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Abstract

The Small-Set Expansion Hypothesis (Raghavendra, Steurer, STOC 2010) is a natural hardness
assumption concerning the problem of approximating the edge expansion of small sets in graphs. This
hardness assumption is closely connected to the Unique Games Conjecture (Khot, STOC 2002). In
particular, the Small-Set Expansion Hypothesis implies the Unique Games Conjecture (Raghavendra,
Steurer, STOC 2010).

Our main result is that the Small-Set Expansion Hypothesis is in fact equivalent to a variant of the
Unique Games Conjecture. More precisely, the hypothesis is equivalent to the Unique Games Conjecture
restricted to instance with a fairly mild condition on the expansion of small sets. Alongside, we obtain
the first strong hardness of approximation results for the Balanced Separator and Minimum Linear
Arrangement problems. Before, no such hardness was known for these problems even assuming the
Unique Games Conjecture.

These results not only establish the Small-Set Expansion Hypothesis as a natural unifying hypothesis
that implies the Unique Games Conjecture, all its consequences and, in addition, hardness results for
other problems like Balanced Separator and Minimum Linear Arrangement, but our results also show
that the Small-Set Expansion Hypothesis problem lies at the combinatorial heart of the Unique Games
Conjecture.

The key technical ingredient is a new way of exploiting the structure of the Unique Games instances
obtained from the Small-Set Expansion Hypothesis via (Raghavendra, Steurer, 2010). This additional
structure allows us to modify standard reductions in a way that essentially destroys their local-gadget
nature. Using this modification, we can argue about the expansion in the graphs produced by the reduction
without relying on expansion properties of the underlying Unique Games instance (which would be
impossible for a local-gadget reduction).
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1 Introduction

Finding small vertex or edge separators in a graph is a fundamental computational task. Even from a
purely theoretical standpoint, the phenomenon of vertex and edge expansion – the lack of good vertex
and edge separators, has had numerous implications in all branches of theoretical computer science. Yet,
the computational complexity of detecting and approximating expansion, or finding good vertex and edge
separators in graphs is not very well understood.

Among the two notions of expansion, this work will concern mostly with edge expansion. For simplicity,
let us first consider the case of a d-regular graph G = (V, E). The edge expansion of a subset of vertices
S ⊆ V measures the fraction of edges that leave S . Formally, the edge expansion Φ(S ) of a (non-empty)
subset S ⊆ V is defined as,

ΦG(S ) =
|E(S ,V \ S )|

d|S |
,

where E(S ,V \ S ) denotes the set of edges with one endpoint in S and the other endpoint in V \ S . The
conductance or the Cheeger’s constant associated with the graph G is the minimum of Φ(S ) over all sets S
with at most half the vertices, i.e.,

ΦG = min
|S |6n/2

ΦG(S ) .

These notions of conductance can be extended naturally to non-regular graphs, and finally to arbitrary
weighted graphs (see Section 2). Henceforth, in this section, for a subset of vertices S in a graph G we will
use the notation µ(S ) to denote the normalized set size, i.e., µ(S ) = |S |/n in a n vertex graph.

The problem of approximating the quantity ΦG for a graph G, also referred to as the the uniform Sparsest
Cut (equivalent within a factor of 2), is among the fundamental problems in approximation algorithms.
Efforts towards approximating ΦG have led to a rich body of work with strong connections to spectral
techniques and metric embeddings.

The first approximation for conductance was obtained by discrete analogues of the Cheeger inequality
[Che70] shown by Alon-Milman [AM85] and Alon [Alo86]. Specifically, Cheeger’s inequality relates the
conductance ΦG to the second eigenvalue of the adjacency matrix of the graph – an efficiently computable
quantity. This yields an approximation algorithm for ΦG, one that is used heavily in practice for graph
partitioning. However, the approximation for ΦG obtained via Cheeger’s inequality is poor in terms of a
approximation ratio, especially when the value of ΦG is small. An O(log n) approximation algorithm for ΦG

was obtained by Leighton and Rao [LR99]. Later work by Linial et al. [LLR95] and Aumann and Rabani
[AR98] established a strong connection between the Sparsest Cut problem and the theory of metric spaces, in
turn spurring a large and rich body of literature. More recently, in a breakthrough result Arora et al. [ARV04]
obtained an O(

√
log n) approximation for the problem using semidefinite programming techniques.

Small Set Expansion. It is easy to see that ΦG is a fairly coarse measure of edge expansion, in that it is the
worst case edge expansion over sets S of all sizes. In a typical graph (say a random d-regular graph), smaller
sets of vertices expand to a larger extent than sets with half the vertices. For instance, all sets S of n/1000
vertices in a random d-regular graph have Φ(S ) > 0.99 with very high probability, while the conductance ΦG

of the entire graph is roughly 1/2.
A more refined measure of the edge expansion of a graph is its expansion profile. Specifically, for a graph

G the expansion profile is given by the curve

ΦG(δ) = min
µ(S )6δ

Φ(S ) ∀δ ∈ [0, 1/2] .
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The problem of approximating the expansion profile has received much less attention, and is seemingly far
less tractable. The second eigenvalue λ2 fails to approximate the expansion of small sets in graphs. On one
hand, even with the largest possible spectral gap, the Cheeger’s inequality cannot yield a lower bound greater
than 1/2 for the conductance ΦG(δ). More importantly, there exists graphs such as hypercube where ΦG is
small (say ε), yet every sufficiently small set has near perfect expansion (Φ(S ) > 1 − ε). This implies that ΦG

(and the second eigenvalue λ2) does not yield any information about expansion of small sets.
In a recent work, Raghavendra, Steurer, and Tetali [RST10] give a polynomial-time algorithm based

on semidefinite programming for this problem. Roughly speaking, the approximation guarantee of their
algorithm for ΦG(δ) is similar to the one given by Cheeger’s inequality for ΦG, except with the approximation
degrading by a log 1/δ factor. In particular, the approximation gets worse as the size of the sets considered
gets smaller.

In the regime when ΦG(δ) tends to zero as a function of the instance size n, an O(log n)-approximation
follows from the framework of Räcke [Räc08]. Very recently, this approximation has been improved to a
O(

√
log n · log(1/δ))-approximation [BKN+10]. Our work focuses on the regime when ΦG(δ) is not a function

of the instance size n. In this regime, the algorithm of [RST10] gives the best known approximation for the
expansion profile Φg(δ).

In summary, the current state-of-the-art algorithms for approximating the expansion profile of a graph are
still very far from satisfactory. Specifically, the following hypothesis is consistent with the known algorithms
for approximating expansion profile.

Hypothesis (Small-Set Expansion Hypothesis, [RS10]). For every constant η > 0, there exists sufficiently
small δ > 0 such that given a graph G it is NP-hard to distinguish the cases,

Yes: there exists a vertex set S with volume µ(S ) = δ and expansion Φ(S ) 6 η,

No: all vertex sets S with volume µ(S ) = δ have expansion Φ(S ) > 1 − η.

For the sake of succinctness, we will refer to the above promise problem as Small-Set Expansion with
parameters (η, δ). Apart from being a natural optimization problem, the Small-Set Expansion problem is
closely tied to the Unique Games Conjecture, as discussed in the next paragraph.

Recently, Arora, Barak, and Steurer [ABS10] showed that the problem Small-Set Expansion(η, δ) admits
a subexponential algorithm, namely an algorithm that runs in time exp(nη/δ). However, such an algorithm does
not refute the hypothesis that the problem Small-Set Expansion(η, δ) might be hard for every constant η > 0
and sufficiently small δ > 0.

Unique Games Conjecture. The Khot’s Unique Games Conjecture [Kho02] is among the central open
problems in hardness of approximation. At the outset, the conjecture asserts that a certain constraint
satisfaction problem called the Unique Games is hard to approximate in a strong sense.

An instance of Unique Games consists of a graph with vertex set V , a finite set of labels [R], and a
permutation πv←w of the label set for each edge (v, w) of the graph. A labeling F : V → [R] of the vertices
of the graph is said to satisfy an edge (v, w), if πv←w(F(w)) = F(v). The objective is to find a labeling that
satisfies the maximum number of edges.

The Unique Games Conjecture asserts that if the label set is large enough then even though the input
instance has a labeling satisfying almost all the edges, it is NP-hard to find a labeling satisfying any non-
negligible fraction of edges.

In recent years, Unique Games Conjecture has been shown to imply optimal inapproximability results for
classic problems like Max Cut [KKMO07], Vertex Cover [KR08] Sparsest Cut [KV05] and all constraint
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satisfaction problems [Rag08]. Unfortunately, it is not known if the converse of any of these implications
holds. In other words, there are no known polynomial-time reductions from these classic optimization
problems to Unique Games, leaving the possibility that while the its implications are true the conjecture itself
could be false.

Recent work by two of the authors established a reverse reduction from the Small-Set Expansion problem
to Unique Games [RS10]. More precisely, their work showed that Small-Set Expansion Hypothesis implies
the Unique Games Conjecture. This result suggests that the problem of approximating expansion of small
sets lies at the combinatorial heart of the Unique Games problem. In fact, this connection proved useful in
the development of subexponential time algorithms for Unique Games by Arora, Barak and Steurer [ABS10].
It was also conjectured in [RS10] that Unique Games Conjecture is equivalent to the Small-Set Expansion
Hypothesis.

1.1 Results (Informal Description)

In this work, we further investigate the connection between Small-Set Expansion and the Unique Games
problem. The main result of this work is that the Small-Set Expansion Hypothesis is equivalent to a variant
of the Unique Games Conjecture. More precisely, we show the following:

Theorem (Main Theorem, Informal). The Small-Set Expansion Hypothesis is equivalent to assuming that
the Unique Games Conjecture holds even when the input instances are required to be small set expanders,
i.e., sets of roughly δn vertices for some small constant δ have expansion close to 1.

As a corollary, we show that Small-Set Expansion Hypothesis implies hardness of approximation results
for Balanced Separator and Minimum Linear Arrangement problems. The significance of these results stems
from two main reasons.

First, the Unique Games Conjecture is not known to imply hardness results for problems closely tied to
graph expansion such as Balanced Separator and Minimum Linear Arrangement. The reason being that
the hard instances of these problems are required to have certain global structure namely expansion. Gadget
reductions from a unique games instance preserve the global properties of the unique games instance such as
lack of expansion. Therefore, showing hardness for Balanced Separator or Minimum Linear Arrangement
problems often required a stronger version of the Unique Games Conjecture, where the instance is guaranteed
to have good expansion. To this end, several such variants of the conjecture for expanding graphs have
been defined in literature, some of which turned out to be false [AKK+08]. Our main result shows that the
Small-Set Expansion Hypothesis serves as a natural unified assumption that yields all the implications of
Unique Games Conjecture and, in addition, also hardness results for other fundamental problems such as
Balanced Separator.

Second, several results in literature point to the close connection between Small-Set Expansion problem
and the Unique Games problem. One of the central implications of the Unique Games Conjecture is that
certain semidefinite programs yield optimal approximation for various classes of problems. As it turns out,
hard instances for semidefinite programs (SDP integrality gaps) for Max Cut [FS02, KV05, KS09, RS09],
Vertex Cover [GMPT07], Unique Games [KV05, RS09] and Sparsest Cut [KV05, KS09, RS09] all have
near-perfect edge expansion for small sets. In case of Unique Games, not only do all known integrality gap
instances have near-perfect edge expansion of small sets, even the analysis relies directly on this property.
All known integrality gap instances for semidefinite programming relaxations of Unique Games, can be
translated in to gap instances for Small-Set Expansion problem, and are arguably more natural in the latter
context. Furthermore, all the algorithmic results for Small-Set Expansion, including the latest work of Arora,
Barak and Steurer [ABS10] extend to Unique Games as well. This apparent connection was formalized in
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the result of Raghavendra et al. [RS10] which showed that Small-Set Expansion Hypothesis implies the
Unique Games Conjecture. This work complements that of Raghavendra et al. [RS10] in exhibiting that the
Small-Set Expansion problem lies at the combinatorial heart of the Unique Games problem.

We also show a “hardness amplification” result for Small-Set Expansion proving that if the Small-Set
Expansion Hypothesis holds then the current best algorithm for Small-Set Expansion due to [RS10] is optimal
within some fixed constant factor. One can view the reduction as a “scale change” operation for expansion
problems, which starting from the qualitative hardness of a problem about expansion of sets with a sufficiently
small measure δ, gives the optimal quantitative hardness results for problems about expansion of sets with
any desired measure (larger than δ). This is analogous to (and based on) the results of [KKMO07] who gave
a similar alphabet reduction for Unique Games. An interesting feature of the reductions in the paper is that
they produce instances whose expansion of small sets closely mimics a certain graph on the Gaussian space.

2 Preliminaries

Random walks on graphs. Consider the natural random walk on V defined by G. We write j ∼ G(i) to
denote a random neighbor of vertex i in G (one step of the random walk started in i). The stationary measure
for the random walk is given by the volume as defined earlier with µ(i) = G({i},V). If G is regular, then µ is
the uniform distribution on V . In general, µ is proportional to the degrees of the vertices in G. We write i ∼ µ
to denote a vertex sampled according to the stationary measure. If G is clear from the context, we often write
i ∼ V instead of i ∼ µ.

Spectral gap of graphs. We identify G with the stochastic matrix of the random walk on G. We equip the
vector space { f : V → �} with the inner product

〈 f , g〉 def
= �

x∼µ
f (x)g(x) .

We define ‖ f ‖ = 〈 f , f 〉1/2. As usual, we refer to this (Hilbert) space as L2(V). Notice that G is self-adjoint
with respect to this inner product, i.e., 〈 f ,Gg〉 = 〈G f , g〉 for all f , g ∈ L2(V). Let λ1 > . . . > λn be the
eigenvalues of G. The non-zero constants are eigenfunctions of G with eigenvalue λ1 = 1.

For a vertex set S ⊆ V , let 1S be the {0, 1}-indicator function of S . We denote by G(S ,T ) = 〈1S ,G1T 〉

the total weight of all the edges in G that go between S and T .

Fact 2.1. Suppose the second largest eigenvalue of G is λ. Then, for every function f ∈ L2(V),

〈 f ,G f 〉 6 (� f )2 + λ ·
(
‖ f ‖2 − (� f )2

)
.

In particular, ΦG(δ) > 1 − δ − λ for every δ > 0.

Gaussian Graphs. For a constant ρ ∈ (−1, 1), let G(ρ) denote the infinite graph over � where the weight
of an edge (x, y) is the probability that two standard Gaussian random variables X,Y with correlation ρ equal
x and y respectively. The expansion profile of Gaussian graphs is given by ΦG(ρ)(µ) = 1 − Γρ(µ)/µ where the
quantity Γρ(µ) defined as

Γρ(µ) := �
(x,y) Gρ

{x > t, y > t} ,
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where Gρ is the 2-dimensional Gaussian distribution with covariance matrix(
1 ρ

ρ 1

)
and t > 0 is such that �(x,y)∼Gρ {x > t} = µ. A theorem of Borell [Bor85] shows that for any set S of measure
µ, (G(ρ))(S , S ) 6 Γρ(µ). This expansion profile will be frequently used in the paper to state the results
succinctly.

Noise graphs. For a finite probability space (Ω, ν) and ρ ∈ [0, 1], we define T = Tρ,Ω to be the following
linear operator on L2(Ω),

T f (x) = ρx + (1 − ρ) �
x′∼Ω

f (x′) .

The eigenvalues of T are 1 (with multiplicity 1) and ρ (with multiplicity |Ω| − 1). The operator T
corresponds to the following natural (reversible) random walk on Ω: with probability ρ stay at the current
position, with probability (1 − ρ) move to a random position sampled according to the measure ν.

Product graphs. If G and G′ are two graphs with vertex sets V and V ′, we let H = G ⊗ G′ be the
tensor product of G and G′. The vertex set of G is V × V ′. For i ∈ V and i′ ∈ V ′, the distribution H(i, i′) is
the product of the distributions G(i) and G′(i′). For R ∈ �, we let G⊗R denote the R-fold tensor product of G.
Sometimes the power R of the graph is clear from the context. In this case, we might drop the superscript for
the tensor graph.

3 Results

Towards stating the results succinctly, we introduce the notion of a decision problem being SSE-hard. It is
the natural notion wherein a decision problem is SSE-hard if the Small-Set Expansion (η, δ) reduces to it by
a polynomial time reduction for some constant η and all δ > 0 (See Definition 5.6).

3.1 Relation to the Unique Games Conjecture

We show that the Small-Set Expansion Hypothesis is equivalent to a certain variant of the Unique Games
Conjecture with expansion. Specifically, consider the following version of the conjecture with near-perfect
expansion of sufficiently small sets. The hypothesis is as follows: 1

Hypothesis 3.1 (Unique Games with Small-Set Expansion). For every ε, η > 0 and M ∈ �, there exists
δ = δ(ε,M) > 0 and q = q(ε, η,M) ∈ � such that it is NP-hard to distinguish for a given Unique Games
instanceU with alphabet size q whether

Yes: The Unique Games instanceU is almost satisfiable, opt(U) > 1 − ε.

No: The Unique Games instanceU satisfies opt(U) < η and its constraint graph G satisfies Φ(S ) > 1 − ε
for every vertex set with δ 6 µ(S ) 6 Mδ.

The main result of the paper is the following reduction from Small-Set Expansion to Unique Games on
instances with small-set expansion.

1The hypothesis in [RS10] is not quite the same. However, the reduction and its analysis in [RS10] also work for this hypothesis.
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Theorem 3.2. For every q ∈ � and every ε, γ > 0, it is SSE-hard to distinguish between the following cases
for a given Unique Games instanceU with alphabet size q:

Yes: The Unique Games instanceU is almost satisfiable, opt(U) > 1 − 2ε − o(ε)

No: The optimum of the Unique Games instanceU is negligible, and the expansion profile of the instance
resembles the Gaussian graph G(1 − ε). More precisely, the Unique Games instance U satisfies
opt(U) < O

(
q−ε/(2−ε)

)
+ γ and in addition, the constraint graph G ofU satisfies

∀S ⊆ V(G). ΦG(S ) > ΦG(1−ε)
(
µ(S )

)
− γ/µ(S ) .

The proof of the above theorem is presented in Section 6.3. Together with Theorem 1.9 from [RS10],
Theorem 3.2 implies the following equivalence:

Corollary 3.3. The Small-Set Expansion Hypothesis is equivalent to Hypothesis 3.1 (Unique Games with
Small-Set Expansion).

Remark 3.4. If we choose γ � ε, then the constraint graph G in the No case satisfies Φ(S ) > Ω(
√
ε) for

every vertex set S with µ(S ) ∈ (b, 1/2) for an arbitrarily small constant b > 0. In other words, the best
balanced separator in G has cost Ω(

√
ε). A hardness of Unique Games on graphs of this nature was previously

conjectured in [AKK+08], towards obtaining a hardness for Balanced Separator.

As already mentioned, for several problems such as Max Cut, the the hard instances for the semidefinite
programs have very good expansion of small sets. For instance, hard instances for semidefinite programs
(SDP integrality gaps) for Max Cut [FS02, KV05, KS09, RS09], Vertex Cover [GMPT07], Unique Games
[KV05, RS09] and Sparsest Cut [KV05, KS09, RS09] all have near-perfect edge expansion for small sets.
In fact, in many of the cases, the edge expansion in the graph closely mimics the expansion of sets in some
corresponding Gaussian graph. Confirming this observation, our techniques imply an optimal hardness result
for Max Cut on instances that are small-set expanders. More precisely, the Small-Set Expansion Hypothesis
implies that the Goemans-Williamson algorithm is optimal even on graphs that are guaranteed to have good
expansion of small sets, in fact an expansion profile that resembles the Gaussian graph. For the sake of
succinctness, we omit the formal statement of the result.

3.2 Hardness Amplification for Graph Expansion

Observe that the Small-Set Expansion Hypothesis is a purely qualitative assumption on the approximability
of expansion. Specifically, for every constant η the hypothesis asserts that there exists some δ such that
approximating expansion of sets of size δ is NP-hard. The hypothesis does not assert any quantitative
dependence on the set size and approximability. Surprisingly, we show that this qualitative hardness
assumption is sufficient to imply precise quantitative bounds on approximability of graph expansion.

Theorem 3.5. For all q ∈ � and ε, γ > 0, it is SSE-hard to distinguish between the following two cases for
a given graph H = (VH , EH)

Yes: There exist q disjoint sets S 1, . . . , S q ⊆ VH satisfying for all l ∈ [q],

µ(S l) = 1
q and ΦH(S l) 6 ε + o(ε).
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No: For all sets S ⊆ VH ,
ΦH(S ) > ΦG(1−ε/2)

(
µ(S )

)
− γ/µ(S )

where ΦG(1−ε/2)(µ(S )) is the expansion of sets of volume µ(S ) in the infinite Gaussian graph G(1− ε/2).

The above hardness result matches (upto an absolute constant factor), the recent algorithmic result
(Theorem 1.2) of [RST10] approximating the graph expansion. Furthermore, both the Yes and the No cases
of the above theorem are even qualitatively stronger than in the Small-Set Expansion Hypothesis. In the Yes
case, not only does the graph have one non-expanding set, but it can be partitioned into small sets, all of
which are non-expanding. This partition property is useful in some applications such as hardness reduction to
Minimum Linear Arrangement. In the No case, the expansion of all sets can be characterized only by their
size µ(S ). Specifically, the expansion of every set S of vertices with µ(S ) >> γ, is at least the expansion of a
set of similar size in the Gaussian graph G(1 − ε/2).

Here we wish to draw an analogy to the Unique Games Conjecture. The Unique Games Conjecture is
qualitative in that it does not prescribe a relation between its soundness and alphabet size. However, the work
of Khot et al. [KKMO07] showed that the Unique Games Conjecture implies a quantitative form of itself
with a precise relation between the alphabet size and soundness. Theorem 3.5 could be thought of as an
analogue of this phenomena for the Small-Set Expansion problem.

As an immediate consequence of Theorem 3.5, we obtain the following hardness of the Balanced
Separator and Minimum Linear Arrangement problems (See Appendix A.3 for details).

Corollary 3.6 (Hardness of Balanced Separator and Min Bisection). There is a constant c such that for
arbitrarily small ε > 0, it is SSE-hard to distinguish the following two cases for a given graph G = (V, E):

Yes: There exists a cut (S ,V \ S ) in G such that µ(S ) = 1
2 and ΦG(S ) 6 ε + o(ε).

No: Every cut (S ,V \ S ) in G, with µ(S ) ∈
(

1
10 ,

1
2

)
satisfies ΦG(S ) > c

√
ε.

Corollary 3.7 (Hardness of Minimum Linear Arrangement). It is SSE-hard to approximate Minimum Linear
Arrangement to any fixed constant factor.

4 Warm-up: Hardness for Balanced Separator

In this section we present a simplified version of our reduction from Small-Set Expansion to Balanced
Separator. Though it gives sub-optimal parameters, it illustrates the key ideas used in the general reduction.

4.1 Candidate Reduction from Unique Games

A natural approach for reducing Unique Games to Balanced Separator is to consider variants of the reduction
from Unique Games to Max Cut in [KKMO07] (similarly, one could consider variants of the reduction from
Unique Games to the generalized Sparsest Cut problem [KV05]).

Let U be a unique game with alphabet size R and vertex set V . (We assume that every vertex of the
unique game participates in the same number of constraints. This assumption is without loss of generality.)
The candidate reduction has a parameter ε > 0. The graph H = Hε(U) obtained from this candidate reduction
has vertex set V × {0, 1}R and its edge distribution is defined as follows:

1. Sample a random vertex u ∈ V .
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2. Sample two random constraints (u, v, π), (u, v′, π′) ofU that contain the vertex u. (Henceforth, we will
write (u, v, π) ∼ U | u to denote a random constraint ofU containing vertex u.)

3. Sample a random edge (y, y′) of the boolean noise graph T1−ε with noise parameter ε.

4. Output an edge between (v, π(y)) and (v′, π′(y′)). (Here, π(y) denotes the vector obtained by permuting
the coordinates of y according to the permutation π.)

Completeness. Suppose there is a good assignment F : V → [R] for the unique game U. Then, if we
sample a random vertex u ∈ V and two random constraint (u, v, π), (u, v′, π′) ∼ U | u, with probability very
close to 1 (much closer than ε), the labels assigned to v and v′ satisfy π−1(F(v)) = (π′)−1(F(v)). Consider
the vertex set S = {(u, x) | xF(u) = 1} . in the graph H. We have µ(S ) = 1/2. We claim that the expansion
of this set is essentially ε/2 (up to a lower-order term depending on the fraction of constraint ofU violated
by F). Consider a random edge e with endpoints (v, π(y)) and (v′, π′(y′)), where the vertices v, v′ ∈ V and
the permutations π, π′ are generated as specified above. Let r = π−1(F(v)) and r′ = (π′)−1(F(v)). The edge e
crosses the cut S if and only if yr , y

′
r′ . As argued before, with probability very close to 1, we have r = r′.

Conditioned on this event, the probability that yr , yr′ is equal to ε/2. This shows that S has expansion ε/2.

Soundness. Suppose no assignment for the unique gameU satisfies a significant fraction of constraints.
Let S be a vertex set in the graph H. The goal is to lower bound the expansion of S (which is the same as
upper bounding the fraction of edges with both endpoints in S ). Let f : VR × {0, 1}R → {0, 1} be the indicator
function of S . Following the analysis of [KKMO07], we consider functions gu : {0, 1}R → [0, 1],

gu(x) = �
(u,v,π)∼U|u,
y∼T √1−ε(x)

{ f (v, π(y))} .

(The graph H turns out to be the square of a graph H0 in which we would just create edges of the form
((u, x), (v, π(y))). The function gu(x) evaluates to the probability that the set S contains a random neighbor
of (u, x) in this graph H0.) By construction, the fraction H(S , S ) of edges of H with both endpoints in S is
exactly

H(S , S ) = �
u∈V
〈gu,T1−εgu〉 .

SinceU does not have a good assignment, standard arguments (invariance principle and influence decoding,
see [KKMO07]) imply the following upper bound on H(S , S ),

H(S , S ) 6 �
u∈V

Γ1−ε(µu) + o(1) .

(The notation o(1) hides a term depending on the maximum fraction of constraints ofU that can be satisfied.
For us, this term is not significant.) Here, µu is the expected value of gu and Γ1−ε(·) is the noise stability
profile of the Gaussian noise graph with parameter ε. We would like to show that every set S that contains a
µ fraction of the vertices of H satisfies H(S , S ) 6 Γ1−ε(µ) + o(1). However, the function Γ1−ε is, of course,
not concave. Hence, this upper bound holds only if µu is close to µ for most vertices u ∈ V .

In fact, it is very easy to construct examples that show that the candidate reduction is not sound. For
example, consider a unique game U that consists of two disjoint parts of the same size (i.e., without any
constraint between the two parts). The reduction preserves this global structure, in the sense that the graph H
also consists of two disjoint parts of the same size (with no edge between the parts). Hence, this graph
contains a vertex set with volume 1/2 and expansion 0 irrespective of the optimal value of the unique gameU.
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In fact, any cut in the underlying graph ofU can be translated to a cut in H and the resulting function f may
have the values µu as (very close to) 0 or 1.

This example shows that the above candidate reduction can only work if one makes assumptions about
structure of the constraint graph of the underlying unique game U. However, such an assumption raises
the question if Unique Games could be hard to approximate even if the constraint graph is expanding. This
issue turns out to be delicate as demonstrated by the algorithm for Unique Games with expanding constraint
graphs [AKK+08]. This algorithm achieves a good approximation for Unique Games if the expansion of the
constraint graph exceeds a certain threshold.

4.2 Structured Unique Games from Small-Set Expansion

In this work, we present a very different approach for fixing the above candidate reduction. Instead of
assuming expansion properties of the constraint graph, we assume that the underlying unique game is
obtained by the reduction from Small-Set Expansion to Unique Games in [RS10] 2. This specific form of the
underlying unique game will allows us to modify the reduction such that the global structure of the constraint
graph is no longer preserved in the graph obtained from the reduction. (In particular, our modified reduction
will break with the paradigm of composing unique games with local gadgets.)

In the following, we describe the reduction from Small-Set Expansion to Unique Games. Let G be a
regular graph with vertex set V . For technical reasons, we assume that G contains a copy of the complete
graph of weight η > 0. (Since we will be able to work with very small η, this assumption is without loss of
generality.) Given a parameter R ∈ � and the graph G, the reduction outputs a unique game U = UR(G)
with vertex set VR and alphabet [R]. The constraints of the unique game U correspond to the following
probabilistic verifier for an assignment F : VR → [R]:

1. Sample a random vertex A ∈ VR.

2. Sample two random neighbors B,C ∼ G⊗R(A) of the vertex A in the tensor-product graph G⊗R.

3. Sample two random permutations πB, πC of [R].

4. Verify that π−1
B (F(πB(B))) = (πC)−1(F(πC(C))).

Raghavendra and Steurer [RS10] show that this reduction is complete and sound in the following sense:

Completeness If the graph G contains a vertex set with volume 1/R and expansion close to 0, then the
unique gameU = UR(G) has a partial assignment that labels an α > 1/e fraction of the vertices and
satisfies almost an α fraction of the constraints.

Soundness If the graph G contains no set with volume 1/R and expansion bounded away from 1, then no
assignment for the unique gameU = UR(G) satisfies a significant fraction of the constraints.

Hence, if one assumes the Small-Set Expansion Hypothesis, then the kind of unique games obtained from
the reduction are hard to approximate.

We remark that the completeness of the reduction seems weaker than usual, because we are only
guaranteed a partial assignment for the unique game. However, it is easy to check that the KKMO reduction
presented in the previous section also works if there is only a partial assignment in the completeness case.
The only difference is that one now gets a set S with µ(S ) = α/2 and expansion roughly ε/2.

2We remark that unique games of this form do not necessarily have expanding constraint graphs. In fact, it is still possible that
the constraint graph consists of two disconnected components.
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4.3 Reduction from Small-Set Expansion to Balanced Separator

We now show how the combination of the above two reductions can be modified to give a reduction from
Small-Set Expansion to Balanced Separator. LetU = UR(G) be the unique game given by the reduction of
Raghavendra and Steurer. If we consider the graph Hε given by the reduction in Section 4.1, each vertex of
Hε is now of the form (A, x), where A ∈ VR and x ∈ {0, 1}R.

The intuition is that in this case, we can think of x as picking a subset of the vertices in A, and that just
the knowledge of this subset (instead of the whole of A) is sufficient for the provers to provide a good answer
to the corresponding unique game. In particular, let A′ = {Ai | xi = 1} is the subset picked by x. Then the
argument for the completeness case in [RS10] actually shows that one can still find a good labeling for an α
fraction of the vertices A, where the label of A only depends on A′ 3.

Formally, if we replace A with the tuple A′(x) defined by taking A′i = Ai if xi = 1 and A′i = ⊥ otherwise.
This gives a graph H′ with the vertex set being a subset of (V ∪ {⊥})R × {0, 1}R. The the argument in
completeness case for showing that H has a balanced cut of expansion roughly ε/2 can in fact be extended to
show that H′ also has a balanced cut of expansion roughly ε/2.

The soundness analysis in the previous reduction did not always work because H had the same structure
as G⊗R, since we essentially replaced every vertex of G⊗R by a gadget {0, 1}R to obtain H. However, the
structure of H′ is very different from that of G⊗R.

For example, consider the vertices A = (u1, u2, . . . , uR) and B = (v1, u2, . . . uR) in VR which only differ
in the first coordinate (A, B are not necessarily adjacent). Let x ∈ {0, 1}R be such that x1 = 0. Then, while
(A, x) and (B, x) are different vertices in H, (A′(x), x) and (B′(x), x) are in fact the same vertex in H′! On the
other hand, if x1 = 1, then (A′(x), x) and (B′(x), x) would be two different vertices in H′. Hence, the gadget
structure of H is no longer preserved in H′ - it is very different from a “locally modified” copy of G⊗R.

For the purposes of analysis, it will be more convenient to think of A′ being obtained by replacing Ai

where xi = 0, by a random vertex of G instead of the symbol ⊥. Instead of identifying different vertices in
H with the same vertex in H′, this now has the effect of re-distributing the weight of an incident on (A, x),
uniformly over all the vertices that (A′, x) can map to. Let Mx denote a Markov operator which maps A to a
random A′ as above (a more general version and analysis of such operators can be found in Section 5).

We now state the combined reduction. The weight of an edge in the final graph H′ is the probability that
it is produced by the following process:

1. Sample a random vertex A ∈ VR.

2. Sample two random neighbors B,C ∼ G⊗R(A) of the vertex A in the tensor-product graph G⊗R.

3. Sample xB, xC ∼ {0, 1}R.

4. Sample B′ ∼ MxB(B) and C′ ∼ MxC (C).

5. Sample two random permutations πB, πC of [R].

6. Output an edge between the vertices πB(B′, xB) and πC(C′, xC) (π(A, x) denotes the tuple (π(A), π(x))).

As before, let f : VR × {0, 1}R denote the indicator function of a set in H′, with (say) � f = µ = 1/2. We
define the functions

f̄ (A, x) def
= �

π
f (π.A, π.x) and gA(x) def

= �
B∼G⊗R(A)

�
B′∼Mx(B)

f̄ (B′, x) .

3Given a non-expanding small set S , if A′ ∩ S contains a single element A′j, then we assign the label j to A. If A′ ∩ S is not a
singleton, we do not label A.
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By construction, each vertex (A, x) of H′ has exactly the same neighborhood structure as (π.A′, π.x) for
all π ∈ S R and A′ ∈ Mx(A). Hence, the fraction of edges crossing the cut can also be written in terms of f̄ as
〈 f ,H′ f 〉 = 〈 f̄ ,H′ f̄ 〉.

We will show that f̄ gives a cut (actually, a distribution over cuts) with the same expansion in the graph
H, such that the functions gA satisfy �A {� gA ∈ (1/10, 9/10)} > 1/10. Recall that showing this was exactly the
problem in making the reduction in Section 4.1 work.

Since �A�x gA = µ, we have �A (�x gA)2 > µ2. The following claim also gives an upper bound.

Claim 4.1. �A (�x gA)2 6 µ2/2 + µ/2

Proof. We have

�
A∼VR

(
�
x
gA

)2
= �

A∼VR

(
�

B∼G⊗R(A)
�
x
�

B′∼Mx(B)
f̄
)2

6 �
A∼VR

�
B∼G⊗R

(
�
x
�

B′∼Mx(B)
f̄
)2

= �
B∼VR

(
�
x
�

B′∼Mx(B)
f̄
)2

= �
B∼VR

[(
�
x1

�
B′1∼Mx1 (B)

f̄
) (
�
x2

�
B′2∼Mx2 (B)

f̄
)]

= �
x1

�
B′1∼Mx1 (B)

f̄ (B′1, x1) �
(B′2,x2)∼M(B′1,x1)

f (B′2, x2) .

For the last equality above, we define M to be a Markov operator which samples (B′2, x2) from the correct
distribution given (B′1, x

′
1). Since x1, x2 are independent, x2 can just be sampled uniformly. The fact that B′1

and B′2 come from the same (random) B can be captured by sampling each coordinate of B′2 as

(B′2)i =

{
(B′1)i if (x1)i = (x2)i = 0
random vertex in V otherwise

.

Abusing notation, we also use M to denote the operator on the space of the functions which averages the
value of the function over random (B′2, x2) generated as above. Then, if λ is the second eigenvalue of M, we
have

�
A

(
�
x
gA

)2
6 〈 f̄ ,M f̄ 〉 6 1 · (� f̄ )2 + λ ·

(
‖ f̄ ‖2 − (� f̄ )2

)
6 (1 − λ) · µ2 + λ · µ .

Finally, it can be checked that the second eigenvalue of M is 1/2 which proves the claim. �

This gives that �x gA cannot be always very far from µ. Formally,

�
A
{|� gA − µ| > γ} 6

�A(� gA − µ)2

γ2 6
µ(1 − µ)

2γ2 .

Hence, for γ = 2/5, the probability is at most 25/32 < 9/10. This can now be combined with the bound from
Section 4.1 that gives

H′(S , S ) 6 �
A

Γ1−ε (� gA) + o(1) .

Since � gA > 1/10 with probability at least 1/10 over A, these “nice” A’s contribute a volume of at least 1/100.
Also, for a nice A, we have Γ1−ε (� gA) 6 (� gA)(1 −Ω(

√
ε)). Hence,

H′(S , S ) 6 (µ − 1/100) + 1/100 · (1 −Ω(
√
ε)) + o(1)

which shows that S has expansion Ω(
√
ε).
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5 Additional Preliminaries

Unique Games. An instance of Unique Games represented asU = (V,E,Π, [R]) consists of a graph over
vertex setV with the edges E between them. Also part of the instance is a set of labels [R] = {1, . . . ,R}, and
a set of permutations Π = {πv←w : [R]→ [R]}, one permutation for each edge e = (w, v) ∈ E. An assignment
F : V → [R] of labels to vertices is said to satisfy an edge e = (w, v), if πv←w(F) = F(v). The objective is to
find an assignment F of labels that satisfies the maximum number of edges.

As is customary in hardness of approximation, one defines a gap-version of the Unique Games problem
as follows:

Problem 5.1 (Unique Games (R, 1 − ε, η)). Given a Unique Games instanceU = (V,E,Π = {πv←w : [R]→
[R] | e = (w, v) ∈ E}, [R]) with number of labels R, distinguish between the following two cases:

– (1 − ε)- satisfiable instances: There exists an assignment F of labels that satisfies a 1 − ε fraction of
edges.

– Instances that are not η-satisfiable: No assignment satisfies more than a η-fraction of the edges E.

The Unique Games Conjecture asserts that the above decision problem is NP-hard when the number of
labels is large enough. Formally,

Conjecture 5.2 (Unique Games Conjecture [Kho02]). For all constants ε, η > 0, there exists large enough
constant R such that Unique Games (R, 1 − ε, η) is NP-hard.

Graph expansion. In this work, all graphs are undirected and possibly weighted. Let G be a graph with
vertex set V . We write i j ∼ G to denote a random edge sampled from G (with random orientation). For two
vertex sets S ,T ⊆ V , let G(S ,T ) be the fraction of edges going from S to T , i.e.,

G(S ,T ) def
= �

i j∼G
{i ∈ S , j ∈ T } .

The expansion4 ΦG(S ) of a set S ⊆ V is the fraction of edges leaving S normalized by the fraction of edges
incident to S , i.e.,

ΦG(S ) def
=

G(S ,V \ S )
G(S ,V)

=
�i j∼G {i ∈ S , j < T }
�i j∼G {i ∈ S }

= �
i j∼G
{ j < T | i ∈ S } .

The volume of a set S is the fraction of edges incident on it and is denoted by µ(S ) def
= G(S ,V). The fraction

of edges leaving the set is denoted by ∂(S ) def
= G(S ,V \ S ).

Small-Set Expansion Hypothesis.

Problem 5.3 (Small-Set Expansion (η, δ)). Given a regular graph G = (V, E), distinguish between the
following two cases:

Yes: There exists a non-expanding set S ⊆ V with µ(S ) = δ and ΦG(S ) 6 η.

No: All sets S ⊆ V with µ(S ) = δ are highly expanding having ΦG(S ) > 1 − η.

4The technically more precise term is conductance
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Hypothesis 5.4 (Hardness of approximating Small-Set Expansion). For all η > 0, there exists δ > 0 such
that the promise problem Small-Set Expansion (η, δ) is NP-hard.

Remark 5.5. It is easy to see that for the problem Small-Set Expansion (η, δ) to be hard, one must have
δ 6 η. This follows from the fact that if we randomly sample a set S containing a δ fraction of the vertices
(and hence, having volume δ for a regular graph), the expected fraction of edges crossing the set is δ(1 − δ)
and hence �ΦG(S ) = 1 − δ. However, for it to be possible that for all sets with µ(S ) = δ have ΦG(S ) > 1 − η,
we must have δ 6 η.

Definition 5.6. Let P be a decision problem of distinguishing between two disjoint families (cases) of
instances denoted by {Yes,No}. For a given instance I of P, let Case(I) denote the family to which I
belongs. We say that P is SSE-hard if for some η > 0 and all δ ∈ (0, η), there is a polynomial time reduction,
which starting from an instance G = (V, E) of Small-Set Expansion(η, δ), produces an instance I of P such
that

– ∃S ⊆ V with µ(S ) = δ and ΦG(S ) 6 η =⇒ Case(I) = Yes.

– ∀S ⊆ V with µ(S ) = δ, ΦG(S ) > 1 − η =⇒ Case(I) = No.

For the proofs, it shall be more convenient to use the following version of the Small-Set Expansion
problem, in which we high expansion is guaranteed not only for sets of measure δ, but also within an arbitrary
multiplicative factor of δ.

Problem 5.7 (Small-Set Expansion (η, δ,M)). Given a regular graph G = (V, E), distinguish between the
following two cases:

Yes: There exists a non-expanding set S ⊆ V with µ(S ) = δ and ΦG(S ) 6 η.

No: All sets S ⊆ V with µ(S ) ∈
(
δ
M ,Mδ

)
have ΦG(S ) > 1 − η.

The following proposition shows that for the purposes of showing that P is SSE-hard, it is sufficient to
give a reduction from Small-Set Expansion (η, δ,M) for any chosen values of η,M and for all δ. We defer the
proof to Section A.2.

Proposition 5.8. For all η > 0,M > 1 and all δ < 1/M, there is polynomial time reduction from Small-Set
Expansion ( ηM , δ) to Small-Set Expansion(η, δ,M).

Invariance principle. The following theorem on the noise stability of functions over a product prob-
ability space is an easy corollary of Theorem 4.4 in Mossel et al. [MOO05]. Recall that Γρ(µ) :=

�(x,y) Gρ {x > t, y > t}, where Gρ is the 2-dimensional Gaussian distribution with covariance matrix
(
1 ρ

ρ 1

)
and t > 0 is such that �(x,y)∼Gρ {x > t} = µ.

Theorem 5.9. Let ν > 0, ρ ∈ (0, 1) and let Ω be a finite probability space. Then, there exists τ, δ > 0 such
that the following holds: Every function f : ΩR → [0, 1] satisfies either

〈 f ,Tρ f 〉 6 Γρ(� f ) + ν .

or maxi∈[R] Infi(T1−δ f ) > τ. (Here, Tρ and T1−δ are the natural noise operators on L2(ΩR) with correlation
parameters ρ and 1 − δ as defined above.)
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Below we define generalizations of the operators Mx and M used in Section 4. We show that these
operators can be viewed as somewhat extended versions of the noise operators which randomize each
coordinate of a product space with some probability. The operators we define can be viewed as noise
operators with additional “leakage” property, in the sense that part of the output encodes the information
about which coordinates were randomized. The second eigenvalue of these operators can be easily estimated
by relating it to the eigenvalue of the corresponding noise operator.

Random walks with leaked randomness. Suppose we have a collection of graphs {Gz}z∈Z with the same
vertex set V (and with the same stationary distribution). We consider two (reversible) random walks defined
by this collection and compare their spectral properties. The first random walk is defined on V . If the current
state is x1, we choose the next state x2 by sampling a random index z ∼ Z and then taking two random steps
from x1 in Gz, i.e., we sample x ∼ Gz(x1) and x2 ∼ Gz(x). The second random walk is defined on V ×Z. If
the current state is (x1, z1), we choose the next state (x2, z2) by sampling a random neighbor x of x1 in Gz1 ,
then we choose a random index z2 ∼ Z and a random neighbor x2 ∼ Gz2(x) according to Gz2 . The following
lemma shows that these two random walks have the same non-zero eigenvalues. (Recall that we identify
graphs with their stochastic operators.)

Lemma 5.10. Let (Z, ν) be a finite probability space and let {Gz}z∈Z be a family of graphs with the same
vertex set V and stationary measure µ. Then the following two graphs have the same non-zero eigenvalues:

– the graph �z∼ZG2
z on V,

– the graph H on V ×Z defined by

H f (x1, z1) = �
x∼Gz1 (x1)

�
z2∼Z

�
x2∼Gz2 (x)

f (x2, z2) .

Proof. Let M be the following linear operator on L2(V ×Z),

M f (x, z) = �
z′∼Z

�
x′∼Gz′ (x)

f (x′, z′) .

Notice that its adjoint operator M∗ (with respect to the inner product in L2(V ×Z)) is given by

M∗ f (x, z) = �
x′∼Gz(x)

�
z′∼Z

f (x′, z′) .

(The operator above is the adjoint of M, because each of the random walks Gz are reversible and have the
same stationary measure.). The graph H corresponds to the operator M∗M, which has the same non-zero
eigenvalues as MM∗. The operator MM∗ is given by

MM∗ f (x1, z1) = �
z∼Z

�
x∼Gz(x1)

�
x2∼Gz(x)

�
z2∼Z

f (x2, z2) .

The subspace { f | ∀x ∈ V. �z f (x, z) = 0} ⊆ L2(V×Z) is part of the kernel of MM∗. Hence, all eigenfunctions
with non-zero eigenvalue are in the orthogonal complement of this space. The orthogonal complement consists
of all functions f such that f (x, z) does not depend on z. Let f be such a function and set f (x) = f (x, z).
Then,

MM∗ f (x1) = �
z∼Z

�
x∼G(x1)

�
x2∼G(x)

f (x2) = �
z∼Z

G2
z f (x1) .

Thus, MM∗ acts on this subspace in the same way as �z G2
z , which means that the two operators have the

same eigenfunctions (and eigenvalues) in this space. �
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Noise graph with leaked randomness. Let {⊥,>}Rβ be the β-biased R-dimensional boolean hypercube. If
we sample a random point z from this space, then zi = > with probability β, independently for each coordinate
i ∈ [R].

Let (Ω, ν) be a finite probability space. For z ∈ {⊥,>}Rβ and x ∈ ΩR, let Mz(x) be the distribution over ΩR

obtained by “rerandomizing” every coordinate of x where z has value ⊥. In order to sample x′ ∼ Mz(x), we
sample x′i ∼ Ω, independently for every coordinate i ∈ [R] with zi = ⊥. If zi = >, then we copy the value of
x in this coordinate so that x′i = xi. Observe that �z∼{⊥,>}Rβ

Mz = T⊗R
β,Ω

is the usual noise graph on ΩR with
correlation parameter β, as defined previously in this section.

Consider the following stochastic linear operator M on L2(ΩR, {⊥,>}Rβ ),

M f (x, z) = �
z′∼{⊥,>}Rβ

�
x′∼Mz(x)

f (x′, z′) . (5.1)

The following lemma shows that the second largest singular value of M is the same as the second largest
eigenvalue of the corresponding noise graph.

Lemma 5.11. Let f ∈ L2(ΩR, {⊥,>}Rβ ) and let M be as in (5.1). Then,

‖M f ‖2 6 (� f )2 + β ·
(
‖ f ‖2 − (� f )2

)
.

Proof. We have ‖M f ‖2 = 〈 f ,M∗M f 〉 where M∗ is the adjoint of M. This operator M∗M is the same as the
(second) operator in Lemma 5.10 for Gz = Mz. Hence, M∗M has the same non-zero eigenvalues as �z M2

z .
From the definition of Mz, it is clear that M2

z = Mz. Further, T = �z Mz is the noise operator on ΩR with
correlation parameter β. We conclude that M∗M has second largest eigenvalue β. The lemma follows from
Fact 2.1. �

6 Reduction between Expansion Problems

Let G be a graph with vertex set V and stationary measure µ. Our reduction maps G to a graph H with vertex
set VR × ΩR for Ω = [q] × {⊥,>}β. Here, R, q ∈ � and β > 0 are parameters of the reduction. We impose the
natural product measure on Ω,

� ((α, z)) =

β
q if z = >
(1−β)

q if z = ⊥
∀α ∈ [q]

As before, we describe H in terms of a probabilistic process defined by G, which generates the edge
distribution of H. (See Figure 1 for a more condensed description.) The process uses the following three
auxiliary graphs (already introduced in §2 and §5):

– First, the noise graph TV := T⊗R
1−εV ,V

, which resamples independently every coordinate of a given
R-tuple A ∈ VR with probability εV . (Here, εV > 0 is again a parameter of the reduction. We think of
εV as rather small compared to other parameters.) This noise effectively adds a copy of the complete
graph with weight εV to G, which we assumed in §4.2.

– Next, the noise graph TΩ := T⊗R
ρ,Ω

, which resamples independently every coordinate of a given R-tuple
(x, z) ∈ ΩR with probability 1 − ρ. (For x ∈ [q]R and z ∈ {⊥,>}Rβ , we write (x, z) ∈ ΩR to denote the
tuple obtained by merging corresponding coordinates of x and z to an element of Ω. In other words, we
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identify [q]R × {⊥,>}Rβ and ΩR.) The correlation parameter ρ of TΩ is the most important parameter of
the reduction, because the graph TΩ plays the role of a dictatorship test gadget in our reduction. We
think of ρ as being close to 1.

– Finally, we consider the graph Mz on Ω̃R for Ω̃ = V × [q] and z ∈ {⊥,>}Rβ . For (A, x) ∈ Ω̃R, the graph
Mz resamples every coordinate in which z has value ⊥.

Our reduction proceeds in three phases:
In the first phase, we sample a random vertex A ∈ VR and take two independent random steps from A

according to the graph TVG⊗R, i.e., we sample B̃ and C̃ from the distribution TVG⊗R(A). We end the first
phase by sampling two random permutations πB and πC . The permutations are required to satisfy the property
that if we divide the domain [R] into contiguous blocks of size R/k, then each such block is permuted in
place. We define the set Πk of such permutations as

Πk := {π ∈ S R | ∀ j ∈ {0, . . . , k − 1}. π ({ jR/k + 1, . . . , ( j+1)R/k}) = { jR/k + 1, . . . , ( j+1)R/k}} .

This phase exactly corresponds to the reduction from Small-Set Expansion to Unique Games in [RS10].
In the second phase, we sample a random R-tuple (xA, zA) in ΩR and take two independent random steps

from (xA, zA) according to the graph TΩ, i.e., we sample (xB, zB) and (xC , zC) from TΩ(xA, zA). This phase
corresponds to typical dictatorship test reduction (as in [KKMO07]).

In the third phase, we apply the graphs MzB and MzC to the R-tuples (B̃, xB) and (C̃, xC) respectively,
to obtain (B′, x′B) and (C′, x′C). The final step of this phase is to output an edge between πB(B′, x′B, zB) and
πC(C′, x′C , zC). (For a permutation π of [R] and an R-tuple X, we denote by π(X) the permutation of X
according to π, so that (π(X))π(i) = Xi.)

We remark that the random permutations πB and πC in the first phase and the resampling according to
Mz in the third phase introduce symmetries in the graph H that effectively identify vertices. In particular,
any two vertices in VR × ΩR of the form (A, x, z) and π(A, x, z) have the same neighbors in H (i.e., the
distributions H(A, x, z) and H(π(a, x, z)) are identical). This kind of symmetry has been used in integrality
gap constructions (see [KV05]) and hardness reductions (see [RS10]).

The kind of symmetry introduced by the Mz graph in the third phase seems to be new. In the third phase,
we effectively identify vertices (A, x, z) and (A′, x′, z) if they differ only in the coordinates in which z has
value ⊥. Formally, the vertex (A, x, z) has the same distribution of neighbors as the vertex (A′, x′, z) if (A′, x′)
is sampled from Mz(A, x).

Remark 6.1 (Reduction to Unique Games with expansion). We note that the above reduction can also be
viewed as creating a Unique Games instance with alphabet size q. For a vertex (A, x, z) ∈ VH and l ∈ [q], let
(A, x, z) + l denote the vertex (A, x′, z), where x′i ≡ xi + l mod q for all i ∈ [R]. We define an equivalence
relation on VH by taking (A, x, z) ≡ (A, x, z) + l for all A, x, z and l ∈ [q]. Let H/[q] be a graph with one vertex
for each equivalence class of the above relation. Also, for each edge in EH , we add an edge in H/[q] between
the equivalence classes containing the corresponding vertices of VH . We claim that H/[q] can then be viewed
as a Unique Games instance 5 as described in Theorem 3.2.

We now describe the constraints for the edges in H/[q]. We identify each equivalence class with an
arbitrarily chosen representative element in it. For (A, x, z) ∈ VH , let [(A, x, z)] denote the representative of
the equivalence class containing it. Consider an edge in EH between

(
πB

(
B′, x′B, zB

))
and

(
πC(C′, x′C , zC)

)
.

5In the terminology used in the literature, one can say that the graph H is a label-extended graph of a Unique Games instance with
alphabet size [q].
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The Reduction

Input: A weighted graph G with vertex set V .
Parameters: R, q, k ∈ �, and εV , β, ρ > 0.
Output: A graph H = (VH , EH) with vertex set VH = VR × [q]R × {>,⊥}Rβ .

Let Πk denote the set of permutations of [R] which permute each block of size R/k in-place i.e.

Πk := {π ∈ S R | ∀ j ∈ {0, . . . , k − 1}. π ({ jR/k + 1, . . . , ( j+1)R/k}) = { jR/k + 1, . . . , ( j+1)R/k}} .

The weight of an edge in EH is proportional to the probability that the following probabilistic process
outputs this edge:

– Reducing from Small-Set Expansion to Unique Games.

1. Sample an R-tuple of vertices A ∼ VR.

2. Sample two random neighbors B,C ∼ G⊗R(A) of A.

3. Sample B̃ ∼ TV (B) and C̃ ∼ TV (C).

4. Sample two permutations πB, πC ∈ Πk

– Combination with long code gadgets.

6. Sample (xA, zA) ∈ ΩR, where Ω = [q] × {⊥,>}β.

7. Sample (xB, zB), (xC , zC) ∼ TΩ(xA, zA).

– Redistributing the edge weights

7. Sample (B′, x′B) ∼ MzB(B̃, xB) and (C′, x′C) ∼ MzC (C̃, xC)

8. Output an edge between
(
πB(B′, x′B, zB)

)
and

(
πC(C′, x′C , zC)

)
.

Figure 1: Reduction between expansion problems

Let πB(B′, x′B, zB) =
[
πB(B′, x′B, zB)

]
+ lB and πC(C′, x′C , zC) =

[
πC(C′, x′C , zC)

]
+ lC . Then the constraint

corresponding to this edge requires that an assignment mapping vertices in H/[q] to [q] must satisfy

F
([
πB(B′, x′B, zB)

])
+ lB ≡ F

([
πC(C′, x′C , zC)

])
+ lC mod q .

We note that the expansion properties of H are inherited by H/[q], since any set of measure µ in H/[q]
is also a set of measure µ in H. In the Yes case, each of the sets S 1, . . . , S q mentioned in Theorem 3.5
will provide an assignment for the above Unique Games instance, satisfying 1 − ε − o(ε) fraction of the
constraints. In the No case, we will argue that each assignment corresponds to a set of measure 1/q in H, and
the unsatisfiability of the instance will follow from the expansion of the corresponding sets in H.
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6.1 Completeness

Lemma 6.2. Let H = (VH , EH) be constructed from G = (V, E) as in the reduction in Figure 1. If there
is a set S ⊆ V satisfying µ(S ) ∈

[
k

10βR ,
k
βR

]
and ΦG(S ) 6 η, then there exists a partition S 1, . . . , S q of VH

satisfying:

1. For all (A, x, z) ∈ VH and l, l′ ∈ [q], (A, x, z) ∈ S l =⇒ (A, x, z) + l′ ∈ S l+l′ .

2. For each all l ∈ [q], ΦH(S l) 6 2(1 − ρ2 + η + 2εV ) + (1 − ρ2 + η + 2εV )2 +
(1−ρ2)β
ρ2 + 2−Ω(k) .

Note that the first property, together with the fact that S 1, . . . , S q form a partition also implies that for all
l ∈ [q], µ(S l) = 1

q .

Proof. We first describe a procedure for assigning vertices in VH to S 1, . . . , S q. This procedure assigns all
but 2−Ω(k) fraction of the vertices, which we shall distribute arbitrarily later. Let (A, x, z) be a vertex in VH ,
where A ∈ VR, x ∈ [q]R and z ∈ {>,⊥}R.

For all j ∈ [k], we define the sets W j := {i ∈ {( j−1)R/k + 1, . . . , jR/k} | zi , ⊥}. Let A(W j) denote the multiset
A(W j) =

{
Ai | i ∈ W j

}
. We take,

j∗ = inf
{
j
∣∣∣ |A(W j) ∩ S | = 1

}
If |A(W j) ∩ S | , 1 for any j ∈ [k], then we do not assign the vertex (A, x, z) to any of the set S 1, . . . , S q. Else,
let Ai∗ be the unique element in A(W j∗) ∩ S . We assign

(A, x, z) ∈ S xi∗ .

Note that the assignment to sets is determined only by the coordinates i ∈ [R] for which zi , ⊥. The first
property is easily seen to be satisfied for all the vertices that are assigned, as the sets

{
W j

}
j∈[k]

are identical for
(A, x, z) and (A, x, z) + l, for any l ∈ [q]. The following claim proves that most vertices are indeed assigned to
one of the sets S 1, . . . , S q.

Claim 6.3. �(A,x,z)∼VH

{
|A(W j) ∩ S | , 1 ∀ j ∈ [k]

}
6 2−Ω(k).

Proof. Note that over the choice of a random (A, x, z) ∈ VH , the intersection sizes |W1 ∩ S |, . . . , |Wk ∩ S | are
independent random variables distributed as Binomial(µβ, R/k). The probability that all of them are not equal
to 1, can then be bounded as

�
(A,x,z)∼VH

{
|A(W j) ∩ S | , 1 ∀ j ∈ [k]

}
=

(
1 −

R
k
· µβ · (1 − µβ)R/k−1

)k

6

(
1 −

R
k
·

k
10R

· (1 − k/R)R/k

)k

6

(
1 −

1
30

)k

.

The last inequality assumes that R/k > 4 so that (1 − k/R)R/k > 1/3. �

We now bound the expansion of these sets. A random edge is between two tuples of the form(
πB(B′, x′B, zB)

)
and

(
πC(C′, x′C , zC)

)
, where πB and πC are two random permutations in Πk and B′,C′ are

generated from G⊗R as in Figure 1. For a fixed l ∈ [q], the expansion of S l is equal to the following probability
taken over the choice of a random edge

�
{(
πC(C′, x′C , zC)

)
< S l

∣∣∣∣ (πB(B′, x′B, zB)
)
∈ S l

}
= �

{(
C′, x′C , zC

)
< S l

∣∣∣∣ (B′, x′B, zB
)
∈ S l

}
.

Here we used the fact that the membership in a set S l is invariant under permutations in Πk. The following
claim analyzes the above probability.
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Claim 6.4. �
{(

C′, x′C , zC
)
< S l

∣∣∣∣ (B′, x′B, zB
)
∈ S l

}
6 2(1 − ρ2 + 2εV + η) + (1 − ρ2 + 2εV + η)2 +

(1−ρ2)β
ρ2 .

Proof. Let
{
W(B)

j

}
j∈[k]

denote the multisets W (B)
j = {i ∈ {( j−1)k/R+1, . . . , jk/R} | (zB)i , ⊥} and let

{
W(C)

j

}
j∈[k]

be

defined similarly. Define j∗B = inf
{
j
∣∣∣∣ |B′(W (B)

j ) ∩ S | = 1
}

when the set on the right is non-empty and k + 1

otherwise. Let j∗C be the analogous quantity for C′. In the cases when j∗B, j∗C 6 k, let W (B)
j∗B
∩ S =

{
B′i∗B

}
and

W (C)
j∗C
∩ S =

{
C′i∗C

}
. We can bound the required probability by the probability that either j∗B , j∗C or i∗B , i∗C or

(x′C)i∗C , l.

�
{(

C′, x′C , zC
)
< S l

∣∣∣∣ (B′, x′B, zB
)
∈ S l

}
6 �

{
j∗C , j∗B

∣∣∣∣ (B′, x′B, zB
)
∈ S l

}
+�

{(
j∗C = j∗B

)
∧

(
i∗C , i∗B

) ∣∣∣∣ (B′, x′B, zB
)
∈ S l

}
+�

{(
j∗C = j∗B

)
∧

(
i∗C = i∗B

)
∧

(
(x′C)i∗C , l

) ∣∣∣∣ (B′, x′B, zB
)
∈ S l

}
6 �

{
j∗C , j∗B

∣∣∣ j∗B 6 k
}

+ �
{
i∗C , i∗B

∣∣∣∣ ( j∗B = j∗C
)
∧

(
j∗B 6 k

)}
+�

{
(x′C)i∗C , l

∣∣∣∣ ((x′B)i∗B = l
)
∧

(
i∗B = i∗C

)}
In the second inequality above, we drop conditionings that are irrelevant and use � {A ∧ B} 6 � {A | B}. We
now analyze each of the above terms separately.

The first term can be further split as

�
{
j∗C , j∗B

∣∣∣ j∗B 6 k
}

= �
{
j∗C > j∗B

∣∣∣ j∗B 6 k
}

+ �
{
j∗C < j∗B

∣∣∣ j∗B 6 k
}
.

To have j∗C > j∗B, it must be the case that |W (C)
j∗B
∩ S | , 1, while we also have |W (B)

j∗B
∩ S | = 1 by definition of

j∗B. If i∗B < W(C)
j∗B

, this must be because (zC)i∗B = ⊥ or C′i∗B
< S . The former happens with probability 1 − ρ2 as

we already have that (zB)i∗B = >. The latter even happens with probability at most η + 2εV as it could be due
to the edge (B′i∗B

,C′i∗B
) going out of S or one of the vertices being perturbed by TV . Combining, we get a bound

of (1 − ρ2 + η + 2εV ) for the case when i′ such that C′i′ ∈ S and the the events above must happen for W (B)
j∗B

and i′, giving again a bound of (1 − ρ2 + η + 2εV ). The term �
{
j∗C < j∗B

∣∣∣ j∗B 6 k
}

can be bound identically.
We then get

�
{
j∗C , j∗B

∣∣∣ j∗B 6 k
}

= 2(1 − ρ2 + η + 2εV ) .

We now consider the term �
{
i∗C , i∗B

∣∣∣∣ ( j∗B = j∗C
)
∧

(
j∗B 6 k

)}
. For this to happen, the above events must

occur for both the pairs
(
i∗B,W

(C)
j∗C

)
and

(
i∗C ,W

(B)
j∗B

)
. This gives

�
{
i∗C , i∗B

∣∣∣∣ ( j∗B = j∗C
)
∧

(
j∗B 6 k

)}
6 (1 − ρ2 + η + 2εV )2

Finally, given j∗B = j∗C and i∗B = i∗C , the probability that (x′B)i∗B , (x′C)i∗C is at most 1−ρ2

ρ2 β. This is
true because for any i, ((x′B)i, (zB)i) and ((x′C)i, (zC)i) are same with probability ρ2 and uniform in Ω with
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probability 1 − ρ2. Also, for any i, i = i∗B = i∗C in particular means that (zB)i = (zC)i = >. Conditioned on this,
we can bound the probability (x′B)i∗B , (x′C)i∗C as

�
{
(x′B)i , (x′C)i

∣∣∣ (zB)i = (zC)i = >
}

=
(1 − ρ2) · (1 − 1/q) · β2

(1 − ρ2) · β2 + ρ2 · β
6

(1 − ρ2)β
ρ2

Combining the bounds for the three terms proves the claim. �

It remains to partition the vertices not assigned to any of the sets S 1, . . . , S q. We simply assign any such
vertex (A, x, z) to the set S x1 . It is easy to see that S 1, . . . , S q still satisfy the first property. Since the measure
of the extra vertices added to each set is 2−Ω(k)

q , the expansion of each set increases by at most 2−Ω(k). �

6.2 Soundness

Let G be a graph with vertex set V and stationary measure µ. Let H be the graph obtained from the reduction
in Figure 1. The vertex set of H is VR × ΩR. Recall that Ω = [q] × {⊥,>}β. Let f : VR × ΩR → [0, 1]. We
think of f as a cut in H (or convex combination thereof).

We define two symmetrizations of f as follows

f̄ (A, x, z) = �
π∼Πk

f (π(A, x, z)) and f̄ ′(A, x, z) = �
(A′,x′)∼Mz(A,x)

f̄ (π(A′, x′, z)) .

By the symmetries of the graph,
〈 f ,H f 〉 = 〈 f̄ ,H f̄ 〉 = 〈 f̄ ′,H f̄ ′〉 .

We write f̄ ′A(x, z) = f̄ ′(A, x, z) and consider the average (with noise) of f̄ ′B over the neighbors B of a vertex A
in GR,

gA = �
B∼GR(A)

�
B̃∼TV (B)

f̄ ′B̃ .

We will apply the techniques of [KKMO07] to analyze the functions gA. We first express the fraction of
edges that stay within the cut defined by f in terms of the functions gA.

Lemma 6.5.
〈 f ,H f 〉 = �

A∼VR
‖TΩgA‖

2 .

Proof. Using the construction of H and the symmetry of f̄ ′, we get

〈 f ,H f 〉 = �
A∼VR

�
(x,z)∼ΩR

(
�

B∼GR(A)
�

B̃∼TV (B)
�

(xB,zB)∼TΩ(x,z)
f̄ ′B(xB, zB)

)2

= �
A∼VR

�
(x,z)∼ΩR

(
�

B∼GR(A)
�

B̃∼TV (B)
TΩ f̄ ′B(x, z)

)2

= �
A∼VR

�
(x,z)∼ΩR

(
TΩgA(x, z)

)2

= �
A∼VR
‖TΩgA‖

2 . �

We now show that for most tuples A, the functions gA have the same expectation as � f . To this end, we
show that �A (� gA)2 ≈ (� f )2.
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Lemma 6.6.
�

A∼VR

(
�
ΩR
gA

)2
6 (� f )2 + β‖ f ‖2 .

Proof. Let Ω̃ = V × [q]. We have

�
A∼VR

(
�
ΩR
gA

)2
= �

A∼VR

(
�

B∼GR(A)
�

B̃∼TV (B)
�

(x,z)∼ΩR
f̄ ′(B, x, z)

)2

6 �
A∼VR

�
B∼GR(A)

�
B̃∼TV (B)

�
x

(
�
z

f̄ ′(B, x, z)
)2

(Cauchy–Schwarz)

= �
(A,x)∼Ω̃R

(
�
z

f̄ ′(A, x, z)
)2
. (6.1)

Let M be the following stochastic operator on L2(Ω̃R × {⊥,>}Rβ ),

Mh(A, x, z0) = �
z∼{⊥,>}Rβ

�
(A′,x′)∼Mz(A,x)

h(A′, x′, z) .

Recall that f̄ ′(A, x, z) = �(A′,x′)∼Mz(A,x) f̄ (A′, x′, z). With this notation, the right-hand side of (6.1) simplifies
to ‖M f̄ ‖2. Therefore,

�
A∼VR

(
�
ΩR
gA

)2
6 ‖M f̄ ‖2 6 (� f̄ )2 + β‖ f̄ ‖2 6 (� f )2 + β‖ f ‖2 .

The second inequality uses that M∗M has second largest eigenvalue β (see Lemma 5.11). The last inequality
uses that f̄ is obtained by applying a stochastic operator on f . �

The following lemma is an immediate consequence of the previous lemma (Lemma 6.6) and Chebyshev’s
inequality.

Lemma 6.7. For every γ > 0,

�
A∼VR

{
� gA > � f + γ

√
� f

}
6 β/γ2 ·

‖ f ‖2

� f 6
β/γ2 .

Proof. Lemma 6.6 shows that �A(gA − � f )2 6 β‖ f ‖2. Hence, �A
{
|gA − � f | > γ

√
� f

}
6 β‖ f ‖2/(γ2� f ).

�

6.2.1 Decoding a Unique Games assignment

The goal is decode from f an assignment F : VR → [R] that maximizes the probability

�
A∼VR,B∼GR(A)

�
Ã∼TV (A)

�
B̃∼TV (B)

�
πA,πB∼Πk

{
π−1

A (F(π(A))) = π−1
B (F(πB(B)))

}
. (6.2)

(The expression above is roughly the success probability of the assignment F for the Unique Games instance
obtained by applying the reduction from [RS10] on G.)

As usual, we decode according to influential coordinates of f (after symmetrization). More precisely,
we generate a assignment F by the following probabilistic process: For every A ∈ VR, with probability
1/2, choose a random coordinate in {i ∈ [R] | Infi(T1−δgA) > τ} and with probability 1/2, choose a random
coordinate in {i ∈ [R] | Infi(T1−δ f̄ ′A) > τ}. If the sets of influential coordinates are empty, we choose a
uniformly random coordinate in [R].
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The following lemma follows immediately from the techniques in [KKMO07]. The reason is that (6.2) is
the success probability of the assignment F for a Unique Games instance defined on VR. For A ∈ VR, the
function gA is the average over bounded functions f ′B : ΩR → [0, 1], where B is a random neighbor of A in the
Unique Games instance and where input coordinates of f ′B are permuted according to the constraint between
A and B. More precisely,

gA(x, z) = �
B∼GR(A)

�
B̃∼TV (B)

�
πB

f ′
πB(B̃)(πB(x, z)) where f ′B(x, z) = �

(B′,x′)∼Mz(B,x)
f (B′, x′, z) .

Lemma 6.8. For every τ, δ > 0, there exists a constant c > 0 such that

�
F

�
A∼VR,B∼GR(A)

�
Ã∼TV (A)

�
B̃∼TV (B)

�
πA,πB∼Pik

{
π−1

A (F(πA(Ã))) = π−1
B (F(πB(B̃)))

}
> c �

A∼VR
{∃i. Infi(T1−δgA) > τ} .

Lemma 6.9. For every ν, β, γ > 0, q ∈ �, and ρ ∈ (0, 1), there exist τ, δ > 0 such that

〈 f ,H f 〉 < Γρ2
(
� f

)
+ 2γ + ν + β/γ2 + �

A∼VR
{∃i. Infi(T1−δgA) > τ} .

Proof. Recall that Lemma 6.5 shows 〈 f ,H f 〉 = �A‖TΩgA‖
2 . The operator TΩ is an R-fold tensor operator

with second largest eigenvalue ρ. The invariance principle (Theorem 5.9) asserts that there exist τ, δ > 0 such
that ‖TΩgA‖

2 6 Γρ2(� gA) + ν if Infi(T1−δgA) 6 τ for all coordinates i ∈ [R]. Together with Lemma 6.7, we
get

〈 f ,H f 〉 = �
A
‖TΩgA‖

2 6 Γρ2

(
� f + γ

√
� f

)
+ ν + β/γ2 + �

A∼VR
{∃i. Infi(T1−δgA) > τ} .

6 Γρ2(� f ) + 2γ + ν + β/γ2 + �
A∼VR

{∃i. Infi(T1−δgA) > τ}

The second inequality above used that Γρ2(·) is 2-Lipschitz. �

Putting together Lemma 6.8 and Lemma 6.9, we get the following lemma as immediate corollary.

Lemma 6.10. For every β > 0, q ∈ �, and ρ ∈ (0, 1), there exists ζ > 0 such that either

〈 f ,H f 〉 < Γρ2
(
� f

)
+ 5β1/3 ,

or there exists an assignment F : VR → [R] such that the probability (6.2) is at least ζ.

Proof. Choosing γ = ν = β1/3 in Lemma 6.9, we get that for some τ, δ > 0,

〈 f ,H f 〉 = �
A
‖TΩgA‖

2 6 Γρ2(� f ) + 4β1/3 + �
A∼VR

{∃i. Infi(T1−δgA) > τ} .

Taking ζ = cβ1/3 for the constant c in Lemma Lemma 6.8 then proves the claim. �

6.2.2 Decoding a very small non-expanding set in G

The following lemma is a slight adaptation of a result in [RS10] (a reduction from Small-Set Expansion to
Unique Games). We present a sketch of the proof in Section A.1.
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Lemma 6.11. Let G be graph with vertex set V. Let a distribution on pairs of tuples (Ã, B̃) be defined by
choosing A ∼ VR, B ∼ G⊗R(A) and then Ã ∼ TV (A), B̃ ∼ TV(B). Let F : VR → [R] be a function such that
over the choice of random tuples and two random permutations πA, πB ∈ Πk,

�
(Ã,B̃)

�
πA,πB∼Πk

{
π−1

A (F(πA(Ã))) = π−1
B (F(πB(B̃)))

}
> ζ.

Then there exists a set S ⊆ V with µ(S ) ∈
[
ζ

16R ,
3k
εV R

]
satisfying ΦG(S ) 6 1 − ζ

16k .

Putting together Lemma 6.11 and Lemma 6.10, we get the following lemma — the main lemma for the
soundness of the reduction.

Lemma 6.12. Let G be a graph with vertex set V. Let H be the reduction in Figure 1 applied to G with
parameters R, q ∈ �, εV , β > 0 and ρ ∈ (0, 1). The vertex set of H is VR ×ΩR, where Ω = [q]× {⊥,>}β. Then
there exists ζ = ζ(β, q, ρ) > 0 such that either

∀ f : VR ×ΩR → [0, 1]. ∀γ > 0. 〈 f ,H f 〉 < Γρ2
(
� f

)
+ 5β1/3 ,

or there exists a vertex set S ⊆ V with µ(S ) ∈ [ ζR ,
3k
εV R ] and ΦG(S ) 6 1 − ζ/k.

6.3 Putting things together

Theorem (Restatement of Theorem 3.5). For all q ∈ � and ε, γ > 0, it is SSE-hard to distinguish between
the following two cases for a given graph H = (VH , EH)

Yes: There exist q disjoint sets S 1, . . . , S q ⊆ VH satisfying for all l ∈ [q],

µ(S l) = 1
q and ΦH(S l) 6 ε + o(ε).

No: For all sets S ⊆ VH ,
ΦH(S ) > ΦG(1−ε/2)

(
µ(S )

)
− γ/µ(S )

where ΦG(1−ε/2)(µ(S )) is the expansion of sets of volume µ(S ) in the infinite Gaussian graph G(1− ε/2).

Proof. The follows by proper choice of parameters for the reduction in Figure 1. Given q, ε, γ, we choose the
various parameters in the reduction as below:

– ρ =
√

1 − ε
2 .

– β = min
{
γ3

200 , ε
}
, so that the error 5β1/3 < γ in Lemma 6.12 and the error 1−ρ2

ρ2 β = O(ε2) in Lemma 6.2.

– k = Ω(log(1/ε)), so that the 2−Ω(k) error term in Lemma 6.2 is O(ε2).

– εV = ε2 and η = min
{
ε2,

ζ
k

}
. Here, ζ = ζ(β, q, ρ) is the constant given by Lemma 6.12. The above

choices ensure that the error term εV + η in Lemma 6.2 are O(ε2) and η 6 ζ
k for applying Lemma 6.12.

– M = max
{

k
βζ ,

3β
εV

}
.

– R = k
βδ , where δ ∈ (0, η) is the one for which we intend to show a reduction from Small-Set Expansion

(η, δ,M).

23



Given and instance G = (V, E) of Small-Set Expansion (η, δ,M), let H be the graph obtained from the
reduction in Figure 1 with these parameters.

From Lemma 6.2, we get that the Yes case of Small-Set Expansion (η, δ,M) implies the Yes case of the
above problem. On the other hand Lemma 6.12 gives that a contradiction to the No case of the above problem
produces a set S in G with measure between ζ

R and 3k
εV R with ΦG(S ) 6 1 − ζ

k . By our choice of parameters,

this is a set of measure between δ
M and Mδ with expansion 1 − ζ

k 6 1 − η. This contradicts the No case of
Small-Set Expansion (η, δ,M). �

Theorem (Restatement of Theorem 3.2). For every q ∈ � and every ε, γ > 0, it is SSE-hard to distinguish
between the following cases for a given Unique Games instanceU with alphabet size q:

Yes: The Unique Games instanceU is almost satisfiable, opt(U) > 1 − 2ε − o(ε)

No: The optimum of the Unique Games instanceU is negligible, and the expansion profile of the instance
resembles the Gaussian graph G(1 − ε). More precisely, the Unique Games instance U satisfies
opt(U) < O

(
q−ε/(2−ε)

)
+ γ and in addition, the constraint graph G ofU satisfies

∀S ⊆ V(G). ΦG(S ) > ΦG(1−ε)
(
µ(S )

)
− γ/µ(S ) .

Proof. Let all the parameters for the reduction in Figure 1 be chosen as in the proof for Theorem 3.5, replacing
ε by 2ε. Let H be the graph generated by the reduction starting from an instance G of Small-Set Expansion
(η, δ,M). LetU be the Unique Games instance defined on the graph H/[q], as described in Remark 6.1.

We claim that any partition S 1, . . . , S q of the vertices in H, satisfying the first property in Lemma 6.2,
corresponds to an assignment to the vertices in H/[q] and vice-versa. A partition is simply a function
F : VH → [q]. Restricting the function to the representatives of each equivalence class gives an assignment
for the vertices in H/[q]. Note that here F also satisfies that (A, x, z) = [(A, x, z)] + l =⇒ F((A, x, z)) =

F ([(A, x, z)]) + l. Similarly, given an assignment F, we can extend it to all the vertices in H by defining
F((A, x, z)) = F ([(A, x, z)]) + l if (A, x, z) = [(A, x, z)] + l.

In the Yes case, we construct an assignment to the UniqueGames instanceU using the partition S 1, . . . , S q.
The fraction of edges

(
πB(B′, x′B, zB), πC(C′, x′C , zC)

)
that are not satisfied is exactly the probability that

F
(
πB(B′, x′B, zB)

)
, F

(
πC(C′, x′C , zC)

)
for a random edge. However, this is exactly �l∈[q] ΦH(S l) which is at

most 2ε + o(ε) by Theorem 3.5.
In the No case, we note that we can construct a partition S 1, . . . , S q from any assignment F. The fraction

of unsatisfied edges is again �l∈[q] ΦH(S l) > 1 − q (Γ1−ε(1/q) + γ) by Theorem 3.5. Also, any set S in H/[q]
corresponds to a set S̃ in H with µ(S̃ ) = µ(S ), where S̃ contains all the vertices for each class in S . The edges
leaving S and S̃ are the same and hence their expansion is identical. �
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A Further Proofs

A.1 Reduction from Small-Set Expansion to Unique Games

In this section, we sketch a proof of the following slight adaption of a result in [RS10].

Lemma (Restatement of Lemma 6.11). Let G be graph with vertex set V. Let a distribution on pairs of tuples
(Ã, B̃) be defined by choosing A ∼ VR, B ∼ G⊗R(A) and then Ã ∼ TV (A), B̃ ∼ TV (B). Let F : VR → [R] be a
function such that over the choice of random tuples and two random permutations πA, πB ∈ Πk,

�
(Ã,B̃)

�
πA,πB∼Πk

{
π−1

A (F(πA(Ã))) = π−1
B (F(πB(B̃)))

}
> ζ.

Then there exists a set S ⊆ V with µ(S ) ∈
[
ζ

16R ,
3k
εV R

]
satisfying ΦG(S ) 6 1 − ζ

16k .

Let R′ = R/k and let ÃR′ , B̃R′ denote tuples of length R′ generated by a a process similar to the used for
generating Ã, B̃ (which have length R). Using the reduction from partial to total unique games in [RS10], we
can show the following for completely random permutations (instead of block-wise random) permutations
π′A, π

′
B : [R′]→ [R′].

Claim A.1. Given a function F : VR → [R] as above, there exists a function F′ : VR′ → [R′] such that

�
(ÃR′ ,B̃R′ )

�
π′A,π

′
B∼S R′

{
π′−1

A (F′(π′A(ÃR′))) = π′−1
B (F′(π′B(B̃R′)))

}
> ζ/k.

Proof. We construct a randomized function F′ which given an R′-tuple, embeds it as one of the blocks (of
size R′) in a random R-tuple, and then outputs a value according to the value of F on the R-tuple.

Formally, let ÃR−R′ , B̃R−R′ denote tuples of size R − R′ generated by independently picking each pair of
coordinates to be an edge in G with noise εV . For j ∈ [k], let ÃR−R′ + j ÃR′ denote an R-tuple generated by
inserting ÃR′ after the ( j − 1)th block in ÃR−R′ . Let π( j)

A be a random permutation in Πk which is equal to
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identity on the jth block. To define F′, we then generate a random j, ÃR−R′ , B̃R−R′ and fix it globally. For
each input ÃR′ , we then independently choose TA ∈ {ÃR−R′ , B̃R−R′}, a permutation π( j)

A , and define F′(ÃR′) as:

F′(ÃR′) =


(π( j)

A )−1
(
F

(
π

( j)
A (TA) + j ÃR′

))
− ( j−1)R/k (π( j)

A )−1
(
F

(
π

( j)
A (TA) + j ÃR′

))
∈ (( j−1)R/k, jR/k]

1 otherwise

Let πA be the permutation which is π′A on the jth block and π( j)
A elsewhere. Define πB similarly. Note that both

πA, πB are distributed as random elements of Πk. Conditioned on TA = ÃR−R′ ,TB = B̃R−R′ (or vice-versa), the
required probability is at least

�
j

�
(ÃR−R′ ,B̃R−R′ )

�
(ÃR′ ,B̃R′ )

�
πA,πB∼Πk

{
π−1

A (F(πA(ÃR−R′ + j ÃR′))) = π−1
B (F(πB(B̃R−R′ + j B̃R′)))

}
=

1
k
· �

(Ã,B̃)
�

πA,πB∼Πk

{
π−1

A (F(πA(Ã))) = π−1
B (F(πB(B̃)))

}
=

ζ

k
.

Since we have TA = ÃR−R′ ,TB = B̃R−R′ or vice-versa with probability 1/2, the required probability is at least
ζ/2k. �

Let ζ′ denote ζ/2k.
To construct the set S ⊆ V , we proceed as in [RS10] by defining the influence of a single vertex on the

output of F. For U ∈ VR′−1 and v ∈ V , let Ũ ∼ TV (U) and ṽ ∼ TV (v). For i ∈ R′, we use Ũ +i ṽ to denote
the tuple (Ũ1, . . . , Ũi−1, v, Ũi, . . . , ŨR′) ∈ VR′ in which v is inserted at the ith position. We define the function
FU(v), which measures how often is the index of v chosen by F, when applied to a random permutation π of
Ũ +i ṽ.

FU(v) := �
Ũ∼TV (U)

�
ṽ∼TV (v)

�
i∈[R′]

�
π∈S R′

{
F(π(Ũ +i ṽ)) = π(i)

}
We shall need the following (slight variants of) statements proved in [RS10]. We include the proofs in

the appendix for completeness.

Lemma A.2 (Glorified Markov Inequality). Let Ω be a probability space and let X,Y : Ω → �+ be two
jointly distributed non-negative random variables over Ω . Suppose � X 6 γ�Y. Then, there exists ω ∈ Ω

such that X(ω) 6 2γY(ω) and Y(ω) > �Y/2.

Proposition A.3. Let F : VR′ → [R′] satisfy �(Ã,B̃) �πA,πB

{
π−1

A (F(πA(Ã))) = π−1
B (F(πB(B̃)))

}
> ζ′, and the

functions FU : V → [0, 1] be defined as above. Then,

1.
�

U∼VR′−1
�
v∼V

FU(v) = 1
R′ , (A.1)

2. for all U ∈ ER′−1,
�
v∼V

FU(v) 6 2
εV R′ , (A.2)

3.
�

(U,W)∈ER′−1
�

(v1,v2)∈E
[FU(v1)FW(v2)] > ζ′

R′ . (A.3)
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Assuming Lemma A.2 and Proposition A.3, we can now complete the proof of Lemma 6.11.

Proof. By (A.3) and (A.1), we have that

�
(U,W)∈ER′−1

�
(v1,v2)∈E

[FU(v1)FW(v2)] > ζ′

R′ =
ζ′

2 · �
(U,W)∈ER′−1

�
(v1,v2)∈E

[FU(v1) + FW(v2)]

Using Lemma A.2, this gives that there exist (U∗,W∗) ∈ ER′−1 such that

�
(v1,v2)∈E

[FU∗(v1)FW∗(v2)] > ζ′

2R′ and �
(v1,v2)∈E

[FU∗(v1)FW∗(v2)] > ζ′

4 · (� FU∗ + � FW∗)

We now construct the set S randomly, by choosing each v ∈ V to be in S with probability (FU∗(v) + FW∗(v))/2.
We first check that the expected volume of the set is large.

� µ(S ) = �
v∼V

[
FU∗(v) + FW∗(v)

2

]
= �

(v1,v2)∈E

[
FU∗(v1) + FW∗(v2)

2

]
> �

(v1,v2)∈E

[
FU∗(v1)FW∗(v2)

2

]
(Using a + b > ab for a, b ∈ [0, 1])

> ζ′

4R′

Combining this with (A.2), we get that � µ(S ) ∈
[
ζ′

4R′ ,
2

εV R′
]
. Also, by a Chernoff bound, we have that with

probability 1 − exp(−Ω(|V |)), µ(S ) ∈
[
ζ′

8R′ ,
3

εV R′
]
.

To show that the expansion of the set is bounded away from 1, we show a lower bound on the expected
number of edges that stay within the set, denoted by G(S , S ).

�G(S , S ) = �
(v1,v2)∈E

[(
FU∗(v1) + FW∗(v1)

2

) (
FU∗(v2) + FW∗(v2)

2

)]
= 1

2 · �
(v1,v2)∈E

FU∗(v1)FW∗(v2) + 1
4 · �

(v1,v2)∈E

[
F2

U∗(v1) + F2
W∗(v2)

]
> 1

2 · �
(v1,v2)∈E

FU∗(v1)FW∗(v2)

> ζ′

4 �v∼V
[(FU∗ + FW∗)/2] =

ζ′

4 · � µ(S )

Thus, we have
�

[
G(S , S ) − ζ′

8 µ(S )
]
> ζ′

8 � µ(S ) > ζ′2

8R′ .

In particular, we get that with probability at least ζ′2

16R′ over the choice of S , G(S , S ) > ζ′

8 · µ(S ). Hence,

with probability ζ′2

16R′ − e−Ω(|V |), we have µ(S ) ∈
[
ζ′

8R′ ,
3

εV R′
]

and G(S , S ) > ζ′

8 · µ(S ). For such a set we have

ΦG(S ) = 1 − (G(S , S )/µ(S )) 6 1 − ζ′

8 , which proves the claim. �

A.2 Stronger Small-Set Expansion Hypothesis

Proposition (Restatement of Proposition 5.8). For all η > 0,M > 1 and all δ < 1/M, there is polynomial
time reduction from Small-Set Expansion ( ηM , δ) to Small-Set Expansion(η, δ,M).
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Proof. Let η′ =
η
M . The reduction is in fact, the trivial one which, given an instance G = (V, E) of Small-Set

Expansion (η′, δ) treats as an instance of Small-Set Expansion (η, δ,M). If we are in the Yes case of Small-Set
Expansion (η′, δ), then there is a set S with µ(S ) = δ and ΦG(S ) 6 η′ 6 η. Hence, we are also in the Yes case
of Small-Set Expansion (η, δ,M).

For the other direction, assume that we are not in the No case of Small-Set Expansion (η, δ,M) and there
exists a set S with µ(S ) ∈

(
δ
M ,

δ
M

)
and ΦG(S ) 6 1 − η. Then the fraction of edges G(S , S ) stay inside S is at

least η ·µ(S ). If µ(S ) > δ, then we randomly sample a subset S ′ of S with volume δ. For each edge (u, v) ⊆ S ,
the chance that (u, v) ∈ S ′ is δ2/µ(S )2. Then

�ΦG(S ′) = 1 −
�G(S ′, S ′)

δ
6 1 −

(δ2/µ(S )2) · η · µ(S )
δ

6 1 − η
M .

Then, we cannot be in the No case of Small-Set Expansion (η′, δ). When µ(S ) 6 δ, we simply create a set S ′

by adding extra vertices to S to increase its measure to δ. Then,

ΦG(S ′) = 1 −
G(S ′, S ′)

δ
6 1 −

G(S , S )
δ
6 1 −

η · µ(S )
δ
6 1 − η

M .

�

A.3 Hardness of Minimum Linear Arrangement and Balanced Separator

Corollary A.4 (Hardness of Balanced Separator and Min Bisection). There is a constant c such that for
arbitrarily small ε > 0, it is SSE-hard to distinguish the following two cases for a given graph G = (V, E):

Yes: There exists a cut (S ,V \ S ) in G such that µ(S ) = 1
2 and ΦG(S ) 6 ε + o(ε).

No: Every cut (S ,V \ S ) in G, with µ(S ) ∈
(

1
10 ,

1
2

)
satisfies µG(S ) > c

√
ε.

Proof. The result follows immediately by applying Theorem 3.5 with the given ε and taking q = 2, γ = o(
√
ε).

In the No case we get that for all sets S with µ(S ) ∈
(

1
10 ,

1
2

)
, G(S , S ) 6 Γ1−ε/2(1/10) + o(

√
ε) 6 µ(S )(1 −

c
√
ε) + o(

√
ε) for some c > 0. Thus ΦG(S ) > c′

√
ε for some c′ > 0. �

The following corollary uses the fact that in the Yes case of Theorem 3.5, we actually partition the graph
into many non-expanding sets instead of finding just one such set.

Corollary A.5 (Hardness of Minimum Linear Arrangement). It is SSE-hard to approximate Minimum
Linear Arrangement to any fixed constant factor. Formally, there exists c > 0 such that for every ε > 0, it is
SSE-hard to distinguish between the following two cases for a given graph G = (V, E), with |V | = n:

Yes: There exists an ordering π : V → [n] of the vertices such that �(u,v)∼E [|π(u) − π(v)|] 6 εn

No: For all orderings π : V → [n], �(u,v)∼E [|π(u) − π(v)|] > c
√
εn

Proof. Apply Theorem 3.5 taking q = d2/εe, ε′ = ε/3 and γ = ε. In the Yes case, we pick an arbitrary
ordering π which orders elements in each of the sets S 1, . . . , S q contiguously. For these sets, all edges in the
set have length at most n/q and at most ε′ + o(ε) fraction of the edges leave the sets. Thus,

�
(u,v)∼E

[|π(u) − π(v)|] 6 n
q + ε′n + o(εn) 6 εn
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The proof for the No case follows from an observation of [DKSV06], that for a graph G if every set S with
µ(S ) ∈ ( 1

3 ,
1
2 ) has G(S ,V \ S ) > θ, then for any ordering π : V → [n], �(u,v)∼E [|π(u) − π(v)|] > θ

3 · n (else one
can obtain a contradiction by optimally ordering the points and cutting randomly between the positions n/3
and 2n/3). Here, G(S ,V\S ) > 1/3−Γ1−ε/6(1/3) > c′

√
ε for some c′ > 0. Thus, �(u,v)∼E [|π(u) − π(v)|] > c′

3 ·n
for all π : V → [n]. �
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