracts/ poly(n)
bits from any fingerprint ove® (log n) qubits.

Our results have a communication complexity interpretatitfe give quantum protocols for
the equality problem in the models@fe-way communicatiandsimultaneous message passing
that have communication coék(log n) and offerhiding guaranteeshat cannot be matched by
classical protocols of any cost.

Some of the technical lemmas in this work might be of indeanthterest.

1 Introduction

Cryptography probably is the area that benefits most frofacam classical computers by quantum
ones. In particular, the most restricting classical “aXimhcomputational cryptography, the one it
owes its name to, can be partially removed: With quantumogads it is no longer true that virtually
any interesting cryptographic protocol can be safe onlyamputational limitations of a potential
intruder are assumed

The famousguantum key distributiomprotocol by Bennett and Brassard [BB84] is a good ex-
ample where the assumption that “an intruder is computaliptimited” has been replaced by the
assumption thajuantum mechanics is valid in our physical univerdad if we accept quantum me-
chanics, it is highly desirable to find more examples of quisntrypto-protocols with unconditional
security guarantees: Besides pleasing those of us whorppefeep their secrets for themselves,
such examples might shed more light on the nature of differbetween quantum and classical
information.
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loo, Ontario, Canada.
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Informally speaking, the possibility to use quantum meatg®m order to achieve unconditional
cryptographic security comes from the fact that, in genegabntum states are not “cloneable”
(cf. [WZ82]). Sometimes it can be very challenging to use firoperty alone (not making any com-
putational assumptions) in order to build a cryptographimitive; moreover, some very tempting
goals are already known to be beyond the reach (cf. [May®4$the quest of quantum cryptography
to understand what crypto-goals can be achieved in a ueivengre the laws of quantum mechanics
are valid.

1.1 Fingerprints and their hiding properties

In this paper we will give a new example of a quantum crypimftive that is not achievable clas-
sically. We call ithiding fingerprints Noticeably, hiding fingerprints are impossible classjcal/en
modulo arbitrarily strong consistent assumptions.

In the context of this work the meaning of (classicfigerprintsis as follows. Given a binary
string x of lengthn, we want to (efficiently) produce its “partial descriptioby d bits, typically
with d < n, such that given only the description ofand anyy € {0,1}", one can test whether
x = y with high accuracy. This can be achieved classically, fanegle by using a randomized
mappingz — (s, hs(z)), wherehg is chosen at random from a 2-universal family of hash fumstio
(s identifiesh inside the family).

Quantum fingerprintiiave been introduced by Buhrman, Cleve, Watrous and de W@GWdwO01],
however they were not treated as cryptographic primitiggsnerally speaking, am bits tod qubits
quantum fingerprinting scherie a mapping fromn-bit binary strings to density matrices -
dimensional complex Hilbert space, such that whers the fingerprint of: then giverp,. andy, one
can decide with high confidence whetheg y. Obviously, quantum fingerprints are a generalization
of the classical ones.

Let £ be a quantum fingerprinting scheme; we will be dealing withftllowing question. Given
pz, how much classical information abotitcan be “extracted” from it? Formally, for any quantum
measuremenP, how large can be the mutual information between a randomhlarX = z that
is uniformly distributed ovef0,1}" and the outcome of applied top,? The supremum of that
value is calledhe accessible information &% In the special case whehis a classical scheme, its
accessible information equals the mutual information ketwX = x and a fingerprint ofc that £
produces.

We will say that a fingerprinting scheme ligding if its accessible information is(log(1/¢)).
This is the “cryptographic ingredient” that we add to theesthise known notion of fingerprintdNo
classical fingerprinting scheme can be hidiag we see next.

Let collision be the event when a fingerprint ofleads its holder to the conclusion that = y”,
even though the two strings are different. Denote byhe maximum collision probability, taken over
all pairsz # y. Lete_ be the maximum, over a#t’s, probability that the fingerprint holder declares

“xr # y”, even thoughy = x. Denotes e nax {e4+,e_}, this is the worst case error probability of
the fingerprinting scheme.

Let £., be a classical scheme that guarantees error at mmodthat happens when the holder
of a fingerprint ofx loops through alR™ possible values of and makes his best judgment whether
x = y? LetA contain those’s where the guess was = y”, then on the one hand, the expectation
of |A] is at most(2" — 1)e; + 1, and on the other hand, € A with probability at leastl — «_.
Therefore, at leadtl — _)logy(1/e4+) € Q(log(1/e)) bits are leaked about by its fingerprint in
E.q (Unlessze = 0, in which casen bits are leaked). Accordingly;.;, is not hiding.



The same reasoning does not apply to the cageaftum fingerprinting schemeshere a binary
stringx € {0,1}" is mapped to a quantum statg, such that given any € {0,1}" one can measure
pz, in order to decide with high accuracy whethet 3. The argument fails because to make a guess
whetherz = y one may be required to perform a quantum measurement, ahdhsegsurements
can, in general, change the state of a quantum fingerprint ireversible way. Alternatively, one
can say that the “looping trick” cannot be used becaysis not necessarily cloneable.

From the practical point of view, hiding fingerprints sha#f bsed when there is a need for a
“semi-trusted” agent to be able to perform string recognitibut not to share with others the ability
to recognize the target. Putting it differently, hiding famgrints allow to issue an “authorization” to
perform certain pattern recognition limited number of time

1.2 Our results

We construct new quantum fingerprinting schemes that higenration about: in a way that cannot
be achieved classically. For any constanive construct two different schemes, both mapping
{0,1}" to O(logn) qubits and guaranteeing error probability at mbgt® whenz # y and no
error whenz = y. The first scheme uses pure states and guarantees leakihgnoSe0(1) bits;
the second scheme uses mixed states and guarantees leBitngast1/n° bits. As follows from
the previous argument, these results introduce a new typgypfographic primitives that cannot be
achieved classically.

Our schemes are computationally efficient. Constructibiesniselves are probabilistic: A de-
scription of a scheme includes polynomial number of randas) bnd using uniformly chosen bits
results in a good construction with all but exponentiallyadimprobability. This random string can be
viewed as a part of the scheme’s definition, in particulaogsinot have to be kept in secret (e.qg., it
may be standardized to define a globally used schéme).

The “hiding guarantees” of our mixed-state schemes arenapti To demonstrate that we con-
struct a generic strategy for extracting information framitaary quantum fingerprints. This “no-go”
result remains valid for several weaker notions of fingetprg schemes than what we construct (e.g.,
for schemes with two-sided error; see Section 4 for more).

More formally, our main results are (cf. Theorems 3.13 ai: 4.

Theorem 1.1. For any constant: there exist quantum fingerprinting schemes that

e mapn-bit strings to mixed states 6f(log n) qubits and whose error probability and accessible
information are both bounded ky'n¢;

e mapn-bit strings to pure states @?(log n) qubits, whose error probability is bounded byn®
and accessible information 3(1).

The schemes are computationally efficient and have ond-sider withe _ = 0 (answers % # 3"
are always true).

Any gquantum fingerprinting scheme that ugesubits and guarantees error beloy2 — Q(1)
has accessible informaticr (4.

1This is conceptually different from the role of randomnessany (nontrivial) classical fingerprinting scheme that
inevitably depends on the assumption that the input stringsdy are chosen independently from the random seed used
to build a fingerprint ofc.

20ur optimality argument can probably be tuned to show thapore-state construction is also optimal. We have not
pursued that direction, since the mixed-state schemesraatueal generalization of the pure-state ones, and ther¢fie
interest of showing optimality of a pure-state construttiathin its own class would be limited.
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To the best of our knowledge, hiding fingerprints cannot beiakd via classical reduction to
any previously known quantum cryptographic primitive.
Some of our technical contributions might be of independetest.

1.2.1 Communication complexity perspective

The notion of quantum fingerprints has been introduced INVBIWV01] mainly in the context of
communication complexityrhe main conceptual contribution of the present work iséanquantum
fingerprints as a cryptographic primitive. Nevertheless,results can be interpreted in the language
of communication complexity, as follows.

The most common communication complexity scenario is treevaimere two players, Alice and
Bob, receive two parts of input; andy, respectively. The players communicate in order to compute
the value of certain functiorf(z,y), trying to minimize the amount of communication. Various
models exist that define the constraints that Alice and Bake @ obey when they compu&z, v).
Relevant to us are the following two:

e One-way communicatiois a model where Alice sends a single message to Bob, who has to
give an answer based on that message and his input

e Simultaneous Message Passing (SMPR) model involving a third participand referee Here
both Alice and Bob send one message each to the referee, \sho e an answer based on
the received messages.

In both the cases the players are computationally unliméaad thecostof a communication protocol
equals the total number of sent bits. Quantum analoguegahtdels can be defined, where players
send qubits and locally perform arbitrary unitary transfations.

One of the most basic communication problems correspontie equality predicate, where the
goal of the players is to decide whether= y. In general, fingerprinting schemes can be naturally
viewed as solutions to the equality problem, as folldws.

In the model of SMP Alice and Bob both send the fingerprints of, respectivelgndy to the
referee. Then the referee performs the swap test that whwiya return “equal” ifz = y and would
have positive constant probability of returning “not edualz # y. Thus, he can answer whether
x = y with one-sided constant error.

If such a protocol is based on our pure-state hiding fingetipg scheme then its costi¥(log n).

It follows from the hiding guarantees of our schemes that pinotocol is alsdiding: an “eavesdrop-
per” can learrat mostO(1) bits of information about the inputr, y).

On the other hand, as shown by Newman and Szegedy [NS96]Jatsiaal SMP-complexity
of checking equality with constant error probability(¥§,/n). Their argument readily implies that
any classical protocol leakat least(2(,/n) bits about the input. Moreover, this holds for classical
protocols of any cost!

In the model of one-way communicatioour mixed-state hiding fingerprinting scheme translates
trivially to a protocol of cosO (log n) that solves the equality problem with error at mbspoly and
leaks at most / poly bits about the input. On the other hand, our classical impibisg argument
implies that any classical protocol that solves the equalibblem with errors necessarily leaks
Q(log(1/¢)) bits about the input, and this is true for protocols of anyt.cos

*We consider the version of SMP without shared randomness.
4This was used in [BCWdWO1] to demonstrate exponential seijoar between the quantum and the classical versions
of the SMP model.



2 Preliminaries and more

Here we state only those technical lemmas that are relevattid first part of the paper (construction
and analysis of the new fingerprinting schemes). Lemmasntitidie used only in the second part of
the paper (showing optimality of our schemes) will be stageSection 4.1.

We write exp(z) andsg(x) to denotee” and (—1)*, respectively. We writéog to denote the
natural logarithm andbg,, for the logarithm to the basz We denote = /—1 (to be distinguished
from the variable).

We letN = {1,2,...,} and[i] = {1,2,...,:7}. We often implicitly assume the natural corre-
spondence between the element$26f and those of0,1}". For any finite setd we letl/4 denote
the uniform probability distribution over the elementsAf

We useo to denote concatenation of strings. For any4dendz € A™ we will write x; to address
def

thei'th position ofx; more generallyg;, . ;, = x;, 0---ox;, for (iy,...,i;) € [n]*. For two strings
x andy of the same length, we will lety (z, y) def {7 | z; # v;}| stand for the Hamming distance.

For D € N, we write I to denote the identity operator ov€”’. For aD x D matrix X,
we denote the trace norm &f by || X||; = tr (\/X*X), and the operator norm of by || X|| =
max {| Xv| | [v] = 1}.

We will mostly use Dirac’s “bra-ket” notation for pure quant states, but sometimes we will
find it convenient to switch to the standard notation (e.gthlv and|v) will be used to denote the
same unit vector in a Hilbert space). We will be addressingenhistates via their density matrices,
and denote byen[D] the subset o ”*P corresponding to density matrices.

2.1 Random variables and their concentration

The Hoeffding bound will be one of our basic tools, we will utsa the following form (Theorem 2.5
in [McD98])):

Lemma 2.1. (Hoeffding bound)Let the random variables(, ..., X,, be mutually independent,
satisfyingE [X], = p; anda; < X; < b; for some constants; andb; for all <. Then for anyt > 0,

S-S 2] <2ew (s,

The following lemma can be viewed as a generalization of tbeftding bound to the case of
random variables taking values@?®

Pr[

Lemma 2.2. Let the random variables(y, .. ., X, take values inC and be mutually independent,
satisfyingE [X], = 0 and|X;| < ¢; for some constants; for all . Then for anyt > 0,

Pr HZX > t} < dexp <ﬁtlil2> :

Proof. By the Hoeffding bound (Lemma 2.1), for amy> 0

prfR(Yx) 2], Prla (L) 2] <20 (550 ).

SWe viewC as a vector space isometriclkd. For the general case of random variables taking values Euatidean
space there are known “dimension-independent” bounds. etluse one of those, instead we state Lemma 2.2 whose
proof is “dimension-dependent” but the final expression @garconvenient for our purposes.
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As|> X;| > timplies that eitheR (> X;) > +/t?/20r (> X;) > /t2/2, the result follows. B

The next statement will be very convenient for proving uppaunds on expected values of ran-
dom variables.

Lemma 2.3. Let f be a monotone non-decreasing function taking non-negataes, and let”
andY be random variables satisfyir@r {}7 > y] > Pr [Y > y] for everyy such thatf(y) > 0. If

B [£(7)] < scthenk [£()] = BIf(¥)]

Proof. Let Z &' £(v') andZ &' £(V). ThenZ > 0 and for every: > 0 it holds that

Pr {222} >Pr|Z > z].

Therefore,

E[Z]:/ Pr[ZZz]dzé/ Pr[ZZz}dz:E[Z],
0 0
as required. |

Our next goal is to prove yet another generalization of theffding bound. We will use a
modification of the standard method for proving such boundspely the “Bernstein’s trick”. The
next lemma is the main technical ingredient for that.

Lemma2.4. LetY be arandom variable satisfyimg [Y] = 0,Y > aandPr [Y > y] < fexp(—a(y—
a)) for all y > a and some constanits < 0, 5 > 1 anda > 0. Then for every: € (0, /2] and

c € (0,2],
),

<log 25) 2
C h2
202

hY)] <
E [exp(hY)] < ¢+ exp 52

<exp|c+

Proof. Denote byFE; the event thatY < b), wereb > a + % is a constant, and lel, be the
Boolean indicator of7;,. Then

E [exp(hY)]| = E [l - exp(hY )] + E[(1 — I) - exp(hY)]. 1)
LetY; be arandom variable distributed EsnoduloE;,. ThenE (1, - exp(hY)] < E [exp(hY7)],

E[Y1] < E[Y] =0, anda < Y; < b. A standard result from the theory of concentration bounds
(e.g., see Lemma 2.6 in [McD98]) implies that

E [exp(hY1)] < exp <@h2> :

Let Y5> be a random variable satisfyifdr [Y, > y] = Bexp(—a(y — a)) for all y > b. Then
Lemma 2.3 implies that

E[(1— 1) exp(hY)] < E[(1 — ) exp(hY3)] = /boo exp(hy) - Baexp(—a(y — a)) dy
< fBa /boo exp((h — a)(y — a)) dy < Ba /boo exp(—%(y —a))dy.
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From (1),

—a 2 00 a
E [exp(hY)] < exp <(Z)T)h2> + ﬂa/b exp(—E(y —a))dy

—a)? a
= exp <%h2> + 20 exp(—E(b —a)).

This holds for every > a + 22 therefore

B fexp(1)] < min { xp (%h) Fagen(- S |z 227}

Letc € (0,2] be any, and choogé = 2 log 2. Then2 exp(— %) = c and

28\ 2
b2 <log 7)
E [exp(hY)] < exp <§h2> +c=exp Thz +c,
which is the first inequality stated in the lemma. Finally,
2 2 2
<log %) (log %) <log %)
C+€Xp Thz S (1+C)eXp Thz Sexp c—+ Thz s
aslog(l+c¢) < cfore > 0. [ |

We are ready to prove a new concentration bound, that candveeti as a “less demanding”
analogue of the Hoeffding bound.

Theorem 2.5. Let the random variableX, . . ., X, be mutually independent, satisfyiRg X], = 1,

X; > aandPr [X; > z| < fexp(—a(z —a)) for all z > a, i € [n] and some constants < 0,

a>0andg > 1. LetS d:dZX,- for i € [n]. Then for every € (0, L],

nt’a?
3 2
244 (log )

Proof. By Lemma 2.4, for any: € (0, «/2] andc € (0, 2]

1
Pr [—Snz,u—kt} <exp | —
n

C

n (log 22
E [exp (h(Sn — np))] = [ Elexp (h(X; — )] < exp | ne + %2)}9

By Markov’s inequality,

2
n (log %) )
Pr (S, > nu+ nt] < exp(—hnt) E [exp (h(S, — np))] < exp | nc+ Th — hnt



Let 5 o )
def t“o def ta

cy) = 2
122 (log £2)

Fromta < % it holds that) < ¢y < 1 and0 < hy < «/2. Thus we may substitute = h, and
¢ = ¢, Still satisfying the requirements of Lemma 2.4. So,

nt2a?
9 (1og 22\
Oga

2
It can be seéhthatta < 1 ands > 1imply ¢y < t2a2/4 (log %) , and therefore

1
Pr {—Sn > ,u—Ft] <exp | necg —
n

1
Pr [—Sn > i +z‘} < exp (—@) =exp | —
n

as required. |

2.2 e-nets for pure states

In our proof we will need a “continuous analogue” of the unmund: Namely, for everyp € N
we want to have some sufficiently largé such that if certain everft(v) holds with probability at
mosts for any fixed vectow € CP, then with probability at least — 7'6 there is naw’ € CP such
that £ (v') holds. Of course, in general that is not possible for infidibenains likeC”; however,
the situation can be helped if there exists a “relaxed” versif £/, that we denote by’, such that if
E(v) holds andd(v, w) < e, whered(-,-) is a measure of distance between vector€ihande is
sufficiently small, ther®’ (w) must also hold.

Fix ¢ and letW,. = {wy,...,wr} be afinite set of vectors froi”, such that for every ¢ C”
there exists some; € W, satisfyingd(v, w;) < e (such sets are commonly calleehety. Assume
that for any fixedv € CP the probability that’ (v) holds is at mosé. Then, by the union bound, the
probability thatE'(w) holds for somew € W. is at mostT’s. Now, if £ (v) holds for somey € CP?,
then E'(w) holds for at least one € ., as the set contains an element at distance at miosin
v. Therefore, the probability tha(v) holds for somes € CP is at mostT's.

The notion of distance between vectors can be formalizedainyndifferent ways, depending on
the nature off andE’. The following definition serves our future goals.

Definition 1. Fore > 0, we call a setVf C CP of unit vectors are-net for the set of pure states
in CP with respect to the trace distandggfor every unit vectotu) € CP there existsv) € M, such
that|[lu)u| — [vXvlll, <e.

The following lemma is a slight improvement over Lemma [1f4lLSWO04] and Lemma 4 of
[BHL *05], where the upper bound on the size of theet was(5/¢)?" .

SLetr & ta and f(z,3) def co/

t2a?
(s 27
def

f'(x) € f(a,1), then > 0 and thereforef (z, 5) < f(%,1) < 1.

, then modular € (0,1] andg > 1itis always true thal‘j—g < 0. Let
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Lemma 2.6. For every0 < ¢ < 2, there exists aa-net for the set of pure states @" with respect
to the trace distance whose size is at mdgt )P,

The proof of the lemma is given in the appendix.

3 New quantum fingerprinting schemes and their properties

We will use the standard way to construct a (pure-state) tguafingerprinting scheme based on a
classical error-correcting code. Namely, given a codigom n to 2¢ bits, we will define, for every

a € {0,1}", its fingerprint ond qubits via|u,) = 2(% D icpd 58(bi) i), whereb = (by, ..., bya) =
C(a).

It would be very convenient for us to use a perfectly randontecd; however we cannot afford
that as we want our construction to be computationally effici On the other hand, we can get an
efficient construction by using a random linggy however it turns out that such code would not be
“random enough” for our needs (we need more randomness tamjae that a scheme is hiding¥o,
we define a new type of classical codes that still admit effi@@coding but contain more randomness
than random linear codes.

3.1 Random quasi-linear codes

In the following definition we us@? to denote the codewords’ length in order to make the notation
more consistent throughout the paper.

Definition 2. Letr,n,d € N, r < n < 24, An (n,r,2%)-quasi-linear cod€ is represented by an
27-tuple of (n — r)-bit vectors(cy, . . ., coa) and &"-tuple of2¢-bit vectors(ds, . .. , dyr). For every

def def .
a € {0,1}" we denotesV) = a|; ,,a® = a|,11.. ., and define

Cla) Edym @ <<Cua(2)>)2d ;

=1
whered denotes bit-wiseor.

In other words(ds, ..., dsr) is an arbitrary code applied to the firsbits of a and(cy, .. ., coa)
defines a linear code that is applied to the [ast- r) bits; the actual encoding afis the xor of the
two codewords.

For the rest of the paper we will writé!) andz(?) to address, respectively|; _, andz|, 1. _n,
whenn, r andx € {0,1}" are clear from the context.

Obviously,C(a) can be computed efficiently whene O(logn) andd € O(log(n)). We call a
quasi-linear code (uniformly) random if bothy, . . ., coa) @and(dy, . . ., dor ) are selected uniformly at
random. We will denote this distribution B and writeC' ~ U¢ to say thatC' is chosen uniformly
at random (the values of the parameters andd will be clear from the context). Note that efficient
description of such code is possible as long @O (logn) andd € O(log(n)).

The following property of random quasi-linear codes can lesved as a generalization of the

notion of minimal distance. Denote: %' max {|du (C(a1),C(az)) — 277 | a1 # az}. Then

"Note that in the context of quantum fingerprinting there isined to ever decode the underlying classical code, that is
why using a random linear code would be computationallyifdéasdespite the fact that no efficient decoding is known to
exist for such codes.



Lemma 3.1. For everyt > 0, Prcoy, [Yo > t] < 2exp (n +7r— 22%2)

Proof. Define A¢ d:ef {C’(al) D C(ag) | a1 75 CLQ}. Observe thatd; = B; ® By U B; U By, where
@ is element-wiseB; = {dq, @ da, | a1,a2 € {0,1}" ;a1 # a2} and

By = {({ci,a1 ® a2))i=] | a1,a2 € {0,1}" 501 # ag} = {({ci, )i | 0 # a € {0,1}"7"}.

Direct counting reveals thatlo| < 27+,
It is easy to see that for every # a, the stringC(a;) ® C(a2) is chosen uniformly at random

from {0, 1}2d whenC' ~ Ue. By the Hoeffding bound (Lemma 2.1), for every- 0

B [ ). Ot 2] <200 (7).

and the union bound implies the statement of the lemma. |

3.2 Pure-state scheme

For the rest of the paper we assume that O(log n) and that- € O(log n).
First, we define and analyze our fingerprinting scheme thes psire states. Afterwords (Sec-
tion 3.3) we will consider a mixed-state scheme that can e&etd as a generalization.

Definition 3. LetC be an(n, r, 2%)-quasi-linear code, we denote ﬁﬁm the following fingerprinting
scheme. Every € {0,1}" is mapped to

e = s O s8I0,
]

i€[2d

whereb = (by, ..., bya) = C(a). We call|u,) thefingerprintof a.

Given |u,,) and anyas € {0,1}", in order to check whether; = ay one should measure
luq,) W.r.t. the projective measuremefiP,,, Iya — P, }, whereP,, = |uq,Xuq,|. If the outcome
corresponds t®,, then ‘a; = ay” shall be returned, otherwise the guess shoulddae# as”.

Note that the transformation — |u,) can be computed efficiently as long &5a) is easy
to compute for every:;, and that the required projective measurement can be peztbefficiently
becausel € O(log(n)) and|u,,) is known.

Intuitively, the fingerprints corresponding to differemegmages should be nearly orthogonal.
This is formalized by the following lemma.

Lemma 3.2. For {|u,) | a € {0,1}"} defined over a randomly chosén, r, 2¢)-quasi-linear code
C, for anys > 0it holds thatmax {|(ua, [ua,)| | a1 # a2} < & with probability at leastt —2 exp(n+
r— §%24-1),

Proof.
1 dg (b1, b 2
(o fuaa) | = 37 | D s (b +bai)| = ‘2% - 1‘ < Si

i€[29]
whereb; = C(a;) andby = C'(az2). By Lemma 3.1,

27¢ 26d—1

AN _

05’50[% _5]<2exp<n+r -2 >,

as required. |
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Now let us see that¢

pure

is likely to be a valid fingerprinting scheme.

Lemma 3.3. For £, defined over a randomly chosén, r, 2¢)-quasi-linear codeC, it holds that

e_ = 0 always and that < & with probability at leastl — 2exp (n +r — 2¢715), for any§ > 0.

Proof. Clearly, wheru; = as the answer is always correct, thatis = 0. When, on the other hand,
a1 # ay the probability of the wrong answer jéu, |uq,)|?, and therefore by Lemma 3.2, < §
with probability at least — 2 exp(n 4 r — 2¢714), as required. [ |

Our next goal is to show thalpc defined over a randomly chosen quasi-linear a6dse hiding

ure

with high probability. This will be done in stages.
s def

Let us denote for every € {0,1}": pa = [uaua|, pl X' 2¢-7p,, and for arbitrarys € C2*,
o) € (] g, Jv).

We will see later (Lemma 3.8) that for almost all choices(dfwe have) " pl, = I,s, and
thereforeu, (a) is a probability distribution oves € {0,1}" for every fixed unit vectop. Intuitively,
this distribution corresponds to the “view abatitof a holder ofp, who has measured it and got the
outcomejv)v|. Therefore, if originallya was chosen uniformly then some sort of distance between
pw @ndUg 1y~ should tell us how much has been learnt aboas a result of the measurement.

The following technical statement is the key part of our uggmind on the accessible information

for £¢

pure*

Lemma 3.4. Letv € C2* be a unit vector and, € {0, 1}" be fixed, and assume thgf,,, is defined
over an(n, r, 2¢)-quasi-linear code”, then

LB [ {0, (a0) og (2" 0)}] < =

In the view of the intuition expressed above, it shouldn’sheprising that we want to prove this
kind of statement. Indeed, ji, is a probability distribution ther)_, 1., (a)log (2" (ao)) is the
relative entropy betweem, andifg 1y~

Proof. Let

Wy def Z sg <<a(2), ci> ® da(l)z’> vil

i€[24]

a
Wy 0

theny, (ap) = 55 and for everyt > 0,

t
Pr |uy(ag) > — | =Prwi® > t] = Pr H U,
c [M (0) 2"} [ D= sy 2.7

> Vi| <dexp (;) , @

where the inequality follows from Lemma 2.2 and the fact thgt = 1.

Define g(z) %' max {0, zlog(z)} and let/i be a random variable whose distribution satisfies

Pr[ji > t] = dexp(—t/4) & f(¢) fort > 8log 2. Then

B [ {0, o (a0) 0g (2" pa(00))}] < 5 B[9(2"pa(00)] < o1 Blg(70)]

where the first inequality follows from the definition ¢f-) and the second one is by Lemma 2.3
(whose requirements are implied by (2) ayisldefinition).

11



Finally,

Bl = | :g2x10g<x> (—%) "

as required. |

(o]
/ exp(log x + loglog x — x/4) dx < 23,
8log2

At this point we suspend our analysis%re and turn to a mixed-state scherﬁﬁix. Analysis

of £, will be resumed and merged with that&f’,, in Section 3.4.

pure

3.3 Mixed-state scheme

To define our mixed-state scheme we introduce another pé&ame N U {0}, such that” is the

rank of every fingerprint (i.ek = 0 corresponds to a pure-state scheme). It will always be asgum
often implicitly, thatd > k andr > k (the second assumption is probably less obvious, we need it
for technical reasons).

Definition 4. Let C' be an(n + k,r,2%)-quasi-linear code, wheré > k andr > k. We denote by
£C.  the following fingerprinting scheme. For everyc {0, 1}"*"/’ we let

1 .
|ug) = 242 Z sg(bi) [2) ,

i€[24]

whereb = (by,...,bya) = C(x). Everya € {0,1}" is mapped to

1
Pa = 2_k Z ‘uioaxuioa’ :

ie{0,1}"

We callp, thefingerprintof a.
Givenp,, and anyay € {0,1}", in order to check whether; = ay one should measure,,
w.r.t. the POVM measuremefif,,, I,. — P,,}, whereP,, is the projection to the subspaceRﬁ‘i

that is spanned bJ(uio@ | i € {0, 1}’“}. If the outcome corresponds 1, then ‘a; = a2” shall be
returned, otherwise the guess should be# a,”.

Note that wherk = 0 the above definition givesp(;)m, and the notions ofu,) andp, coincide

with those considered in Section 3.2. To construgtthe holder ofa tosses: ~ L{{O’l}k, produces
|uioa Xuioa| @nd then erasess The measurementP,, I,« — P, } can also be performed efficiently (as
any explicit measurement @n(log n) qubits), the simplest way to do so is to represent the measure
ment as a projection g2’ (recall thatd € O(log(n))) and perform that, using an auxiliary space
of dimension2¢.

To see thaﬁgn is a valid fingerprinting scheme with high probability, wellwise Lemma 3.2
together with the following technical lemma.

Lemma 3.5. For 0 < i < 2", let M be any mapping from antuple of unit vectors iRk2’ to a
unit vector inR2". Then for anys € {0,1}""", § > 0, and {|u,) | @ € {0,1}"} defined over a
randomly choserfn, r,2¢)-quasi-linear codeC, it holds that|(M (ugos, - - - , U(i—1)0s)|Uies)| < 0
with probability at leastl — 2 exp(—§22¢1).

12



Proof. Note that by the construction of quasi-linear codes,;) is a uniformly random element of
{27425, Bi|k) | Br,..., B € {—1,1}}, even if conditioned upom def M (tgos, - - - 5 U(i—1)o0s)-
So,

%r H<M(u003, o ,u(i_1)08)|uios>‘ < 5] = Iér kz[;d} Bev| < 2925 >1— 2exp(—297162),
€

where the inequality follows from the Hoeffding bound (Lemféh1) and the fact thd|| = 1. W

Let us see thaf ¢

Lemma 3.6. For £¢. defined over a randomly chosén + k, r, 2¢)-quasi-linear codeC, it holds
thate _ = 0 with certainty and:-, < § with probability higher thanl — 3 exp(n+7 -+ k — §22¢-4-T7),

foranyd > 0.

is likely to be a valid fingerprinting scheme.

Proof. Clearly, whemu; = a5y the answer is always correct, thatis = 0.
When, on the other hand,; # a5, the probability of the wrong answer is$(F,,p,, ). Let

P, E S 01y tioas Uy, WE Will see that, with high probability ovet' ~ U, bothtr (P, pa, )
and|tr((Pa, — P,,)pa,)| are small.

)
tr (Pégp(n) = Z tr (uioazu;‘koagpa1) <2 507 (3)
i€{0,1}*
def %
whereds = max{‘umum! | xr1 # wg}.
Observe thab,, = . {01}k v;vf, wherev;'s are “orthonormalized;., 's”, as follows

, def ) , def % . def /
Vo = U0 = UQoay; VU; = Uioay — g ViU Uioay; Vi = v/ ‘ful|

7<i
def
LetA; = v; — Ujoas » then
i—1
|Ad| < [thioay = vf] + v = vj] <2 [0 ttioa, | < kayax{\@“ioazH’
=0

and ) )
|tr((Pa2 - Pag)/’al)‘ < HPa2 - PaQH
< Z H (ui°a2 + Ai)(u;‘koaz + A;k) - (uioazu:oag) H
ie{0,1}*

< 3.9k A} < 3. 2% *Uioas | L.
<3 P mac (A1) 32 i (o

(4)

Now we apply Lemma 3.5, wher®! is the mapping that, according to our orthonormalization
process, map(mkm){;:o to v;. For fixedas andj < i, the lemma guarantees that22k ‘v;?uim is
less thany /2 with probability at least — 2 exp(—3§22¢-%*=3 /9). By the union bound, the right-hand
side of (4) is less than/2 with probability at leastt — 22% exp(—4§22¢-4%-3/9) > 1 — exp(2k —
§22¢-4=7) " Another application of the union bound implies that the sdruolds for everyu, with
probability higher thar — exp(n + 2k — §22¢-4%=T7),

13



By Lemma 3.2, it holds that the right-hand side of (3) is lds=mnty/2 (i.e., 2’%% < 6/2) with
probability at least — 2 exp(n +r + k — §2¢7%). Thereforetr(P,, pa,) < 0 for everya; # as with
probability higher tharl — 3 exp(n + 7 + k — 6229=%%=7), as required. [ |

Our next step is a statement analogous to Lemma 3.4 that vapplgt toggix. As before, we let
o, = 27" p, and ., (a) = (v] pl, |v) for arbitraryv € C2”.

Lemma 3.7. Letv € C2* be a unit vector and & {0,1}" be fixed, and assume théf’, is defined
over an(n + k, r, 2¢)-quasi-linear code”, where2* ¢ w(logn) andd € O(log(n)). Then

B, {0, o) og (2" fao) ] € O~ )

for every\ > 0.

We will follow in the footsteps of our proof of Lemma 3.4, hoves we will have to use somewhat
“heavier” concentration tools.

Proof. For everyj € {0,1}, let

2
.\ def
wi(j) =

v I

Z 59 (<w(2),c,~> ® dx(l)i) v

i€[24]

wherez = j o a. Thenu,(ag) = ﬁ zje{o’l}k wio (7).

For everyy,

E [w()]= E
C~Uc 51,...,,82dNZ/{{71,1} i

Zﬁzﬁj%‘%} = vl*=1

andE [u,(ap)] = 1/2™. Moreover, as we've seen in the proof of Lemma 3.4, from Ler@2aand
from ||v|| = 1 it follows that that for every > 0, Pr [wi°(j) > t] < 4exp(—t/4). Therefore, by
Theorem 2.5 it holds that

1+t —ok¢2 def
Pr |:Nv(a0) > —n] Sexp| ———— = f()
¢ 2 3904 (log 9)
for 0 < t < 4/7. Besides, it holds thdt < wa(j) < 27

As before, we defing(z) % max {0,z 1og(z)} and letii be a new random variable that will re-
placey, (ap) in further analysis. We define the distributionjoby demanding thaPr [z > 1 + t] =
f(t)for0 <t <4/7andPr [ =2 = f(4/7). The requirements of Lemma 2.3 are satisfied by
g(+), p andfi, and therefore

B s {0, o (a0) 0g (210 (a0))}] < o B9 (7)

By the definition,

4/7
E[9()] :/0 (1+ z)log(1 + ) (—jf> dx 4 2% - f(4)7).

X
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Clearly, f(4/7) € exp (—(2¥)) and(1 +z) log(1 +z) ( df) < 2k22f (). For every\ > 0 there
existsA, > 0, such thatf (z) < exp (—A,2¥2*™) for 0 < 2 < 4/7. So,

E[9(n)] < /0°° 2"2% exp <—A>\2kx2+)‘> dz + exp (d + logd — Q<2k>>

2k 3
: (24 X) (Ax2K)7% N <2+A> +€Xp(d_9(2k))’

wherel'(a) def Jo° 2t exp(—x) d is the Gamma-function. Therefore f2F € w(log n) and every

A >0, .
E[g()] < O<m>7

as required. |

3.4 Further security analysis of€¢ and £¢,

pure mir

Based on Lemmas 3.4 and 3.7, we continue our analysﬁqu and£C, . From this point on and
unless stated otherwise, we view the former as a specialotdise latter, corresponding to= 0.
First, as promised earlier, we prove that for aimost all gliasar codes”, we have) |, ph = Iya.

Lemma 3.8. If C is an (n + k,r,2%)-quasi-linear code such that the vectars ..., c,. are all
distinct, theny_, p/, = L. In particular, if an(n + k, , 2%)-quasi-linear code” is chosen uniformly
at random, thery__ p, = I« with probability at leastl — 22¢+r—n-k,

Proof. If ¢y, ..., cya are all distinct, then
Z o = gd-nk Z |z K|
a ze{0,1}" Tk
=2 " kZZSg m(1) x(1) ng ¢ bej,x ()> liXj| = Iya,
(1) 1, z(2)

wherez™® € {0,1}", 2® € {0,1}"*" andi, j € [2].
Now let C' ~ Uc. For any fixed distinct and j, ¢; equalsc; with probability or—n—k_ By the
union bound, the probability that al}’s are distinct is at least

od
1— <2> . 2r—n—k < 22d+r—n—k’

as desired. [
Next we will argue thad . 1 13 po(a) log (2" 1y (a)) is unlikely to be large whet' ~ Uc.

Lemma 3.9. Letv € C2* be a unit vector and assume thatis a uniformly random(n + k, r, 2¢)-
guasi-linear code, then for evety> 0

2
Z (@) log (2" py(a)) > ou, + 5] < exp (n _gr—k—2d <g> ) 7

ac{0,1}"

Pr
c

whereqg < 23, anday, € O(1/281/27Y) for 2% € w(logn) and anyA > 0.
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Proof. We will use concentration bounds in conjunction with the mgaarantees of Lemmas 3.4
and 3.7.
Define new random variables

ji(a) & max {0, 1, () log (2"pu(a)) },

then0 < ji(a) < 2%7"d. From Lemmas 3.4 and 3.7 we know thgt [ji(a)] < 23/2" for k = 0 and
every\ > 0, andEc [ji(a)] € O(1/27++1/2=) for 28 € w(logn).

We want to bound the probability that , fi(a) > 6. Lett gt k, assume w.l.g. that> 0 and

define
4 € {jeilie {01y}

for everyi € {0,1}""". Observe that for every, € {0,1}" the random value{c*(a))aeAi0 are

distributed identically and independently whéh ~ U, and the same is true f rﬂ(a)>a€Ai0-
Therefore the Hoeffding bound (Lemma 2.1) can be appliesijitiag in

~ 2",&0 _|_5 _2t+152
Z ia) > ot ] < 2exp (72%(12 ,

I[’]r
(lGAiO

wherepy def Ec [1(a)]. Therefore, from the union bound:

2
Z fla) > ag + ({I < 2" lexp (—2’"_k_2d <g> ) ,

Pr
U
ac{0,1}"

as required. |

As we discussed before, Jf, ¢ 1 13n 110(a) log (2" 1y (a)) is small for a fixedv, that means that,
informally, a holder ofp, who has measured it and got the outcomiév| has not learnt much about
a.

Our next step will be to argue that, with high probabilly, ¢ 1 13~ 1 (a) log (2" 1y (a)) is small

for every pure stat@) € c2’, According to the same intuition (which will be formalizedas), that
would imply that no outcome of a measuremenpggxists, that can tell much abodut
First we argue that the functioeXv| — >_,c 0,13~ #o(a)log (2"uy(a)) has a good continuity

property (called the “almost Lipschitz continuity”) in @dto discretize “every pure stae) ¢ c2
in the above argument.

Lemma 3.10. LetC be an(n + k, r, 24)-quasi-linear code, such that, pl, = I,.. Let0 < ¢ < 2/e
and|v) and|w) be unit vectors irC2" such that]||vXv| — [wXw|||; < e. Then,

2
(@)l wla)l < 29 1glog =
Zu ) log(2 Zu ) og(2" fs(a))| < 2 'elog =

Proof. Fix anya and we will prove i, (a) log (2", (a)) —p (@) log (2"~ (a))| < 29" Lelog(2/e).
Without loss of generality, we can assume thafa) < p,,(a). Then,

pw(@) = pio(@) = 277" tr (pa(Jw)w| — [vXv])) < 257" [[oXv] — [w)w]]|, <297 e,
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Therefore,

pw(a) Log (2" pu(a)) — pro(a) log (2"~ puu(a))

= ,uw(a) log(zn_d,uw(a ) - ,uv(a) log(zn_d,uw(a)) + Nv(a) log(2n_dﬂw(a)) - Nv(a) 10g(2n_d,uv(a))
_ a) — a)) log (274 a ) 1o (@) — py(a)

— (en(a) = () 052" @) + (o) o (14 2R,

Note that(su,(a) — pru(a)) log(2"~ s (a)) < 0 andu(a)log(1 + (s (a) — p(a))/ms(a)) > 0.
Therefore,

|0 (a) og (2" %y (a)) — prw(a) 1og (2" i (a))|

(w(a) = po(a)) 10g (2" (a)) + pru(a) log <1+M>

(@)

<m { ) 108(2' (0], (g (1 L2l
< e {~(0f) ~ @) g2 n(0) = ). ) - L2
<max{2d n 1510g ,24-n-1 }

= gd—n- lslog—

By the triangle inequality, we have

2
o(a)log (2" 4y, w(a)log(2" Uy, < 2% g ]og =.
Zu ) log( Zu ) og(2" iy (a))| < 2% elog
The left-hand side can be rewritten as
Zuv )log (2"~ Zuw )log (2" 11y (a))
a)log (2" (a Z,Uw )log (2"t (a)) + (Z (@) — ZM(@)) log 27
a)log (2" u,(a Z,Uw ) log (2"t (a))|
which completes the proof. |

We are ready to see that with high probabili}y, 11,,(a) log (2", (a)) is small for everyv).
Lemma 3.11. Let C be a uniformly randontn + k, r, 2¢)-quasi-linear code. Lef > 0 satisfy that
e3/25/4 < 27, Then,

3 log (2" 5 yi+1og 2 g2 (O
|v) : Z ty(a)log (2" py(a)) > ag + 6| < exp 08 353 +n— <2d>

ae{0,1}"

Pr
C

whereqy, is as in Lemma 3.9.
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Proof. Lete = 272973¢252, By the assumption, we have< 2/e. Then we have

2 el ed 9d+2 5
20-1c1pe 2 = 2 lo < =
OB T o o 8Ty = g

c‘bl»—\
>,

where the inequality follows from log(1/z) < 1/e. By Lemma 2.6, there exists amet M for the
set of2?-dimensional states with respect to the trace distancesizith

4 22d+5
M| < |- = —=
m=(3) - (o)
Suppose that the quasi-linear cadés such that there exists a unit vectosuch that

Z ty(a)log (2" py(a)) > ag + 6.

ae{0,1}"

9d+1 2d+1

Letw € M be a unit vector satisfying|v)v| — |w)Xw|||, < e. By Lemma 3.10,
n n d—1 2 0
S @) log@ (@) = Y @) log(2" mla) — 2 elog = > ag + 2.
acf0,1}" acf0,1}"

This implies that

l:ér o) : e{zozl}n wy(a)log (2" py(a)) > ag + 0

b
Fwy e M: > pwla)log (2" () > ap + 3|
ac{0,1}"

By Lemma 3.9 and union bound, the right-hand side is at most

k—2d 0 ? d+1 22d+5 k—2d g ?
. _ Qr—R— — < r—
|M|-exp [ n —2 <2d> <exp | 297" log 252 +n—2 <2d>

as required. |

It remains to be seen that small valuesydfu, (a) log (2", (a)) for all [v) € C2* indeed imply
good hiding properties of the corresponding fingerprinsngeme.

Lemma 3.12. Let C' be an(n + k,r,2%)-quasi-linear code such thaty, ..., c, are all distinct.
If a € {0,1}" is chosen uniformly at random, then the accessible infaonaif the ensemblep, ) is
at most

max > p(a)log (2"m(a)) .

ae{0,1}"

Proof. We follow a similar path to that used in a proof in Section 2f2.eung [Leu09]. Since
the accessible information can be always achieved by a@askPOVM, letM = {«; |v;Xvj|};
be a rank-one POVM achieving the accessible informatiorgre/v;) is a pure stateg; > 0 and
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Zj aj = 24, If A is the random variable representing the choice ahd.J is the random variable
representing the measurement result of the state uvidenen

Tace = H(J) — H(J | A)

1
== ZO‘J UJ| od |UJ> log(a; <UJ| |UJ> + on Zaj (vjl pa |vj) log(a; (vj] pa v;))

a?j

Q; 1

= - Z 57 198 57 + 50 Z%‘ (vjl palvj)log aj + o5 > a; (il pa [v;) 1og (vj] pa [v;)
a’j a7j
1
= —Z 10g Z logaj + o > a; (vl pa [vj) 1og (vj] pa [v;)
a’j
=dlog2+ 5 Zaj (vj] pa [vj) log (vj| pa v;)
a7]

1 B _
= dlog2 + — > 02 vy pl, [0) Jog (27 (w51 pl, [v;))

a7j

where the inequality follows from the convexity argumeihte(iconvex combination is at most the
maximum). |

Lemmas 3.3, 3.6, 3.8, 3.11 and 3.12 imply the following tkeeur
Theorem 3.13. For any constant there exist quantum fingerprinting schemes that

e mapn-bit strings to mixed states ovér(log n) qubits and whose error probability and acces-
sible information are both bounded hyn¢;

e mapn-bit strings to pure states ovep(logn) qubits, whose error probability is bounded by
1/n¢ and accessible information (1).

The schemes are computationally efficient and have ond-sidler withe_ = 0 (answers % # y”
are always true).

Proof. Letk = [4clgn], d = [(18¢ + 1)lgn] andr = [(60c + 3)lgn], and letc €. be the mixed-
state fingerprinting scheme defined over a randomly chésen k, r, 2¢)-quasi-linear cod€'. By
Lemma 3.6, the probability that, > 1/n° vanishes as — oo.

The probability that”' violates the condition of Lemma 3.8 is negligible, so we assthe oppo-
site, that allows us to use Lemma 3.12. Applying Lemma 3.1t $vi= 1/(2n) to Lemma 3.12 and
noting thatay, € O(1/2%/3) C o(1/n¢), we obtain that the accessible information is at mg'sic.

Choosingk = 0 and adjustingl andr accordingly gives the desired result ﬁ;f

ure*

Note that only polynomial amount of randomness is requiredrder to describe any of our
fingerprinting schemes. Moreover, a random string may béighda openly without compromising
the hiding guarantees of the schemes.
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Mixed-state schemes can be viewed as a natural genematizd{pure-state ones. Our mixed-state
construction achieves much better hiding guaranteeséifottowing section we argue its optimality),
but even the pure-state one already reaches beyond thatloni of classical schemes, where we've
seen (cf. Section 1.1) th&X(log(1/¢)) bits are leaked by any scheme with error at nzost

4 Optimality of our schemes

In this part we construct a generic strategy for extractirigrmation from arbitrary quantum finger-
prints. We give a strategy that retrieves at ldagpoly (D) bits of information about: from a (w.l.g.,
mixed-state) fingerprint of overlog D qubits.

We note that the following “no-go” argument remains valid $ome weaker versions of finger-
printing than what is guaranteed by Theorem 3.13, namely:

e schemes with two-sided error;

e schemes that only work in average w.r.t. “balanced unifommput distribution (i.e.,(z,y) ~
(Ua +Up)/2, whereA = {(z,2)} andB = {(z,y) |  # y}).

To extract classical information about unknown~ U 1, from its fingerprintp(x) € CP*P,
we apply top(x) a complete projective measurement

Py d:ef{]va] | veVy,
whereV is a uniformly chosen random orthonormal basis @?.2 We will see that the mutual
information between the outcome Bf; andz is at leastl/ poly (D).

4.1 Technical preliminaries

Optimality of our scheme from Section 3 will follow from seaétechnical lemmas that we state
next.

It is well known that the “distinguishability” of two arb#iry quantum states; andos is deter-
mined by their trace distander; — o2||1 . Informally speaking, we will show that randomly chosen
complete projective measurement distinguishes betweando, only poly (D) times less efficiently
than a best distinguishing measurement

Let/P denote the uniform distribution of unit vectors@. The following is a well-known fact
abouti/P.

Claim4.1. Samplingv ~ UP can be realized via the following algorithm:

1 Independently sampig,, . .., uP” anduil, ceey ul-D from the standard normal distributiovi(0, 1).

. .\ D

2 Letv d:efu/ ||u|| whereu def (u% + .i) .
J:

Proof. The density function of. is spherically symmetric. |

We need several technical lemmas. First, let us see thagtigé of the projection of a randomly
chosen vector ~ UP to any subspace cannot be “too concentrated”:

8The idea of using randomly chosen projective measuremenisier to prove a lower bound on accessible information
has appeared in [JRW94]. However, our setting and the aeays different.
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Lemma4.2.LetA C [D],1 < |A| < D. Then for some; € Q(W})g[)) andn, € Q(W),

Pr
va/{lD

, A
> = ’—D’Hh

i€A

> 2.

It is easy to see (by linearity of expectation and the fact tha= 1) thatE, [Z A W‘?] =
|A| /D, and therefore the above statement can be viewed as comybame concentration bounds.

Proof. In the notation of Claim 4.1,

2 14 2. 14
Pr |v2|22—+z—: =Pr |v2| <l—"+—¢
~uUP ;4 D _;4 D
_pp | Ziealv’l 141+ De
| Siga 0 = D AT~ De ®)
= Pr

Siealwh? + @) _|A|+ De ]
| S iga((h)? + (uf)?) — D —|A] = De
>Pr Yt >2|A|+2De] - Pr Y~ <2D —2|A] —2De],
wherey+ €'~ (ud)? + (uf)?), v~ &' Yiga((uh)? + (uf)?), and the inequality follows from
Y™ andY ~ being mutually independent.
We analyze the behavior &f ™ andY ~. Let “®” stand for either 4" or “ —". The distribution

of Y@ is known asy? ., wherek™ ®© |Al andk™ oD -2 | Al; its density function is

1 T ®
© _ % k@ /2—1
V) = e ) P ( 2> v
(cf. [JKB94]). One can see that [y ®] = £© andE [(YG)Z] — k921 2k® (thus, Var [Y©] = 2k©).

For 4© % 5o log(k®) + 20, let YV% be distributed ag® moduloY® < ~©. The density
function on,Y% is

© (1) = aet(z) ifz<A®
0 else

for a0 £'1/Pr [Y® < 4©]. Then

KO > E [Yw%} = a0 <k® - /OO 29 (x) dm) > kO — (@
v

O]

and
2 (0.0]
E [(YV%) } =ae (/@2 + 2k° — / 2% (x) dw) > kO% 4 2k — (@,
'YQ
where - ) -
© def 2,,0 < _r
¢ _// 7 (w)dx_2’f®/2f(k:®/2)/yo exp( 4)dx (6)
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(the inequality follows from? - exp(—z/2)zF“/2~1 < exp(—x/4), as guaranteed by our choice of
~7®). In particular,(® < 1 andVar [Y,°] > 2k©

—(¢® > k®and
E [ Y9~ B [YW%} ] > Var [YW%} /7 > kO /4@ @)
Denote:
i s =a e
ue g [YV%‘YQ > 4 ] ¢ L' pr [Y@ > 4 }
u? E B [V Ve < uf 0@ EPr [V < 1u°|
Then

s +qZu® = u®,
a5 (15 — p®) + ¢ (u© — u2) = A°,
¢ +4q® =1,
which implies
$ (1S —p®) =2 (1 —p?) = A9)2. (8)
Clearly,0 < YV% < ~© implies that

458 43
Pr[Y,Y% zﬁ—ﬁ] >7—® and Pr[Y,Y%g,u?—l—ﬁ} >0

for every3 > 0. Choosings = (T — ™) /2 gives
ot +
+ + ot af (nf—np*) _ A
Pr |:S/v'}/+ 2 (,LL +M+)/2:| 2 274_ - 474_7

and similarly, viag = (u~ — p”)/2 one obtains

Pr |V < (0" +u2)/2] 2 4A7——'

On the other hand, (8) implies thﬁﬁ; —pt > At/2anduy™ — uZ > A~ /2. Therefore, from
(7):

+ + A + + AT kT
Pr |V} >kt —¢ —|—W]>Pr[Y >t A /2] poe kS
and similarly,

4y
< 47%, and therefore, by the definition &f", ,

_ _ kT k~
Pr |:Y,\{ S k™ — 2,.Y—_:| > 5
From (6) it is obvious thaf ™

1 1 kt
+ + +
Pr[Y 22|A|—|——47+}>Pr[Y >k +47+]247+2-
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By the definition ofY_ — and the obvious fact thatr Y~ <~7]>1/2

1 - k=
v v Y

k© 1 1 1 : :
_ I(_)bserve thatﬁ > SD(loz D) andw—Q > TDlogD for large enoughD. Together with (5) this
implies
1 1
>
UNZ/{D ZEZA [ TR0 logD] ~ 83232 - D%(log D)*’
as required. |

Denote byl4yasthe uniform distribution of orthonormal bases@? (i.e., the Haar measure). For
p € Den[D], we will write Py, (p) to denote the distribution of the outcome Bf (p) when
V'~ Upas We will implicitly identify an outcome ofP,44,..(p) With the corresponding unit vector
inCP.

We need yet another “anti-concentration” statement, itis to say that the outcomes Bf 14,,.(p)
cannot be too concentrated for any fixed

Lemma 4.3. Let B be a subset of unit vectors i@, such that/f’(B) > . Then for anyp €

Den|[D],
4

g
Pr v€E B|>—
v~ Py g, (P) | ] 256

Intuitively, by choosingp adversarially one can selectively “hide” some unit vectar€” from
Py 4,.(p). However, only those's are hidden well that are almost orthogonal to all spectal-c

ponents of, and that cannot happen to too marg simultaneously; in particular, B is sufficiently
large then it is impossible to efficiently avoid all its elem®

Proof. Observe that the distributict? is the same a#y . (Ip/D), and its density function is
constant on the support (unit vectorsif?’) — denote it byy. Then by linearity, for any the density
function of Py y4,.(p) iS

Bp(v) E do - D - (v]plv).

Fors & 3 /64, let us bound from above the value of

Pr_[0,(0) < 8- 6o] = Pr [(elplv) < 3/D). ©
UNM Ui

The expectation ofv|p|v) is 1/D, and therefore the value is maximized whehas rank one (i
is a mixture that makes the value @f|p|v) more concentrated). On the other hand, for every fixed
ug andv ~ UP, the distribution of (ug|v)| only depends ofw| (and not on the “direction” ofi).
Therefore, in order to bound (9), we can assume w.l.g.ghat|ug)uo|, whereuy = (1,0,...,0).

That is,
Pr [0,(v) <6 -g0] < Pr[|o'| < V/3/D].

va/{

wherev! is the first coordinate of.
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By Claim 4.1 we have:
Pr U’ul‘ </ 5/D] =Pr “ul‘/”uH </ 5/D} <Pr Uul‘ < 2\/5/5} +Pr [”UHZ < %}
v~M1

We know that||u|> ~ x3,, and therefore its expectation ¥D and Pr [Hqu > 4D/s} < g/2

by Markov inequality. We also know th&t(u') ~ N(0, 1), and thereforéPr [|u1| < 2\/5/5] <
2,/d/e = ¢/4. We conclude thaPr, ;,p [Pp(v) < & - o] < 3e/4.

Let B' €' {v € B ¢,(v) > 5 - ¢}, then it necessarily holds thet” (B') > </4. By the defini-
tion of B/,

Pr  [veB|>s5-U’B) > be_ =
Py i) = 4 256°

and the result follows. [ |

The next lemma will be the core of our optimality argument.

Lemma 4.4. Let 01,09,p € Den[D], satisfying|jo; —o2|i1 = d > 0. Then for some& ¢

2 pritep):
Pr [(v|o1]v) > (1 + &) (v|oa|v)] € Q((Dlog D)~*).

UNPVNubaS P
Proof. To prove the statement, we will first consider the simpleecabeny ~ Z/{ID, then see what
happens when ~ Py ,.(p).
Leto & o1 — 09, then

UF;D [(v|o1]v) > (1 + &) (v|og|v)] = Pr [<U|O‘l"u> > £ (v]|og|v)] > Pr [<U|O'/‘U> >¢].

Leto’ = 32 e; |u;Xu;| be a spectral decompositiod;" def {i]le;>0}andA~ def {i]ei <0},
then for every

Pr [(v]el0) > € = Pr | el > 5]

—Pr | Y el e+ Y e (u,-v>2] (10)
_i€A+ 1€A™

>Pr | > el(uwlv)? >+ E [Z 6z’<uiv>2”a

[icAT U | eat

where the inequality follows from | ¢; = 0 and the fact that the random valugs, ; e; | (u;|v)|* and
S .- —e; [(ui|v)|? are anti-correlated when~ P .

Observe thad | |e;| = d, and sOY _ 4+ €; = §/2. ASE, [\(um]?] = 1/D for any unit vectorn
and the right-hand side of (10) is symmetric w.r.t. any ugitatation of the vectorgu;},

Pr [<’U‘O‘l|’u> > E] > Pr

va/{lD

. 5
Zei.v’2>g+w} (11)

1€AT
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From Lemma 4.2, for somg Q(W) andn, € Q(W)

D
v L{ €At

Z |v'] ?71] 2 12

By the linearity of expectation,

i|2 iz o AT d |AT[+mD _ 0 iy
doe W 2 W = | 255 295 Y op
icA+ icA+
Therefore, for somé ¢ Q(D,l gD) andns € Q(W»

2 1) 12 1) (5771
P = - P P — 41
otP EEA;E [ 2D+£} onth? EEA;E 255+ 1D
2o AT on
e | 3 = e (3) /e
€At A+
mne
> o5 =

From (11),Pr, ;0 [(v]o’|v) > £] = ns.
Applying Lemma 4.3 to the setv € C” | (v|o’|v) > &, |v]| = 1}, we conclude that

(n3)* 1
P (3  [(v]o'v) 2 €] = 5 eQ((DlogD)%)’

and the result follows. [ |

4.2 Optimality statement
The following theorem concludes our optimality argument.

Theorem 4.5. Let® = {¢(z) | z € {0,1}"} C Den[D] be a quantum fingerprinting scheme that
guarantees error below/2 — Q(1). Then® leaksQ (D7) bits of information.

The theorem implies that any quantum fingerprinting schemae leaks? bits aboutz requires
Q(log(1/¢)) qubits, and therefore our mixed-state construction ofi8e@.3 (cf. Theorem 3.13) is
optimal. Note that while our constructions of fingerprigtischemes guarantee one-sided error, the
above theorem remains valid also for schemes with two-sdext. Moreover, Theorem 4.5 theorem
still holds for schemes that only work on average under thensad uniform input distribution.

Proof. We will show that for any®, a measuremen®,, chosen at random w.r.¥V. ~ Upasis likely
to have the following propertyThe outcome aP(¢(X)) has mutual informatio2 (D~*") with the
random variableX ~ U 3n.

AssumeX = z. Letp def E.c{0,1)" [¢(7)]. Callaunitvectow € CP xg-e-goodif (v|¢(xg)|v) >
(1+4¢) (v|p|v), wheres > 0.
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The error guarantee of the theorem implies thatzo) — pl[1 € ©(1) (as long as > 0), and
therefore by Lemma 4.4,

Pr  [viszy-¢-good € Q((Dlog D)) (12)

v~ Py sy (0

for some¢ € Q(1/D3log D).
For any unit vectow € CP, let A, be the set of alk’s, such that is z-¢-good. Let

def def
Py = Pr X eA,] and p; = Pr X e Al
X~ U 1yn [ d X~ U 1yn [ g
v~ Py g, (P) v~ Py ($(X)

By the definition ofzy-c-good we know thap; > (1 + &) - po.

Note thatp; is the “actual” probability of certain event (namely, € A,), andpg is what that
probability would have been if the outcome Bf-;4,. (¢(X)) did not depend orX. Based on the
inequality between the two probabilities, we want to shoat the outcome of the measurement is
well-correlatedwith the value ofX. For that we use a lower bound g, as guaranteed by (12).

Now assume that the underlying distributions are- U 13» andv ~ Py, (#(X)).

—n D1 —n 1=
H|X|v| < —p1-lo <2"-—>—1— -lo (2"- >,
[ ‘ ] p1 - logy 20 ( p1) - logy 1— po
as follows from the fact that the maximum entropy of a diseistribution over a domain of given
size is attained when the distribution is uniform (so, in tiglat-hand side we consider the situation
when X is uniform both modulo X € A,” and modulo ‘X ¢ A,”). Then

1_
H [X|v] < n—p;log, <Z£> — (1 —p1)log, ( p1> =n—dgr (Do||D1),
Po 1 —po

whereD; is the distribution ovef0, 1} that assigns weighi; to the outcome “0”. By the Pinsker’s
inequality,

2
| Do — D1}

dir, (Dol||D1) > 5

=2(p1 —po)® > 2(¢po)® € QD™Y),

and therefore
H[X] - H [X[v] € (D).

Sincew is the outcome of a measurement performed on a fingerprikit diie result follows. W
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A Proof of Lemma 2.6

Let us repeat the lemma:

Lemma 2.6For every0 < ¢ < 2, there exists as-net for the set of pure states @” with respect to
the trace distance whose size is at mast)2(P’~1,

To prove the lemma we use the following lemma that has beésadsia [JRW94], where it was
attributed to [Syk74].

Lemma A.1. ([JRW94]) Let {|e1),...,|ep)} be an orthonormal basis of”. Let|u) € CP
be a random unit vector chosen according to the unitarilyaiant probability distribution on the
unit sphere inCP. Let X; = |(e;|u)|? for i = 1,...,D. Then, the range of th®-tuple X =
(X1,...,Xp) is equal to the probability simplex

i=1

D
AD—I = {(ml,...,xp): le = 1, ZT; > 0 (VZ)},

and the probability distribution ok is uniform onAp_;.

Corollary A.2. Let|w) € CP be a fixed unit vector. Choose a unit vectey € C” randomly as in
LemmaA.1. ThePr [|(u|lw)[* > z] = (1 —2)P~!for0 <z < 1.

Proof of Lemma 2.6The lemma can be proved by the packing argument in the samastagmma 1.4
of [HLSWO04] and Lemma 4 of [BHIE05]. The difference is that we apply the packing argument di-
rectly on the set of pure states by using Corollary A.2, mdtef applying the packing argument on
the Euclidean spadg?” as an intermediate step.

Let M be a maximal subset ofjv) € CP: |lv|| = 1} such that every pair of distinct vec-
tors|u),|v) € M satisfy|||uXu| — [vXv|||; > €. By the maximality ofM, M is ane-net for the
set of pure states ift” with respect to the trace distance. For eagh c M, consider the open
ball B, 5(|u)) = {|w) € CP: |Jw| = 1A |[JuXu| — [w)w|||, < e/2}. First fix |u) € M. Then, if
we pick a unit vectofz) uniformly at random, we have

Pr [|z) € B.p(ju)] = Pr [[|[uful - |=)a]l| < 5]

_ pr [|<u|x>|2 S1- (Z)Q] _ (%)Q(D_”,

by Corollary A.2. By the condition of\/, the |M| open ballsB. 5(|u)) (|u) € M) are disjoint.
Therefore,

1> Pr {xe U Bg/2<u>>] = 3" Prfle) € Bupa(lu)] = 111 ()77

|luye M |u)ye M

which implies| M| < (4/¢)2(P—1), BMiemma2.6
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