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Abstract

We define a combinatorial checkerboard to be a function f : {1, . . . ,m}d → {1,−1} of the

form f(u1, . . . , ud) =
∏d

i=1 fi(ui) for some functions fi : {1, . . . ,m} → {1,−1}. This is a variant
of combinatorial rectangles, which can be defined in the same way but using {0, 1} instead
of {1,−1}. We consider the problem of constructing explicit pseudorandom generators for
combinatorial checkerboards. This is a generalization of small-bias generators, which correspond
to the case m = 2.

We construct a pseudorandom generator that ǫ-fools all combinatorial checkerboards with
seed length O

(

logm + log d · log log d + log3/2 1
ǫ

)

. Previous work by Impagliazzo, Nisan, and

Wigderson implies a pseudorandom generator with seed length O
(

logm+ log2 d+ log d · log 1
ǫ

)

.

Our seed length is better except when 1
ǫ ≥ dω(log d).

1 Introduction

A central question in the theory of computation is whether randomized algorithms are more powerful
than deterministic algorithms. Some computational problems, such as testing whether a succinctly
described polynomial is the zero polynomial, have efficient randomized algorithms but are not
known to have efficient deterministic algorithms. On the other hand, a line of research in complexity
theory [63, 11, 39, 74, 38, 72, 76] has shown that under widely believed conjectures (namely the
existence of nonuniformly hard functions in certain uniform complexity classes), every polynomial-
time randomized algorithm solving a decision problem can be derandomized to yield a polynomial-
time deterministic algorithm solving the same decision problem. These proofs proceed by using the
hypothesized hard function to construct an efficient pseudorandom generator, which is an algorithm
that stretches a short truly random string (the seed) to a long “pseudorandom” string that is
indistinguishable from a long truly random string by any efficient algorithm. Provided the seed is
short enough, one can then cycle over all the seeds in polynomial time, running the randomized
algorithm using the output of the pseudorandom generator for the randomness, to get a polynomial-
time deterministic algorithm for the same decision problem.

Unfortunately, there are no known results that shed light on how to unconditionally construct
pseudorandom generators that fool arbitrary polynomial-time randomized algorithms. Further-
more, there is formal evidence suggesting that unconditionally derandomizing arbitrary polynomial-
time algorithms is far beyond the reach of current techniques, even if we do not insist on using a
pseudorandom generator [36, 35, 1, 30].
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In light of these barriers, a natural goal is to unconditionally construct pseudorandom generators
with good seed lengths for restricted classes of functions. One such class of functions is those
computed by small-width read-once branching programs, which model randomized space-bounded
computations. The theory of pseudorandomness for space-bounded computations has a long and
rich history [2, 12, 60, 59, 61, 62, 64, 37, 71, 10, 8, 65, 22, 67, 70, 28, 68, 53, 46, 16, 20, 21, 73, 42,
32, 23], including very general results as well as improved results for special cases. One such special
case is linear functions over Z2 [57, 6, 56]. Pseudorandom generators for this class of functions
are called small-bias generators. It is known how to construct small-bias generators whose seed
lengths are optimal up to constant factors [57, 6]. Another special case that has been considered is
combinatorial rectangles [27, 43, 9, 47].

We consider the problem of constructing an explicit pseudorandom generator for a new class of
functions, which we dub combinatorial checkerboards. These functions can be viewed as

• a special case of small-width read-once branching programs,

• a generalization of linear functions over Z2, and

• a variant of combinatorial rectangles.

Other classes of functions for which constructions of good pseudorandom generators are known
include juntas [57, 6], constant-depth circuits [3, 58, 50, 49, 41, 75, 78, 13, 66, 19, 24, 45], low-
degree polynomials [50, 78, 15, 18, 44, 79], polynomial threshold functions [25, 54, 33, 34, 26], and
read-once formulas [17].

1.1 Combinatorial Checkerboards

We give four equivalent ways of defining combinatorial checkerboards, which are parameterized by
two positive integers m and d. Recall that [m] denotes the set of integers {1, 2, . . . ,m}. For us, it
is not important that the elements are integers; we only use [m] as an arbitrary set of size m.

(1) A combinatorial checkerboard can be defined as a subset of [m]d of the following form. There
are sets S1, . . . , Sd ⊆ [m] such that a point (u1, . . . , ud) ∈ [m]d is in the checkerboard if and
only if the number of coordinates i such that ui ∈ Si is odd. (See Figure 1, and note that
unlike the example in the figure, the set Si need not be a contiguous interval.) In contrast, a
combinatorial rectangle can be defined similarly but where a point is in the rectangle if and
only if ui ∈ Si holds for all coordinates i.

(2) A combinatorial checkerboard can be defined as a function from [m]d to {0, 1} computed
by a width-2 length-d degree-m layered branching program of the following form. At layer
i ∈ {1, . . . , d}, the branching program reads the ith symbol of the input and transitions to
layer i + 1, and the set of symbols that cause it to cross from top to bottom is the same as
the set of symbols that cause it to cross from bottom to top (call this set Si). The start state
is the bottom node in layer 1, and the accept state is the top node in layer d+1. (See Figure
2.) In contrast, a combinatorial rectangle can be defined similarly but where the start state
and the accept state are both on top, and at layer i ∈ {1, . . . , d}, the bottom node transitions
to the bottom node in layer i + 1 no matter what the ith symbol is (while the behavior at
the top node is arbitrary).
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(3) A combinatorial checkerboard can be defined as a function from [m]d to {0, 1} computed by
a circuit of the following form. There are d input wires, each carrying a symbol in [m]. Each
input wire feeds into a “gate” that computes an arbitrary function from [m] to {0, 1}, and
the resulting d bits are fed into an XOR gate. (See Figure 3.) In contrast, a combinatorial
rectangle can be defined similarly but where the XOR gate is replaced with an AND gate.

(4) A combinatorial checkerboard can be defined as a function from [m]d to {1,−1} computed
by a circuit of the following form. There are d input wires, each carrying a symbol in [m].
Each input wire feeds into a “gate” that computes an arbitrary function from [m] to {1,−1},
and the resulting d numbers are fed into a multiplication gate. (See Figure 4.) In contrast, a
combinatorial rectangle can be defined similarly but where {1,−1} is replaced with {0, 1}.

For the rest of this paper, we adopt the fourth view.

Definition 1 (Combinatorial Checkerboards). We say f : [m]d → {1,−1} is an (m,d)-
checkerboard if it is of the form f(u1, . . . , ud) =

∏

i∈[d] fi(ui) for some functions fi : [m] → {1,−1}.
We denote this as f =

⊗

i∈[d] fi.

Definition 2 (Pseudorandom Generators). Let C be a class of functions from some finite uni-
verse U to {1,−1}. We say G : {0, 1}s → U is an ǫ-pseudorandom generator for C if for all f ∈ C,
∣

∣Er∈{0,1}s
[

f(G(r))
]

− Eu∈U [f(u)]
∣

∣ ≤ ǫ where r and u are both chosen uniformly at random. We
say s is the seed length of G.
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1.2 Our Result

The rest of this paper is devoted to proving the following theorem.

Theorem 1 (Main Theorem). There exists an explicit ǫ-pseudorandom generator for the class
of (m,d)-checkerboards with seed length O

(

logm+ log d · log log d+ log3/2 1
ǫ

)

.

Informally, when we say explicit we mean that an efficient algorithm with the desired behavior
is exhibited. We do not attempt to precisely quantify the time or space efficiency parameters
throughout this paper. In the case of Theorem 1, the precise meaning is that there exists a uniform
deterministic algorithm A that takes as input the parameters m,d, ǫ and a string in {0, 1}s (where
s is the seed length), outputs an element of [m]d, runs in time poly

(

logm + d + log 1
ǫ

)

, and is
such that for all m,d, ǫ the function A(m,d, ǫ, ·) is an ǫ-pseudorandom generator for the class of
(m,d)-checkerboards. A simple probabilistic argument shows that O

(

logm + log d + log 1
ǫ

)

seed
length can be achieved if we allow nonexplicit pseudorandom generators.

Impagliazzo, Nisan, and Wigderson [37] proved a result for small-width read-once branching
programs which in particular gives an explicit ǫ-pseudorandom generator for (m,d)-checkerboards
with seed length O

(

logm+log2 d+log d · log 1
ǫ

)

. Our seed length is better except when 1
ǫ ≥ dω(log d).

If m is a power of 2, then an (m,d)-checkerboard can be viewed as a polynomial over Z2 of degree
at most log2m with d · log2m variables (since each fi can be viewed as an arbitrary function

from Z
log2 m
2 to Z2). Viola [79] constructed an ǫ-pseudorandom generator for n-variable, degree-k

polynomials over Z2 with seed length O
(

k · log n+ 2k · k · log 1
ǫ

)

, which yields an ǫ-pseudorandom
generator for (m,d)-checkerboards with seed length O

(

logm · log d+m · logm · log 1
ǫ

)

, assuming m is
a power of 2.1 The latter seed length is optimal when m is constant but has very poor dependence
on m. If m = 2, then the degree of the polynomial becomes 1 (that is, a (2, d)-checkerboard
is equivalent to a d-variable affine function over Z2) and the result of [79] degenerates to known
constructions of small-bias generators, which have seed length O

(

log d+ log 1
ǫ

)

.
In concurrent and independent work, Gopalan et al. [32] constructed pseudorandom generators

for what they call combinatorial shapes, which are more general than combinatorial checkerboards.
Their result immediately implies a version of Theorem 1 with seed length O

(

logm+log d+log2 1
ǫ

)

,
which is incomparable to our seed length. One of the components of our proof (Lemma 3 in
Section 3.1 below) contributes O

(

logm + log d · log log d
)

to our seed length, and replacing this
particular component with the result of [32] reduces the contribution to O

(

logm+log d
)

(however,
the construction of [32] is much more complicated than our construction for this component). In
turn, this implies that Theorem 1 actually holds with seed length O

(

logm+ log d+ log3/2 1
ǫ

)

.
For comparison, we mention what is known for combinatorial rectangles. The two best gener-

ators (which have incomparable seed lengths) are due to Impagliazzo, Nisan, and Wigderson [37],
who achieved seed length O

(

logm + log2 d + log d · log 1
ǫ

)

, and Lu [47], who achieved seed length

O
(

logm+ log d+ log3/2 1
ǫ

)

. The latter result is better than the former except when 1
ǫ ≥ dω(log d).

1.3 Overview of the Proof

We partition the set of (m,d)-checkerboards into a “high-weight case” and a “low-weight case”.
We construct a generator that fools high-weight checkerboards and a different generator that fools

1In the proof of Theorem 1, we show that we can assume without loss of generality that m is a power of 2. However,
this is not without loss of generality when we apply the result of [79], because the reduction to the power-of-2 case
blows up m to at least 4md/ǫ.
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low-weight checkerboards, and we combine the two generators to get a single generator that fools
all checkerboards. (This technique has been used before, for example in [56, 46].) We now give our
definition of the weight of a checkerboard.

Definition 3 (Bias and Unbias). The bias of f : U → {1,−1} is β(f) =
∣

∣Eu∈U [f(u)]
∣

∣ where u
is chosen uniformly at random, and the unbias is α(f) = 1− β(f).

Definition 4 (Weight). The weight of an (m,d)-checkerboard f =
⊗

i∈[d] fi is
∑

i∈[d] α(fi).

Observation 1. If f1, . . . , fd, f
′
1, . . . , f

′
d : [m] → {1,−1} are such that

⊗

i∈[d] fi =
⊗

i∈[d] f
′
i , then

for each i ∈ [d] we have fi = ±f ′
i and thus α(fi) = α(f ′

i). In particular, the weight of an (m,d)-
checkerboard is independent of the representation as a tensor product.

The real difficulty in proving Theorem 1 stems from the fact that the biases β(fi) are arbitrary
numbers in [0, 1]. If we knew that each bias β(fi) were either 0 or 1, then the techniques of [46, 42]
would translate straightforwardly to our setting: The techniques of [46] would immediately yield a
pseudorandom generator with seed length O

(

logm·log 1
ǫ+log d+log 1

ǫ ·log log
1
ǫ

)

, and the techniques
of [42] would immediately yield a pseudorandom generator with seed length O

(

logm+log d · log 1
ǫ

)

.
For the known results on combinatorial rectangles [27, 43, 9, 47], there is an analogous (but

different) notion of “bias”, and these results give techniques for handling arbitrary biases in [0, 1].
We adapt these techniques to fool low-weight checkerboards. However, in the case of combinatorial
rectangles, there basically is no “high-weight case” — to fool high-weight rectangles it suffices to
fool low-weight rectangles. In our setting we are not so fortunate, and we must do something
genuinely different to fool high-weight checkerboards. To accomplish the latter, we build on the
techniques of Lovett, Reingold, Trevisan, and Vadhan [46].

The threshold we use to distinguish “high-weight” from “low-weight” is Θ
(

log 1
ǫ

)

.

Lemma 1 (High-Weight Case). There exists a universal constant C such that the following
holds. There exists an explicit ǫ-pseudorandom generator for the class of (m,d)-checkerboards of
weight at least C · log2

1
ǫ with seed length O

(

logm+ log d · log log d+ log 1
ǫ · log log

1
ǫ

)

, provided m
and d are powers of 2.

Lemma 2 (Low-Weight Case). There exists an explicit ǫ-pseudorandom generator for the class
of (m,d)-checkerboards of weight less than C · log2

1
ǫ with seed length O

(

logm + log d + log3/2 1
ǫ

)

,
provided m and d are powers of 2, where C is the constant from Lemma 1.

We derive Theorem 1 from Lemma 1 and Lemma 2 in Section 2. This just amounts to showing
that (i) we can assume without loss of generality that m and d are powers of 2, and (ii) the two
generators can be combined to fool all checkerboards. Both are simple and standard; we include
the arguments for completeness.

We prove Lemma 1 in Section 3. Here is the outline of the proof. Suppose we can construct a
generator with seed length O

(

logm+log d · log log d
)

that fools, within a constant, checkerboards of
at least constant weight. Then we can use the following technique of [46] to get the final generator.
First use a hash function to randomly partition the coordinates into a small number of buckets such
that most buckets have at least constant weight. Then apply the hypothesized generator to each
bucket, but instead of using independent seeds for the different instantiations of the hypothesized
generator, sample the seeds from an appropriate pseudorandom distribution. This technique of [46]
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only contributes an additive O
(

log d+ log 1
ǫ · log log

1
ǫ

)

to the seed length. Thus we just need to be
able to fool, within a constant, checkerboards of at least constant weight. The heart of our proof
of Lemma 1 is a new analysis of the generator of Impagliazzo, Nisan, and Wigderson [37] showing
that for this special case, it suffices to use expander graphs of degree polylog d. In [46], the analysis
of the corresponding part of the argument is considerably simpler because the authors exploit the
fact that in their setting, the bias of each coordinate is either 0 or 1.

We prove Lemma 2 in Section 4. We take as a starting point the techniques of [9, 47]. Numerous
small modifications to these techniques are needed. One bigger modification is the following. Lu’s
proof [47] critically makes use of the Bonferroni inequalities, which state that the probability of
a union of events is alternately upper and lower bounded by the successive truncations of the
inclusion-exclusion formula. In our proof we use an alternative analogous principle which is a bit
tougher to prove than the Bonferroni inequalities, but which follows from elementary combinatorial
techniques, and which may be folklore.

1.4 Preliminaries

Before diving into the proofs, we mention some conventions that we use for convenience throughout
the proofs. We identify {0, 1}s with [2s], and we always use the latter notation. Thus for example,
a pseudorandom generator with seed length s is a function with domain [2s]. We may also identify
[2s] with [2s1 ] × [2s2 ] if s = s1 + s2. We also freely flatten trees of Cartesian products of sets; for
example, we identify

(

(U1 × U2)× (U3 × U4)
)

with U1 × U2 × U3 × U4.

2 Deriving Theorem 1 from Lemma 1 and Lemma 2

In this section we prove Theorem 1.

Definition 5. We say π : [m] × [m] → [m] is a quasigroup operation if for every v ∈ [m], the
mappings u 7→ π(u, v) and u 7→ π(v, u) are both permutations.

Definition 6. We say a class C of (m,d)-checkerboards is closed under permutations if the follow-
ing holds. For all functions f1, . . . , fd : [m] → {1,−1} and all permutations p1, . . . , pd : [m] → [m],
if
⊗

i∈[d] fi ∈ C then
⊗

i∈[d](fi ◦ pi) ∈ C.

Definition 7. Given π : [m] × [m] → [m] and G1 : [2s1 ] → [m]d and G2 : [2s2 ] → [m]d, we define
(

G1 +π G2

)

: [2s1 ]× [2s2 ] → [m]d by
(

G1 +π G2

)

(r1, r2)i = π
(

G1(r1)i, G2(r2)i
)

for i ∈ [d].

Proposition 1. Suppose π : [m] × [m] → [m] is a quasigroup operation, and suppose C1 and C2
are two classes of (m,d)-checkerboards both closed under permutations. If G1 : [2s1 ] → [m]d is an
ǫ-pseudorandom generator for C1 and G2 : [2s2 ] → [m]d is an ǫ-pseudorandom generator for C2,
then G = G1 +π G2 is an ǫ-pseudorandom generator for C1 ∪ C2.

Proof. Consider an arbitrary f ∈ C1 ∪ C2. Assume f ∈ C1; the other case is symmetric. To show
that

∣

∣

∣
Er1∈[2s1 ],r2∈[2s2 ]

[

(f ◦G)(r1, r2)
]

− Eu∈[m]d [f(u)]
∣

∣

∣
≤ ǫ
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it suffices to show that for each r2 ∈ [2s2 ],

∣

∣

∣
Er1∈[2s1 ]

[

(f ◦G)(r1, r2)
]

− Eu∈[m]d [f(u)]
∣

∣

∣
≤ ǫ. (1)

Fix an arbitrary r2 ∈ [2s2 ] and define (v1, . . . , vd) = G2(r2). Define an (m,d)-checkerboard f ′ =
⊗

i∈[d] f
′
i where f ′

i(u) = fi
(

π(u, vi)
)

. Observe that (f ◦ G)(r1, r2) = (f ′ ◦ G1)(r1) holds for each
r1 ∈ [2s1 ], and thus

Er1∈[2s1 ]

[

(f ◦G)(r1, r2)
]

= Er1∈[2s1 ]

[

(f ′ ◦G1)(r1)
]

(2)

(this holds even if π is not a quasigroup operation). Observe that Eu∈[m][fi(u)] = Eu∈[m][f
′
i(u)]

holds for each i ∈ [d] since π is a quasigroup operation, and thus

Eu∈[m]d [f(u)] = Eu∈[m]d [f
′(u)]. (3)

Since C1 is closed under permutations and f ∈ C1, we have f ′ ∈ C1. Since G1 is an ǫ-pseudorandom
generator for C1, we have

∣

∣

∣
Er1∈[2s1 ]

[

(f ′ ◦G1)(r1)
]

− Eu∈[m]d [f
′(u)]

∣

∣

∣
≤ ǫ. (4)

Now Inequality (1) follows from Equality (2), Equality (3), and Inequality (4).

Proposition 2. Suppose that for some W there exists an explicit ǫ-pseudorandom generator G1

for the class C1 of (m,d)-checkerboards of weight at least W with seed length s1, and there exists an
explicit ǫ-pseudorandom generator G2 for the class C2 of (m,d)-checkerboards of weight less than
W with seed length s2. Then there exists an explicit ǫ-pseudorandom generator for the class of all
(m,d)-checkerboards with seed length s1 + s2.

Proof. Let π : [m]× [m] → [m] be any explicit quasigroup operation. For example, we can identify
[m] with {0, 1, . . . ,m−1} and let π be addition modulo m. Observe that both C1 and C2 are closed
under permutations. Then Proposition 1 guarantees that G1 +π G2 is an explicit ǫ-pseudorandom
generator for C1 ∪ C2, which is the class of all (m,d)-checkerboards. Furthermore, G1 +π G2 has
seed length s1 + s2.

Proposition 2 is also used in the proof of Lemma 2. We are now ready to prove Theorem 1.

Proof of Theorem 1. Given Lemma 1, Lemma 2, and Proposition 2, the only thing remaining is
to handle when m or d is not a power of 2. Let m′ be the smallest power of 2 that is at least
4md/ǫ, let d′ be the smallest power of 2 that is at least d, and let ǫ′ = ǫ/2. For the parameters
m′, d′, ǫ′, combining Lemma 1 with Lemma 2 using Proposition 2 (with W = C · log2

1
ǫ′ where C is

the constant from Lemma 1) we find that there exists an explicit ǫ′-pseudorandom generator G′ for
the class of (m′, d′)-checkerboards with seed length s = O

(

logm′ + log d′ · log log d′ + log3/2 1
ǫ′

)

=

O
(

logm+ log d · log log d+ log3/2 1
ǫ

)

.
Now let h : [m′] → [m] be any explicit function such that every element of [m] has at least

⌊

m′

m

⌋

preimages and at most
⌈

m′

m

⌉

preimages. Define H : [m′]d
′

→ [m]d by H(u1, . . . , ud′) =
(

h(u1), . . . , h(ud)
)

. Then we claim that the function G = H ◦ G′, which also has seed length

7



s, is an ǫ-pseudorandom generator for the class of (m,d)-checkerboards. Consider an arbitrary
(m,d)-checkerboard f =

⊗

i∈[d] fi, and define f ′ = f ◦H. Notice that f ′ =
⊗

i∈[d′] f
′
i where

f ′
i =

{

fi ◦ h if i ∈ [d]

1 otherwise

where 1 denotes the constant 1 function on [m′]. Since f ′ is an (m′, d′)-checkerboard, we have

∣

∣

∣
Er∈[2s]

[

(f ′ ◦G′)(r)
]

− Eu∈[m′]d′ [f
′(u)]

∣

∣

∣
≤ ǫ/2. (5)

Since f ◦G = f ′ ◦G′, we have

Er∈[2s]

[

(f ◦G)(r)
]

= Er∈[2s]

[

(f ′ ◦G′)(r)
]

. (6)

A simple calculation shows that for each i ∈ [d] we have

∣

∣

∣
Eu∈[m′]

[

(fi ◦ h)(u)
]

− Eu∈[m][fi(u)]
∣

∣

∣
≤ 2m/m′ ≤ ǫ/2d.

Thus we have

∣

∣Eu∈[m′]d′ [f
′(u)]− Eu∈[m]d[f(u)]

∣

∣ =
∣

∣

∣

∏

i∈[d] Eu∈[m′]

[

(fi ◦ h)(u)
]

−
∏

i∈[d] Eu∈[m][fi(u)]
∣

∣

∣

≤
∑

i∈[d]

∣

∣

∣
Eu∈[m′]

[

(fi ◦ h)(u)
]

− Eu∈[m][fi(u)]
∣

∣

∣

≤ ǫ/2

where the second line follows by the simple fact that for all x1, . . . , xd, y1, . . . , yd ∈ [−1, 1] we have
∣

∣

∏

i∈[d] xi−
∏

i∈[d] yi
∣

∣ ≤
∑

i∈[d] |xi − yi|. Combining this with Inequality (5) and Equality (6) yields

∣

∣

∣
Er∈[2s]

[

(f ◦G)(r)
]

− Eu∈[m]d [f(u)]
∣

∣

∣
≤ ǫ.

3 The High-Weight Case

This section is devoted to the proof of Lemma 1. The main component in the proof of Lemma 1 is
Lemma 3 below, and the main component in the proof of Lemma 3 is Lemma 8 below. We prove
these three lemmas in Section 3.1, Section 3.2, and Section 3.3 respectively.

3.1 Proof of Lemma 1

We first discuss notation. We use G to denote the generator we construct to witness Lemma 1.
The parameters m,d, ǫ are fixed, with m and d powers of 2. We can also assume without loss of
generality that log2

1
ǫ is a power of 2, since otherwise we could decrease ǫ to make this so, while only

affecting the seed length by a constant factor. For the rest of this section, we define b = 16 · log2
1
ǫ ,

which represents the number of “buckets” of a certain hash function. We use i ∈ [d] to index
coordinates of the original checkerboard and j ∈ [b] to index buckets. The construction has three
steps, and we use s1, s2, s3 to denote the contributions of the three steps to the final seed length s.
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Lemma 3 (Step 1). There exists an explicit function G1 : [2
s1 ] → [m]d with s1 = O

(

logm+log d·
log log d

)

such that if f is an (m,d)-checkerboard of weight at least 1, then β(f ◦G1) ≤ 3/4.

Lemma 4 (Step 2). There exists an explicit function G2 : [2
s1 ]×[2s2 ] → [2s1 ]b with s2 = O

(

log 1
ǫ

)

such that the following holds. Suppose g =
⊗

j∈[b] gj is a (2s1 , b)-checkerboard such that

Prj∈[b]
[

β(gj) > 3/4
]

≤ 1/16

where j is chosen uniformly at random. Then β(g ◦G2) ≤ ǫ/4.

Lemma 5 (Step 3). There exists a universal constant C ≥ 1 and an explicit function G3 : [2
s3 ]×

[d] → [b] with s3 = O
(

log d+log 1
ǫ ·log log

1
ǫ

)

such that the following holds. Suppose α1, . . . , αd ∈ [0, 1]
are such that

∑

i∈[d] αi ≥ C · log2
1
ǫ . Then

Prr3∈[2s3 ]

[

Prj∈[b]

[

∑

i : G3(r3,i)=j αi < 1
]

> 1/16

]

≤ ǫ/4

where r3 and j are chosen uniformly at random.

We prove Lemma 3 in Section 3.2. The proof involves a new analysis of the generator of
Impagliazzo, Nisan, and Wigderson [37] for the setting of combinatorial checkerboards. The heart
of the analysis, which we call the Tree Labeling Lemma, is proven in Section 3.3.

Lovett et al. [46] implicitly proved Lemma 4, although they did not phrase it in terms of
combinatorial checkerboards. Their proof (which we do not reproduce here) uses an instantiation
of the generator of Impagliazzo, Nisan, and Wigderson [37].

In Lemma 5, G3 is viewed as a family of hash functions parameterized by the first argument.
Lovett et al. [46] proved Lemma 5 assuming each number αi is 0 or 1, but their proof goes through
for arbitrary αi ∈ [0, 1]. Their proof (which we do not reproduce here) makes use of a concentration
result for sums of k-wise independent random variables, due to Bellare and Rompel [14].

We now show how Lemma 1 follows from Lemma 3, Lemma 4, and Lemma 5.

Proof of Lemma 1. We construct a generator G : [2s] → [m]d with s = s1 + s2 + s3 = O
(

logm +
log d · log log d+ log 1

ǫ · log log
1
ǫ

)

that witnesses Lemma 1. Identifying [2s] with [2s1 ]× [2s2 ]× [2s3 ],
we let

G(r1, r2, r3)i = G1

(

G2(r1, r2)G3(r3,i)

)

i

for i ∈ [d]. That is, the generator first runs G2(r1, r2) to obtain b seeds for G1 and then it runs G1

on each of these seeds. From the execution of G1 on the jth seed, the generator obtains d values in
[m] but it only keeps those corresponding to indices in the jth bucket of the hash function G3(r3, ·).

We claim that G witnesses Lemma 1. Consider an arbitrary (m,d)-checkerboard f =
⊗

i∈[d] fi

of weight at least C · log2
1
ǫ where C is the constant from Lemma 5. Note that

β(f) =
∏

i∈[d] β(fi) ≤ e−
∑

i∈[d] α(fi) ≤ ǫ/2.

We just need to argue that β(f ◦G) ≤ ǫ/2, because then it follows that

∣

∣

∣
Er∈[2s]

[

(f ◦G)(r)
]

− Eu∈[m]d [f(u)]
∣

∣

∣
≤ β(f ◦G) + β(f) ≤ ǫ/2 + ǫ/2 = ǫ.
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Define

Bad =

{

r3 ∈ [2s3 ] : Prj∈[b]

[

∑

i : G3(r3,i)=j α(fi) < 1
]

> 1/16

}

and let Good = [2s3 ]\Bad. Applying Lemma 5 with αi = α(fi) for each i ∈ [d], we find that
Prr3∈[2s3 ]

[

r3 ∈ Bad
]

≤ ǫ/4. We claim that for each r3 ∈ Good,
∣

∣

∣
Er1∈[2s1 ],r2∈[2s2 ]

[

(f ◦G)(r1, r2, r3)
]

∣

∣

∣
≤ ǫ/4. (7)

This will finish the argument since then

β(f ◦G) ≤
∣

∣

∣
Er1∈[2s1 ],r2∈[2s2 ],r3∈[2s3 ]

[

(f ◦G)(r1, r2, r3)
∣

∣ r3 ∈ Good
]

∣

∣

∣
+ Prr3∈[2s3 ]

[

r3 ∈ Bad
]

≤ ǫ/4 + ǫ/4

= ǫ/2.

To prove the claim, fix an arbitrary r3 ∈ Good. For each j ∈ [b] define an (m,d)-checkerboard

f (j) =
⊗

i∈[d] f
(j)
i by

f
(j)
i =

{

fi if G3(r3, i) = j

1 otherwise

where 1 denotes the constant 1 function on [m]. Define a (2s1 , b)-checkerboard g =
⊗

j∈[b] gj by

gj = f (j) ◦G1. Note that for each r1 ∈ [2s1 ], r2 ∈ [2s2 ], we have

(g ◦G2)(r1, r2) =
∏

j∈[b] gj
(

G2(r1, r2)j
)

=
∏

j∈[b]

∏

i∈[d] f
(j)
i

(

G1

(

G2(r1, r2)j
)

i

)

=
∏

j∈[b]

∏

i : G3(r3,i)=j fi

(

G1

(

G2(r1, r2)j
)

i

)

=
∏

i∈[d] fi

(

G1

(

G2(r1, r2)G3(r3,i)

)

i

)

= (f ◦G)(r1, r2, r3)

by commutativity of multiplication. It follows that

Er1∈[2s1 ],r2∈[2s2 ]

[

(f ◦G)(r1, r2, r3)
]

= Er1∈[2s1 ],r2∈[2s2 ]

[

(g ◦G2)(r1, r2)
]

and hence to prove Inequality (7) it suffices to show that β(g◦G2) ≤ ǫ/4. If
∑

i : G3(r3,i)=j α(fi) ≥ 1

then the weight of f (j) is at least 1 and thus by Lemma 3 we have β(gj) ≤ 3/4. Since r3 ∈ Good,
we have Prj∈[b]

[

β(gj) > 3/4
]

≤ 1/16. Thus Lemma 4 implies that β(g ◦G2) ≤ ǫ/4, as desired.

3.2 Proof of Lemma 3

In this section we prove Lemma 3. The proof uses explicit constructions of expander graphs. One
can view a (2n, 2k, λ)-expander as a symmetric 2n× 2n matrix M of nonnegative integers such that
each row and each column sums to 2k, and such that every eigenvalue of M/2k, except the first, is
at most λ in absolute value. An equivalent way of viewing an expander is as a regular symmetric
directed multigraph on 2n vertices with degree 2k whose adjacency matrix is M . A third view,
which we use, is a function E : [2n+k] → [2n]× [2n] that maps the edges (of which there are 2n+k,
and which are identified with the elements of [2n+k] in an arbitrary way) to their (head, tail) pairs.
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Definition 8. A (2n, 2k, λ)-expander is a function E : [2n+k] → [2n] × [2n] such that the 2n × 2n

matrix M defined by Mν1,ν2 =
∣

∣E−1(ν1, ν2)
∣

∣ satisfies the following: M is symmetric, each row and
each column sums to 2k, and every eigenvalue of M/2k, except the first, is at most λ in absolute
value.

Many explicit constructions of good expanders are known [51, 29, 40, 7, 5, 48, 52, 55, 69]. The
Gabber-Galil construction [29] in particular yields the following.

Lemma 6. For every λ > 0 there exists an integer k = O
(

log 1
λ

)

such that for all integers n ≥ 1
there exists an explicit (2n, 2k, λ)-expander.

We use the classic Expander Mixing Lemma, which is generally attributed to [4].

Lemma 7 (Expander Mixing Lemma). For every (2n, 2k, λ)-expander E, every S ⊆ [2n], and
every T ⊆ [2n], we have

∣

∣

∣
Prµ∈[2n+k ]

[

E(µ) ∈ S × T
]

− Prν∈[2n][ν ∈ S] · Prν∈[2n][ν ∈ T ]
∣

∣

∣

≤ λ
√

Prν∈[2n][ν ∈ S] · Prν∈[2n][ν ∈ T ]

where µ and ν are both chosen uniformly at random.

Definition 9 (Cartesian Product with Respect to E). Given a (2n, 2k, λ)-expander E and
two functions h1, h2 : [2n] → U for some finite U , we define h1 ×E h2 : [2

n+k] → U × U by

(

h1 ×E h2
)

(µ) =
(

h1
(

E(µ)1
)

, h2
(

E(µ)2
)

)

.

In other words, h1 ×E h2 =
(

h1 × h2
)

◦ E.

Definition 10 (Tensor Product with Respect to E). Given a (2n, 2k, λ)-expander E and two
functions h1, h2 : [2

n] → {1,−1}, we define h1 ⊗E h2 : [2
n+k] → {1,−1} by

(

h1 ⊗E h2
)

(µ) = h1
(

E(µ)1
)

· h2
(

E(µ)2
)

.

In other words, h1 ⊗E h2 =
(

h1 ⊗ h2
)

◦ E.

Observation 2. For all (2n, 2k, λ)-expanders E and all functions g1, g2 : [2n] → U and h1, h2 :
U → {1,−1} for some finite U , we have

(

h1 ⊗ h2
)

◦
(

g1 ×E g2
)

=
(

h1 ◦ g1
)

⊗E

(

h2 ◦ g2
)

.

Proposition 3. For all (2n, 2k, λ)-expanders E and all functions h1, h2 : [2n] → {1,−1}, we have

β
(

h1 ⊗E h2
)

≤ β(h1)β(h2) + λ ·
(

α(h1) + α(h2)
)

.

Proof. We may assume without loss of generality that Eν∈[2n][h1(ν)] ≥ 0 and Eν∈[2n][h2(ν)] ≥ 0
because replacing h1 by −h1 and/or h2 by −h2 changes none of the quantities in the inequality we
wish to prove. Now we have

β
(

h1 ⊗E h2
)

− β(h1)β(h2)
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≤
∣

∣

∣
Eµ∈[2n+k]

[(

h1 ⊗E h2
)

(µ)
]

− Eν∈[2n][h1(ν)] · Eν∈[2n][h2(ν)]
∣

∣

∣

=
∣

∣

∣
Eµ∈[2n+k]

[(

h1 ⊗E h2
)

(µ)
]

− Eν1∈[2n],ν2∈[2n]

[(

h1 ⊗ h2
)

(ν1, ν2)
]

∣

∣

∣

= 2 ·
∣

∣

∣
Prµ∈[2n+k ]

[(

h1 ⊗E h2
)

(µ) = −1
]

− Prν1∈[2n],ν2∈[2n]
[(

h1 ⊗ h2
)

(ν1, ν2) = −1
]

∣

∣

∣

≤ 2 ·
∣

∣

∣
Prµ∈[2n+k ]

[(

h1 ×E h2
)

(µ) = (−1, 1)
]

− Prν1∈[2n],ν2∈[2n]
[(

h1 × h2
)

(ν1, ν2) = (−1, 1)
]

∣

∣

∣
+

2 ·
∣

∣

∣
Prµ∈[2n+k ]

[(

h1 ×E h2
)

(µ) = (1,−1)
]

− Prν1∈[2n],ν2∈[2n]
[(

h1 × h2
)

(ν1, ν2) = (1,−1)
]

∣

∣

∣

by simple manipulations. Since every row of the matrix corresponding to E has the same sum, we
find that

Prµ∈[2n+k ]

[(

h1 ×E h2
)

(µ)1 = −1
]

= Prν1∈[2n]
[

h1(ν1) = −1
]

and thus
∣

∣

∣
Prµ∈[2n+k ]

[(

h1 ×E h2
)

(µ) = (−1, 1)
]

− Prν1∈[2n],ν2∈[2n]
[(

h1 × h2
)

(ν1, ν2) = (−1, 1)
]

∣

∣

∣

=
∣

∣

∣
Prµ∈[2n+k ]

[(

h1 ×E h2
)

(µ) = (−1,−1)
]

− Prν1∈[2n],ν2∈[2n]
[(

h1 × h2
)

(ν1, ν2) = (−1,−1)
]

∣

∣

∣

≤ λ
√

Prν∈[2n]
[

h1(ν) = −1
]

· Prν∈[2n]
[

h2(ν) = −1
]

= 1
2λ

√

α(h1)α(h2)

by applying the Expander Mixing Lemma with S = h−1
1 (−1) and T = h−1

2 (−1) and using the fact
that α(h1) = 2·Prν∈[2n]

[

h1(ν) = −1
]

and α(h2) = 2·Prν∈[2n]
[

h2(ν) = −1
]

. A symmetric argument
gives

∣

∣

∣
Prµ∈[2n+k]

[(

h1 ×E h2
)

(µ) = (1,−1)
]

− Prν1∈[2n],ν2∈[2n]
[(

h1 × h2
)

(ν1, ν2) = (1,−1)
]

∣

∣

∣

≤ 1
2λ

√

α(h1)α(h2).

Putting the pieces together, we have

β
(

h1 ⊗E h2
)

− β(h1)β(h2) ≤ 2λ
√

α(h1)α(h2) ≤ λ ·
(

α(h1) + α(h2)
)

by the arithmetic mean – geometric mean inequality.

In the proof of Proposition 3 we showed a stronger bound than the one given in the statement,
and we weakened it via the arithmetic mean – geometric mean inequality. We did this because
our arguments exploit the additive structure of the weaker bound. A result similar to Proposition
3 was proven in [46], though the proof in that paper is direct (not going through the Expander
Mixing Lemma) and achieves a slightly different bound.

We are now ready to prove Lemma 3.

Proof of Lemma 3. The generator G1 we construct has the same form as the generator of Impagli-
azzo, Nisan, and Wigderson [37] but with a different setting of parameters.

For ℓ = 0, . . . , log2 d we define a function G
(ℓ)
1 :

[

2log2 m+kℓ
]

→ [m]2
ℓ
as follows, where k =

O(log log d) is the value corresponding to λ = 1
8 log2 d

according to Lemma 6. We let G
(0)
1 be

the identity function, and for ℓ > 0 we let G
(ℓ)
1 = G

(ℓ−1)
1 ×Eℓ

G
(ℓ−1)
1 where Eℓ is an explicit
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(

2log2 m+k(ℓ−1), 2k, λ
)

-expander. Then we take G1 = G
(log2 d)
1 . Note that the seed length of G1 is

s1 = log2m+ k · log2 d = O
(

logm+ log d · log log d
)

as required.
We claim that G1 witnesses Lemma 3. Let f =

⊗

i∈[d] fi be an arbitrary (m,d)-checkerboard
of weight at least 1. Consider a full binary tree with exactly d leaves which correspond to the
coordinates i = 1, . . . , d from left to right. Let ρ denote the root. We say the leaves are at level 0,
their parents are at level 1, and so on, with ρ at level log2 d. For each node v at level ℓ we define
a function f (v) : [m]2

ℓ
→ {1,−1} as follows. If v is a leaf, say the ith one, then we let f (v) = fi.

If v is an internal node with children v1 and v2 then we let f (v) = f (v1) ⊗ f (v2). In other words,

f (v) =
⊗

i∈[2ℓ] f
(v)
i where f

(v)
i = fiv+i−1 where iv is the index of the leftmost leaf in v’s subtree.

Observe that f = f (ρ). For each node v at level ℓ we define F (v) = f (v) ◦G
(ℓ)
1 .

Thus our goal is to show that β
(

F (ρ)
)

≤ 3/4. For each node v at level ℓ ≥ 1 with children v1

and v2, applying Observation 2 with h1 = f (v1) and h2 = f (v2) and g1 = g2 = G
(ℓ−1)
1 we find that

F (v) = F (v1) ⊗Eℓ
F (v2). Now we have the following two things.

(i) For each internal node v with children v1 and v2, applying Proposition 3 with h1 = F (v1) and
h2 = F (v2) we find that

β
(

F (v)
)

≤ β
(

F (v1)
)

β
(

F (v2)
)

+ λ ·
(

α
(

F (v1)
)

+ α
(

F (v2)
)

)

.

(ii) For each leaf v, say the ith one, we have f (v) ◦G
(0)
1 = fi, and hence

∑

leaves v α
(

F (v)
)

=
∑

i∈[d] α(fi) ≥ 1.

Using the notation βv = β
(

F (v)
)

and αv = α
(

F (v)
)

for each node v, Lemma 3 now follows imme-
diately from the following lemma, which is proved in Section 3.3.

Lemma 8 (Tree Labeling Lemma). Suppose a full binary tree with d leaves has each node v
labeled with numbers αv, βv ∈ [0, 1] with αv + βv = 1, such that

(i) for each internal node v with children v1 and v2 we have βv ≤ βv1βv2 + λ ·
(

αv1 + αv2

)

where
λ = 1

8 log2 d
, and

(ii)
∑

leaves v αv ≥ 1.

Then the root node ρ satisfies βρ ≤ 3/4.

3.3 Proof of the Tree Labeling Lemma

We now prove Lemma 8. We give the intuition in Section 3.3.1 and then the formal argument in
Section 3.3.2.

3.3.1 Intuition

Very roughly, the intuition is as follows. For each node v, βv represents an approximation to
the product of βw over all the leaves w in v’s subtree. Thus for the root ρ, βρ represents an
approximation to

∏

leaves v βv ≤ e−
∑

leaves v αv ≤ 1/e. However, each internal node v introduces an
“error” of λ ·

(

αv1 + αv2

)

in addition to the errors already accumulated at the children v1 and v2.
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If these errors are small on average throughout the tree, then βρ will be small. On the other hand,
if the errors are large on average, then this means the labels αv are large on average and hence the
labels βv are small on average, so we expect βρ to be small in this case as well. However, this is
just intuition for why the lemma is true, and the formal argument does not follow the dichotomy
suggested by this intuition.

In the formal argument we attempt to reduce to a “worst-case scenario”, by which we mean that
all the inequalities in both (i) and (ii) in the statement of Lemma 8 hold as equalities. Provided
the tree obeys a certain “monotonicity” property, we can decrease the α labels and increase the β
labels to reach such a worst-case scenario. For a worst-case scenario, we can argue that the “errors”
(as in the previous paragraph) must be small on average, and thus the new value of βρ must be
small. Since we only increased all the β labels, the original value of βρ must also be small.

It turns out that the aforementioned monotonicity property is obeyed provided the β labels
of all nodes are not too small. What if βv is too small for some node v? Then we would like to
conclude that βρ is small. Unfortunately, in general it might be the case that βρ > βv, for example
if v is a child of ρ and the other child of ρ has a β label very close to 1.2 However, a calculation
shows that βρ cannot be too much larger than βv, so we are still safe.

3.3.2 Formal Argument

First, suppose there exists a node v with βv ≤ 1/2. Then we can prove βρ ≤ 3/4 as follows. Let
v0, v1, v2, . . . , vℓ denote the path from v to ρ, with v = v0 and ρ = vℓ. Then for each i ∈ {1, . . . , ℓ},
we have βvi ≤ βvi−1 + 2λ by condition (i) in the statement of Lemma 8. Since ℓ ≤ log2 d, we
conclude that

βρ ≤ βv + 2λ · log2 d = βv + 1/4 ≤ 3/4.

Thus we are done, assuming there exists a node v with βv ≤ 1/2. To prove the latter, suppose
for contradiction that βv > 1/2 holds for all v. We show that this implies βρ ≤ 1/2, which is a
contradiction.

Let us assign new labels α′
v, β

′
v ∈ [0, 1] with α′

v + β′
v = 1 to each node v as follows. For the leaf

nodes, let α′
v equal αv except arbitrarily decrease some of them so as to achieve

∑

leaves v α
′
v = 1.

Then working our way up the tree, for each internal node v with children v1 and v2 let β′
v =

β′
v1β

′
v2 + λ ·

(

α′
v1 + α′

v2

)

. For each internal node v with children v1 and v2, define the error label
δ′v = λ ·

(

α′
v1 + α′

v2

)

, and for a leaf v define δ′v = 0. We say the leaves are at level 0, their parents
are at level 1, and so on, with ρ at level log2 d. We have the following three claims.

Claim 1. For each node v, we have β′
v ≤

∏

leaves w in v’s subtree
β′
w +

∑

nodes w in v’s subtree
δ′w.

Claim 2. For each node v at level 2 or higher with children v1 and v2, we have δ′v ≤ δ′v1 + δ′v2 .

Claim 3. For each node v, we have β′
v ≥ βv.

We now stitch the three claims together to get the desired contradiction. By Claim 1 we have

β′
ρ ≤

∏

leaves v β
′
v +

∑

nodes v δ
′
v ≤ e−

∑
leaves v α′

v +
∑

nodes v δ
′
v = 1/e +

∑

nodes v δ
′
v.

2This issue would arise even if we tried to take advantage of the stronger version of Proposition 3 that results by
not applying the arithmetic mean – geometric mean inequality.
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Claim 2 implies that for each ℓ ∈ {2, . . . , log2 d} we have
∑

nodes v at level ℓ δ
′
v ≤

∑

nodes v at level ℓ− 1 δ
′
v .

Since
∑

leaves v δ
′
v = 0 and

∑

nodes v at level 1 δ
′
v = λ ·

∑

leaves v α
′
v = λ

we find that
∑

nodes v δ
′
v ≤ λ · log2 d = 1/8. Using Claim 3 we conclude that

βρ ≤ β′
ρ ≤ 1/e + 1/8 ≤ 1/2

which is the desired contradiction.
We now prove the three claims. Claim 3 is the only part where we need the assumption that

βv > 1/2 holds for all nodes v.

Proof of Claim 1. We prove this by structural induction on the tree. If v is a leaf then this holds
trivially with equality. Suppose v is an internal node with children v1 and v2 and the claim holds
for v1 and v2. Then we have

β′
v = β′

v1β
′
v2 + δ′v

≤ β′
v1

∏

leaves w in v2’s subtree β
′
w + δ′v +

∑

nodes w in v2’s subtree δ
′
w

≤
∏

leaves w in v1’s subtree β
′
w ·

∏

leaves w in v2’s subtree β
′
w+

δ′v +
∑

nodes w in v1’s subtree δ
′
w +

∑

nodes w in v2’s subtree δ
′
w

=
∏

leaves w in v’s subtree β
′
w +

∑

nodes w in v’s subtree δ
′
w

where the first inequality follows by the induction hypothesis for v2 and by β′
v1 ≤ 1, and the second

inequality follows by the induction hypothesis for v1 and by
∏

leaves w in v2’s subtree β
′
w ≤ 1.

Proof of Claim 2. Consider a node v at level 2 or higher with children v1 and v2. Let v1,1 and v1,2
be v1’s children, and let v2,1 and v2,2 be v2’s children. Note that

β′
v1 ≥ β′

v1,1β
′
v1,2 ≥ 1− α′

v1,1 − α′
v1,2 .

Thus α′
v1 ≤ α′

v1,1 + α′
v1,2 and similarly α′

v2 ≤ α′
v2,1 + α′

v2,2 . It follows that

δ′v = λ ·
(

α′
v1 + α′

v2

)

≤ λ ·
(

α′
v1,1 + α′

v1,2 + α′
v2,1 + α′

v2,2

)

= δ′v1 + δ′v2 .

Proof of Claim 3. We prove this by structural induction on the tree. For a leaf v, β′
v ≥ βv holds by

definition. For an internal node v with children v1 and v2, assume that β′
v1 ≥ βv1 and β′

v2 ≥ βv2 .
Then

β′
v − βv ≥

(

β′
v1β

′
v2 + λ ·

(

α′
v1 + α′

v2

)

)

−
(

βv1βv2 + λ ·
(

αv1 + αv2

)

)

=
(

β′
v1 − βv1

)(

βv2 − λ
)

+
(

β′
v2 − βv2

)(

β′
v1 − λ

)

≥ 0

since βv2 > 1/2 ≥ λ and β′
v1 ≥ βv1 > 1/2 ≥ λ.

This finishes the proof of Lemma 8.
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4 The Low-Weight Case

This section is devoted to the proof of Lemma 2. The main component in the proof of Lemma 2
is Lemma 14 below, and one of the key tools in the proof of Lemma 14 is Lemma 16 below. We
prove these three lemmas in Section 4.1, Section 4.2, and Section 4.3 respectively.

4.1 Proof of Lemma 2

We first discuss notation. The parameters m,d, ǫ are fixed, with m and d powers of 2. Let C be
the constant from Lemma 1. Given a function h : U1 × U2 → U3, we use the notation h(u1, ·) to
represent the function from U2 to U3 that maps u2 to h(u1, u2). The construction has five steps,
and we use s1, s2, s3, s4, s5 to denote the contributions of the five steps to the final seed length s.

Lemma 9 (Step 1). There exists an explicit ǫ/4-pseudorandom generator G1 : [2s1 ] × [m1]
d1 →

[m]d for the class of (m,d)-checkerboards of weight less than C · log2
1
ǫ with s1 = O

(

log d + log 1
ǫ

)

and m1 = (m+ d)O(1) and d1 =
(

1
ǫ

)O(1)
such that for all (m,d)-checkerboards f and all r1 ∈ [2s1 ],

f ◦G1(r1, ·) is an (m1, d1)-checkerboard. Moreover, m1 and d1 are powers of 2.

Lemma 10 (Step 2). There exists an explicit ǫ/4-pseudorandom generator G2 : [2s2 ]× [m2]
d2 →

[m1]
d1 for the class of (m1, d1)-checkerboards with s2 = O

(

logm+ log d+ log 1
ǫ

)

and m2 =
(

1
ǫ

)O(1)

and d2 = d1 such that for all (m1, d1)-checkerboards f and all r2 ∈ [2s2 ], f ◦G2(r2, ·) is an (m2, d2)-
checkerboard. Moreover, m2 is a power of 2.

Lemma 11 (Step 3). There exists an explicit ǫ/4-pseudorandom generator G3 : [2s3 ]× [m3]
d3 →

[m2]
d2 for the class of (m2, d2)-checkerboards of weight less than C · log2

1
ǫ/2 with s3 = O

(

log3/2 1
ǫ

)

and m3 = 2O(log3/2 1
ǫ
) and d3 = 2O(log1/2 1

ǫ
) such that for all (m2, d2)-checkerboards f and all r3 ∈

[2s3 ], f ◦G3(r3, ·) is an (m3, d3)-checkerboard. Moreover, m3 and d3 are powers of 2.

Lemma 12 (Step 4). There exists an explicit ǫ/4-pseudorandom generator G4 : [2s4 ] → [m3]
d3

for the class of (m3, d3)-checkerboards with s4 = O
(

log3/2 1
ǫ

)

.

Lemma 13 (Step 5). There exists an explicit ǫ/2-pseudorandom generator G5 : [2s5 ] → [m2]
d2

for the class of (m2, d2)-checkerboards of weight at least C · log2
1
ǫ/2 with s5 = O

(

log 1
ǫ · log log

1
ǫ

)

.

The parameters in the first four steps are essentially the same as those used by Lu [47]. At a
very high level, the motivation for these steps is as follows. Applying the generator of Impagliazzo,
Nisan, and Wigderson [37] directly would give a seed length with poor dependence on the dimension
d, so the plan is to first reduce the dimension and then (Step 4) apply the generator of [37]. Step
3 reduces the dimension quite nicely, balancing a tradeoff between how much the dimension is
reduced and the cost in seed length to accomplish this dimension reduction. However, achieving

the strong parameters of Step 3 requires that the parameter m has been reduced to
(

1
ǫ

)O(1)
.

Step 2 accomplishes this, but it requires the dimension to have already been reduced to
(

1
ǫ

)O(1)
.

Fortunately, the latter can be accomplished (Step 1) without any further requirements. We refer to
Lu’s paper [47] for more intuition about the parameters. Step 5 is needed because the dimension
reduction steps only work for low-weight checkerboards, but Step 1 and Step 2 do not always
preserve the low-weight property.
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Lemma 9 and Lemma 11 are special cases of a more general result (Lemma 14 below) which is
stated and proven in Section 4.2. The proof is an adaptation of an argument due to Lu [47] (which
itself generalizes an argument due to Armoni et al. [9]).

Lemma 10 follows from a result of Nisan and Zuckerman [64], which uses extractors. Lu [47]
used a similar lemma for combinatorial rectangles, which he obtained by plugging in an extrac-
tor due to Goldreich and Wigderson [31] and giving a somewhat simplified version of Nisan and
Zuckerman’s argument for his setting. Lemma 10 can be obtained using the same extractor with es-
sentially the same parameters as in [47]. Although Lu’s simplified argument does not directly work
for combinatorial checkerboards, Nisan and Zuckerman’s original argument still applies, yielding
Lemma 10. We do not reproduce the proof of Lemma 10 here.

Lemma 12 is an instantiation of the generator of Impagliazzo, Nisan, and Wigderson [37], and
Lemma 13 is just an instantiation of Lemma 1. We now prove a simple proposition showing how
the above pseudorandom generators can be composed with each other (a similar proposition was
used in [9, 47] though with different terminology).

Proposition 4. Suppose G′′ : [2s
′′

] × [m′′]d
′′

→ [m′]d
′

is an ǫ′-pseudorandom generator for some
class C′ of (m′, d′)-checkerboards such that for all (m′, d′)-checkerboards f and all r′′ ∈ [2s

′′

], f ◦
G′′(r′′, ·) is an (m′′, d′′)-checkerboard. Further suppose G′′′ : [2s

′′′

] → [m′′]d
′′

is an ǫ′′-pseudorandom
generator for the class of all (m′′, d′′)-checkerboards. Then the function G′ : [2s

′′

] × [2s
′′′

] → [m′]d
′

defined by G′(r′′, r′′′) = G′′
(

r′′, G′′′(r′′′)
)

is an (ǫ′ + ǫ′′)-pseudorandom generator for C′.

Proof. Consider any f ∈ C′. By the pseudorandom property of G′′ we get
∣

∣

∣
Er′′∈[2s′′ ],u∈[m′′]d′′

[

(f ◦G′′)(r′′, u)
]

− Eu∈[m′]d′ [f(u)]
∣

∣

∣
≤ ǫ′. (8)

For each r′′ ∈ [2s
′′

], since f ◦G′′(r′′, ·) is an (m′′, d′′)-checkerboard, by the pseudorandom property
of G′′′ we get

∣

∣

∣

∣

Er′′′∈[2s′′′ ]

[(

(

f ◦G′′(r′′, ·)
)

◦G′′′
)

(r′′′)
]

− Eu∈[m′′]d′′
[(

f ◦G′′(r′′, ·)
)

(u)
]

∣

∣

∣

∣

≤ ǫ′′.

Noticing that
(

(

f ◦G′′(r′′, ·)
)

◦G′′′
)

(r′′′) = (f ◦G′)(r′′, r′′′)

and
(

f ◦G′′(r′′, ·)
)

(u) = (f ◦G′′)(r′′, u)

we find that
∣

∣

∣
Er′′∈[2s′′ ],r′′′∈[2s′′′ ]

[

(f ◦G′)(r′′, r′′′)
]

− Er′′∈[2s′′ ],u∈[m′′]d′′
[

(f ◦G′′)(r′′, u)
]

∣

∣

∣

≤ Er′′∈[2s′′ ]

[

∣

∣

∣
Er′′′∈[2s′′′ ]

[

(f ◦G′)(r′′, r′′′)
]

− Eu∈[m′′]d′′
[

(f ◦G′′)(r′′, u)
]

∣

∣

∣

]

≤ ǫ′′.

Combining this with Inequality (8) yields

∣

∣

∣
Er′′∈[2s′′ ],r′′′∈[2s′′′ ]

[

(f ◦G′)(r′′, r′′′)
]

− Eu∈[m′]d′ [f(u)]
∣

∣

∣
≤ ǫ′ + ǫ′′.
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Lemma 2 now follows straightforwardly.

Proof of Lemma 2. CombiningG3 with G4 using Proposition 4 yields an explicit ǫ/2-pseudorandom
generator for the class of (m2, d2)-checkerboards of weight less than C ·log2

1
ǫ/2 with seed length s3+

s4. Combining this generator with G5 using Proposition 2 we obtain an explicit ǫ/2-pseudorandom
generator for the class of all (m2, d2)-checkerboards with seed length s3 + s4 + s5. Combining
this generator with G2 using Proposition 4 yields an explicit 3ǫ/4-pseudorandom generator for
the class of (m1, d1)-checkerboards with seed length s2 + s3 + s4 + s5. Finally, combining this
generator with G1 using Proposition 4 we obtain an explicit ǫ-pseudorandom generator for the
class of (m,d)-checkerboards of weight less than C · log2

1
ǫ with seed length s1+ s2 + s3 + s4+ s5 =

O
(

logm+ log d+ log3/2 1
ǫ

)

.

4.2 Dimension Reduction

In this section, m,d, ǫ are free parameters (not necessarily the same as the fixed values that were
assumed throughout Section 4.1). Again, C is the constant from Lemma 1.

Lemma 14 (Dimension Reduction). Let m and d be powers of 2, and let 2 ≤ k ≤ d be an
integer parameter. There exists an explicit ǫ-pseudorandom generator G : [2s] × [m′]d

′

→ [m]d for
the class of (m,d)-checkerboards of weight less than C · log2

1
ǫ with s = k ·max(log2 d, log2 d

′) and

m′ = max(d,m)k and d′ = 2O( 1
k
·log 1

ǫ
) such that for all (m,d)-checkerboards f and all r ∈ [2s],

f ◦G(r, ·) is an (m′, d′)-checkerboard. Moreover, m′ and d′ are powers of 2.

To obtain Lemma 9, just use k = 2 and plug in ǫ/4 for ǫ. To obtain Lemma 11, just use
k = Θ

(

log1/2 1
ǫ

)

and plug in m2 for m, d2 for d, and ǫ/4 for ǫ. In both instantiations, the generator
given by Lemma 14 actually fools a slightly larger class of checkerboards than necessary.

In the proof of Lemma 14 we employ the standard k-wise independent generator. It turns out
that using almost k-wise independence does not improve the final seed length in Lemma 2, for the
same reason it does not help in [47]. We refer to the latter paper for a discussion of this issue.

Lemma 15. Let n1, n2, k be positive integers. There exists an explicit function h : [2s] × [2n1 ] →
[2n2 ] with s = k·max(n1, n2) such that for every S ⊆ [2n1 ] with |S| ≤ k, the random variables h(r, ν1)
for ν1 ∈ S are fully independent and uniformly distributed, where r ∈ [2s] is chosen uniformly at
random.

See [77] for a folklore proof of Lemma 15, which is based on using the seed to specify a polynomial
of degree < k over the field with 2max(n1,n2) elements. We also need the following tool.

Lemma 16 (Parity Version of Bonferroni Inequalities). Let E1, . . . , Eℓ be events in any fi-
nite probability space. Let p be the probability that an odd number of Ei’s hold. For k = 1, . . . , ℓ
let

tk =
∑k

κ=1(−2)κ−1
∑

S⊆[ℓ] : |S|=κPr
[
⋂

i∈S Ei

]

.

Then (i) p ≤ tk if k is odd, (ii) p ≥ tk if k is even, and (iii) p = tℓ.

We prove Lemma 16 in Section 4.3 below. We are now ready to prove Lemma 14.
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Proof of Lemma 14. Let d′ = 2⌈
2C+1
k−1

log2
1
ǫ
⌉. By convention, we use the notation i ∈ [d], j ∈ [d′], u ∈

[m], w ∈ [m′], and r ∈ [2s]. Let h1 : [2
s]× [d] → [d′] and h2 : [m

′]× [d] → [m] be k-wise independent
generators given by Lemma 15. For r ∈ [2s] and j ∈ [d′] we define Ir,j =

{

i ∈ [d] : h1(r, i) = j
}

.
For i ∈ [d] we define

G(r, w1, . . . , wd′)i = h2
(

wh1(r,i), i
)

.

That is, we use h1 to partition the d coordinates into d′ buckets, and for each bucket we use an
independent seed for h2 to generate the symbols for the coordinates in that bucket. We claim that
G witnesses Lemma 14. For an arbitrary (m,d)-checkerboard f =

⊗

i∈[d] fi and arbitrary r ∈ [2s],

define the (m′, d′)-checkerboard f ′ =
⊗

j∈[d′] f
′
j where

f ′
j(w) =

∏

i∈Ir,j
fi
(

h2(w, i)
)

.

Observe that f ′(w1, . . . , wd′) =
∏

i∈[d] fi
(

G(r, w1, . . . , wd′)i
)

. Thus f ′ = f ◦ G(r, ·) and hence f ◦

G(r, ·) is an (m′, d′)-checkerboard. It remains to prove that G is an ǫ-pseudorandom generator for
the class of (m,d)-checkerboards of weight less than C · log2

1
ǫ . Fix an arbitrary (m,d)-checkerboard

f =
⊗

i∈[d] fi of weight less than C · log2
1
ǫ .

Claim 4. For every r ∈ [2s] and j ∈ [d′] we have

∣

∣

∣

∣

Ew∈[m′]

[

∏

i∈Ir,j
fi
(

h2(w, i)
)

]

− E(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui)

]

∣

∣

∣

∣

≤
∑

S⊆Ir,j : |S|=k

∏

i∈S α(fi).

Proof of Claim 4. Fix arbitrary r ∈ [2s] and j ∈ [d′]. For i ∈ [d] let µi = − sgn
(

Eu∈[m][fi(u)]
)

(and
if Eu∈[m][fi(u)] = 0 then let µi = ±1 arbitrarily). Note that

Pru∈[m]

[

fi(u) = µi

]

= α(fi)/2.

Define br,j = (−1)|Ir,j |+1
∏

i∈Ir,j
µi. For every (u1, . . . , ud) ∈ [m]d, we have

∏

i∈Ir,j
fi(ui) = br,j if

and only if the number of i ∈ Ir,j such that fi(ui) = µi is odd. Relative to our fixed r and j, for
any distribution D on [m]d and any integer k′ ≥ 1 we define

t
(D)
k′ =

∑k′

κ=1(−2)κ−1
∑

S⊆Ir,j : |S|=κPr(u1,...,ud)∼D

[

∀i ∈ S : fi(ui) = µi

]

.

Applying Lemma 16 identifying Ir,j with [ℓ] and letting Ei′ be the event that fi(ui) = µi where i

is the i′th element of Ir,j, we find that Pr(u1,...,ud)∼D

[
∏

i∈Ir,j
fi(ui) = br,j

]

lies between t
(D)
k−1 and

t
(D)
k inclusive. (This follows from part (i) and part (ii) when k ≤ |Ir,j| and from part (iii) when
k > |Ir,j|.) Now let U denote the uniform distribution over [m]d, and let D be the distribution
(

h2(w, 1), . . . , h2(w, d)
)

where w ∈ [m′] is chosen uniformly at random. By the k-wise independence

of h2, we have t
(D)
k = t

(U)
k and t

(D)
k−1 = t

(U)
k−1. Now since Prw∈[m′]

[
∏

i∈Ir,j
fi
(

h2(w, i)
)

= br,j
]

and

Pr(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui) = br,j

]

both lie between t
(U)
k−1 and t

(U)
k inclusive, we have

∣

∣

∣

∣

Prw∈[m′]

[

∏

i∈Ir,j
fi
(

h2(w, i)
)

= br,j

]

− Pr(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui) = br,j

]

∣

∣

∣

∣

≤
∣

∣t
(U)
k − t

(U)
k−1

∣

∣

= 2k−1
∑

S⊆Ir,j : |S|=k Pr(u1,...,ud)∈[m]d
[

∀i ∈ S : fi(ui) = µi

]
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= 2k−1
∑

S⊆Ir,j : |S|=k

∏

i∈S α(fi)/2

= 1
2

∑

S⊆Ir,j : |S|=k

∏

i∈S α(fi).

It follows that
∣

∣

∣

∣

Ew∈[m′]

[

∏

i∈Ir,j
fi
(

h2(w, i)
)

]

− E(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui)

]

∣

∣

∣

∣

= 2 ·

∣

∣

∣

∣

Prw∈[m′]

[

∏

i∈Ir,j
fi
(

h2(w, i)
)

= br,j

]

− Pr(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui) = br,j

]

∣

∣

∣

∣

≤
∑

S⊆Ir,j : |S|=k

∏

i∈S α(fi).

This finishes the proof of the claim.

We now continue with the proof of Lemma 14. We have
∣

∣

∣
Er∈[2s],(w1,...,wd′)∈[m

′]d′
[

(f ◦G)(r, w1, . . . , wd′)
]

− E(u1,...,ud)∈[m]d
[

f(u1, . . . , ud)
]

∣

∣

∣

≤ Er∈[2s]

[

∣

∣

∣
E(w1,...,wd′)∈[m

′]d′
[

(f ◦G)(r, w1, . . . , wd′)
]

− E(u1,...,ud)∈[m]d
[

f(u1, . . . , ud)
]

∣

∣

∣

]

= Er∈[2s]

[

∣

∣

∣

∣

∏

j∈[d′]Ew∈[m′]

[

∏

i∈Ir,j
fi
(

h2(w, i)
)

]

−
∏

j∈[d′] E(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui)

]

∣

∣

∣

∣

]

≤ Er∈[2s]

[

∑

j∈[d′]

∣

∣

∣

∣

Ew∈[m′]

[

∏

i∈Ir,j
fi
(

h2(w, i)
)

]

− E(u1,...,ud)∈[m]d
[
∏

i∈Ir,j
fi(ui)

]

∣

∣

∣

∣

]

≤ Er∈[2s]

[

∑

j∈[d′]

∑

S⊆Ir,j : |S|=k

∏

i∈S α(fi)
]

=
∑

j∈[d′]

∑

S⊆[d] : |S|=k Prr∈[2s][S ⊆ Ir,j] ·
∏

i∈S α(fi)

=
∑

j∈[d′]

∑

S⊆[d] : |S|=k
1

(d′)k
·
∏

i∈S α(fi)

= 1
(d′)k−1

∑

S⊆[d] : |S|=k

∏

i∈S α(fi)

≤ 1
(d′)k−1 · 1

k!

∑

(i1,...,ik)∈[d]k
∏

κ∈[k] α(fiκ)

= 1
(d′)k−1 · 1

k!

(

∑

i∈[d] α(fi)
)k

< 1
(d′)k−1 · 1

k!

(

C · log2
1
ǫ

)k

where the fourth line follows by the simple fact that for all x1, . . . , xd′ , y1, . . . , yd′ ∈ [−1, 1] we have
∣

∣

∏

j∈[d′] xj −
∏

j∈[d′] yj
∣

∣ ≤
∑

j∈[d′] |xj − yj|, the fifth line follows by Claim 4, the seventh line follows
by the k-wise independence of h1, and the other lines follow by simple manipulations. All that

remains is to show that 1
(d′)k−1 ·

1
k!

(

C · log2
1
ǫ

)k
≤ ǫ. We have (d′)k−1 ≥

(

1
ǫ

)2C+1
. Using the standard

bound k! ≥
(

k
e

)k
we have

1
k!

(

C · log2
1
ǫ

)k
≤

(

e·C·log2
1
ǫ

k

)k
≤ eC·log2

1
ǫ ≤

(

1
ǫ

)2C

where the middle inequality follows by a little calculus (and holds no matter what k is). We

conclude that 1
(d′)k−1 ·

1
k!

(

C · log2
1
ǫ

)k
≤

(

1
ǫ

)2C
/
(

1
ǫ

)2C+1
= ǫ. This finishes the proof of Lemma 14.
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4.3 Proof of Lemma 16

Let Ω denote the sample space. Let P : Ω → {0, 1} be the indicator for the event that an odd
number of Ei’s hold, and for S ⊆ [ℓ] let χS : Ω → {0, 1} be the indicator for the event

⋂

i∈S Ei. For
k = 1, . . . , ℓ let Tk : Ω → Z be defined by

Tk(x) =
∑k

κ=1(−2)κ−1
∑

S⊆[ℓ] : |S|=κ χS(x).

We have p = E[P ] and tk = E[Tk]. To prove the lemma, it suffices to show that for all x ∈ Ω, (i)
P (x) ≤ Tk(x) if k is odd, (ii) P (x) ≥ Tk(x) if k is even, and (iii) P (x) = Tℓ(x).

Fix an arbitrary x ∈ Ω and let ℓx =
∣

∣

{

i : x ∈ Ei

}
∣

∣. Note that

Tk(x) =
∑min(k,ℓx)

κ=1 (−2)κ−1
(ℓx
κ

)

= 1
2 −

1
2T

′
k(x)

where

T ′
k(x) =

∑min(k,ℓx)
κ=0 (−2)κ

(ℓx
κ

)

.

Now if k ≥ ℓx then by the binomial theorem we have

T ′
k(x) =

∑ℓx
κ=0 1

ℓx−κ(−2)κ
(ℓx
κ

)

= (−1)ℓx

and thus P (x) = Tk(x). This establishes (iii) since ℓ ≥ ℓx, and it establishes (i) and (ii) assuming
k ≥ ℓx. Now assume k ≤ ℓx. We claim that T ′

k(x) ≤ −1 if k is odd, and T ′
k(x) ≥ 1 if k is even.

Assuming the claim, (i) follows by P (x) ≤ 1, and (ii) follows by P (x) ≥ 0. We already established
the claim for k = ℓx, and the claim trivially holds for k = 0. For κ = 0, . . . , ℓx define τκ(x) = 2κ

(ℓx
κ

)

so that T ′
k(x) =

∑k
κ=0(−1)κτκ(x). Note that the sequence τ0(x), τ1(x), . . . , τℓx(x) is unimodal, since

for κ ≥ 1 we have
τκ(x)/τκ−1(x) = 2(ℓx − κ+ 1)/κ

which is at least 1 when κ ≤ 2
3(ℓx + 1) and at most 1 when κ ≥ 2

3(ℓx + 1). We now show by
induction on k = 0, 1, . . . ,

⌊

2
3(ℓx + 1)

⌋

that the claim holds for these values of k (and a symmetric
argument shows by induction on k = ℓx, ℓx − 1, . . . ,

⌈

2
3(ℓx + 1)

⌉

that the claim holds for these
values of k). For the base cases, we know the claim holds for k = 0, and for k = 1 we have
T ′
k(x) = 1 − 2ℓx ≤ −1 since ℓx ≥ k = 1. Now assuming the claim holds for k − 2, we prove it for

k. Assume k is even (a symmetric argument handles the case k is odd). We have T ′
k−2(x) ≥ 1 and

T ′
k(x) = T ′

k−2(x)− τk−1(x)+ τk(x) ≥ 1 since τk(x) ≥ τk−1(x). This finishes the proof of Lemma 16.
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