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Abstract

Inspired by recent construction of high-rate locally correctable codes with sublinear query complex-
ity due to Kopparty, Saraf and Yekhanin (2010) we address the similar question for locally testable codes
(LTCs).

In this note we show a construction of high-rate LTCs with sublinear query complexity. More for-
mally, we show that for every ε, ρ > 0 there exists a family of LTCs over the binary field with query
complexity nε and rate at least 1 − ρ. To obtain this construction we use the result of Ben-Sasson and
Viderman (2009).

1 Introduction

Ben-Sasson and Sudan [2] suggested to use tensor product codes as a means to construct locally testable
codes (LTCs) combinatorially. They showed that taking the repeated tensor product of any code C ⊆ Fn

with sufficiently large distance results in a locally testable code with sublinear query complexity and constant
rate. Based on their result Meir [6] demonstrated a combinatorial construction of LTCs with constant query
complexity and inverse poly-logarithmic rate.

However, these works did not result in LTCs of arbitrary high rate over a field of constant size because
for such fields the requirement of large distance in [2] limits the rate to a constant strictly smaller than 1. This
problem was solved by Ben-Sasson and Viderman [3] who showed that repeated tensoring can be applied
even over the binary field with no distance requirements as in [2]. In this note we stress that the result of [3]
implies a simple construction (repeated tensor product) of LTCs over the binary field with sublinear query
complexity and arbitrary high rate. More formally, for every ε, ρ > 0 there exists a family of LTCs over the
binary field with query complexity nε, linear distance and rate ≥ 1− ρ.

This note is published in light of the interesting recent construction of locally correctable codes (LCCs)
due to Kopparty et al. [5]. They show that for every ε, ρ > 0 there exists a family of LCCs with query
complexity nε, linear distance and rate ≥ 1 − ρ. In this note we show that in the area of LTCs similar
parameters can be obtained from [3].
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2 Preliminary Definitions

Throughout this paper, F is a finite field, [n] denotes the set {1, . . . , n} and Fn denotes F[n]. All codes
discussed in this paper will be a linear. Let C ⊆ Fn be a linear code over F. We let dim(C) denote the
dimension of C. The rate of the code C is denoted by rate(C) and defined by rate(C) = dim(C)/n.
We define the distance between two words x, y ∈ Fn to be ∆ (x, y) = |{i | xi 6= yi}| and the relative
distance to be δ(x, y) = ∆(x,y)

n . The distance of a code is denoted ∆ (C) and defined to be the minimal
value of ∆ (x, y) for two distinct codewords x, y ∈ C. Similarly, the relative distance of the code is denoted
δ(C) = ∆(C)

n . For x ∈ Fn and C ⊆ Fn, let δ(x,C) = min
y∈C
{δ(x, y)} denote the relative distance of x from

the code C.

Locally Testable Codes and their testers

We define LTCs in a standard way. We repeat here the definitions from [3].

Definition 2.1 (LTCs and strong LTCs). A q-test is a set of coordinates I ⊆ [n] s.t. |I| ≤ q. A q-tester T is
a distribution D over q-tests, i.e., over subsets I ⊆ [n] s.t. |I| ≤ q. The tester outputs accept if w|I ∈ C|I
and otherwise output reject.

A code C ⊆ Fn is a (q, ε, δ)-LTC if it has a q-tester D such that for all w ∈ Fn, if δ(w,C) ≥ δ we have
Pr
I∼D

[w|I /∈ C|I ] ≥ ε.
A code C ⊆ Fn is a (q, ε)-strong LTC if it has a q-tester D such that for all w ∈ Fn, we have

Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w,C).

Clearly, a (q, ε)-strong LTC is a (q, εα, α)-LTC for any α > 0.

Expander Codes

In this section we give the definitions of expander codes as they appear in [1]. We start from the definition
of “neighbors” (2.2) and then proceed with the definition of “expansion” (2.3).

Definition 2.2 (Neighbors). Let G = (V,E) be a graph. For S ⊆ V , let

• N(S) be the set of neighbors of S.

• N1(S) be the set of unique neighbors of S, i.e., vertices with exactly one neighbor in S.

• Nodd(S) be the set of neighbors of S with an odd number of neighbors in S.

Notice that N1(S) ⊆ Nodd(S).

We note that N(S) and N1(S) are standard notations, while Nodd(S) is not standard and was defined
in [1].

Definition 2.3 (Expansion). Let c, d ∈ N and let γ, α ∈ (0, 1).
Define a (c, d)-bounded (γ, α)-expander to be a bipartite graph (L,R,E) with vertex sets L,R such

that all vertices in L have degree ≤ c, and all vertices in R have degree ≤ d;

• G is called a (c, d, γ, α)-expander if for all subsets S ⊆ L s.t. |S| ≤ αn we have |N(S)| > γ · c|S|
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• G is called a (c, d, γ, α)-odd expander if for all subsets S ⊆ L s.t. |S| ≤ αn we have |Nodd(S)| >
γ · c|S|

We say that a code C is a (c, d, γ, α)-odd expander code if it has a parity check graph (see [4, Section
2.3]) that is an odd (c, d)-bounded (γ, α)-expander.

Tensor Product Codes

The definitions appearing here are standard in the literature on tensor-based LTCs (e.g. [2, 6, 3]).
For x ∈ FI and y ∈ FJ we let x ⊗ y denote the tensor product of x and y (i.e., the matrix M with

entries M(i,j) = xi · yj where (i, j) ∈ I × J). Let R ⊆ FI and C ⊆ FJ be linear codes. We define the
tensor product code R ⊗ C to be the linear space spanned by words r ⊗ c ∈ FI×J for r ∈ R and c ∈ C.
Some immediate facts:

• The code R ⊗ C consists of all I × J matrices over F whose rows belong to R and whose columns
belong to C.

• dim(R⊗ C) = dim(R) · dim(C) and δ(R⊗ C) = δ(R) · δ(C)

We let C20 = C and C2t = C2t−1 ⊗ C2t−1
for t > 0. We have the following claim.

Claim 2.4. Let C ⊆ Fn be a code and t > 0. Then rate(C2t) = (rate(C))2t and δ(C2t) = (δ(C))2t .

3 Main Result

Theorem 3.1 (Main Theorem). Let 0 < ε, ρ < 1. Then there exists ε′ > 0 (which depends only on ε, ρ) and
a family of codes {CN}N , s.t.

• CN ⊆ FN2 is a (N ε, ε′)-strong LTC,

• δ(CN ) = Ω(1) and rate(CN ) ≥ 1− ρ.

Now we state Proposition 3.2 and Theorem 3.3. The proof of Theorem 3.1, which appears below, will
follow from Claim 2.4, Proposition 3.2 and Theorem 3.3.

Proposition 3.2 (Folklore). For every ρ > 0 there exist c, d, γ, α > 0 and (c, d, γ, α)-odd-expander code
C ⊆ Fn2 s.t. rate(C) ≥ 1− ρ.

Proof Sketch. Let ρ > 0 be a constant. We pick a (c, d)-regular expander code C ⊆ Fn2 at random s.t.
an associated parity check graph (L,R,E) satisfies |L| = n, |R| = ρn and d = c

ρ (which implies that
d · |R| = c · |L|). Then rate(C) ≥ 1− ρ.

Letting c be sufficiently large it follows that with high probability C is a (c, d, γ, α)-odd expander for
some constants γ, α > 0 which depends only on c and d. The proof of a similar statement appeared in [1,
Claim 6.4] and hence we omit it.

The following theorem is due to Ben-Sasson and Viderman [3, Corollary 13].

Theorem 3.3. Let t > 0 be an integer. Let C ⊆ Fn be a (c, d, γ, α)-odd expander code. Then C2t is a

(n, ε′)-strong LTC, where ε′ = γt·α2t+2

(96d2)t·8t2
.
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We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let t = dlog(1/ε)e. Let ρ0 > 0 be s.t. (ρ0)2t ≥ ρ. Proposition 3.2 implies the
existence of (c, d, ε, α)-odd-expander code C ⊆ Fn2 s.t. rate(C) ≥ 1 − ρ0, where the constants c, d, ε, α

depends only on ρ0. Theorem 3.3 implies that C2t is a (n, ε′)-strong LTC, where ε′ = γt·α2t+2

(96d2)t·8t2
. Moreover,

δ(C2t) = (δ(C))2t = α2t = Ω(1) and rate(C2t) = (rate(C))2t ≥ (ρ0)2t ≥ ρ. Note also that the
blocklength of C2t is N = n2t . Hence N ε ≥ n and so C2t is a (N ε, ε′)-strong LTC.

Acknowledgements

The author would like to thank Eli Ben-Sasson for valuable comments on an earlier draft. The author thanks
Swastik Kopparty and Shubhangi Saraf for helpful discussions about locally testable and locally decodable
codes.

References

[1] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, “Some 3CNF properties are hard to
test,” SIAM Journal on Computing, vol. 35, no. 1, pp. 1–21, 2005. [Online]. Available:
http://epubs.siam.org/SICOMP/volume-35/art 44544.html

[2] E. Ben-Sasson and M. Sudan, “Robust locally testable codes and products of codes,” Random Struct.
Algorithms, vol. 28, no. 4, pp. 387–402, 2006. [Online]. Available: http://dx.doi.org/10.1002/rsa.20120

[3] E. Ben-Sasson and M. Viderman, “Composition of semi-LTCs by two-wise tensor products,”
in APPROX-RANDOM, ser. Lecture Notes in Computer Science, I. Dinur, K. Jansen, J. Naor,
and J. D. P. Rolim, Eds., vol. 5687. Springer, 2009, pp. 378–391. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03685-9

[4] I. Dinur, M. Sudan, and A. Wigderson, “Robust local testability of tensor products of LDPC codes,”
in APPROX-RANDOM, ser. Lecture Notes in Computer Science, vol. 4110. Springer, 2006, pp.
304–315. [Online]. Available: http://dx.doi.org/10.1007/11830924 29

[5] S. Kopparty, S. Saraf, and S. Yekhanin, “High-rate codes with sublinear-time decoding,” in ECCC -
TR10-148, 2010. [Online]. Available: http://eccc.hpi-web.de/report/2010/148/

[6] O. Meir, “Combinatorial construction of locally testable codes,” SIAM J. Comput, vol. 39, no. 2, pp.
491–544, 2009. [Online]. Available: http://dx.doi.org/10.1137/080729967

4

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 

http://epubs.siam.org/SICOMP/volume-35/art_44544.html
http://dx.doi.org/10.1002/rsa.20120
http://dx.doi.org/10.1007/978-3-642-03685-9
http://dx.doi.org/10.1007/11830924_29
http://eccc.hpi-web.de/report/2010/148/
http://dx.doi.org/10.1137/080729967

