

# A Note on high-rate Locally Testable Codes with sublinear query complexity

Michael Viderman Computer Science Department Technion — Israel Institute of Technology Haifa 32000, Israel viderman@cs.technion.ac.il

November 12, 2010

#### Abstract

Inspired by recent construction of high-rate locally correctable codes with sublinear query complexity due to Kopparty, Saraf and Yekhanin (2010) we address the similar question for locally testable codes (LTCs).

In this note we show a construction of high-rate LTCs with sublinear query complexity. More formally, we show that for every  $\epsilon, \rho > 0$  there exists a family of LTCs over the binary field with query complexity  $n^{\epsilon}$  and rate at least  $1 - \rho$ . To obtain this construction we use the result of Ben-Sasson and Viderman (2009).

# **1** Introduction

Ben-Sasson and Sudan [2] suggested to use tensor product codes as a means to construct locally testable codes (LTCs) combinatorially. They showed that taking the repeated tensor product of any code  $C \subseteq \mathbf{F}^n$  with sufficiently large distance results in a locally testable code with sublinear query complexity and constant rate. Based on their result Meir [6] demonstrated a combinatorial construction of LTCs with constant query complexity and inverse poly-logarithmic rate.

However, these works did not result in LTCs of arbitrary high rate over a field of constant size because for such fields the requirement of large distance in [2] limits the rate to a constant strictly smaller than 1. This problem was solved by Ben-Sasson and Viderman [3] who showed that repeated tensoring can be applied even over the binary field with no distance requirements as in [2]. In this note we stress that the result of [3] implies a simple construction (repeated tensor product) of LTCs over the binary field with sublinear query complexity and arbitrary high rate. More formally, for every  $\epsilon$ ,  $\rho > 0$  there exists a family of LTCs over the binary field with query complexity  $n^{\epsilon}$ , linear distance and rate  $\geq 1 - \rho$ .

This note is published in light of the interesting recent construction of locally correctable codes (LCCs) due to Kopparty et al. [5]. They show that for every  $\epsilon, \rho > 0$  there exists a family of LCCs with query complexity  $n^{\epsilon}$ , linear distance and rate  $\geq 1 - \rho$ . In this note we show that in the area of LTCs similar parameters can be obtained from [3].

## **2** Preliminary Definitions

Throughout this paper, **F** is a finite field, [n] denotes the set  $\{1, \ldots, n\}$  and  $\mathbf{F}^n$  denotes  $\mathbf{F}^{[n]}$ . All codes discussed in this paper will be a linear. Let  $C \subseteq \mathbf{F}^n$  be a linear code over **F**. We let  $\dim(C)$  denote the dimension of C. The rate of the code C is denoted by  $\operatorname{rate}(C)$  and defined by  $\operatorname{rate}(C) = \dim(C)/n$ . We define the *distance* between two words  $x, y \in \mathbf{F}^n$  to be  $\Delta(x, y) = |\{i \mid x_i \neq y_i\}|$  and the relative distance to be  $\delta(x, y) = \frac{\Delta(x, y)}{n}$ . The distance of a code is denoted  $\Delta(C)$  and defined to be the minimal value of  $\Delta(x, y)$  for two distinct codewords  $x, y \in C$ . Similarly, the relative distance of the code is denoted  $\delta(C) = \frac{\Delta(C)}{n}$ . For  $x \in \mathbf{F}^n$  and  $C \subseteq \mathbf{F}^n$ , let  $\delta(x, C) = \min_{y \in C} \{\delta(x, y)\}$  denote the relative distance of x from the code C.

# Locally Testable Codes and their testers

We define LTCs in a standard way. We repeat here the definitions from [3].

**Definition 2.1** (LTCs and strong LTCs). A *q*-test is a set of coordinates  $I \subseteq [n]$  s.t.  $|I| \le q$ . A *q*-tester T is a distribution **D** over *q*-tests, i.e., over subsets  $I \subseteq [n]$  s.t.  $|I| \le q$ . The tester outputs accept if  $w|_I \in C|_I$  and otherwise output reject.

A code  $C \subseteq F^n$  is a  $(q, \epsilon, \delta)$ -LTC if it has a q-tester **D** such that for all  $w \in \mathbf{F}^n$ , if  $\delta(w, C) \ge \delta$  we have  $\Pr_{I \sim \mathbf{D}}[w|_I \notin C|_I] \ge \epsilon$ .

A code  $C \subseteq F^n$  is a  $(q, \epsilon)$ -strong LTC if it has a q-tester **D** such that for all  $w \in \mathbf{F}^n$ , we have  $\Pr_{I \sim \mathbf{D}}[w|_I \notin C|_I] \ge \epsilon \cdot \delta(w, C).$ 

Clearly, a  $(q, \epsilon)$ -strong LTC is a  $(q, \epsilon \alpha, \alpha)$ -LTC for any  $\alpha > 0$ .

#### **Expander Codes**

In this section we give the definitions of expander codes as they appear in [1]. We start from the definition of "neighbors" (2.2) and then proceed with the definition of "expansion" (2.3).

**Definition 2.2** (Neighbors). Let G = (V, E) be a graph. For  $S \subseteq V$ , let

- N(S) be the set of neighbors of S.
- $N^1(S)$  be the set of unique neighbors of S, i.e., vertices with exactly one neighbor in S.
- $N^{odd}(S)$  be the set of neighbors of S with an odd number of neighbors in S.

Notice that  $N^1(S) \subseteq N^{odd}(S)$ .

We note that N(S) and  $N^1(S)$  are standard notations, while  $N^{odd}(S)$  is not standard and was defined in [1].

**Definition 2.3** (Expansion). Let  $c, d \in N$  and let  $\gamma, \alpha \in (0, 1)$ .

Define a (c, d)-bounded  $(\gamma, \alpha)$ -expander to be a bipartite graph (L, R, E) with vertex sets L, R such that all vertices in L have degree  $\leq c$ , and all vertices in R have degree  $\leq d$ ;

• G is called a  $(c, d, \gamma, \alpha)$ -expander if for all subsets  $S \subseteq L$  s.t.  $|S| \leq \alpha n$  we have  $|N(S)| > \gamma \cdot c|S|$ 

• G is called a  $(c, d, \gamma, \alpha)$ -odd expander if for all subsets  $S \subseteq L$  s.t.  $|S| \leq \alpha n$  we have  $|N^{odd}(S)| > \gamma \cdot c|S|$ 

We say that a code C is a  $(c, d, \gamma, \alpha)$ -odd expander code if it has a parity check graph (see [4, Section 2.3]) that is an odd (c, d)-bounded  $(\gamma, \alpha)$ -expander.

#### **Tensor Product Codes**

The definitions appearing here are standard in the literature on tensor-based LTCs (e.g. [2, 6, 3]).

For  $x \in \mathbf{F}^{I}$  and  $y \in \mathbf{F}^{J}$  we let  $x \otimes y$  denote the tensor product of x and y (i.e., the matrix M with entries  $M_{(i,j)} = x_i \cdot y_j$  where  $(i,j) \in I \times J$ ). Let  $R \subseteq \mathbf{F}^{I}$  and  $C \subseteq \mathbf{F}^{J}$  be linear codes. We define the tensor product code  $R \otimes C$  to be the linear space spanned by words  $r \otimes c \in \mathbf{F}^{I \times J}$  for  $r \in R$  and  $c \in C$ . Some immediate facts:

- The code  $R \otimes C$  consists of all  $I \times J$  matrices over **F** whose rows belong to R and whose columns belong to C.
- $\dim(R \otimes C) = \dim(R) \cdot \dim(C)$  and  $\delta(R \otimes C) = \delta(R) \cdot \delta(C)$
- We let  $C^{2^0} = C$  and  $C^{2^t} = C^{2^{t-1}} \otimes C^{2^{t-1}}$  for t > 0. We have the following claim.

**Claim 2.4.** Let  $C \subseteq \mathbf{F}^n$  be a code and t > 0. Then  $\operatorname{rate}(C^{2^t}) = (\operatorname{rate}(C))^{2^t}$  and  $\delta(C^{2^t}) = (\delta(C))^{2^t}$ .

### 3 Main Result

**Theorem 3.1** (Main Theorem). Let  $0 < \epsilon, \rho < 1$ . Then there exists  $\epsilon' > 0$  (which depends only on  $\epsilon, \rho$ ) and a family of codes  $\{C_N\}_N$ , s.t.

- $C_N \subseteq \mathbf{F}_2^N$  is a  $(N^{\epsilon}, \epsilon')$ -strong LTC,
- $\delta(C_N) = \Omega(1)$  and  $\operatorname{rate}(C_N) \ge 1 \rho$ .

Now we state Proposition 3.2 and Theorem 3.3. The proof of Theorem 3.1, which appears below, will follow from Claim 2.4, Proposition 3.2 and Theorem 3.3.

**Proposition 3.2** (Folklore). For every  $\rho > 0$  there exist  $c, d, \gamma, \alpha > 0$  and  $(c, d, \gamma, \alpha)$ -odd-expander code  $C \subseteq \mathbf{F}_2^n$  s.t.  $rate(C) \ge 1 - \rho$ .

*Proof Sketch.* Let  $\rho > 0$  be a constant. We pick a (c, d)-regular expander code  $C \subseteq \mathbf{F}_2^n$  at random s.t. an associated parity check graph (L, R, E) satisfies |L| = n,  $|R| = \rho n$  and  $d = \frac{c}{\rho}$  (which implies that  $d \cdot |R| = c \cdot |L|$ ). Then rate $(C) \ge 1 - \rho$ .

Letting c be sufficiently large it follows that with high probability C is a  $(c, d, \gamma, \alpha)$ -odd expander for some constants  $\gamma, \alpha > 0$  which depends only on c and d. The proof of a similar statement appeared in [1, Claim 6.4] and hence we omit it.

The following theorem is due to Ben-Sasson and Viderman [3, Corollary 13].

**Theorem 3.3.** Let t > 0 be an integer. Let  $C \subseteq \mathbf{F}^n$  be a  $(c, d, \gamma, \alpha)$ -odd expander code. Then  $C^{2^t}$  is a  $(n, \epsilon')$ -strong LTC, where  $\epsilon' = \frac{\gamma^t \cdot \alpha^{2^{t+2}}}{(96d^2)^t \cdot 8t^2}$ .

We are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let  $t = \lceil \log(1/\epsilon) \rceil$ . Let  $\rho_0 > 0$  be s.t.  $(\rho_0)^{2^t} \ge \rho$ . Proposition 3.2 implies the existence of  $(c, d, \epsilon, \alpha)$ -odd-expander code  $C \subseteq \mathbf{F}_2^n$  s.t.  $\operatorname{rate}(C) \ge 1 - \rho_0$ , where the constants  $c, d, \epsilon, \alpha$  depends only on  $\rho_0$ . Theorem 3.3 implies that  $C^{2^t}$  is a  $(n, \epsilon')$ -strong LTC, where  $\epsilon' = \frac{\gamma^t \cdot \alpha^{2^{t+2}}}{(96d^2)^t \cdot 8^{t^2}}$ . Moreover,  $\delta(C^{2^t}) = (\delta(C))^{2^t} = \alpha^{2^t} = \Omega(1)$  and  $\operatorname{rate}(C^{2^t}) = (\operatorname{rate}(C))^{2^t} \ge (\rho_0)^{2^t} \ge \rho$ . Note also that the blocklength of  $C^{2^t}$  is  $N = n^{2^t}$ . Hence  $N^{\epsilon} \ge n$  and so  $C^{2^t}$  is a  $(N^{\epsilon}, \epsilon')$ -strong LTC.

# Acknowledgements

The author would like to thank Eli Ben-Sasson for valuable comments on an earlier draft. The author thanks Swastik Kopparty and Shubhangi Saraf for helpful discussions about locally testable and locally decodable codes.

# References

- [1] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, "Some 3CNF properties are hard to test," *SIAM Journal on Computing*, vol. 35, no. 1, pp. 1–21, 2005. [Online]. Available: http://epubs.siam.org/SICOMP/volume-35/art\_44544.html
- [2] E. Ben-Sasson and M. Sudan, "Robust locally testable codes and products of codes," *Random Struct. Algorithms*, vol. 28, no. 4, pp. 387–402, 2006. [Online]. Available: http://dx.doi.org/10.1002/rsa.20120
- [3] E. Ben-Sasson and M. Viderman, "Composition of semi-LTCs by two-wise tensor products," in APPROX-RANDOM, ser. Lecture Notes in Computer Science, I. Dinur, K. Jansen, J. Naor, and J. D. P. Rolim, Eds., vol. 5687. Springer, 2009, pp. 378–391. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-03685-9
- [4] I. Dinur, M. Sudan, and A. Wigderson, "Robust local testability of tensor products of LDPC codes," in *APPROX-RANDOM*, ser. Lecture Notes in Computer Science, vol. 4110. Springer, 2006, pp. 304–315. [Online]. Available: http://dx.doi.org/10.1007/11830924\_29
- [5] S. Kopparty, S. Saraf, and S. Yekhanin, "High-rate codes with sublinear-time decoding," in *ECCC TR10-148*, 2010. [Online]. Available: http://eccc.hpi-web.de/report/2010/148/
- [6] O. Meir, "Combinatorial construction of locally testable codes," SIAM J. Comput, vol. 39, no. 2, pp. 491–544, 2009. [Online]. Available: http://dx.doi.org/10.1137/080729967

ECCC

ISSN 1433-8092

http://eccc.hpi-web.de