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Abstract

We show that it is possible to encode any communication protocol between two parties so that the protocol
succeeds even if a (1/4 − ε) fraction of all symbols transmitted by the parties are corrupted adversarially,
at a cost of increasing the communication in the protocol by a constant factor (the constant depends on
epsilon). This encoding uses a constant sized alphabet. This improves on an earlier result of Schulman, who
showed how to recover when the fraction of errors is bounded by 1/240. We also show how to simulate an
arbitrary protocol with a protocol using the binary alphabet, a constant factor increase in communication
and tolerating a 1/8− ε fraction of errors.

1 Introduction

Suppose a sender wants to send an n bit message to a receiver, but some of the sender’s transmissions may be
received incorrectly. What is the best way to encode the message in order to recover from the errors? This
question, first considered by Shannon [Sha48], initiated the study of error correcting codes, which have since
found applications in many different contexts. The book [PWJ72] is a good reference. In our work, we study the
analogous question in the more general setting of interactive communication. We refer the reader to the book
[KN97] for an introduction to interactive communication protocols. Most models of computation, for example
circuits, branching programs, streaming algorithms, distributed systems, inherently involve communication
protocols, so the following question is well motivated — What is the best way to encode an arbitrary two party
communication protocol, so that the protocol cannot be disrupted by errors in the communication? This more
general problem was first considered by Schulman [Sch96].

There are several ways to model how errors may occur. Throughout this paper, we focus on the so called
worst-case scenario; we only assume that the fraction of transmissions that are received incorrectly is bounded,
and make no assumption about the distribution of errors1. For the case of one way communication considered
by Shannon, it is known how to construct error correcting codes that can encode any n-bit message using Oε(n)
bits, so that even if a (1/4 − ε) fraction of the transmitted bits are received incorrectly, the intended message
can be recovered. If we allow the transmitted message to use symbols from an alphabet whose size depends on
ε but remains independent of n, it is known how to encode the message so that it can be recovered even if a
(1/2− ε) fraction of all symbols are corrupted. Moreover, both the encoding and decoding can be implemented
by efficient algorithms. It is impossible to recover from an error rate of 1/2 if one wants to recover the intended
message exactly, since there can be no valid decoding of a received string that is equal to each of two valid
messages half the time.

In a general interactive protocol, each party must wait for a response from the other party before deciding
on what to send in each round of communication, so it is not clear how to use error correcting codes to encode
the communication of the protocol. If there are R rounds of communication, any encoding of the protocol that
works by encoding each round of communication separately can be disrupted with an error rate of 1/2R — the
errors can completely corrupt the shortest message in the protocol. Thus, this approach is not useful if R is
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large. Nevertheless, Schulman showed that any protocol with T bits of communication can be encoded to give
a protocol that uses a constant sized alphabet, communicates at most O(T ) symbols, and tolerates an error
rate of 1/240.

1.1 Our Results

The main result of our work is a new way to encode protocols to tolerate a large fraction of errors. Given a two
party communication protocol π, taking inputs from some finite set, we write π(x, y) to denote the transcript,
namely the sequence of messages exchanged, when π is run with inputs x, y. We shall consider communication
protocols that are allowed to send symbols from large alphabets. We write |π| for the maximum number of
symbols that can be exchanged on any setting of inputs, namely the communication complexity of π. Of course
every communication protocol with a larger alphabet can be simulated by a protocol with a binary alphabet,
but this translation can change the error rate that a protocol is resilient to.

Our first result uses a non-binary alphabet:

Theorem 1. For every ε, there is an alphabet Σ of size Oε(1) and a transformation of communication protocols

Cε, such that for every binary protocol π, Cε(π) is a protocol using symbols from Σ, |Cε(π)| = Oε(|π|), and for

all inputs x, y, both parties can determine π(x, y) by running Cε(π) if the fraction of errors is at most 1/4− ε.

In Section 6, we discuss an impossibility result for decoding from larger error rates. We consider the problem
where two parties are given bits x, y as inputs and want to compute the parity of the bits. We show that any
protocol for this problem that ensures that at each step the parties have a consensus about whose turn it is to
transmit (despite arbitrary errors) can be disrupted with an error rate of 1/4. There remains the possibility
that the protocol only guarantees a consensus when the error rate is small (say 1/2 − ε). For this case, to the
best of our knowledge it is possible that some encoding can tolerate an error rate as high as 1/2 − ε.

Our second theorem shows how to encode the initial protocol into a protocol using a binary alphabet, and
tolerate 1/8− ε errors.

Theorem 2. For every ε, there is a transformation of communication protocols Cε, such that for every binary

protocol π, Cε(π) is a binary protocol, |Cε(π)| = Oε(|π|), and for all inputs x, y, both parties can determine

π(x, y) by running Cε(π) if the fraction of errors is at most 1/8 − ε.

The bottleneck for proving that our encoding scheme is computationally efficient is the efficiency of encoding
and decoding tree codes (defined in Section 3). Indeed, if there are polynomial time algorithms for those tasks,
then given an algorithm or circuit implementing π, one can very efficiently compute an algorithm or circuit
implementing Cε(π).

The rest of the document is organized as follows. In Section 2 we introduce communication protocols and
the pointer jumping problem. In Section 3 we introduce tree codes. In Sections 4 and 5 we discuss how to
encode arbitrary communication protocols to tolerate errors using a constant sized alphabet, proving Theorem
1. In Section 7 we discuss how to get a result for binary alphabet proving Theorem 2. In Section 6 we describe
the argument to show how one cannot tolerate a 1/4 error rate if the parties are always guaranteed to have
consensus about whose turn it is to speak.

2 Communication protocols, pointer jumping and errors

Given inputs x, y from some domain, a deterministic protocol with alphabet Σ is a rooted tree where every
internal vertex has |Σ| children, each corresponding to an element of the alphabet. Every non-leaf vertex in the
tree v is associated with a function fv(x) (or fv(y)) that maps one of the inputs to an element of Σ. The outcome
of the protocol on inputs x, y is the unique leaf that is reached by first evaluating the function associated with
the root, then evaluating the function associated with the child obtained by the first evaluation, and so on. The
depth of the tree, T is called the communication complexity of the protocol. Two parties who each have access
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to just one of the inputs can compute the outcome of the protocol by communicating at most T symbols to
each other, in the obvious way.

In this paper, we only consider deterministic communication protocols, since our results easily extend to the
case of randomized protocols by viewing a randomized protocol as a distribution over deterministic protocols.

Let T be a rooted binary tree of depth T . Let X denote the set of edges leaving vertices at even depth, and
Y denote the set of edges leaving vertices at odd depth. Given any set A of edges in the tree, we say that A is
consistent if A contains at most one edge leaving every vertex of the tree. We write v(A) to denote the unique
vertex of maximal depth that is reachable from the root using the edges of A.

Let X ⊂ X , Y ⊂ Y be consistent subsets. Then observe that X ∪ Y is also consistent. In the pointer
jumping problem, the two parties are given such sets X,Y and the goal is compute v(X ∪ Y ). Since every
communication protocol with communication complexity t bits can be reduced to solving pointer jumping on a
tree of depth 2t, it will suffice for us to find a protocol that can compute v(X ∪Y ) even if there are transmission
errors.

In this paper, we define communication protocols that are resilient to transmission errors. In our protocols,
every vertex at odd depth will be labeled by a function of the first party’s input, and every vertex at even depth
will be labeled by a function of the second party’s input2. Given such a protocol, each party runs it as above,
using her transmissions and the messages she receives to determine her current position in the protocol tree. In
general, each party will conclude the protocol at a different leaf.

3 Tree Codes

Given a set A, let Ak represent the k-fold Cartesian product A×A× . . .×A, and A≤n denote the set ∪n
k=1A

k.
A d-ary tree code of depth n and alphabet Σ is a rooted d-ary tree of depth n whose edges are labeled with
elements of Σ. The tree defines an encoding function C : [d]≤n → Σ mapping each vertex in the tree to
the label of the final edge on the path leading to the vertex. Define C(v1, v2, . . . , vk) to be the concatenation
C(v1), C(v1, v2), . . . , C(v1, . . . , vk). This is just the labels along the path from the root to the vertex v =
v1, . . . , vk.

Given distinct vertices u, v ∈ [d]k at depth k in the tree, we write `(u, v) to denote the quantity k + 1 −
minj{uj 6= vj}, namely the distance to the closest common ancestor in the tree. The tree code has distance
α if for any k ∈ {1, . . . , n} and any distinct u, v ∈ [d]k, C(u1, u2, . . . , uk) and C(v1, v2, . . . , vk) differ in at least
α · `(u, v) coordinates.

The following theorem was proved in [Sch96]:

Theorem 3. For every 0 < α < 1 there exists a d-ary tree code of depth n and distance α, using an alphabet

of size dOα(1).

Given an arbitrary string z ∈ Σk, we denote by D(z) the vertex v ∈ [d]k that minimizes the hamming
distance between C(v1, . . . , vk) and z.

4 Recovering from errors using a polynomial size alphabet

As a warmup for our construction, we start by showing how to solve the pointer jumping problem even if
(1/4 − ε) fraction of the transmissions are corrupted, using an alphabet of size polynomial in the depth of T .
Set R = dT/εe. Our protocol will be defined over the alphabet

Π = {0, 1, . . . , R} × {0, 1}≤2,

encoded using a tree code. Set d = |Π| and let C : Π≤R → Σ≤R and D : Σ≤R → Π≤R be the encoding and
decoding functions of a d-ary tree code of distance 1− ε.

2We discuss more general types of error correcting protocols, where the turns need not be alternating, in Section 6.
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Given any a ∈ Πk, a represents a set of at most k edges in the binary tree T , computed as follows. Let
ai = (ri, si), where ri ∈ {0, 1, . . . , R} and si ∈ {0, 1}≤2. We think of ri as a pointer to the ri’th edge determined
by a1, . . . , ari , and of si as specifying an edge that is a descendant of the ri’th edge.

Formally, for i = 1, . . . , k, we use the following procedure to determine an edge ei from a:

1. If ri = 0, set e′i to be the edge of depth at most 2 that is specified by the bits si.

2. If ri < i and eri has been defined, let e′i be the edge specified by starting at the child vertex of the edge
eri and then taking (at most) two steps in the tree using the bits si.

3. If e′i has been assigned an edge, and there there is no j < i for which ej, e
′
i share a common parent, set

ei = e′i. Else leave ei undefined.

Given such a string, we write E(a) to denote the set of edges that been assigned to ei for some i in the
process above. Observe that for every edge in E(a), there is a unique index i to which the edge has been
assigned. Further, E(a) is consistent and E(a1, . . . , ai) ⊆ E(a1, . . . , ai+1).

Our protocol will proceed in rounds. In the i’th round, the first party (resp. second party) will compute a
symbol ai (resp. bi) and transmit an element of Σ which is then received as a′i (resp. b′i). The transmissions
will ensure that E(a1, . . . , ai−1) ⊆ X and E(b1, . . . , bi−1) ⊆ Y . Define

Ai =

{

∅ if i = 1,

E(a1, . . . , ai−1) ∪ (E(D(b′1, . . . , b
′
i−1)) ∩ Y) else.

and

Bi =

{

∅ if i = 1,

E(b1, . . . , bi−1) ∪ (E(D(a′1, . . . , a
′
i−1)) ∩ X ) else.

Observe that Ai can always be computed by the first party in round i, and Bi can always be computed by
the second party in round i. Note that Ai and Bi are both consistent.

4.1 Protocol

A sample run of the protocol is illustrated on Figure 1.

1. For i = 1, . . . , R,

First Party If v(Ai) 6= v(Ai ∪X), set ai so that E(a1, . . . , ai) contains the edge out of v(Ai) from the
set X. Else, set ai = (R, 00), so that ai cannot represent any edge. Transmit C(a1, . . . , ai).

Second Party If v(Bi) 6= v(Bi ∪ Y ) set bi so that E(b1, . . . , bi) contains the edge out of v(Bi) from the
set Y . Else, set bi = (R, 00), so that bi cannot represent any edge. Transmit C(b1, . . . , bi).

2. The outcome of the protocol from the first (resp. second) party’s point of view is the vertex v(AR+1)
(resp. v(BR+1)).

Note that the protocol is well defined since if v(Ai) 6= v(Ai ∪X), then v(Ai) must be at even depth, and
E(a1, . . . , ai−1) must contain an edge touching a grandparent of v(Ai) that was transmitted by the first party.
Thus there is always a symbol ai that can extend a1, . . . , ai−i to encode the next edge on the path to v(Ai).
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Figure 1: An illustration of the protocol for recovering from errors using a linear size alphabet. On the top is
the tree T with the edges of X and Y highlighted. The correct output of the protocol is the path P leading
to the leaf L. On the bottom is a possible 12-round execution of the protocol. Each step corresponds to one
symbol over a linearly large alphabet. The highlighted steps correspond to correct edges (that move the protocol
forward) appearing. The times t(i) when the first i steps of P have been stated for the first time are also shown.

4.2 Analysis

Fix any run of the above protocol. We shall argue that if the protocol did not identify the correct vertex
v(X ∪ Y ), then the number of errors in transmissions must have exceeded 2R · (1/4 − ε).

For i ∈ {1, . . . , R}, let m(i) be the largest number such that the first m(i) symbols of D(a′1, . . . , a
′
i) are equal

to a1, . . . , am(i) and the first m(i) symbols of D(b′1, . . . , b
′
i) are equal to b1, . . . , bm(i). Set m(0) = 0.

Let P denote the set of edges along the unique path from the root of the tree to a leaf in the edges
X ∪ Y . Let t(i) be the smallest j for which E(a1, . . . , aj) ∪ E(b1, . . . , bj) contains the first i edges of P . Set
t(i) = R + 1 if no such j exists. Observe that by the definition of E, it must be the case that for any j ≥ t(i),
E(a1, . . . , aj) ∪E(b1, . . . , bj) contains the first i edges of P . Set t(0) = 0.

For i ≤ j in [R], define N(i, j) to be the number of transmission errors in the [i, j] interval of the protocol:

N(i, j) = |{k|i ≤ k ≤ j, ak 6= a′k}|+ |{k|i ≤ k ≤ j, bk 6= b′k}|

If i > j, define N(i, j) = 0.
We first show that if i −m(i) is large, then the distance property of the tree code ensures that there must

be lots of errors in the interval [m(i) + 1, i]:

Lemma 4. N(m(i) + 1, i) ≥ (1− ε)(i−m(i))/2.

Proof. The lemma is trivial if m(i) = i, so let us assume that m(i) < i, and without loss of generality, assume
that am(i)+1 6= D(a′1, . . . , a

′
i)m(i)+1. Since the tree code has distance (1 − ε), the hamming distance between

C(a1, . . . , ai) and C(D(a′1, . . . , a
′
i)) is at least (1− ε)(i −m(i)), and these two agree on the first m(i) symbols.
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Thus the only way these two vertices could be confused in the tree code is if the number of errors in the next
(i−m(i)) symbols is at least (1− ε)(i−m(i))/2.

Next we argue that if the first i rounds do not contain the first k edges on the correct path, then it must be
the case that there is an inconsistency before the first k − 1 edges were announced.

Lemma 5. For i ≥ 0, k ≥ 1, if i+ 1 < t(k), then m(i) < t(k − 1).

Proof. Without loss of generality, assume that k’th edge on the path P is an element of X. Suppose m(i) ≥
t(k − 1) and i + 1 < t(k). Then it must be the case that the first k − 1 edges of P are all in Ai+1, since
these edges have already been announced within the first m(i) transmissions of both parties, yet the k’th edge
is not included in Ai+1. The first party will announce this edge in round i + 1, contradicting the fact that
i+ 1 < t(k).

We can now use these two lemmas to get another bound on the number of errors:

Lemma 6. For i ≥ −1, k ≥ 0, if i+ 1 < t(k), then N(1, i) ≥ (i− k + 1)(1− ε)/2.

Proof. We prove the statement by induction on i + k. For the base case, when i ≤ 0 or k = 0, the bound is
trivially true since the right hand side must be non-positive. For the general case, we have that

N(1, i) = N(1,m(i)) +N(m(i) + 1, i)

Note that this is true even when m(i) = 0 or m(i) = i. Lemma 4 implies that

N(m(i) + 1, i) ≥ (i−m(i))(1 − ε)/2.

By Lemma 5, we have that m(i) < t(k − 1), so we can use the inductive hypothesis to bound

N(1,m(i) − 1) ≥ (m(i)− 1− (k − 1) + 1)(1 − ε)/2 = (m(i) − k + 1)(1 − ε)/2.

Summing these two bounds proves the lemma.

Observe that if m(R) ≥ t(T ), then at the conclusion of the protocol both parties have agreed on the correct
value for v(X∪Y ), since it must be the case that the only path connecting the root to a leaf must be the correct
one, in both AR and BR. Thus the only way the protocol can fail is if m(R) < t(T ).

In this case, we have that N(1, R) ≥ N(1,m(R)) + N(m(R) + 1, R), which by Lemma 6 and Lemma 4 is
at least (m(R)− T )(1− ε)/2 + (R−m(R))(1− ε)/2 = (R− T )(1− ε)/2. Thus the error rate is N(1, R)/2R ≥
(1− ε)2/4 ≥ 1/4 − ε/2.

5 Recovering from errors using a constant size alphabet

In this section, we prove Theorem 1.
Our protocol that uses a constant size alphabet is conceptually quite similar to the protocol from Section

4. As before, each prefix of transmissions of each of the parties shall encode a sequence of edges from the tree.
We shall set R = O(dT/εe) (the number of rounds in our protocol) to be large enough to make the analysis
succeed. Define the alphabet

Γ = {<, 0, 1, >, ∅}.

Set d = |Γ| and let C : Γ≤R → Σ≤R and D : Σ≤R → Γ≤R be the encoding and decoding functions of a d-ary
tree code of distance 1− ε.

Recall that Π = {1, 2, . . . , R} × {0, 1}≤2 was the alphabet used in the previous section. In Section 4 every
string (z1, . . . , zk) ∈ Πk could potentially represent k edges. Here, we shall think of encoding these edges in the
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alphabet Γ as < z1 >< z2 > · · · < zk >. Namely, we replace each zi with its binary representation, delimited
with < and >.

Fix a representation of Π using binary strings, with the property that the length of the encoding for (`, s)
is at most c log ` for some constant c. To formally define our protocol, we need to show how to decode any
string a ∈ Γk to a set of edges from the tree. Fix such an a. For i = 1, 2, . . . , k, we define zi ∈ Π as follows.
If there exists a substring aj , aj+1, . . . , ai such that aj = “ < ”, ai = “ > ” and these two symbols enclose a
binary string, let (`, s) denote the element of Π encoded by this binary string, and set zi = (j − `, s). If there
is no such substring ending at ai, set zi = (i, 00) so that it cannot encode any edge. Let E be the function
mapping elements of Πk to edges in the protocol tree, defined in Section 4, and let a encode the set of edges
E(z1, . . . , zk).

Given such a string a ∈ Γk, we abuse notation and write E(a) to denote the set of edges obtained in the
process above. Observe that as before, E(a) contains at most 1 edge out of every parent in the tree T and
E(a1, . . . , ai) ⊆ E(a1, . . . , ai+1).

Our protocol for the pointer jumping problem is very similar to the protocol from the last section. The
main difference is that an entire edge cannot be transmitted in a single transmission. So instead, the parties
continue to transmit an edge if they were already transmitting the correct edge, and restart if they decide to
transmit a different edge.

As before, the protocol has R rounds. In the i’th round, the first party (resp. second party) will compute
a symbol ai (resp. bi) and transmit an element of Σ which is then received as a′i (resp. b′i). Exactly as in the
last section, for every round i, define

Ai =

{

∅ if i = 1,

E(a1, . . . , ai−1) ∪ (E(D(b′1, . . . , b
′
i−1)) ∩ Y) else.

and

Bi =

{

∅ if i = 1,

E(b1, . . . , bi−1) ∪ (E(D(a′1, . . . , a
′
i−1)) ∩ X ) else.

5.1 Protocol

1. For i = 1, . . . , R,

First Party If v(Ai) 6= v(Ai ∪ X), let e denote the edge out of v(Ai) from X. Let ai be the next
symbol that needs to be transmitted to extend a1, . . . , ai−1 to encode the edge e — namely if e is already
being transmitted in a1, . . . , ai−1, set ai to be the next symbol of the transmission, else set ai = “ < ”. If
v(Ai) = v(Ai ∪X), set ai = (R, 00), so that ai cannot represent any edge. Transmit C(a1, . . . , ai).

Second Party If v(Bi) 6= v(Bi ∪ Y ) let e denote the edge out of v(Bi) from Y . Let bi be the next
symbol that needs to be transmitted to extend b1, . . . , bi−1 to encode the edge e — namely if e is already
being transmitted in b1, . . . , bi−1, set bi to be the next symbol of the transmission, else set bi = “ < ”. If
v(Bi) = v(Bi ∪ Y ), set bi = (R, 00), so that bi cannot represent any edge. Transmit C(b1, . . . , bi).

2. The outcome of the protocol from the first (resp. second) party’s point of view is the vertex v(AR+1)
(resp. v(BR+1)).

5.2 Analysis

The analysis is very similar to the analysis we used before. The main difference is that the transmission of an
edge can involve a logarithmic number of rounds of communication. However, we shall argue that this does not
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hurt the communication of the protocol globally, because on average, the number of bits required to encode each
offset is still constant. Fix any run of the above protocol. We shall argue that if the protocol did not identify
the correct leaf of the tree, then the number of errors in transmissions must have exceeded R(1/4 − ε/2). We
define m(i), t(i) exactly as in the last section. Recall that P denotes the set of edges along the unique path from
the root of the tree to a leaf in the edges X ∪ Y and that N(i, j) denotes the number of errors in transmission
in rounds i through j.

Recall that m(0) = t(0) = 0. It is easy to check that Lemma 4 holds for the new protocol, with exactly the
same proof. Next we prove the analogue to Lemma 5.

Lemma 7. For i ≥ 0, k ≥ 1, if i+ 1 < t(k) then either t(k − 1) > i− c log(i− t(k − 1)), or there exists j such

that m(j) < t(k − 1) and i− c log(i− t(k − 1)) < j ≤ i.

Proof. Without loss of generality, assume that the k’th edge on the path P is an element of X. Suppose
t(k − 1) ≤ i− c log(i− t(k − 1)) and m(j) ≥ t(k − 1) for every round j satisfying i− c log(i− t(k − 1)) < j ≤ i
. Then it must be the case that the first k − 1 edges of P are all in Aj+1, for every such j. Indeed, these
edges have already been announced within the first m(j) transmissions of both parties. The first party will
then announce this edge, which will take at most c log(i − t(k − 1)) rounds of communication. Thus the k’th
edge will be announced by round i+ 1, contradicting the assumption that i+ 1 < t(k).

We shall prove:

Lemma 8. For i ≥ −1, k ≥ 1, i+1 < t(k), then there exist numbers `1, `2, . . . , `k ≥ 0 such that
∑k

s=1 `s ≤ i+1

and N(1, i) ≥
(i−k+1−

∑
k

s=1
c log(`s+2))(1−ε)

2 .

Proof. We prove the lemma by induction on i+k. When i ≤ 0 or k = 1, the lemma is trivially true with `s = 0 for
all s. For the general case, by Lemma 7, there are two possibilities. The first is that t(k−1) > i−c log(i−t(k−1)).
In this case we set `k = i− t(k − 1) and use the inductive hypothesis with i = t(k − 1) − 1 to show that there
exist `1, . . . , `k−1 with

∑k
s=1 `s ≤ i+ 1 such that

N(1, i) ≥ N(1, t(k − 1)− 1)

≥

(

t(k − 1)− 1− (k − 1) + 1−
∑k−1

s=1 c log(`s + 2)
)

(1− ε)

2

=

(

i− (i− t(k − 1))− k + 1−
∑k−1

s=1 c log(`s + 2)
)

(1− ε)

2

≥

(

i− k + 1−
∑k

s=1 c log(`s + 2)
)

(1− ε)

2

The second possibility is that there exists j, such that m(j) < t(k − 1) and i− c log(i− t(k − 1)) < j ≤ i. Set
`k = i − j. We have that N(1, i) ≥ N(1,m(j) − 1) +N(m(j) + 1, j). By the inductive hypothesis, there exist
`1, . . . , `k−1 so that

∑k
s=1 `s ≤ m(j) + i− j ≤ i+ 1 and

N(1,m(j) − 1) ≥

(

m(j)− 1− (k − 1) + 1−
∑k−1

s=1 c log(`s + 2)
)

(1− ε)

2

≥

(

m(j)− k + 1−
∑k−1

s=1 c log(`s + 2)
)

(1− ε)

2

By Lemma 4, N(m(j) + 1, j) ≥ (j −m(j))(1 − ε)/2. Thus

N(1, i) ≥

(

j − k + 1−
∑k−1

s=1 c log(`s + 2)
)

(1− ε)

2
≥

(

i− k + 1−
∑k

s=1 c log(`s + 2)
)

(1− ε)

2
.
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Finally we argue that Lemma 8 implies that m(R) ≥ t(T ) unless the number of errors is larger than
2R(1/4 − ε/2). Suppose m(R) < t(T ). We have that N(1, R) ≥ N(1,m(R) − 1) + N(m(R) + 1, R). If
m(R) < t(T ), using the concavity of log, Lemma 8 implies that

N(1,m(R) − 1)

2R
≥

(

m(R)− T −
∑T

s=1 c log(`s + 2)
)

(1− ε)

2 · 2R

≥

(

m(R)− cT · log
(∑

T

s=1
`s+2T
T

))

(1− ε)

4R

≥
(m(R)− cT · log(3R/T )) (1− ε)

4R
.

By Lemma 4, N(m(R) + 1, R) ≥ (R − m(R))(1 − ε)/2. Thus N(1, R)/2R ≥ (R−cT ·log(3R/T ))(1−ε)
4R . Setting

R = O(T · (c/ε) log(c/ε)) to be large enough, we get that N(1, R)/2R ≥ (1− ε)2/4 ≥ 1/4− ε/2.

6 Lower bound: no encoding beyond 1/4 error

In this section we show that no protocol can recover from an error rate of 1/4, as long as it has a natural
property that we call robustness.

Note that for any protocol to recover form an error rate of ρ, it must be that as long as the total number of
transmission errors is less than a ρ fraction, both parties have a consensus about whose turn it is to transmit
based on their inputs and prior communication. A stronger requirement is to guarantee that both parties
know whose turn it is to speak (and whether the protocol has terminated) for any number of errors in the
transmissions. We call protocols that satisfy this requirement robust. Observe that all of our protocols for
solving the pointer jumping problem were in fact robust, since the two parties send exactly one symbol from Σ
in each step for a fixed pre-determined number of steps. We note that:

Claim 9. If a protocol π is robust, then every execution of π must terminate in the same amount of time, and

which player speaks at step i is determined by i and is independent of the inputs.

Proof. Let π be any robust protocol. Suppose for the sake of contradiction that there are two vertices v1, v2
at the same depth k in the protocol tree which are inconsistent in terms of whether or not the protocol has
terminated, or who the next speaker is. Let x, y′ be inputs such that π(x, y′) passes through v1 and x′, y be
inputs such that π(x′, y) passes through v2. Now imagine what happens when the protocol is run with inputs
x, y with transmission errors such that at every step, the symbols that Alice receives from Bob are consistent
with π(x, y′), and the symbols Bob receives from Alice are consistent with π(x′, y). Then we see that in the
k’th step the parties will be inconsistent states, contradicting the fact that this was a robust protocol.

Consider the following communication problem: Alice is given an input bit x, Bob is given an input bit y
and the goal is for both parties to compute the parity x ⊕ y. We show that no robust deterministic protocol
for computing the parity can recover from 1/4 errors.

Claim 10. No robust protocol can compute x⊕ y correctly and tolerate an error rate of 1/4.

Proof. By Claim 9 we know that every leaf in π has the same depth T . Further, we know that whose turn
it is to speak at step i depends only on i. Assume without loss of generality that Alice speaks in n ≤ T/2
of the rounds. Further assume for simplicity that 2|n. Denote the indices of the steps where A speaks by
1 ≤ i1 < i2 < . . . < in ≤ L.

Now consider the following execution of π, as viewed from Bob’s viewpoint. In every step that Bob speaks,
Bob transmits his message consistent with his input being 0. In the first n/2 times that Alice speaks, her
transmission is received to be consistent with Alice having the input 0. In the remaining n/2 transmissions
of Alice, her transmission is received to be consistent with her having the input 1. From the point of view of
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Bob, this execution is consistent with an execution of π with inputs x = 0, y = 0 and n/2 errors, and is also
consistent with an execution of the protocol with x = 1, y = 0 and n/2 errors. Thus Bob cannot compute x⊕ y
correctly by the end of the protocol if the number of errors is allowed to be as large as n/2.

7 Encoding using the binary alphabet

It is possible to translate our results to the binary alphabet setting. To do this, we need to use a slightly different
definition of tree codes. For a constant p, we label the edges of the tree with binary strings from {0, 1}p. Thus,
the corresponding encoding function C : [d]≤n → {0, 1}p maps each vertex in the tree to a constant-length
binary string that is included in the encoding of the path. As before, the distance of the tree code is α if for
every u, v at the same depth, C(u) and C(v) differ in at least α · `(u, v) coordinates.

We call such a tree code a tree code with binary alphabet. An easy analogue of Theorem 3 is the following:

Theorem 11. For every 0 < α < 1/2 there exists a p = Oα,d(1) and a d-ary tree code of depth n that uses the

binary alphabet and maps every symbol in [d]≤n to a binary string of length p.

Using Theorem 11, Theorem 2 follows in the same manner as Theorem 1 follows from the existence of ordinary
tree codes. We omit the proof here.

Remark 12. More generally, for each constant l and for each ε we can solve the pointer jumping problem with

communication O(T ) even in the presence of a (1/4) · (1− 1/l)− ε fraction of errors, using the alphabet [l].

8 Conclusions and open problems

Our paper is an improvement on Schulman’s [Sch96] work in that it handles a larger (and potentially the
maximum) fraction of errors. In addition, our scheme has no large hidden constants, which would make it, in
principle, practical if explicit efficient constructions of tree codes existed. To date, no constant-rate efficient
constructions are known. There is a simple explicit construction [Sch03], but it only achieves a rate of Θ(1/ log n)
for trees of depth n. Thus a major open problem is:

Open Problem 1: Construct an explicit constant-rate tree code with computationally efficient encoding and
decoding.

Open Problem 2: Although we managed to show that robust protocols cannot tolerate a 1/4 error rate, we
did not succeed in proving that arbitrary protocols must fail with this kind of error. What is the maximum
error rate that can be tolerated?

Open Problem 3: Is there a binary error-correcting scheme that recovers from a β-fraction of errors with
β ≥ 1/8?

Finally, an interesting question to ask is whether any kind of recovery is possible if we lower our requirement
to correctly compute the correct outcome of the original protocol. In the one-way communication setting a rich
body of work on list decoding with up to twice the error exists (see, e.g. [Sud00] for a survey). It is extremely
interesting to see how list-decoding concepts would apply to interactive error-correction, and in particular to
identify the right notion of list-decodable tree codes that would produce such results. This direction may also
hold the key to Open Problems 2 and 3 above.
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