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Abstract

We introduce a new type of cryptographic primitive that we call hiding fingerprinting.
A (quantum) fingerprinting scheme translates a binary string of lengthn to d (qu)bits, typi-

callyd≪ n, such that given any stringy and a fingerprint ofx, one can decide with high accuracy
whetherx = y. Classical fingerprinting schemes cannot hide informationvery well: a classical
fingerprint ofx that guarantees error≤ ε necessarily revealsΩ(log(1/ε)) bits aboutx. We call a
schemehiding if it revealso(log(1/ε)) bits; accordingly, no classical scheme is hiding.

For any constantc, we construct two kinds of hiding fingerprinting schemes, both mapping
x ∈ {0, 1}n toO(logn) qubits and guaranteeing one-sided error probability at most 1/nc. The
first kind uses pure states and leaks at mostO(1) bits, and the second kind uses mixed states and
leaks at most1/nc bits, where the “leakage” is bounded via accessible information. The schemes
are computationally efficient.

Our mixed-state scheme is optimal, as shown via a generic strategy that extracts1/ poly(n)
bits from any fingerprint overO(logn) qubits.

Our results have a communication complexity interpretation. We give quantum protocols for
the equality problem in the models ofone-way communicationandsimultaneous message passing
that have communication costO(logn) and offerhiding guaranteesthat cannot be matched by
classical protocols of any cost.

Some of the technical lemmas in this work might be of independent interest.

1 Introduction

Cryptography probably is the area that benefits most from replacing classical computers by quantum
ones. In particular, the most restricting classical “axiom” of computational cryptography, the one it
owes its name to, can be partially removed: With quantum protocols it is no longer true that virtually
any interesting cryptographic protocol can be safe only if computational limitations of a potential
intruder are assumed.

The famousquantum key distributionprotocol by Bennett and Brassard [BB84] is a good ex-
ample where the assumption that “an intruder is computationally limited” has been replaced by the
assumption thatquantum mechanics is valid in our physical universe. And if we accept quantum me-
chanics, it is highly desirable to find more examples of quantum crypto-protocols with unconditional
security guarantees: Besides pleasing those of us who prefer to keep their secrets for themselves,
such examples might shed more light on the nature of differences between quantum and classical
information.
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Informally speaking, the possibility to use quantum mechanics in order to achieve unconditional
cryptographic security comes from the fact that, in general, quantum states are not “cloneable”
(cf. [WZ82]). Sometimes it can be very challenging to use this property alone (not making any com-
putational assumptions) in order to build a cryptographic primitive; moreover, some very tempting
goals are already known to be beyond the reach (cf. [May97]).It is the quest of quantum cryptography
to understand what crypto-goals can be achieved in a universe where the laws of quantum mechanics
are valid.

1.1 Fingerprints and their hiding properties

In this paper we will give a new example of a quantum crypto-primitive that is not achievable clas-
sically. We call ithiding fingerprints. Noticeably, hiding fingerprints are impossible classically even
modulo arbitrarily strong consistent assumptions.

In the context of this work the meaning of (classical)fingerprints is as follows. Given a binary
string x of lengthn, we want to (efficiently) produce its “partial description”by d bits, typically
with d ≪ n, such that given only the description ofx and anyy ∈ {0, 1}n, one can test whether
x = y with high accuracy. This can be achieved classically, for example by using a randomized
mappingx → (s, hs(x)), wherehs is chosen at random from a 2-universal family of hash functions
(s identifieshs inside the family).

Quantum fingerprintshave been introduced by Buhrman, Cleve, Watrous and de Wolf in [BCWdW01],
however they were not treated as cryptographic primitives.Generally speaking, ann bits tod qubits
quantum fingerprinting schemeis a mapping fromn-bit binary strings to density matrices in2d-
dimensional complex Hilbert space, such that whenρx is the fingerprint ofx then givenρx andy, one
can decide with high confidence whetherx = y. Obviously, quantum fingerprints are a generalization
of the classical ones.

Let E be a quantum fingerprinting scheme; we will be dealing with the following question. Given
ρx, how much classical information aboutx can be “extracted” from it? Formally, for any quantum
measurementP , how large can be the mutual information between a random variableX = x that
is uniformly distributed over{0, 1}n and the outcome ofP applied toρx? The supremum of that
value is calledthe accessible information ofE . In the special case whenE is a classical scheme, its
accessible information equals the mutual information betweenX = x and a fingerprint ofx thatE
produces.

We will say that a fingerprinting scheme ishiding if its accessible information iso(log(1/ε)).
This is the “cryptographic ingredient” that we add to the otherwise known notion of fingerprints.No
classical fingerprinting scheme can be hiding, as we see next.

Let collision be the event when a fingerprint ofx leads its holder to the conclusion that “x = y”,
even though the two strings are different. Denote byε+ the maximum collision probability, taken over
all pairsx 6= y. Let ε− be the maximum, over allx ′s, probability that the fingerprint holder declares

“x 6= y”, even thoughy = x. Denoteε
def
= max {ε+, ε−}, this is the worst case error probability of

the fingerprinting scheme.
Let Ecla be a classical scheme that guarantees error at mostε. What happens when the holder

of a fingerprint ofx loops through all2n possible values ofy and makes his best judgment whether
x = y? LetA contain thosey ′s where the guess was “x = y”, then on the one hand, the expectation
of |A| is at most(2n − 1)ε+ + 1, and on the other hand,x ∈ A with probability at least1 − ε−.
Therefore, at least(1 − ε−) log2(1/ε+) ∈ Ω(log(1/ε)) bits are leaked aboutx by its fingerprint in
Ecla (unlessε = 0, in which casen bits are leaked). Accordingly,Ecla is not hiding.
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The same reasoning does not apply to the case ofquantum fingerprinting schemes, where a binary
stringx ∈ {0, 1}n is mapped to a quantum stateρx, such that given anyy ∈ {0, 1}n one can measure
ρx, in order to decide with high accuracy whetherx = y. The argument fails because to make a guess
whetherx = y one may be required to perform a quantum measurement, and such measurements
can, in general, change the state of a quantum fingerprint in an irreversible way. Alternatively, one
can say that the “looping trick” cannot be used becauseρx is not necessarily cloneable.

From the practical point of view, hiding fingerprints shall be used when there is a need for a
“semi-trusted” agent to be able to perform string recognition, but not to share with others the ability
to recognize the target. Putting it differently, hiding fingerprints allow to issue an “authorization” to
perform certain pattern recognition limited number of times.

1.2 Our results

We construct new quantum fingerprinting schemes that hide information aboutx in a way that cannot
be achieved classically. For any constantc, we construct two different schemes, both mappingx ∈
{0, 1}n to O(log n) qubits and guaranteeing error probability at most1/nc whenx 6= y and no
error whenx = y. The first scheme uses pure states and guarantees leaking of at mostO(1) bits;
the second scheme uses mixed states and guarantees leaking of at most1/nc bits. As follows from
the previous argument, these results introduce a new type ofcryptographic primitives that cannot be
achieved classically.

Our schemes are computationally efficient. Constructions themselves are probabilistic: A de-
scription of a scheme includes polynomial number of random bits, and using uniformly chosen bits
results in a good construction with all but exponentially small probability. This random string can be
viewed as a part of the scheme’s definition, in particular it does not have to be kept in secret (e.g., it
may be standardized to define a globally used scheme).1

The “hiding guarantees” of our mixed-state schemes are optimal.2 To demonstrate that we con-
struct a generic strategy for extracting information from arbitrary quantum fingerprints. This “no-go”
result remains valid for several weaker notions of fingerprinting schemes than what we construct (e.g.,
for schemes with two-sided error; see Section 4 for more).

More formally, our main results are (cf. Theorems 3.13 and 4.5):

Theorem 1.1. For any constantc there exist quantum fingerprinting schemes that

• mapn-bit strings to mixed states ofO(log n) qubits and whose error probability and accessible
information are both bounded by1/nc;

• mapn-bit strings to pure states ofO(log n) qubits, whose error probability is bounded by1/nc

and accessible information isO(1).

The schemes are computationally efficient and have one-sided error with ε− = 0 (answers “x 6= y”
are always true).

Any quantum fingerprinting scheme that usesd qubits and guarantees error below1/2 − Ω(1)
has accessible information2−O(d).

1This is conceptually different from the role of randomness in any (nontrivial) classical fingerprinting scheme that
inevitably depends on the assumption that the input stringsx andy are chosen independently from the random seed used
to build a fingerprint ofx.

2Our optimality argument can probably be tuned to show that our pure-state construction is also optimal. We have not
pursued that direction, since the mixed-state schemes are anatural generalization of the pure-state ones, and therefore the
interest of showing optimality of a pure-state construction within its own class would be limited.
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To the best of our knowledge, hiding fingerprints cannot be obtained via classical reduction to
any previously known quantum cryptographic primitive.

Some of our technical contributions might be of independentinterest.

1.2.1 Communication complexity perspective

The notion of quantum fingerprints has been introduced in [BCWdW01] mainly in the context of
communication complexity. The main conceptual contribution of the present work is to view quantum
fingerprints as a cryptographic primitive. Nevertheless, our results can be interpreted in the language
of communication complexity, as follows.

The most common communication complexity scenario is the one where two players, Alice and
Bob, receive two parts of input,x andy, respectively. The players communicate in order to compute
the value of certain functionf(x, y), trying to minimize the amount of communication. Various
models exist that define the constraints that Alice and Bob have to obey when they computef(x, y).
Relevant to us are the following two:

• One-way communicationis a model where Alice sends a single message to Bob, who has to
give an answer based on that message and his inputy.

• Simultaneous Message Passing (SMP)is a model involving a third participant,a referee. Here
both Alice and Bob send one message each to the referee, who has to give an answer based on
the received messages.3

In both the cases the players are computationally unlimited, and thecostof a communication protocol
equals the total number of sent bits. Quantum analogues of the models can be defined, where players
send qubits and locally perform arbitrary unitary transformations.

One of the most basic communication problems corresponds totheequalitypredicate, where the
goal of the players is to decide whetherx = y. In general, fingerprinting schemes can be naturally
viewed as solutions to the equality problem, as follows.4

In the model of SMP, Alice and Bob both send the fingerprints of, respectively,x andy to the
referee. Then the referee performs the swap test that would always return “equal” ifx = y and would
have positive constant probability of returning “not equal” if x 6= y. Thus, he can answer whether
x = y with one-sided constant error.

If such a protocol is based on our pure-state hiding fingerprinting scheme then its cost isO(log n).
It follows from the hiding guarantees of our schemes that this protocol is alsohiding: an “eavesdrop-
per” can learnat mostO(1) bits of information about the input(x, y).

On the other hand, as shown by Newman and Szegedy [NS96], the classical SMP-complexity
of checking equality with constant error probability isΩ(

√
n). Their argument readily implies that

any classical protocol leaksat leastΩ(
√
n) bits about the input. Moreover, this holds for classical

protocols of any cost!
In the model of one-way communication, our mixed-state hiding fingerprinting scheme translates

trivially to a protocol of costO(log n) that solves the equality problem with error at most1/poly and
leaks at most1/poly bits about the input. On the other hand, our classical impossibility argument
implies that any classical protocol that solves the equality problem with errorε necessarily leaks
Ω(log(1/ε)) bits about the input, and this is true for protocols of any cost.

3We consider the version of SMP without shared randomness.
4This was used in [BCWdW01] to demonstrate exponential separation between the quantum and the classical versions

of the SMP model.
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2 Preliminaries and more

Here we state only those technical lemmas that are relevant for the first part of the paper (construction
and analysis of the new fingerprinting schemes). Lemmas thatwill be used only in the second part of
the paper (showing optimality of our schemes) will be statedis Section 4.1.

We write exp(x) and sg(x) to denoteex and (−1)x, respectively. We writelog to denote the
natural logarithm andlog2 for the logarithm to the base2. We denotei =

√
−1 (to be distinguished

from the variablei).
We let N = {1, 2, . . . , } and [i] = {1, 2, . . . , i}. We often implicitly assume the natural corre-

spondence between the elements of[2n] and those of{0, 1}n. For any finite setA we letUA denote
the uniform probability distribution over the elements ofA.

We use◦ to denote concatenation of strings. For any setA andx ∈ An we will write xi to address

thei’th position ofx; more generally,xi1,...,ik
def
= xi1 ◦· · ·◦xik for (i1, . . . , ik) ∈ [n]k. For two strings

x andy of the same length, we will letdH(x, y)
def
= |{ixi 6= yi}| stand for the Hamming distance.

For D ∈ N, we write ID to denote the identity operator overC
D. For aD × D matrix X,

we denote the trace norm ofX by ‖X‖1 = tr
(√

X∗X
)

, and the operator norm ofX by ‖X‖ =

max {|Xv|







|v| = 1}.

We will mostly use Dirac’s “bra-ket” notation for pure quantum states, but sometimes we will
find it convenient to switch to the standard notation (e.g., both v and |v〉 will be used to denote the
same unit vector in a Hilbert space). We will be addressing mixed states via their density matrices,
and denote byDen[D] the subset ofCD×D corresponding to density matrices.

2.1 Random variables and their concentration

The Hoeffding bound will be one of our basic tools, we will useit in the following form (Theorem 2.5
in [McD98]):

Lemma 2.1. (Hoeffding bound)Let the random variablesX1, . . . ,Xn be mutually independent,
satisfyingE [X]i = µi andai ≤ Xi ≤ bi for some constantsai andbi for all i. Then for anyt > 0,

Pr

[∣

∣

∣

∑

Xi −
∑

µi

∣

∣

∣
≥ t
]

≤ 2 exp

( −2t2
∑

(bi − ai)2

)

.

The following lemma can be viewed as a generalization of the Hoeffding bound to the case of
random variables taking values inC.5

Lemma 2.2. Let the random variablesX1, . . . ,Xn take values inC and be mutually independent,
satisfyingE [X]i = 0 and |Xi| ≤ ci for some constantsci for all i. Then for anyt > 0,

Pr

[∣

∣

∣

∑

Xi

∣

∣

∣ ≥ t
]

≤ 4 exp

( −t2
4
∑ |ci|2

)

.

Proof. By the Hoeffding bound (Lemma 2.1), for anyu > 0

Pr

[

ℜ
(

∑

Xi

)

≥ u
]

, Pr

[

ℑ
(

∑

Xi

)

≥ u
]

≤ 2 exp

( −u2

2
∑

|ci|2
)

.

5We viewC as a vector space isometric toR
2. For the general case of random variables taking values in anEuclidean

space there are known “dimension-independent” bounds. We do not use one of those, instead we state Lemma 2.2 whose
proof is “dimension-dependent” but the final expression is more convenient for our purposes.
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As |
∑

Xi| ≥ t implies that eitherℜ(
∑

Xi) ≥
√

t2/2 orℑ(
∑

Xi) ≥
√

t2/2, the result follows. �

The next statement will be very convenient for proving upperbounds on expected values of ran-
dom variables.

Lemma 2.3. Let f be a monotone non-decreasing function taking non-negativevalues, and letY

and Ỹ be random variables satisfyingPr

[

Ỹ ≥ y
]

≥ Pr [Y ≥ y] for everyy such thatf(y) > 0. If

E

[

f(Ỹ )
]

<∞ thenE

[

f(Ỹ )
]

≥ E [f(Y )].

Proof. LetZ
def
= f(Y ) andZ̃

def
= f(Ỹ ). ThenZ ≥ 0 and for everyz ≥ 0 it holds that

Pr

[

Z̃ ≥ z
]

≥ Pr [Z ≥ z].

Therefore,

E [Z] =

∫ ∞

0
Pr [Z ≥ z]dz ≤

∫ ∞

0
Pr

[

Z̃ ≥ z
]

dz = E

[

Z̃
]

,

as required. �

Our next goal is to prove yet another generalization of the Hoeffding bound. We will use a
modification of the standard method for proving such bounds,namely the “Bernstein’s trick”. The
next lemma is the main technical ingredient for that.

Lemma 2.4. LetY be a random variable satisfyingE [Y ] = 0,Y ≥ a andPr [Y ≥ y] ≤ β exp(−α(y−
a)) for all y ≥ a and some constantsa ≤ 0, β ≥ 1 andα > 0. Then for everyh ∈ (0, α/2] and
c ∈ (0, 2],

E [exp(hY )] ≤ c+ exp







(

log 2β
c

)2

2α2
h2






≤ exp






c+

(

log 2β
c

)2

2α2
h2






.

Proof. Denote byEb the event that〈Y ≤ b〉, wereb ≥ a + log β
α is a constant, and letIb be the

Boolean indicator ofEb. Then

E [exp(hY )] = E [Ib · exp(hY )] + E [(1 − Ib) · exp(hY )]. (1)

LetY1 be a random variable distributed asY moduloEb. ThenE [Ib · exp(hY )] ≤ E [exp(hY1)],
E [Y1] ≤ E [Y ] = 0, anda ≤ Y1 ≤ b. A standard result from the theory of concentration bounds
(e.g., see Lemma 2.6 in [McD98]) implies that

E [exp(hY1)] ≤ exp

(

(b− a)2

8
h2

)

.

Let Y2 be a random variable satisfyingPr [Y2 ≥ y] = β exp(−α(y − a)) for all y ≥ b. Then
Lemma 2.3 implies that

E [(1 − Ib) · exp(hY )] ≤ E [(1 − Ib) exp(hY2)] =

∫ ∞

b
exp(hy) · βα exp(−α(y − a)) dy

≤ βα

∫ ∞

b
exp((h− α)(y − a)) dy ≤ βα

∫ ∞

b
exp(−α

2
(y − a)) dy.
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From (1),

E [exp(hY )] ≤ exp

(

(b− a)2

8
h2

)

+ βα

∫ ∞

b
exp(−α

2
(y − a)) dy

= exp

(

(b− a)2

8
h2

)

+ 2β exp(−α
2

(b− a)).

This holds for everyb ≥ a+ log β
α , therefore

E [exp(hY )] ≤ min

{

exp

(

b′2

8
h2

)

+ 2β exp(−α
2
b′))

















b′ ≥ log β

α

}

.

Let c ∈ (0, 2] be any, and chooseb′ = 2
α log 2β

c . Then2β exp(−α
2 b

′) = c and

E [exp(hY )] ≤ exp

(

b′2

8
h2

)

+ c = exp







(

log 2β
c

)2

2α2
h2






+ c,

which is the first inequality stated in the lemma. Finally,

c+ exp







(

log 2β
c

)2

2α2
h2






≤ (1 + c) exp







(

log 2β
c

)2

2α2
h2






≤ exp






c+

(

log 2β
c

)2

2α2
h2






,

aslog(1 + c) < c for c > 0. �

We are ready to prove a new concentration bound, that can be viewed as a “less demanding”
analogue of the Hoeffding bound.

Theorem 2.5.Let the random variablesX1, . . . ,Xn be mutually independent, satisfyingE [X]i = µ,
Xi ≥ a andPr [Xi ≥ x] ≤ β exp(−α(x − a)) for all x ≥ a, i ∈ [n] and some constantsa ≤ 0,

α > 0 andβ ≥ 1. LetSn
def
=
∑

Xi for i ∈ [n]. Then for everyt ∈ (0, 1
7α ],

Pr

[

1

n
Sn ≥ µ+ t

]

≤ exp






− nt2α2

244
(

log β
tα

)2






.

Proof. By Lemma 2.4, for anyh ∈ (0, α/2] andc ∈ (0, 2]

E [exp (h(Sn − nµ))] =
∏

E [exp (h(Xi − µ))] ≤ exp






nc+

n
(

log 2β
c

)2

2α2
h2






.

By Markov’s inequality,

Pr [Sn ≥ nµ+ nt] ≤ exp(−hnt)E [exp (h(Sn − nµ))] ≤ exp






nc+

n
(

log 2β
c

)2

2α2
h2 − hnt






.
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Let

c0
def
=

t2α2

122
(

log β
tα

)2 andh0
def
=

tα2

(

log 2β
c0

)2 .

From tα ≤ 1
7 , it holds that0 < c0 < 1 and0 < h0 < α/2. Thus we may substituteh = h0 and

c = c0, still satisfying the requirements of Lemma 2.4. So,

Pr

[

1

n
Sn ≥ µ+ t

]

≤ exp






nc0 −

nt2α2

2
(

log 2β
c0

)2






.

It can be seen6 thattα ≤ 1
7 andβ ≥ 1 imply c0 < t2α2

/

4
(

log 2β
c0

)2
, and therefore

Pr

[

1

n
Sn ≥ µ+ t

]

≤ exp
(

−nc0
2

)

= exp






− nt2α2

244
(

log β
tα

)2






,

as required. �

2.2 ε-nets for pure states

In our proof we will need a “continuous analogue” of the unionbound: Namely, for everyD ∈ N

we want to have some sufficiently largeT , such that if certain eventE(v) holds with probability at
mostδ for any fixed vectorv ∈ C

D, then with probability at least1 − Tδ there is nov′ ∈ C
D such

thatE(v′) holds. Of course, in general that is not possible for infinitedomains likeC
D; however,

the situation can be helped if there exists a “relaxed” version ofE, that we denote byE′, such that if
E(v) holds andd(v,w) ≤ ε, whered(·, ·) is a measure of distance between vectors inC

D andε is
sufficiently small, thenE′(w) must also hold.

Fix ε and letWε = {w1, . . . , wT } be a finite set of vectors fromCD, such that for everyv ∈ C
D

there exists somewi ∈ Wε satisfyingd(v,wi) ≤ ε (such sets are commonly calledε-nets). Assume
that for any fixedv ∈ C

D the probability thatE′(v) holds is at mostδ. Then, by the union bound, the
probability thatE′(w) holds for somew ∈ Wε is at mostTδ. Now, if E(v) holds for somev ∈ C

D,
thenE′(w) holds for at least onew ∈ Wε, as the set contains an element at distance at mostε from
v. Therefore, the probability thatE(v) holds for somev ∈ C

D is at mostTδ.
The notion of distance between vectors can be formalized in many different ways, depending on

the nature ofE andE′. The following definition serves our future goals.

Definition 1. For ε > 0, we call a setM ⊆ C
D of unit vectors anε-net for the set of pure states

in C
D with respect to the trace distance, if for every unit vector|u〉 ∈ C

D there exists|v〉 ∈M , such
that‖|u〉〈u| − |v〉〈v|‖1 ≤ ε.

The following lemma is a slight improvement over Lemma II.4 of [HLSW04] and Lemma 4 of
[BHL+05], where the upper bound on the size of theε-net was(5/ε)2D .

6Let x
def
= tα andf(x, β)

def
= c0

,

t2α2

4
“

log 2β
c0

”

2 , then modulox ∈ (0, 1
7
] andβ ≥ 1 it is always true thatdf

dβ
< 0. Let

f ′(x)
def
= f(x, 1), then df ′

dx
> 0 and thereforef(x, β) ≤ f( 1

7
, 1) < 1.
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Lemma 2.6. For every0 < ε ≤ 2, there exists anε-net for the set of pure states inCD with respect
to the trace distance whose size is at most(4/ε)2(D−1).

The proof of the lemma is given in the appendix.

3 New quantum fingerprinting schemes and their properties

We will use the standard way to construct a (pure-state) quantum fingerprinting scheme based on a
classical error-correcting code. Namely, given a codeC from n to 2d bits, we will define, for every
a ∈ {0, 1}n, its fingerprint ond qubits via|ua〉 = 1

2d/2

∑

i∈[2d] sg(bi) |i〉, whereb = (b1, . . . , b2d) =
C(a).

It would be very convenient for us to use a perfectly random codeC; however we cannot afford
that as we want our construction to be computationally efficient. On the other hand, we can get an
efficient construction by using a random linearC, however it turns out that such code would not be
“random enough” for our needs (we need more randomness to guarantee that a scheme is hiding).7 So,
we define a new type of classical codes that still admit efficient encoding but contain more randomness
than random linear codes.

3.1 Random quasi-linear codes

In the following definition we use2d to denote the codewords’ length in order to make the notation
more consistent throughout the paper.

Definition 2. Let r, n, d ∈ N, r < n < 2d. An (n, r, 2d)-quasi-linear codeC is represented by an
2d-tuple of(n − r)-bit vectors(c1, . . . , c2d) and a2r-tuple of2d-bit vectors(d1, . . . , d2r ). For every

a ∈ {0, 1}n we denotea(1) def
= a|1,...,r, a(2) def

= a|r+1,...,n, and define

C(a)
def
= da(1) ⊕

(〈

ci, a
(2)
〉)2d

i=1
,

where⊕ denotes bit-wisexor.

In other words,(d1, . . . , d2r) is an arbitrary code applied to the firstr bits of a and(c1, . . . , c2d)
defines a linear code that is applied to the last(n − r) bits; the actual encoding ofa is the xor of the
two codewords.

For the rest of the paper we will writex(1) andx(2) to address, respectively,x|1,...,r andx|r+1,...,n,
whenn, r andx ∈ {0, 1}n are clear from the context.

Obviously,C(a) can be computed efficiently whenr ∈ O(log n) andd ∈ O(log(n)). We call a
quasi-linear code (uniformly) random if both(c1, . . . , c2d) and(d1, . . . , d2r) are selected uniformly at
random. We will denote this distribution byUC and writeC ∼ UC to say thatC is chosen uniformly
at random (the values of the parametersn, r andd will be clear from the context). Note that efficient
description of such code is possible as long asr ∈ O(log n) andd ∈ O(log(n)).

The following property of random quasi-linear codes can be viewed as a generalization of the

notion of minimal distance. DenoteγC
def
= max

{∣

∣dH (C(a1), C(a2)) − 2d−1
∣

∣







a1 6= a2

}

. Then

7Note that in the context of quantum fingerprinting there is noneed to ever decode the underlying classical code, that is
why using a random linear code would be computationally feasible, despite the fact that no efficient decoding is known to
exist for such codes.
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Lemma 3.1. For everyt > 0, PrC∼UC
[γC ≥ t] < 2 exp

(

n+ r − 2t2

2d

)

.

Proof. DefineAC
def
= {C(a1) ⊕C(a2)








a1 6= a2}. Observe thatAC = B1 ⊕ B2 ∪ B1 ∪B2, where

⊕ is element-wise,B1 = {da1 ⊕ da2







a1, a2 ∈ {0, 1}r ; a1 6= a2} and

B2 =
{

(〈ci, a1 ⊕ a2〉)n−r
i=1








a1, a2 ∈ {0, 1}n−r ; a1 6= a2

}

=
{

(〈ci, a〉)n−r
i=1








0 6= a ∈ {0, 1}n−r} .

Direct counting reveals that|AC | ≤ 2n+r.
It is easy to see that for everya1 6= a2 the stringC(a1) ⊕ C(a2) is chosen uniformly at random

from {0, 1}2d

whenC ∼ UC . By the Hoeffding bound (Lemma 2.1), for everyt > 0

Pr
C∼UC

[∣

∣

∣dH (C(a1), C(a2)) − 2d−1
∣

∣

∣ ≥ t
]

≤ 2 exp

(−2t2

2d

)

,

and the union bound implies the statement of the lemma. �

3.2 Pure-state scheme

For the rest of the paper we assume thatd ∈ O(log n) and thatr ∈ O(log n).
First, we define and analyze our fingerprinting scheme that uses pure states. Afterwords (Sec-

tion 3.3) we will consider a mixed-state scheme that can be viewed as a generalization.

Definition 3. LetC be an(n, r, 2d)-quasi-linear code, we denote byEC
pure the following fingerprinting

scheme. Everya ∈ {0, 1}n is mapped to

|ua〉 =
1

2d/2

∑

i∈[2d]

sg(bi) |i〉 ,

whereb = (b1, . . . , b2d) = C(a). We call|ua〉 the fingerprintof a.
Given |ua1〉 and anya2 ∈ {0, 1}n, in order to check whethera1 = a2 one should measure

|ua1〉 w.r.t. the projective measurement{Pa2 , I2d − Pa2}, wherePa2 = |ua2〉〈ua2 |. If the outcome
corresponds toPa2 then “a1 = a2” shall be returned, otherwise the guess should be “a1 6= a2”.

Note that the transformationa → |ua〉 can be computed efficiently as long asC(a) is easy
to compute for everya, and that the required projective measurement can be performed efficiently
becaused ∈ O(log(n)) and|ua2〉 is known.

Intuitively, the fingerprints corresponding to different pre-images should be nearly orthogonal.
This is formalized by the following lemma.

Lemma 3.2. For {|ua〉







a ∈ {0, 1}n} defined over a randomly chosen(n, r, 2d)-quasi-linear code

C, for anyδ > 0 it holds thatmax {|〈ua1 |ua2〉|







a1 6= a2} < δ with probability at least1−2 exp(n+

r − δ22d−1).

Proof.

|〈ua1 |ua2〉| =
1

2d

∣

∣

∣

∣

∣

∣

∑

i∈[2d]

sg (b1i + b2i)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

2
dH (b1, b2)

2d
− 1

∣

∣

∣

∣

≤ 2γC

2d
,

whereb1 = C(a1) andb2 = C(a2). By Lemma 3.1,

Pr
C∼UC

[

2γC

2d
≥ δ

]

< 2 exp
(

n+ r − δ22d−1
)

,

as required. �
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Now let us see thatEC
pure is likely to be a valid fingerprinting scheme.

Lemma 3.3. For EC
pure defined over a randomly chosen(n, r, 2d)-quasi-linear codeC, it holds that

ε− = 0 always and thatε+ < δ with probability at least1 − 2 exp
(

n+ r − 2d−1δ
)

, for anyδ > 0.

Proof. Clearly, whena1 = a2 the answer is always correct, that isε− = 0. When, on the other hand,
a1 6= a2 the probability of the wrong answer is|〈ua1 |ua2〉|2, and therefore by Lemma 3.2,ε+ < δ
with probability at least1 − 2 exp(n+ r − 2d−1δ), as required. �

Our next goal is to show thatEC
pure defined over a randomly chosen quasi-linear codeC is hiding

with high probability. This will be done in stages.

Let us denote for everya ∈ {0, 1}n: ρa
def
= |ua〉〈ua|, ρ′a

def
= 2d−nρa, and for arbitraryv ∈ C

2d
,

µv(a)
def
= 〈v| ρ′a |v〉.

We will see later (Lemma 3.8) that for almost all choices ofC we have
∑

a ρ
′
a = I2d , and

thereforeµv(a) is a probability distribution overa ∈ {0, 1}n for every fixed unit vectorv. Intuitively,
this distribution corresponds to the “view abouta” of a holder ofρa who has measured it and got the
outcome|v〉〈v|. Therefore, if originallya was chosen uniformly then some sort of distance between
µv andU{0,1}n should tell us how much has been learnt abouta as a result of the measurement.

The following technical statement is the key part of our upper bound on the accessible information
for EC

pure .

Lemma 3.4. Letv ∈ C
2d

be a unit vector anda0 ∈ {0, 1}n be fixed, and assume thatEC
pure is defined

over an(n, r, 2d)-quasi-linear codeC, then

E
C∼UC

[max {0, µv(a0) log (2nµv(a0))}] <
23

2n
.

In the view of the intuition expressed above, it shouldn’t besurprising that we want to prove this
kind of statement. Indeed, ifµv is a probability distribution then

∑

a µv(a) log (2nµv(a0)) is the
relative entropy betweenµv andU{0,1}n .

Proof. Let

ωa
v

def
=

∣

∣

∣

∣

∣

∣

∑

i∈[2d]

sg
(〈

a(2), ci

〉

⊕ da(1) i

)

vi

∣

∣

∣

∣

∣

∣

2

,

thenµv(a0) = ω
a0
v
2n and for everyt ≥ 0,

Pr
C

[

µv(a0) ≥
t

2n

]

= Pr [ωa0
v ≥ t] = Pr

β1,...,β
2d∼U{−1,1}

[∣

∣

∣

∑

βivi

∣

∣

∣
≥

√
t
]

≤ 4 exp

(−t
4

)

, (2)

where the inequality follows from Lemma 2.2 and the fact that‖v‖ = 1.

Defineg(x)
def
= max {0, x log(x)} and letµ̃ be a random variable whose distribution satisfies

Pr [µ̃ ≥ t] = 4 exp(−t/4) def
= f(t) for t ≥ 8 log 2. Then

E [max {0, µv(a0) log (2nµv(a0))}] ≤
1

2n E [g(2nµv(a0))] ≤
1

2n E [g(µ̃)],

where the first inequality follows from the definition ofg(·) and the second one is by Lemma 2.3
(whose requirements are implied by (2) andg’s definition).
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Finally,

E [g(µ̃)] =

∫ ∞

8 log 2
x log(x)

(

− df

dx

)

dx =

∫ ∞

8 log 2
exp(log x+ log log x− x/4) dx < 23,

as required. �

At this point we suspend our analysis ofEC
pure and turn to a mixed-state schemeEC

mix . Analysis
of EC

pure will be resumed and merged with that ofEC
mix in Section 3.4.

3.3 Mixed-state scheme

To define our mixed-state scheme we introduce another parameter k ∈ N ∪ {0}, such that2k is the
rank of every fingerprint (i.e.,k = 0 corresponds to a pure-state scheme). It will always be assumed,
often implicitly, thatd ≥ k andr ≥ k (the second assumption is probably less obvious, we need it
for technical reasons).

Definition 4. Let C be an(n + k, r, 2d)-quasi-linear code, whered ≥ k andr ≥ k. We denote by
EC
mix the following fingerprinting scheme. For everyx ∈ {0, 1}n+k we let

|ux〉 =
1

2d/2

∑

i∈[2d]

sg(bi) |i〉 ,

whereb = (b1, . . . , b2d) = C(x). Everya ∈ {0, 1}n is mapped to

ρa =
1

2k

∑

i∈{0,1}k

|ui◦a〉〈ui◦a| .

We callρa the fingerprintof a.
Given ρa1 and anya2 ∈ {0, 1}n, in order to check whethera1 = a2 one should measureρa1

w.r.t. the POVM measurement{Pa2 , I2d − Pa2}, wherePa2 is the projection to the subspace ofR
2d

that is spanned by
{

ui◦a2











i ∈ {0, 1}k
}

. If the outcome corresponds toPa2 then “a1 = a2” shall be

returned, otherwise the guess should be “a1 6= a2”.

Note that whenk = 0 the above definition givesEC
pure , and the notions of|ua〉 andρa coincide

with those considered in Section 3.2. To constructρa, the holder ofa tossesi ∼ U{0,1}k , produces
|ui◦a〉〈ui◦a| and then erasesi. The measurement{Pa, I2d − Pa} can also be performed efficiently (as
any explicit measurement onO(log n) qubits), the simplest way to do so is to represent the measure-
ment as a projection inC2d+1

(recall thatd ∈ O(log(n))) and perform that, using an auxiliary space
of dimension2d.

To see thatEC
mix is a valid fingerprinting scheme with high probability, we will use Lemma 3.2

together with the following technical lemma.

Lemma 3.5. For 0 ≤ i < 2r, let M be any mapping from ani-tuple of unit vectors inR2d
to a

unit vector inR
2d

. Then for anys ∈ {0, 1}n−r, δ > 0, and {|ua〉






a ∈ {0, 1}n} defined over a
randomly chosen(n, r, 2d)-quasi-linear codeC, it holds that

∣

∣

〈

M(u0◦s, . . . , u(i−1)◦s)
∣

∣ui◦s

〉∣

∣ < δ

with probability at least1 − 2 exp(−δ22d−1).
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Proof. Note that by the construction of quasi-linear codes,|ui◦s〉 is a uniformly random element of
{

2−d/2
∑

k βk |k〉







β1, . . . , β2d ∈ {−1, 1}

}

, even if conditioned uponv
def
= M(u0◦s, . . . , u(i−1)◦s).

So,

Pr
C

[∣

∣

〈

M(u0◦s, . . . , u(i−1)◦s)
∣

∣ui◦s

〉∣

∣ < δ
]

= Pr
C





∣

∣

∣

∣

∣

∣

∑

k∈[2d]

βkvk

∣

∣

∣

∣

∣

∣

< 2d/2δ



 ≥ 1 − 2 exp(−2d−1δ2),

where the inequality follows from the Hoeffding bound (Lemma 2.1) and the fact that‖v‖ = 1. �

Let us see thatEC
mix is likely to be a valid fingerprinting scheme.

Lemma 3.6. For EC
mix defined over a randomly chosen(n + k, r, 2d)-quasi-linear codeC, it holds

thatε− = 0 with certainty andε+ < δ with probability higher than1−3 exp(n+r+k−δ22d−4k−7),
for anyδ > 0.

Proof. Clearly, whena1 = a2 the answer is always correct, that isε− = 0.
When, on the other hand,a1 6= a2, the probability of the wrong answer istr(Pa2ρa1). Let

P ′
a2

def
=
∑

i∈{0,1}k ui◦a2u
∗
i◦a2

; we will see that, with high probability overC ∼ UC , bothtr(P ′
a2
ρa1)

and
∣

∣tr((Pa2 − P ′
a2

)ρa1)
∣

∣ are small.

tr
(

P ′
a2
ρa1

)

=
∑

i∈{0,1}k

tr
(

ui◦a2u
∗
i◦a2

ρa1

)

≤ 2kδ2C , (3)

whereδC
def
= max

{∣

∣u∗x1
ux2

∣

∣







x1 6= x2

}

.
Observe thatPa2 =

∑

i∈{0,1}k viv
∗
i , wherevi

′s are “orthonormalizedui◦a2

′s”, as follows

v′0 = v0
def
= u0◦a2 ; v′i

def
= ui◦a2 −

∑

j<i

vjv
∗
jui◦a2 ; vi

def
= v′i/

∣

∣v′i
∣

∣ .

Let ∆i
def
= vi − ui◦a2 , then

|∆i| ≤
∣

∣ui◦a2 − v′i
∣

∣+
∣

∣vi − v′i
∣

∣ ≤ 2
i−1
∑

j=0

∣

∣v∗jui◦a2

∣

∣ ≤ 2k max
j

{∣

∣v∗jui◦a2

∣

∣

}

,

and
∣

∣tr((Pa2 − P ′
a2

)ρa1)
∣

∣ ≤
∥

∥Pa2 − P ′
a2

∥

∥

≤
∑

i∈{0,1}k

∥

∥

(

ui◦a2 + ∆i)(u
∗
i◦a2

+ ∆∗
i

)

−
(

ui◦a2u
∗
i◦a2

)∥

∥

≤ 3 · 2k max
i

{|∆i|} ≤ 3 · 22k max
0≤j<i<2k

{∣

∣v∗jui◦a2

∣

∣

}

.

(4)

Now we apply Lemma 3.5, whereM is the mapping that, according to our orthonormalization

process, maps(uk◦a2)
j
k=0 to vj . For fixeda2 andj < i, the lemma guarantees that3 · 22k

∣

∣

∣v∗jui◦a2

∣

∣

∣ is

less thanδ/2 with probability at least1− 2 exp(−δ22d−4k−3/9). By the union bound, the right-hand
side of (4) is less thanδ/2 with probability at least1 − 22k exp(−δ22d−4k−3/9) > 1 − exp(2k −
δ22d−4k−7). Another application of the union bound implies that the same holds for everya2 with
probability higher than1 − exp(n + 2k − δ22d−4k−7).
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By Lemma 3.2, it holds that the right-hand side of (3) is less thanδ/2 (i.e., 2kδ2C < δ/2) with
probability at least1− 2 exp(n+ r+ k− δ2d−k). Therefore,tr(Pa2ρa1) < δ for everya1 6= a2 with
probability higher than1 − 3 exp(n+ r + k − δ22d−4k−7), as required. �

Our next step is a statement analogous to Lemma 3.4 that wouldapply toEC
mix . As before, we let

ρ′a = 2d−nρa andµv(a) = 〈v| ρ′a |v〉 for arbitraryv ∈ C
2d

.

Lemma 3.7. Letv ∈ C
2d

be a unit vector anda0 ∈ {0, 1}n be fixed, and assume thatEC
mix is defined

over an(n+ k, r, 2d)-quasi-linear codeC, where2k ∈ ω(log n) andd ∈ O(log(n)). Then

E
C∼UC

[max {0, µv(a0) log (2nµv(a0))}] ∈ O

(

1

2n+k( 1
2
−λ)

)

for everyλ > 0.

We will follow in the footsteps of our proof of Lemma 3.4, however we will have to use somewhat
“heavier” concentration tools.

Proof. For everyj ∈ {0, 1}k, let

ωa
v(j)

def
=

∣

∣

∣

∣

∣

∣

∑

i∈[2d]

sg
(〈

x(2), ci

〉

⊕ dx(1) i

)

vi

∣

∣

∣

∣

∣

∣

2

,

wherex = j ◦ a. Thenµv(a0) = 1
2n+k

∑

j∈{0,1}k ωa0
v (j).

For everyj,

E
C∼UC

[ωa0
v (j)] = E

β1,...,β
2d∼U{−1,1}





∑

i,j

βiβjvivj



 = ‖v‖2 = 1

andE [µv(a0)] = 1/2n. Moreover, as we’ve seen in the proof of Lemma 3.4, from Lemma2.2 and
from ‖v‖ = 1 it follows that that for everyt ≥ 0, Pr [ωa0

v (j) ≥ t] ≤ 4 exp(−t/4). Therefore, by
Theorem 2.5 it holds that

Pr
C

[

µv(a0) ≥
1 + t

2n

]

≤ exp

(

−2kt2

3904
(

log 16
t

)2

)

def
= f(t)

for 0 < t ≤ 4/7. Besides, it holds that0 ≤ ωa0
v (j) ≤ 2d.

As before, we defineg(x)
def
= max {0, x log(x)} and letµ̃ be a new random variable that will re-

placeµv(a0) in further analysis. We define the distribution ofµ̃ by demanding thatPr [µ̃ ≥ 1 + t] =
f(t) for 0 < t ≤ 4/7 andPr

[

µ̃ = 2d
]

= f(4/7). The requirements of Lemma 2.3 are satisfied by
g(·), µ andµ̃, and therefore

E [max {0, µv(a0) log (2nµv(a0))}] ≤
1

2n E [g(µ̃)].

By the definition,

E [g(µ̃)] =

∫ 4/7

0
(1 + x) log(1 + x)

(

− df

dx

)

dx+ 2dd · f(4/7).
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Clearly,f(4/7) ∈ exp
(

−Ω
(

2k
))

and(1+x) log(1+x)
(

− df
dx

)

≤ 2kx2f(x). For everyλ > 0 there

existsAλ > 0, such thatf(x) ≤ exp
(

−Aλ2kx2+λ
)

for 0 < x ≤ 4/7. So,

E [g(µ̃)] <

∫ ∞

0
2kx2 exp

(

−Aλ2kx2+λ
)

dx+ exp
(

d+ log d− Ω
(

2k
))

≤ 2k

(2 + λ) (Aλ2k)
3

2+λ

· Γ
(

3

2 + λ

)

+ exp(d− Ω
(

2k
)

),

whereΓ(a)
def
=
∫∞
0 xa−1 exp(−x) dx is the Gamma-function. Therefore for2k ∈ ω(log n) and every

λ > 0,

E [g(µ̃)] ≤ O

(

1

2k( 1
2
−λ)

)

,

as required. �

3.4 Further security analysis ofEC
pure and EC

mix

Based on Lemmas 3.4 and 3.7, we continue our analysis ofEC
pure andEC

mix . From this point on and
unless stated otherwise, we view the former as a special caseof the latter, corresponding tok = 0.

First, as promised earlier, we prove that for almost all quasi-linear codesC, we have
∑

a ρ
′
a = I2d .

Lemma 3.8. If C is an (n + k, r, 2d)-quasi-linear code such that the vectorsc1, . . . , c2d are all
distinct, then

∑

a ρ
′
a = I2d . In particular, if an(n+k, r, 2d)-quasi-linear codeC is chosen uniformly

at random, then
∑

a ρ
′
a = I2d with probability at least1 − 22d+r−n−k.

Proof. If c1, . . . , c2d are all distinct, then
∑

a

ρ′a = 2d−n−k
∑

x∈{0,1}n+k

|ux〉〈ux|

= 2−n−k
∑

x(1)

∑

i,j

sg ((dx(1))i ⊕ (dx(1))j)





∑

x(2)

sg〈ci ⊕ cj , x
(2)〉



 |i〉〈j| = I2d ,

wherex(1) ∈ {0, 1}r, x(2) ∈ {0, 1}n+k−r, andi, j ∈ [2d].
Now letC ∼ UC . For any fixed distincti andj, ci equalscj with probability 2r−n−k. By the

union bound, the probability that allci
′s are distinct is at least

1 −
(

2d

2

)

· 2r−n−k < 22d+r−n−k,

as desired. �

Next we will argue that
∑

a∈{0,1}n µv(a) log (2nµv(a)) is unlikely to be large whenC ∼ UC .

Lemma 3.9. Let v ∈ C
2d

be a unit vector and assume thatC is a uniformly random(n + k, r, 2d)-
quasi-linear code, then for everyδ > 0

Pr
C





∑

a∈{0,1}n

µv(a) log (2nµv(a)) > αk + δ



 < exp

(

n− 2r−k−2d

(

δ

d

)2
)

,

whereα0 < 23, andαk ∈ O
(

1/2k(1/2−λ)
)

for 2k ∈ ω(log n) and anyλ > 0.
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Proof. We will use concentration bounds in conjunction with the mean guarantees of Lemmas 3.4
and 3.7.

Define new random variables

µ̃(a)
def
= max {0, µv(a) log (2nµv(a))},

then0 ≤ µ̃(a) ≤ 2d−nd. From Lemmas 3.4 and 3.7 we know thatEC [µ̃(a)] < 23/2n for k = 0 and
everyλ > 0, andEC [µ̃(a)] ∈ O

(

1/2n+k(1/2−λ)
)

for 2k ∈ ω(log n).

We want to bound the probability that
∑

a µ̃(a) > δ. Let t
def
= r − k, assume w.l.g. thatt > 0 and

define
Ai

def
=
{

j ◦ i







j ∈ {0, 1}t}

for everyi ∈ {0, 1}n−t. Observe that for everyi0 ∈ {0, 1}n the random values
(

C(a)
)

a∈Ai0
are

distributed identically and independently whenC ∼ UC , and the same is true for
(

µ̃(a)
)

a∈Ai0
.

Therefore the Hoeffding bound (Lemma 2.1) can be applied, resulting in

Pr
U





∑

a∈Ai0

µ̃(a) >
2nµ0 + δ

2n−t



 < 2 exp

(−2t+1δ2

22dd2

)

,

whereµ0
def
= EC [µ̃(a)]. Therefore, from the union bound:

Pr
U





∑

a∈{0,1}n

µ̃(a) > αk + δ



 < 2n−t+1 exp

(

−2r−k−2d

(

δ

d

)2
)

,

as required. �

As we discussed before, if
∑

a∈{0,1}n µv(a) log (2nµv(a)) is small for a fixedv, that means that,
informally, a holder ofρa who has measured it and got the outcome|v〉〈v| has not learnt much about
a.

Our next step will be to argue that, with high probability,
∑

a∈{0,1}n µv(a) log (2nµv(a)) is small

for every pure state|v〉 ∈ C
2d

. According to the same intuition (which will be formalized soon), that
would imply that no outcome of a measurement ofρa exists, that can tell much abouta.

First we argue that the function|v〉〈v| 7→
∑

a∈{0,1}n µv(a) log (2nµv(a)) has a good continuity

property (called the “almost Lipschitz continuity”) in order to discretize “every pure state|v〉 ∈ C
2d

”
in the above argument.

Lemma 3.10. LetC be an(n+ k, r, 2d)-quasi-linear code, such that
∑

a ρ
′
a = I2d . Let0 < ε ≤ 2/e

and |v〉 and |w〉 be unit vectors inC2d
such that‖|v〉〈v| − |w〉〈w|‖1 ≤ ε. Then,

∣

∣

∣

∣

∣

∑

a

µv(a) log(2nµv(a)) −
∑

a

µw(a) log(2nµw(a))

∣

∣

∣

∣

∣

≤ 2d−1ε log
2

ε
.

Proof. Fix anya and we will prove|µv(a) log(2n−dµv(a))−µw(a) log(2n−dµw(a))| ≤ 2d−n−1ε log(2/ε).
Without loss of generality, we can assume thatµv(a) ≤ µw(a). Then,

µw(a) − µv(a) = 2d−n tr (ρa(|w〉〈w| − |v〉〈v|)) ≤ 2d−n−1 ‖|v〉〈v| − |w〉〈w|‖1 ≤ 2d−n−1ε.

16



Therefore,

µw(a) log(2n−dµw(a)) − µv(a) log(2n−dµv(a))

= µw(a) log(2n−dµw(a)) − µv(a) log(2n−dµw(a)) + µv(a) log(2n−dµw(a)) − µv(a) log(2n−dµv(a))

= (µw(a) − µv(a)) log(2n−dµw(a)) + µv(a) log

(

1 +
µw(a) − µv(a)

µv(a)

)

.

Note that(µw(a) − µv(a)) log(2n−dµw(a)) ≤ 0 andµv(a) log(1 + (µw(a) − µv(a))/µv(a)) ≥ 0.
Therefore,

|µv(a) log(2n−dµv(a)) − µw(a) log(2n−dµw(a))|

=

∣

∣

∣

∣

(µw(a) − µv(a)) log(2n−dµw(a)) + µv(a) log

(

1 +
µw(a) − µv(a)

µv(a)

)∣

∣

∣

∣

≤ max

{

−(µw(a) − µv(a)) log(2n−dµw(a)), µv(a) log

(

1 +
µw(a) − µv(a)

µv(a)

)}

≤ max

{

−(µw(a) − µv(a)) log(2n−d(µw(a) − µv(a))), µv(a) ·
µw(a) − µv(a)

µv(a)

}

≤ max

{

2d−n−1ε log
2

ε
, 2d−n−1ε

}

= 2d−n−1ε log
2

ε
.

By the triangle inequality, we have
∣

∣

∣

∣

∣

∑

a

µv(a) log(2n−dµv(a)) −
∑

a

µw(a) log(2n−dµw(a))

∣

∣

∣

∣

∣

≤ 2d−1ε log
2

ε
.

The left-hand side can be rewritten as
∣

∣

∣

∣

∣

∑

a

µv(a) log(2n−dµv(a)) −
∑

a

µw(a) log(2n−dµw(a))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

a

µv(a) log(2nµv(a)) −
∑

a

µw(a) log(2nµw(a)) +

(

∑

a

µv(a) −
∑

a

µw(a)

)

log 2−d

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

a

µv(a) log(2nµv(a)) −
∑

a

µw(a) log(2nµw(a))

∣

∣

∣

∣

∣

,

which completes the proof. �

We are ready to see that with high probability,
∑

µv(a) log (2nµv(a)) is small for every|v〉.
Lemma 3.11. LetC be a uniformly random(n + k, r, 2d)-quasi-linear code. Letδ > 0 satisfy that
e3/2δ/4 ≤ 2d. Then,

Pr
C



∃ |v〉 :
∑

a∈{0,1}n

µv(a) log (2nµv(a)) > αk + δ



 < exp

(

2d+1 log
22d+5

e2δ2
+ n− 2r−k−2d

(

δ

2d

)2
)

,

whereαk is as in Lemma 3.9.
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Proof. Let ε = 2−2d−3e2δ2. By the assumption, we haveε ≤ 2/e. Then we have

2d−1ε log
2

ε
=
eδ

2
· eδ

2d+2
log

2d+2

eδ
≤ eδ

2
· 1

e
=
δ

2
,

where the inequality follows fromx log(1/x) ≤ 1/e. By Lemma 2.6, there exists anε-netM for the
set of2d-dimensional states with respect to the trace distance withsize

|M | ≤
(

4

ε

)2d+1

=

(

22d+5

e2δ2

)2d+1

.

Suppose that the quasi-linear codeC is such that there exists a unit vectorv such that

∑

a∈{0,1}n

µv(a) log (2nµv(a)) > αk + δ.

Letw ∈M be a unit vector satisfying‖|v〉〈v| − |w〉〈w|‖1 ≤ ε. By Lemma 3.10,

∑

a∈{0,1}n

µw(a) log(2nµw(a)) ≥
∑

a∈{0,1}n

µv(a) log(2nµv(a)) − 2d−1ε log
2

ε
> αk +

δ

2
.

This implies that

Pr
C



∃ |v〉 :
∑

a∈{0,1}n

µv(a) log (2nµv(a)) > αk + δ





≤ Pr
C



∃ |w〉 ∈M :
∑

a∈{0,1}n

µw(a) log (2nµw(a)) > αk +
δ

2



.

By Lemma 3.9 and union bound, the right-hand side is at most

|M | · exp

(

n− 2r−k−2d

(

δ

2d

)2
)

≤ exp

(

2d+1 log
22d+5

e2δ2
+ n− 2r−k−2d

(

δ

2d

)2
)

,

as required. �

It remains to be seen that small values of
∑

µv(a) log (2nµv(a)) for all |v〉 ∈ C
2d

indeed imply
good hiding properties of the corresponding fingerprintingscheme.

Lemma 3.12. Let C be an(n + k, r, 2d)-quasi-linear code such thatc1, . . . , c2d are all distinct.
If a ∈ {0, 1}n is chosen uniformly at random, then the accessible information of the ensemble(ρa) is
at most

max
|v〉

∑

a∈{0,1}n

µv(a) log (2nµv(a)) .

Proof. We follow a similar path to that used in a proof in Section 2.2 of Leung [Leu09]. Since
the accessible information can be always achieved by a rank-one POVM, letM = {αj |vj〉〈vj |}j

be a rank-one POVM achieving the accessible information, where |vj〉 is a pure state,αj > 0 and
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∑

j αj = 2d. If A is the random variable representing the choice ofa andJ is the random variable
representing the measurement result of the state underM , then

Iacc = H(J) −H(J | A)

= −
∑

j

αj 〈vj|
I2d

2d
|vj〉 log(αj 〈vj|

I2d

2d
|vj〉) +

1

2n

∑

a,j

αj 〈vj | ρa |vj〉 log(αj 〈vj | ρa |vj〉)

= −
∑

j

αj

2d
log

αj

2d
+

1

2n

∑

a,j

αj 〈vj| ρa |vj〉 logαj +
1

2n

∑

a,j

αj 〈vj | ρa |vj〉 log 〈vj | ρa |vj〉

= −
∑

j

αj

2d
log

αj

2d
+
∑

j

αj

2d
logαj +

1

2n

∑

a,j

αj 〈vj | ρa |vj〉 log 〈vj | ρa |vj〉

= d log 2 +
1

2n

∑

a,j

αj 〈vj| ρa |vj〉 log 〈vj| ρa |vj〉

= d log 2 +
1

2n

∑

a,j

αj2
n−d 〈vj | ρ′a |vj〉 log(2n−d 〈vj| ρ′a |vj〉)

=
∑

a,j

αj

2d
µvj (a) log(2nµvj (a))

≤ max
|v〉

∑

a

µv(a) log(2nµv(a)),

where the inequality follows from the convexity argument (the convex combination is at most the
maximum). �

Lemmas 3.3, 3.6, 3.8, 3.11 and 3.12 imply the following theorem:

Theorem 3.13.For any constantc there exist quantum fingerprinting schemes that

• mapn-bit strings to mixed states overO(log n) qubits and whose error probability and acces-
sible information are both bounded by1/nc;

• mapn-bit strings to pure states overO(log n) qubits, whose error probability is bounded by
1/nc and accessible information isO(1).

The schemes are computationally efficient and have one-sided error with ε− = 0 (answers “x 6= y”
are always true).

Proof. Let k = ⌈4c lg n⌉, d = ⌈(18c + 1) lg n⌉ andr = ⌈(60c + 3) lg n⌉, and letEC
mix be the mixed-

state fingerprinting scheme defined over a randomly chosen(n + k, r, 2d)-quasi-linear codeC. By
Lemma 3.6, the probability thatε+ ≥ 1/nc vanishes asn→ ∞.

The probability thatC violates the condition of Lemma 3.8 is negligible, so we assume the oppo-
site, that allows us to use Lemma 3.12. Applying Lemma 3.11 with δ = 1/(2nc) to Lemma 3.12 and
noting thatαk ∈ O

(

1/2k/3
)

⊆ o(1/nc), we obtain that the accessible information is at most1/nc.
Choosingk = 0 and adjustingd andr accordingly gives the desired result forEC

pure . �

Note that only polynomial amount of randomness is required in order to describe any of our
fingerprinting schemes. Moreover, a random string may be published openly without compromising
the hiding guarantees of the schemes.
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Mixed-state schemes can be viewed as a natural generalization of pure-state ones. Our mixed-state
construction achieves much better hiding guarantees (in the following section we argue its optimality),
but even the pure-state one already reaches beyond the limitations of classical schemes, where we’ve
seen (cf. Section 1.1) thatΩ(log(1/ε)) bits are leaked by any scheme with error at mostε.

4 Optimality of our schemes

In this part we construct a generic strategy for extracting information from arbitrary quantum finger-
prints. We give a strategy that retrieves at least1/poly(D) bits of information aboutx from a (w.l.g.,
mixed-state) fingerprint ofx over logD qubits.

We note that the following “no-go” argument remains valid for some weaker versions of finger-
printing than what is guaranteed by Theorem 3.13, namely:

• schemes with two-sided error;

• schemes that only work in average w.r.t. “balanced uniform”input distribution (i.e.,(x, y) ∼
(UA + UB)/2, whereA = {(x, x)} andB = {(x, y)







x 6= y}).

To extract classical information about unknownx ∼ U{0,1}n from its fingerprintρ(x) ∈ C
D×D,

we apply toρ(x) a complete projective measurement

PV
def
= {|v〉〈v|







v ∈ V } ,

whereV is a uniformly chosen random orthonormal basis forC
D.8 We will see that the mutual

information between the outcome ofPV andx is at least1/poly(D).

4.1 Technical preliminaries

Optimality of our scheme from Section 3 will follow from several technical lemmas that we state
next.

It is well known that the “distinguishability” of two arbitrary quantum statesσ1 andσ2 is deter-
mined by their trace distance‖σ1 − σ2‖1 . Informally speaking, we will show thata randomly chosen
complete projective measurement distinguishes betweenσ1 andσ2 onlypoly(D) times less efficiently
than a best distinguishing measurement.

LetUD
1 denote the uniform distribution of unit vectors inC

D. The following is a well-known fact
aboutUD

1 .

Claim4.1. Samplingv ∼ UD
1 can be realized via the following algorithm:

1 Independently sampleu1
r , . . . , u

D
r andu1

i , . . . , u
D
i from the standard normal distributionN(0, 1).

2 Letv
def
= u/ ‖u‖ whereu

def
=
(

uj
r + uj

i · i
)D

j=1
.

Proof. The density function ofu is spherically symmetric. �

We need several technical lemmas. First, let us see that the length of the projection of a randomly
chosen vectorv ∼ UD

1 to any subspace cannot be “too concentrated”:

8The idea of using randomly chosen projective measurements in order to prove a lower bound on accessible information
has appeared in [JRW94]. However, our setting and the analysis are different.
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Lemma 4.2. LetA ⊂ [D], 1 ≤ |A| < D. Then for someη1 ∈ Ω
(

1
D2 log D

)

andη2 ∈ Ω
(

1
D2(log D)4

)

,

Pr
v∼UD

1

[

∑

i∈A

∣

∣vi
∣

∣

2 ≥ |A|
D

+ η1

]

≥ η2.

It is easy to see (by linearity of expectation and the fact that |v| = 1) that Ev

[

∑

A

∣

∣vi
∣

∣

2
]

=

|A| /D, and therefore the above statement can be viewed as complementary to concentration bounds.

Proof. In the notation of Claim 4.1,

Pr
v∼UD

1

[

∑

i∈A

∣

∣vi
∣

∣

2 ≥ |A|
D

+ ε

]

= Pr





∑

i6∈A

∣

∣vi
∣

∣

2 ≤ 1 − |A|
D

− ε





= Pr

[

∑

i∈A

∣

∣vi
∣

∣

2

∑

i6∈A |vi|2
≥ |A| +Dε

D − |A| −Dε

]

= Pr

[

∑

i∈A((uj
r)2 + (uj

i )
2)

∑

i6∈A((uj
r)2 + (uj

i )
2)

≥ |A| +Dε

D − |A| −Dε

]

≥ Pr
[

Y + ≥ 2 |A| + 2Dε
]

·Pr
[

Y − ≤ 2D − 2 |A| − 2Dε
]

,

(5)

whereY + def
=
∑

i∈A((uj
r)2 + (uj

i )
2), Y − def

=
∑

i6∈A((uj
r)2 + (uj

i )
2), and the inequality follows from

Y + andY − being mutually independent.
We analyze the behavior ofY + andY −. Let “⊙” stand for either “+” or “−”. The distribution

of Y ⊙ is known asχ2
k⊙ , wherek+ def

= 2 |A| andk−
def
= 2D − 2 |A|; its density function is

ψ⊙(x) =
1

2k⊙/2Γ(k⊙/2)
exp

(

−x
2

)

xk⊙/2−1

(cf. [JKB94]). One can see thatE [Y ⊙] = k⊙ andE
[

(Y ⊙)
2
]

= k⊙
2
+2k⊙ (thus,Var [Y ⊙] = 2k⊙).

For γ⊙
def
= 5k⊙ log(k⊙) + 20, let Y ⊙

γ⊙ be distributed asY ⊙ moduloY ⊙ ≤ γ⊙. The density

function ofY ⊙
γ⊙ is

ψ⊙
γ⊙(x) =

{

αγ⊙ψ(x) if x ≤ γ⊙

0 else
,

for αγ⊙
def
= 1/Pr [Y ⊙ ≤ γ⊙]. Then

k⊙ ≥ E

[

Y ⊙
γ⊙

]

= αγ⊙

(

k⊙ −
∫ ∞

γ⊙

xψ⊙(x) dx

)

≥ k⊙ − ζ⊙

and

E

[

(

Y ⊙
γ⊙

)2
]

= αγ⊙

(

k⊙
2
+ 2k⊙ −

∫ ∞

γ⊙

x2ψ⊙(x) dx

)

≥ k⊙
2
+ 2k⊙ − ζ⊙,

where

ζ⊙
def
=

∫ ∞

γ
x2ψ⊙(x) dx ≤ 1

2k⊙/2Γ(k⊙/2)

∫ ∞

γ⊙

exp
(

−x
4

)

dx (6)
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(the inequality follows fromx2 · exp(−x/2)xk⊙/2−1 ≤ exp(−x/4), as guaranteed by our choice of
γ⊙). In particular,ζ⊙ < 1 andVar

[

Y ⊙
γ

]

≥ 2k⊙ − ζ⊙ > k⊙ and

E

[∣

∣

∣

∣

Y ⊙
γ⊙ − E

[

Y ⊙
γ⊙

]

∣

∣

∣

∣

]

≥ Var

[

Y ⊙
γ⊙

]

/γ⊙ > k⊙/γ⊙. (7)

Denote:
µ⊙

def
= E

[

Y ⊙
γ⊙

]

∆⊙ def
= E

[∣

∣

∣
Y ⊙

γ⊙ − µ⊙
∣

∣

∣

]

µ⊙+
def
= E

[

Y ⊙
γ⊙

∣

∣

∣
Y ⊙

γ⊙ ≥ µ⊙
]

q⊙+
def
= Pr

[

Y ⊙
γ⊙ ≥ µ⊙

]

µ⊙−
def
= E

[

Y ⊙
γ⊙

∣

∣

∣Y ⊙
γ⊙ < µ⊙

]

q⊙−
def
= Pr

[

Y ⊙
γ⊙ < µ⊙

]

Then
q⊙+µ

⊙
+ + q⊙−µ

⊙
− = µ⊙,

q⊙+
(

µ⊙+ − µ⊙
)

+ q⊙−
(

µ⊙ − µ⊙−
)

= ∆⊙,

q⊙+ + q⊙− = 1,

which implies
q⊙+
(

µ⊙+ − µ⊙
)

= q⊙−
(

µ⊙ − µ⊙−
)

= ∆⊙/2. (8)

Clearly,0 ≤ Y ⊙
γ⊙ ≤ γ⊙ implies that

Pr

[

Y ⊙
γ⊙ ≥ µ⊙+ − β

]

>
q⊙+β

γ⊙
and Pr

[

Y ⊙
γ⊙ ≤ µ⊙− + β

]

>
q⊙−β

γ⊙

for everyβ > 0. Choosingβ = (µ+
+ − µ+)/2 gives

Pr

[

Y +
γ+ ≥

(

µ+ + µ+
+

)/

2
]

≥ q++
(

µ+
+ − µ+

)

2γ+
=

∆+

4γ+
,

and similarly, viaβ = (µ− − µ−−)/2 one obtains

Pr

[

Y −
γ+ ≤

(

µ− + µ−−
)/

2
]

≥ ∆−

4γ−
.

On the other hand, (8) implies thatµ+
+ − µ+ ≥ ∆+/2 andµ− − µ−− ≥ ∆−/2. Therefore, from

(7):

Pr

[

Y +
γ ≥ k+ − ζ+ +

k+

2γ+

]

≥ Pr

[

Y +
γ+ ≥ µ+ + ∆+/2

]

≥ ∆+

4γ+
≥ k+

4γ+2 ,

and similarly,

Pr

[

Y −
γ ≤ k− − k−

2γ−

]

≥ k−

4γ−2 .

From (6) it is obvious thatζ+ < 1
4γ+ , and therefore, by the definition ofY +

γ+,

Pr

[

Y + ≥ 2 |A| + 1

4γ+

]

≥ Pr

[

Y +
γ+ ≥ k+ +

1

4γ+

]

≥ k+

4γ+2 .
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By the definition ofY −
γ− and the obvious fact thatPr [Y − ≤ γ−] > 1/2,

Pr

[

Y − ≤ 2D − 2 |A| − 1

2γ−

]

≥ Pr
[

Y − ≤ γ−
]

· Pr

[

Y −
γ− ≤ k− − k−

2γ−

]

>
k−

8γ−2 .

Observe thatk
⊙

γ⊙2 ≥ 1
51D(log D)2

and 1
γ⊙ ≥ 1

11D log D for large enoughD. Together with (5) this

implies

Pr
v∼UD

1

[

∑

i∈A

∣

∣vi
∣

∣

2 ≥ |A|
D

+
1

88D2 logD

]

≥ 1

83232 ·D2(logD)4
,

as required. �

Denote byUbas the uniform distribution of orthonormal bases ofC
D (i.e., the Haar measure). For

ρ ∈ Den[D], we will write PV ∼Ubas(ρ) to denote the distribution of the outcome ofPV (ρ) when
V ∼ Ubas. We will implicitly identify an outcome ofPV ∼Ubas(ρ) with the corresponding unit vector
in C

D.
We need yet another “anti-concentration” statement, this time to say that the outcomes ofPV ∼Ubas(ρ)

cannot be too concentrated for any fixedρ:

Lemma 4.3. Let B be a subset of unit vectors inCD, such thatUD
1 (B) ≥ ε. Then for anyρ ∈

Den[D],

Pr
v∼PV ∼Ubas

(ρ)
[v ∈ B] >

ε4

256
.

Intuitively, by choosingρ adversarially one can selectively “hide” some unit vectorsin C
D from

PV ∼Ubas(ρ). However, only thosev ′s are hidden well that are almost orthogonal to all spectral com-
ponents ofρ, and that cannot happen to too manyv ′s simultaneously; in particular, ifB is sufficiently
large then it is impossible to efficiently avoid all its elements.

Proof. Observe that the distributionUD
1 is the same asPV ∼Ubas(ID/D), and its density function is

constant on the support (unit vectors inC
D) – denote it byφ0. Then by linearity, for anyρ the density

function ofPV ∼Ubas(ρ) is

φρ(v)
def
= φ0 ·D · 〈v|ρ|v〉 .

For δ
def
= ε3/64, let us bound from above the value of

Pr
v∼UD

1

[φρ(v) < δ · φ0] = Pr
UD

1

[〈v|ρ|v〉 < δ/D]. (9)

The expectation of〈v|ρ|v〉 is 1/D, and therefore the value is maximized whenρ has rank one (ifρ
is a mixture that makes the value of〈v|ρ|v〉 more concentrated). On the other hand, for every fixed
u0 andv ∼ UD

1 , the distribution of|〈u0|v〉| only depends on|u0| (and not on the “direction” ofu0).
Therefore, in order to bound (9), we can assume w.l.g. thatρ = |u0〉〈u0|, whereu0 = (1, 0, . . . , 0).
That is,

Pr
v∼UD

1

[φρ(v) < δ · φ0] ≤ Pr
UD

1

[

∣

∣v1
∣

∣ <
√

δ/D
]

,

wherev1 is the first coordinate ofv.
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By Claim 4.1 we have:

Pr
v∼UD

1

[

∣

∣v1
∣

∣ <
√

δ/D
]

= Pr

[

∣

∣u1
∣

∣

/

‖u‖ <
√

δ/D
]

≤ Pr

[

∣

∣u1
∣

∣ < 2
√

δ/ε
]

+ Pr

[

‖u‖2 >
4D

ε

]

.

We know that‖u‖2 ∼ χ2
2D, and therefore its expectation is2D andPr

[

‖u‖2 > 4D/ε
]

< ε/2

by Markov inequality. We also know thatℜ(u1) ∼ N(0, 1), and thereforePr

[

∣

∣u1
∣

∣ < 2
√

δ/ε
]

<

2
√

δ/ε = ε/4. We conclude thatPrv∼UD
1

[φρ(v) < δ · φ0] < 3ε/4.

LetB′ def
= {v ∈ B







φρ(v) ≥ δ · φ0}, then it necessarily holds thatUD
1 (B′) > ε/4. By the defini-

tion ofB′,

Pr
v∼PV ∼Ubas

(ρ)

[

v ∈ B′
]

≥ δ · UD
1 (B′) >

δε

4
=

ε4

256
,

and the result follows. �

The next lemma will be the core of our optimality argument.

Lemma 4.4. Let σ1, σ2, ρ ∈ Den[D], satisfying‖σ1 − σ2‖1 = δ > 0. Then for someξ ∈
Ω
(

δ
D3 log D

)

,

Pr
v∼PV ∼Ubas

(ρ)
[〈v|σ1|v〉 ≥ (1 + ξ) 〈v|σ2|v〉] ∈ Ω

(

(D logD)−20
)

.

Proof. To prove the statement, we will first consider the simpler case whenv ∼ UD
1 , then see what

happens whenv ∼ PV ∼Ubas(ρ).

Let σ′
def
= σ1 − σ2, then

Pr
v∼UD

1

[〈v|σ1|v〉 ≥ (1 + ξ) 〈v|σ2|v〉] = Pr
[〈

v
∣

∣σ′
∣

∣v
〉

≥ ξ 〈v|σ2|v〉
]

≥ Pr
[〈

v
∣

∣σ′
∣

∣v
〉

≥ ξ
]

.

Let σ′ =
∑D

i=1 ei |ui〉〈ui| be a spectral decomposition,A+ def
= {iei > 0} andA− def

= {iei < 0},
then for everyξ

Pr
v∼UD

1

[〈

v
∣

∣σ′
∣

∣v
〉

≥ ξ
]

= Pr

[

∑

i

ei |〈ui|v〉|2 ≥ ξ

]

= Pr





∑

i∈A+

ei |〈ui|v〉|2 ≥ ξ +
∑

i∈A−

−ei |〈ui|v〉|2




≥ Pr





∑

i∈A+

ei |〈ui|v〉|2 ≥ ξ + E
v∼UD

1





∑

i∈A+

ei |〈ui|v〉|2






,

(10)

where the inequality follows from
∑

ei = 0 and the fact that the random values
∑

A+ ei |〈ui|v〉|2 and
∑

A− −ei |〈ui|v〉|2 are anti-correlated whenv ∼ UD
1 .

Observe that
∑

|ei| = δ, and so
∑

A+ ei = δ/2. As Ev

[

|〈u|v〉|2
]

= 1/D for any unit vectoru

and the right-hand side of (10) is symmetric w.r.t. any unitary rotation of the vectors{ui},

Pr
v∼UD

1

[〈

v
∣

∣σ′
∣

∣v
〉

≥ ξ
]

≥ Pr





∑

i∈A+

ei ·
∣

∣vi
∣

∣

2 ≥ ξ +
δ

2D



. (11)
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From Lemma 4.2, for someη1 ∈ Ω
(

1
D2 log D

)

andη2 ∈ Ω
(

1
D2(log D)4

)

Pr
v∼UD

1





∑

i∈A+

∣

∣vi
∣

∣

2 ≥ |A+|
D

+ η1



 ≥ η2.

By the linearity of expectation,

E





∑

i∈A+

ei ·
∣

∣vi
∣

∣

2

∣

∣

∣

∣

∣

∣

∑

i∈A+

∣

∣vi
∣

∣

2 ≥ |A+|
D

+ η1



 ≥ δ

2D
· |A

+| + η1D

|A+| ≥ δ

2D
+
δη1

2D
.

Therefore, for someξ ∈ Ω
(

δ
D3 log D

)

andη3 ∈ Ω
(

1
(D log D)5

)

,

Pr
v∼UD

1





∑

i∈A+

ei ·
∣

∣vi
∣

∣

2 ≥ δ

2D
+ ξ



 = Pr
v∼UD

1





∑

i∈A+

ei ·
∣

∣vi
∣

∣

2 ≥ δ

2D
+
δη1

4D





≥ Pr





∑

i∈A+

∣

∣vi
∣

∣

2 ≥ |A+|
D

+ η1



 ·
(

δη1

4D

)

/

∑

A+

ei

≥ η1η2

2D
= η3.

From (11),Prv∼UD
1

[〈v|σ′|v〉 ≥ ξ] ≥ η3.

Applying Lemma 4.3 to the set
{

v ∈ C
D






〈v|σ′|v〉 ≥ ξ, ‖v‖ = 1
}

, we conclude that

Pr
v∼PV ∼Ubas

(ρ)

[〈

v
∣

∣σ′
∣

∣v
〉

≥ ξ
]

≥ (η3)
4

256
∈ Ω

(

1

(D logD)20

)

,

and the result follows. �

4.2 Optimality statement

The following theorem concludes our optimality argument.

Theorem 4.5. Let Φ = {φ(x)






x ∈ {0, 1}n} ⊂ Den[D] be a quantum fingerprinting scheme that
guarantees error below1/2 − Ω(1). ThenΦ leaksΩ

(

D−47
)

bits of information.

The theorem implies that any quantum fingerprinting scheme that leaksℓ bits aboutx requires
Ω(log(1/ℓ)) qubits, and therefore our mixed-state construction of Section 3.3 (cf. Theorem 3.13) is
optimal. Note that while our constructions of fingerprinting schemes guarantee one-sided error, the
above theorem remains valid also for schemes with two-sidederror. Moreover, Theorem 4.5 theorem
still holds for schemes that only work on average under the balanced uniform input distribution.

Proof. We will show that for anyΦ, a measurementPV chosen at random w.r.t.V ∼ Ubas is likely
to have the following property:The outcome ofP (φ(X)) has mutual informationΩ

(

D−47
)

with the
random variableX ∼ U{0,1}n .

AssumeX = x0. Letρ
def
= Ex∈{0,1}n [φ(x)]. Call a unit vectorv ∈ C

D x0-ε-goodif 〈v|φ(x0)|v〉 ≥
(1 + ε) 〈v|ρ|v〉, whereε ≥ 0.

25



The error guarantee of the theorem implies that‖φ(x0) − ρ‖1 ∈ Ω(1) (as long asn > 0), and
therefore by Lemma 4.4,

Pr
v∼PV ∼Ubas

(ρ)
[v is x0-ξ-good] ∈ Ω

(

(D logD)−20
)

(12)

for someξ ∈ Ω
(

1
/

D3 logD
)

.
For any unit vectorv ∈ C

D, letAv be the set of allx ′s, such thatv is x-ξ-good. Let

p0
def
= Pr

X∼U{0,1}n

v∼PV ∼Ubas
(ρ)

[X ∈ Av] and p1
def
= Pr

X∼U{0,1}n

v∼PV ∼Ubas
(φ(X))

[X ∈ Av].

By the definition ofx0-ε-good we know thatp1 ≥ (1 + ξ) · p0.
Note thatp1 is the “actual” probability of certain event (namely,X ∈ Av), andp0 is what that

probability would have been if the outcome ofPV ∼Ubas(φ(X)) did not depend onX. Based on the
inequality between the two probabilities, we want to show that the outcome of the measurement is
well-correlatedwith the value ofX. For that we use a lower bound onp0, as guaranteed by (12).

Now assume that the underlying distributions areX ∼ U{0,1}n andv ∼ PV ∼Ubas(φ(X)).

H

[

X
∣

∣v
]

≤ −p1 · log2

(

2−n · p1

p0

)

− (1 − p1) · log2

(

2−n · 1 − p1

1 − p0

)

,

as follows from the fact that the maximum entropy of a discrete distribution over a domain of given
size is attained when the distribution is uniform (so, in theright-hand side we consider the situation
whenX is uniform both modulo “X ∈ Av” and modulo “X 6∈ Av”). Then

H

[

X
∣

∣v
]

≤ n− p1 log2

(

p1

p0

)

− (1 − p1) log2

(

1 − p1

1 − p0

)

= n− dKL (D0||D1) ,

whereDi is the distribution over{0, 1} that assigns weightpi to the outcome “0”. By the Pinsker’s
inequality,

dKL (D0||D1) ≥
‖D0 −D1‖2

1

2
= 2(p1 − p0)

2 ≥ 2(ξp0)
2 ∈ Ω

(

D−47
)

,

and therefore
H [X] − H

[

X
∣

∣v
]

∈ Ω
(

D−47
)

.

Sincev is the outcome of a measurement performed on a fingerprint ofX, the result follows. �
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Sen for valuable discussions.

References

[BB84] C. H. Bennett and G. Brassard. Quantum Cryptography:Public Key Distribution and
Coin Tossing.Proceedings of the IEEE International Conference on Computers, Sys-
tems, and Signal Processing, pages 175–179, 1984.

26



[BCWdW01] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum Fingerprinting.Physical
Review Letters, 87(16)(167902), 2001.

[BHL+05] C. H. Bennett, P. Hayden, D. Leung, P. W. Shor, and A. Winter. Remote Preparation
of Quantum States.IEEE Transactions on Information Theory, 51(1):56–74, 2005.

[HLSW04] P. Hayden, D. Leung, P. W. Shor, and A. Winter. Randomizing Quantum States: Con-
structions and Applications.Communications in Mathematical Physics, 250(2):371–
391, 2004.

[JKB94] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions,
Volume 1.Wiley-Interscience, 1994.

[JRW94] R. Jozsa, D. Robb, and W. K. Wootters. Lower Bound forAccessible Information in
Quantum Mechanics.Physical Review A, 49(2):668–677, 1994.

[Leu09] D. Leung. A Survey on Locking of Bipartite Correlations. Journal of Physics: Con-
ference Series, 143(012008), 2009.

[May97] D. Mayers. Unconditionally Secure Quantum Bit Commitment is Impossible.Physical
Review Letters, 78(17):3414–3417, 1997.

[McD98] C. McDiarmid. Concentration.Probabilistic Methods for Algorithmic Discrete Math-
ematics, pages 195–248, 1998.

[NS96] I. Newman and M. Szegedy. Public vs. Private Coin Flips in One Round Communi-
cation Games.Proceedings of the 28th Symposium on Theory of Computing, pages
561–570, 1996.
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A Proof of Lemma 2.6

Let us repeat the lemma:

Lemma 2.6: For every0 < ε ≤ 2, there exists anε-net for the set of pure states inCD with respect to
the trace distance whose size is at most(4/ε)2(D−1).

To prove the lemma we use the following lemma that has been stated in [JRW94], where it was
attributed to [Sýk74].

Lemma A.1. ([JRW94]) Let {|e1〉 , . . . , |eD〉} be an orthonormal basis ofCD. Let |u〉 ∈ C
D

be a random unit vector chosen according to the unitarily invariant probability distribution on the
unit sphere inC

D. LetXi = |〈ei|u〉|2 for i = 1, . . . ,D. Then, the range of theD-tuple ~X =
(X1, . . . ,XD) is equal to the probability simplex

∆D−1 =

{

(x1, . . . , xD) :
D
∑

i=1

xi = 1, xi ≥ 0 (∀i)
}

,

and the probability distribution of~X is uniform on∆D−1.

Corollary A.2. Let |w〉 ∈ C
D be a fixed unit vector. Choose a unit vector|u〉 ∈ C

D randomly as in
Lemma A.1. ThenPr

[

|〈u|w〉|2 ≥ x
]

= (1 − x)D−1 for 0 ≤ x ≤ 1.

Proof of Lemma 2.6.The lemma can be proved by the packing argument in the same wayas Lemma II.4
of [HLSW04] and Lemma 4 of [BHL+05]. The difference is that we apply the packing argument di-
rectly on the set of pure states by using Corollary A.2, instead of applying the packing argument on
the Euclidean spaceR2D as an intermediate step.

Let M be a maximal subset of{|v〉 ∈ C
D : ‖v‖ = 1} such that every pair of distinct vec-

tors |u〉 , |v〉 ∈ M satisfy‖|u〉〈u| − |v〉〈v|‖1 ≥ ε. By the maximality ofM , M is anε-net for the
set of pure states inCD with respect to the trace distance. For each|u〉 ∈ M , consider the open
ball Bε/2(|u〉) = {|w〉 ∈ C

D : ‖w‖ = 1 ∧ ‖|u〉〈u| − |w〉〈w|‖1 < ε/2}. First fix |u〉 ∈ M . Then, if
we pick a unit vector|x〉 uniformly at random, we have

Pr
[

|x〉 ∈ Bε/2(|u〉)
]

= Pr

[

‖|u〉〈u| − |x〉〈x|‖ < ε

2

]

= Pr

[

|〈u|x〉|2 > 1 −
(ε

4

)2
]

=
(ε

4

)2(D−1)
,

by Corollary A.2. By the condition ofM , the |M | open ballsBε/2(|u〉) (|u〉 ∈ M ) are disjoint.
Therefore,

1 ≥ Pr



x ∈
⋃

|u〉∈M

Bε/2(|u〉)



 =
∑

|u〉∈M

Pr[|x〉 ∈ Bε/2(|u〉)] = |M |
( ε

4

)2(D−1)
,

which implies|M | ≤ (4/ε)2(D−1) . �Lemma 2.6
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