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Abstract. A k-query locally decodable code (LDC) C : X" —
I'V encodes each message x into a codeword C(z) such that each
symbol of z can be probabilistically recovered by querying only k&
coordinates of C(x), even after a constant fraction of the coordi-
nates have been corrupted. Yekhanin (2008) constructed a 3-query
LDC of subexponential length, N = exp(exp(O(logn/loglogn))), un-
der the assumption that there are infinitely many Mersenne primes.
Efremenko (2009) constructed a 3-query LDC of length Ny =
exp(exp(O(v/log nloglogn))) with no assumption, and a 2"-query LDC
of length N, = exp(exp(O(:/logn(loglogn) —1))), for every integer
r > 2. Itoh and Suzuki (2010) gave a composition method in Efre-
menko’s framework and constructed a 3 - 2" "2-query LDC of length N,,
for every integer r > 4, which improved the query complexity of Efre-
menko’s LDC of the same length by a factor of 3/4. The main ingredi-
ent of Efremenko’s construction is the Grolmusz construction for super-
polynomial size set-systems with restricted intersections, over Z,,, where
m possesses a certain “good” algebraic property (related to the “alge-
braic niceness” property of Yekhanin (2008)). Efremenko constructed
a 3-query LDC based on m = 511 and left as an open problem to find
other numbers that offer the same property for LDC constructions.

In this paper, we develop the algebraic theory behind the constructions
of Yekhanin (2008) and Efremenko (2009), in an attempt to understand
the “algebraic niceness” phenomenon in Z,,. We show that every integer
m = pq = 2 — 1, where p, ¢ and t are prime, possesses the same good
algebraic property as m = 511 that allows savings in query complexity.
We identify 50 numbers of this form by computer search, which together
with 511, are then applied to gain improvements on query complexity via
Itoh and Suzuki’s composition method. More precisely, we construct a
3"/21_query LDC for every positive integer r < 104 and a L(3/4)51 : QTJ—
query LDC for every integer r > 104, both of length N,., improving the
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2" queries used by Efremenko (2009) and 3 - 2"~2 queries used by Itoh
and Suzuki (2010).

We also obtain new efficient private information retrieval (PIR) schemes
from the new query-efficient LDCs.

Keywords. Locally decodable codes, Mersenne numbers, private infor-
mation retrieval

Subject classification. 20C05, 94B60

1. Introduction

A classical error-correcting code C : X" — I'V allows one to encode a message
x into a codeword C(z) such that x can be recovered even if C(z) gets cor-
rupted in a number of coordinates. However, to recover even a small portion
of the message x, one has to consider all or most of the coordinates of the
received (possibly corrupted) codeword. Katz & Trevisan (2000) considered
error-correcting codes where each symbol of the message can be probabilisti-
cally recovered by looking at a limited number of coordinates of a corrupted
encoding. Such codes are known as locally decodable codes (LDCs). Informally,
a (k,8,¢)-LDC C : X" — T'N encodes a message z into a codeword C(z) such
that each symbol z; of the message can be recovered with probability at least
1 — ¢, by a probabilistic decoding algorithm that makes at most k queries,
even if the codeword is corrupted in up to 6N locations. LDCs have many
applications in cryptography and complexity theory (see, for example, Gasarch
(2004); Trevisan (2004)), and have attracted a considerable amount of attention
(Deshpande et al. 2002; Dvir & Shpilka 2005; Efremenko 2009; Goldreich et al.
2006; Gopalan 2009; Itoh & Suzuki 2010; Kedlaya & Yekhanin 2008; Kerenidis
& de Wolf 2004; Obata 2002; Raghavendra 2007; Shiowattana & Lokam 2006;
Wehner & de Wolf 2005; Woodruff 2007; Yekhanin 2008) since their formal
introduction by Katz & Trevisan (2000).

For constant J and e, the efficiency of a (k,d,¢)-LDC C : X" — TV is
measured by its length N and query complexity k. Ideally, we want both N
and k to be as small as possible. Katz & Trevisan (2000) proved that there
do not exist families of 1-query LDCs. Goldreich et al. (2006) obtained an
exponential lower bound of exp(£2(n)) on the length of 2-query linear LDCs.
Kerenidis & de Wolf (2004) showed that the optimal length of any 2-query
LDCs is exp(O(n)) via a quantum argument. For a k-query (k > 3) LDC,
Woodruff (2007) obtained a superlinear lower bound of Q(n*+D/(k=1) /]ogp)
on its length. Other lower bounds have been obtained by Deshpande et al.
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(2002), Obata (2002), Dvir & Shpilka (2005), Wehner & de Wolf (2005), and
Shiowattana & Lokam (2006).

It has been conjectured for a long time that the length N of any constant-
query LDC should have an exponential dependence on its message length n.
This conjecture was disproved by Yekhanin (2008), who constructed a 3-query
LDC of length exp(exp(O(logn/loglogn))) under the assumption that there
are infinitely many Mersenne primes (primes of the form M; = 2" — 1, where
t is prime). Subsequently, Yekhanin’s construction was nicely reformulated by
Raghavendra (2007) using group homomorphism. Inspired by this, Efremenko
(2009) generalized Yekhanin’s construction and established a framework for
constructing LDCs in which the above assumption on Mersenne primes is no
longer necessary. Efremenko (2009) constructed a k,-query (k. < 27) LDC of
length N, = exp(exp(O(y/log n(loglogn) —1))) for every integer r > 2, and in
particular, a 3-query (ks = 3) LDC of length Ny = exp(exp(O(y/lognloglogn)))
for r = 2. The main ingredient of Efremenko’s construction is a construction
of Grolmusz (2000) for super-polynomial size set-systems with restricted inter-
sections. Each of these set-systems is over a certain composite number, which
has significant impact on the query complexity (the value of k,) of the resulting
LDC. Efremenko (2009) showed that the composite number 511 can result in
a 3-query LDC of length N, and left as an open problem to find other suitable
composite numbers.

Recently, Itoh & Suzuki (2010) developed a composition method in Efre-
menko’s framework. This method allows one to compose, in an appropriate
way, Efremenko’s k,-query (k, < 27) LDC of length N, and k;-query (k; < 2!)
LDC of length N; to obtain a k-query LDC of length N,.; such that k£ < k,.k;.
For every integer r > 4, taking Efremenko’s 3-query LDC and k,_s-query LDC
as building blocks, the composition method yields a k-query LDC of length N,
in which k& < 3-2"72, improving the query complexity of Efremenko’s LDC of
the same length by a factor of 3/4. We stress that this improvement is due to
the first building block, that is, the 3-query LDC. Hence, it is of great interest
to obtain as many such 3-query LDCs as possible, or equivalently, as many new
composite numbers as possible which can result in 3-query LDCs of length N,
in Efremenko’s construction.

1.1. Our Results. In this paper we study the algebraic properties of good
composite numbers which yield 3-query LDCs in Efremenko’s construction.
We give a characterization of such composite numbers and show that every
Mersenne number which is a product of two primes is good. Consequently,
we obtain a number of good composite numbers. These new good numbers,
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together with 511, are then applied to achieve improvements on the query
complexity in Efremenko’s framework.

Let My be the set of composite numbers, each of which is the product of
two distinct odd primes and good (i.e., can yield a 3-query LDC of length N,
in Efremenko’s construction). We characterize numbers in My, and show that
the subset of Mersenne numbers (numbers of the form M, = 2 — 1, where ¢ is
prime)

M Mersenne = {m @ m = 2" — 1 = pq, where p, ¢ and ¢ are primes}

is contained in M. Note that the number 511 = 2° — 1 = 7 x 73, suggested
by Efremenko (2009), is in My but not in My yersenne. On the other hand,
the number 15 = 3 x 5, the smallest possible candidate for My, is not in My,
checked via exhaustive search by Itoh & Suzuki (2010). We identify 50 numbers
in M Mersenne and hence 50 new numbers in My, which answers open problems
raised by Efremenko (2009) and Itoh & Suzuki (2010). Furthermore, we show
that:

(a) For every integer r, 1 < r < 103, there is a k-query linear LDC of length
N, for which

| < (V3), if r is even
~ 8- (V3)3, if ris odd.

(b) For every integer r > 104, there is a k-query linear LDC of length N, for
which k£ < (3/4)% - 2",

(¢) If My Mersenne| = 00, then for every integer r > 1, there is a k-query linear
LDC of length N, for which & is the same as that in (a).

The notion of LDCs is closely related to the notion of information-theoretic
private information retrieval (PIR) schemes. It is well known that LDCs with
perfectly smooth decoders imply PIR schemes, and there is a generic trans-
formation from LDCs to PIR schemes (Katz & Trevisan 2000). As with the
LDCs of Efremenko (2009) and Itoh & Suzuki (2010), the query-efficient LDCs
obtained in this paper also have perfectly smooth decoders!. This in turn
gives new PIR schemes with smaller communication complexity. For instance,
the LDCs from (a) above imply PIR schemes with communication complexity
exp(O(1/log n(loglog n) 1)) for 37/% servers. Compared with the best known

'Note that the decoders for the LDCs of Yekhanin (2008) are not smooth.
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PIR schemes of Itoh & Suzuki (2010) with the same communication complex-
ity for 3 - 272 servers, where r < 104 is even, our new schemes require fewer
servers.

We are able to identify only 50 numbers in My yersenne Dy computer search
with the largest one being Mis3; = 273! — 1. We believe that the search
for more numbers in My persenne 1S Of independent interest. In particular, it
is an interesting open problem to determine how many numbers M versenne
contains. Compared with Mersenne primes, it seems reasonable to conjecture
that |M2,Mersenne’ = Q.

1.2. Organization. This paper is organized as follows. In Section 2, we
review Efremenko’s framework and the composition method of Itoh & Suzuki
(2010). In Section 3, we prove that all Mersenne numbers which are products
of two primes belong to My and introduce the family My persenne- We also
characterize the numbers in M, and discuss how to prove that a given number
is not in M. In Section 4, we obtain new query-efficient LDCs using the family
M Mersenne- This also gives new efficient PIR schemes with fewer servers. We
conclude the paper in Section 5.

2. Preliminaries

We briefly review Efremenko’s framework (Efremenko 2009) and the composi-
tion method of Itoh & Suzuki (2010).

Let m and h be positive integers. The ring Z/mZ is denoted Z,,. The set
{1,2,...,m} is denoted [m|. The mod m inner product of two vectors x =
(1, 20),y = (y1,...,yn) € Z" is defined to be (x,y),, = Z?:l x;y; mod m.
The Hamming distance between x and y is denoted dy(z,vy).

DEFINITION 2.1 (Locally Decodable Code). Let k, n and N be positive inte-
gers, and 0 < 0,e < 1. A code C : ¥" — 'V is said to be (k,J,€)-locally
decodable if there is a probabilistic decoding algorithm D such that:

(i) For every x € X", i € [n], and y € TN such that dg(y,C(z)) < 6N, we
have Pr[DY(i) = ;] > 1 —¢, where DY means that D makes oracle access
to y, and the probability is taken over the internal coin tosses of D.

(ii) In every invocation, D makes at most k queries to y.

The algorithm D is called a (k, 0, €)-local decoding algorithm for C. Param-
eters k and N are called the query complezity and length of C, respectively.
The alphabets ¥ and I' are often taken to be a finite field F,, where ¢ is a prime
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power. A k-query LDC C: F} — IF(]]V is linear if it is a linear transformation,
and nonadaptive if in every invocation, D makes all queries simultaneously. All
the LDCs in this paper are linear and nonadaptive.

2.1. Efremenko’s Framework. Efremenko’s framework (Efremenko 2009)
for constructing LDCs is essentially a generalization of the work of Yekhanin
(2008). Let m = pips...p, be a product of r > 2 distinct odd primes
P1,P2, -0 Let S C Z,, \ {0} and h be a positive integer. Let ¢ be the
multiplicative order of 2 € Z; , and let v, € F3, be a primitive m-th root of
unity. The building blocks of Efremenko’s framework for constructing LDCs
include both an S-matching family and an S-decoding polynomial, which are

defined as follows:

DEFINITION 2.2 (S-Matching Family). For S C Z,, \ {0}, a family of vectors
{u;}_, C ZI is called an S-matching family if:

(i) (wi,u;)m =0, for i € [n]; and

(i) (u;,w;)m € S, for distinct i, j € [n].

DEFINITION 2.3 (S-Decoding Polynomial). For S C Z, \ {0}, a polynomial
P(X) € Fo[X] is called an S-decoding polynomial if:

(i) P(v;,) =0, for s € S; and

(i) P(yp) = P(1) =1.

For any subset S C Z,, \ {0}, an S-matching family and the corresponding
S-decoding polynomial yield a linear LDC immediately.

THEOREM 2.4 (Efremenko 2009). Let {u;}", C Z! be an S-matching family
and P(X) = ap+ a1 X" +.. . 4+ap_1 X% € Fy[X] be an S-decoding polynomial
with k monomials. Then there is a k-query linear LDC C : Fj, — Iﬁ‘g}h with
encoding and decoding algorithms as in Fig. 2.1.

Theorem 2.4 shows that for any S C Z,, \ {0}, an S-matching family of
size n and an S-decoding polynomial with & monomials yield a k-query LDC
which encodes each message of length n into a codeword of length m”. Once
m and h are fixed, the length N is inversely proportional to n. Hence, ideally,
n should be large and k small. To have a large S-matching family, the set S is
usually taken to be S,,, the canonical set of m, which is defined as follows:
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Encoding

Let e; € F%, denote the j-th unit vector for j € [n]. The coordinates of a
codeword C(z) are indexed by vectors in Z!", where z € F%. The encoding
algorithm works as follows:

L. for j € [n] and v € Z%,, C(e;)y = """

2. for x = (z41,...,2,) € F,, we have C(z) =", z; - C(e;).

j=1

Decoding
To recover x; from a possibly corrupted codeword y € Fg’}h of any message x,we

1. choose a vector v € Z! uniformly and query the coordinates
Yvs Yo+brugy - -+ s Yo+bp_quss

<uiav>m

2. output vy (@0 Yo+ a1 Yotbyu; + -+ -+ Q1 - Yotbp_yus)-

Figure 2.1: Efremenko’s Framework for Constructing LDCs

DEFINITION 2.5 (Canonical Set). Let m = pyps...p, be the product of r > 2
distinct odd primes pq,pa, ..., p,. The canonical set of m is defined to be

Sm = {86 € Zp, : 0 €{0,1}"\ {0} and s, = o; mod p;, fori € [r]}.

For every integer r > 2, Efremenko (2009) proved that there exist an .S,,-
matching family of superpolynomial size and an S,,-decoding polynomial with
at most 2" monomials.

PROPOSITION 2.6 (Efremenko 2009). Let m = pips...p, be the product of
r > 2 distinct odd primes py, pa, . . ., Dy

(i) There is a positive constant ¢, depending only on m, such that for every
integer h > 0, there is an S,,-matching family {u;}., C ZI of size
n > exp (c(logh)"/(loglog h)"~1).

(ii) There is an S,,-decoding polynomial with at most 2" monomials.

Efremenko’s linear LDCs of subexponential length now immediately follow
from Theorem 2.4 and Proposition 2.6.
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THEOREM 2.7 (Efremenko 2009). For every integer r > 2, there is a linear
(ky, 8, k,.0)-LDC of length N, = exp(exp(O(y/logn(loglogn) —1))) for which
k. < 27. In particular, when r = 2, there is a linear (3, ,36)-LDC of length

N, = exp(exp(O(y/lognloglogn))) .

2.2. The Composition Method. For every integer r > 2, there is a k,-
query linear LDC of subexponential length N, by Theorem 2.7, but its query
complexity k, is only upper bounded by 2". It is attractive to improve the
query complexity. This is the motivation for Itoh and Suzuki’s composition
method.

Let my = pips...p, be the product of r distinct odd primes py,ps...,pr
and mo = 142 . ..q the product of [ distinct odd primes q,qs ..., q, where
r,l > 2. Suppose ged(my, me) = 1. Let m = myms, and ty, to, and ¢ be the
multiplicative orders of 2 in Z* , Z* , and Z} , respectively. By Theorem 2.4

mi? mo? m>
and Theorem 2.7, there are linear LDCs C,. : FZ,, — FY Q- F, — F;\g and

2t1 2t17
Cry : Fy — Fé\?“ of query complexities k, < 27, k; < 2!, and k,4; < 2,
respectively. Let Py(X) € Fo, [X] and Py(X) € Fy, [X] be the S,,,-decoding
polynomial for C, and S,,,-decoding polynomial for C;, respectively. Let v, ,
Ymgs and 7y, be the primitive mj-th, mo-th and m-th roots of unity used in
the encoding algorithms of C,, C;, and C,;, respectively. It is not hard to

see that there are integers p and v such that v,,, = ¥4 and v,,, = V™.

Itoh & Suzuki (2010) proved that P(X) = P (X*2)Py(XY™) € Fy[X] is
an S,,-decoding polynomial for C, ;. Obviously, P(X) contains at most k,.k;
monomials. Hence, the composition theorem below follows.

THEOREM 2.8 (Itoh & Suzuki 2010). With notations as above, there is a k-
query linear LDC C : Fj, — Fé\?“ for which k < k,.k;.

Theorem 2.8 shows that Efremenko’s LDC C,.; essentially has a local de-
coding algorithm which makes at most k,.k; queries. The key idea of the com-
position method is as follows: if we choose the building blocks C, and C; in
such a way that either k. < 2" or k; < 2!, then a local decoding algorithm
for C,,; which makes less than 2"+ queries follows. For every integer r > 4,
applying Theorem 2.8 to Efremenko’s 3-query LDC C, (based on m; = 511)
of length Ny and k,_s-query LDC C,_5 (based on my = ¢ ...¢,_o such that
ged(my, my) = 1) of length N,_o gives:

COROLLARY 2.9 (Itoh & Suzuki 2010). For every integer r > 4, there is a k-
query linear LDC C of length N, in which k < 3-2"2.
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We note that Efremenko’s 3-query linear LDC is crucial to the improvement
provided by Corollary 2.9. The existence of this code depends on a carefully
chosen good composite number m; = 511. It is natural to ask whether there
are good composite numbers other than 511 based on which a 3-query linear
LDC of length N5 can be obtained from Efremenko’s construction.

For every positive integer » > 2, we denote by M, the set of integers, each of
which is a product of r distinct odd primes and can yield a k-query linear LDC
of length N, for which k& < 2" in Efremenko’s construction. Efremenko (2009)
showed that 511 € My and built their 3-query LDC on this number. Itoh &
Suzuki (2010) proved that 15 ¢ My by exhaustive search. Both Efremenko
(2009) and Itoh & Suzuki (2010) left as an open problem to find elements of
M other than 511. We provide an answer to this problem in the next section.

We end this section with some algebra required to establish our results.

2.3. Group Rings, Characters and Cyclotomic Cosets. Let G be a
finite multiplicative abelian group. The group ring

Z|G] = {Z agg:ay € Z}

geG

is a ring of formal sums, in which addition and multiplication are defined as
follows:

A+B=> (a,+by)g.

geG

A-B=Y"> agbugh,

g€G heG

where A = dea a,9,B = dec byg € Z[G]. The following are standard
notations:

Let C be the field of complex numbers and C* its multiplicative group.
Any group homomorphism x : G — C* is called a character of G. If |G| = n,
then it has exactly n distinct characters. Let G be the set of all characters
of G. Then G is a multiplicative group in which x1x2(9) = x1(9)x2(g) for all
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X1, X2 € @,g € G. The identity xo off\é, called the principal character, maps
every g € G to 1l € C*. For every x € G, the order of x is defined to be the least
positive integer [ such that x! = xo. Every x € G can be ecasily extended to
Z[G] linearly: x(A) = > agx(g). The following properties are well-known:

1. If |G| = n < oo, then for any x € G and g € G, x(g)" = 1.

2. If y € G\ {xo}, then s x(g) = 0.

3. X(ACY) = X(A), for every x € G, A € Z[G].

Let p be a prime or prime power and m € Z* such that ged(p, m) = 1. For
every s € Z, the cyclotomic coset of p modulo m containing s is defined to be
the following set

E,={(sp' mod m) € Z,, : 1 =0,1,...},

where s is called coset representative of E,. We always suppose that s is smallest
in F,. It is well-known that all distinct cyclotomic cosets of p modulo m form
a partition of Z,,.

The interested reader is referred to Curtis & Reiner (2006); MacWilliams
& Sloane (1977); McDonald (1974); Washington (1997) for more information.

3. Mersenne Numbers which are Products of Two
Primes Belong to M,

In this section, we answer the open problem raised by Efremenko (2009) and
Itoh & Suzuki (2010) by proving that any Mersenne number which is the prod-
uct of two primes belongs to M. This result allows us to obtain a family of
numbers in My. Furthermore, we also give characterizations of numbers in M,
which turn out to be helpful for deciding whether a given number is in M.

Let m = pqg be the product of two distinct odd primes p and ¢. Let t be
the multiplicative order of 2 in Z;,, and let v, € F3, be a primitive m-th root
of unity. Let S, = {s11 = 1, S01, S10} be the canonical set of m. Then the set
of S,,-decoding polynomials is

F={f(X) € Fx[X]: f(ym) = f(y") = f(°) = 0 and f(1) =1},

By Lagrange interpolation, there exists f € F that contains at most four mono-
mials. On the other hand, we have the following proposition.
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PROPOSITION 3.1. Let m = pq be the product of two distinct odd primes.
Then any S,,-decoding polynomial contains at least three monomials.

PROOF.  Suppose f(X) = az" + bz” € F is an S,,-decoding polynomial with
less than three monomials. Then avy, +by,, = av50t +byp0t = ayy 0 4-brypt0 =
0and a+b = 1. It follows that ay"™" = aybt %00 = gyfums0 — 1 4 ¢
Obviously, a # 0 and therefore 70 = {4~ — 4 =)0 Thig implies that
m|ged((uw—v)(so1 — 1), (u —v)(s10 — 1), (u —v)(s10 — So1)). Since ged(m, s19 —
so1) = 1, we have m|(u—v). Hence, a = ay%™" = a7y """ = ™0 = 144,
which is a contradiction. 0

Proposition 3.6 shows that for m = pq, the best we can expect is to have
an S,,-decoding polynomial with exactly three monomials. Let

G ={9(X) € Fu[X]: g(vm) = g(1") = g(7m°) = 0 and g(1) # 0} .

Then we have the following result.

PROPOSITION 3.2. There is an S,,-decoding polynomial f € F with three
monomials if and only if there is a polynomial g € § with three monomials.

PrRoOOF. The forward implication is trivial, since ¥ C G. Let g € G have
exactly three monomials. Then f(X) = ¢g(X)/g(1) € F contains the same
number of monomials as g(X), namely three. O

By Proposition 3.2, finding an S,,-decoding polynomial with exactly three
monomials is equivalent to finding a polynomial g(X) € § with exactly three
monomials. Let g(X) € G be such a polynomial. Since § is closed under mul-
tiplication by elements of Fo: \ {0}, we may suppose, without loss of generality,
that g(X) = X" + aX¥ + b € Fy[X] for some distinct u,v € Z,, \ {0} (only
9(1), g(vm), g(7:0r) and g(q;1°) are concerned) and a,b € Far \ {0}. By the
definition of G, the following conditions hold simultaneously:

T At 1\ 1 0
(3.3) T A L) {a)={0],

Y Tm 1) \D 0
(3.4) 1+a+b#0.

Conditions (3.3) and (3.4) shed much light on how to determine elements of
M. A computer search based on these conditions shows that the Mersenne
numbers M, = 211 — 1 = 2047 and My = 223 — 1 = 8388607 both belong to
M, (see Table 3.1 for the corresponding S,,-decoding polynomials).
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m M =211 — 1 =2047 Moz = 223 — 1 = 8388607

Foe Fou = Fao[y]/ (' +42 + 1) Fozs = Fa[y]/(7* ++° + 1)

Sm {811 = 1, So1 = 713, S10 — 1335} {811 = 1, S01 — 5711393, S10 = 2677215}
f(X) 71485X29 4 7694X27 € 7118 76526329X3526 4 77574532)(3363 4 72861754

Table 3.1: New elements m determined to be in M,

Theorem 2.8 shows that the more numbers in My we find, the more im-
provements we get on the query complexity within Efremenko’s framework.
This motivates the consideration of numbers taking the form of Mp; and Moas,
and to understand why they yield better local decoding algorithms within Efre-
menko’s framework. We note that M;; and M,z are both Mersenne numbers
and each a product of two primes. This begs the question: do all numbers of
this form belong to M, and do they intrinsically yield better local decoding
algorithms in Efremenko’s framework? For the remaining of this section, we
provide an affirmative answer to this question. More precisely, we prove the
following theorem.

THEOREM 3.5. Let m = 2! — 1 = pq be a Mersenne number, where t, p and q
are primes. Then m € M.

The proof of Theorem 3.5 is based on analysis of conditions (3.3) and (3.4),
and is an easy consequence of Propositions 3.6 and 3.10 below.

PROPOSITION 3.6. Let m = pq be the product of two distinct odd primes p
and q. Let t be the multiplicative order of 2 € Zj,, and let v,, € I3 be a
primitive m-th root of unity. Define

(3.7) Z = {% 21,29 € Fy, ord(21) = p, and ord(zy) = CJ} :

If Z is a multiset containing an element of multiplicity greater than one, then
m € Mg.

PROOF. Suppose Z contains an element of multiplicity greater than one.
Then there exist 2y, 29, 21, 25 € F}, such that the following hold:

() ord(z1) = ord(:}) = p,
(ii) ord(ze) = ord(z}) = q,
(iii) (ZlaZQ) 7é (Ziwzé)a
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21+ 22 o Zi+Zé
21204+ 20 22+ 2L

Obviously, we have ord(y;°) = p and ord (%) = ¢. It follows that there are
integers uy, v, € Zy \ {0} and ug, vo € Z, \ {0} such that the following hold:

() 21 = ()™ = e

: __ AU28
(Vl zg = ’7m2 017

Since p and ¢ are distinct primes, the Chinese Remainder Theorem implies that
there are unique numbers u, v € Z,, \ {0} such that

(ix) u = wu; mod p and u = up mod g,
(x) v=wv; mod p and v = vy mod g.

Combing the set of conditions (i)—(x), it is easy to verify that the numbers
u,v € Zy, \ {0} satisfy the following conditions

: _ us _ Uus ! VS8 ! VS
(xi) 21 = Y10, zg = 01 2 = AUs0 and 2} = yueor
(xii) u # v,

) e e e e )

usig vSs10 °

(xiii
R e L A S S

The last condition (xiii) implies that the matrix

UuUSsSo1 vVS01
Tt Aot 1

(3.8) Puw=[m" 1 1
Tmo Vm 1

has determinant zero. It follows that rank(I',,) = 1 or 2. If rank(I',,) =1
then the rank of
Tt Y Yt Y O
/y;;flslo _I_ fy;""b 722910 + /y’:;L O
T T 1
is also 1. Hence, vt + 5 = 420t 0 = o 4y = 7910 440 = (), which
in turn implies %01 = ~210 and %" = ~2°1°. Since 7, is of order m and
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ged(m, sg1 — s10) = 1, we have m|ged(u(sor — s10), v(So1 — S10)) and therefore
m| ged(u, v), which contradicts the fact that u,v € Z,, \ {0}. Consequently,
rank(T',,) = 2 and the equation (3.3) has a unique solution (a,b) € F3,.

Next we show that both a and b are nonzero. If @ = 0, then b = %" =

us10 — (“*U)Sm

s = ~t - which implies that w = 0 mod m. If b = 0, then a = ym =
Ao =¥ which implies that u = v mod m. Both cases yield contradic-
tions, since u,v € Z, \ {0} are distinct.

Let g(X) = X"+ aX" +b € Fu[X]. Then g(X) contains three monomials
since u,v € Z,, \ {0} are distinct and a,b € Fy: \ {0}. Furthermore, we have
9(m) = g(20r) = g(7510) = 0 since (a, b) satisfies (3.3).

As the last step, we claim that g(1) # 0, for otherwise the vector (1,1,1)
is necessarily a linear combination of the rows of I, ,, since (1, a,b) # (0,0,0),

and thereby

7#;‘01 /y;)rfOl 1
771%310 771;?10 1
Yoo Y 1
1 11

has rank two. Applying elementary row operations (adding the third row to
each of the first three rows) to the above matrix gives

Ltom _ 1o 1+

3.9 = = ,
(39) L+, 14+ym™®  14m™
Condition (xiii) and (3.9) now jointly yield 44" = ~{"*19 which in turn

implies that « = v. This is a contradiction.

We have actually shown that g(X) € G and contains exactly three monomi-
als. By Proposition 3.2, there is an S,,-decoding polynomial f(X) € F which
also contains exactly three monomials. Hence, m € M. O

PROPOSITION 3.10. Let m = 2! — 1 = pq be a Mersenne number, where t, p
and q are all primes, p # q. Then Z (as defined in Proposition 3.6) is a multiset
containing an element of multiplicity greater than one.

PROOF.  Obviously, Z has at most (p—1)(¢—1) distinct elements. Suppose Z
is a set of cardinality (p—1)(¢—1). For every 2y, 2z, € F%, such that ord(z;) =p
and ord(z;) = ¢, we have (21 +22) /(2122 + 22) = 1+ (14+23")/(1+2"). Hence,

(3.11) S={(142)/(1+2): 21,22 € F5,, ord(z1) = p, and ord(zq) = ¢}
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is also a set of cardinality (p —1)(¢ — 1). Let G = F;, and 1g its identity.
Consider the group ring Z[G]. We identify the two subsets of G,

(3.12) A={1+2z:2 €Fj and ord(z) = p},
(3.13) B ={l+2:z €F; and ord(2) = ¢},

with two elements of Z[G].
We claim that

(3.14) SUAYUBU{l¢} =G.

Indeed, since SUACYUBU{1¢} C G and |S|+ |[A7Y +|B|+ [{1¢}] = |G|, it
suffices to show that S, AV B, and {15} are pairwise disjoint. It is obvious
that 1 ¢ SUACDUB. If SN ACY £ @, then there exist z;, 2}, 2 € 3. such
that (1422)/(1+21) = 1/(142]), where ord(z;) = ord(z]) = p and ord(z) = q.
It follows that (1 + 22)/(1 + 2z1) = (1 + 22)/(1 + 2}), which contradicts our
assumption that S is a set of cardinality (p — 1)(¢ — 1). Similarly, we have
SNB=A"YNB=0o.
From (3.14) we derive

(3.15) (A+15) V(B +1¢) = G.

Let 7,, 7, € G be some primitive p-th and g-th roots of unity, respectively. We
claim that there exist a permutation a : Z; — Z; and a mapping b : Z; — Z,
such that for every i € Z,

(3.16) 1+ 7} = @20,

Let 0,,0, € C be some complex primitive p-th and g-th roots of unity respec-
tively, where C is the field of complex numbers. Let x, be a multiplicative
character of order p of the group G, such that x,(7,) = 6,. The identity
p((A+16) ") xp(B+1g) = x,(G) = 0 implies that either y,((A+15)"Y) =0
or xp(B+1g) = 0. If x,(B+1¢g) = 0, then ¢ = x,(B+1¢) = 0 mod (1 — 6,) and
therefore ¢ € (1—6,)Z[,]. On the other hand, p = T1?-(1 —07) € (1-6,)Z[6,).
Since ged(p, q) = 1, there are rational integers «, 3 such that ap + B¢ = 1. It
follows that 1 € (1 — 6,)Z[,], which contradicts the well-known fact that
(1 —46,)Z[0,] is a prime ideal in Z[,] (cf. Washington (1997, Lemma 1.4)).
Hence, we have x,((A+ 1¢)Y) = 0 and x,(A + 1) = x,((A + 1¢)Y) = 0,
giving Zf;ll Xp(1 + 'y]i)) + 1= 0. Clearly, there is a mapping a : Z; — Z, such
that x,(14+7,) = 05 for all i € Z:. Hence, 30} 05 + 1 = 0. Since any
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p—1clements of {1,0,,...,00~"} form an integral basis of Z[6,] over Z, a must
be a permutation of Z;. Since G = {75‘75 ta € Ly, B € Zy}, there are two

mappings « : Zy — Z, and 3 : Z; — Z, such that 1 + ’y; =7 (%f @ for all
i €7 . 1t follows that 65" = x,(1+72) = xp(15 ) xp(18") = 05X (74) 7.
Obviously, xp(74)? = xp(7)? = 1 and so x,(7,) = 1. Therefore, 0;“) = 0;“("’,
which implies @ = a. We identify  with b and obtain (3.16).

Similarly, there exist a permutation ¢ : Z; — Z; and a mapping d : Z; — Z,
such that, for every j € Z7,

(3.17) 1y = el dli)

Let x,, be a multiplicative character of order m of G. Without loss of
generality, we suppose that x,,(7,) = 6, and xn(y,) = 0,. Applying x., to
(3.15), we have x, ((A+16) ") xm(B+1g) = Xm(G) = 0, which implies either
Xm(A+1g) =0 0r xpm(B+1g) = 0. If xpu(A+1g) = 0, then 0 = Y7y, (1+
V) +1=3" grOe) 11 = S ee® (gD 1) Since {6, . .. ,6P"1} is an
integral basis of Z[6,,6,] over Z[f,], we have 05" — 1 = 0 for every i € L.
It follows that 1 + 71’; = 'y;(i) for every i € Z;. Hence, {0,1,7, ... ,’yg_l} is a
subfield of Fo:. However, the only subfields of Fo: are Fo and Fo:. Hence, either
p+1=2o0r p+1=2" that is, either p =1 or ¢ = 1, which is a contradiction.

Similarly, if x,n(B + 1¢) = 0, then we conclude that {0,1,7,,...,7¢ '} is a
subfield of Fy¢, which yields the same contradiction.

Hence, our assumption that Z is a set of cardinality (p — 1)(¢ — 1) is wrong
and the proposition is established. 0

We are now ready to proof Theorem 3.5.

PrROOF OF THEOREM 3.5. To apply Propositions 3.6 and 3.10, we need to
show that p and ¢ are odd and distinct. Since pg = m = 2t —1 is odd, it suffices
to show that p and ¢ are distinct. Suppose p = ¢, then pg = p?> = 1 mod 4 and
pg=m = 2" — 1= —1mod 4, which is a contradiction. O

Theorem 3.5 provides a general method of obtaining new numbers in My
and motivates the following definition of a subset of M:

M Mersenne = {m :m =2"—1=pq, where t, p and ¢ are primes} .

It is an interesting open problem to determine the cardinality of M persenne. A
similar but much more well-known problem in number theory is determining
the number of Mersenne primes. Although it is generally believed that there are



Query-Efficient Locally Decodable Codes 17

infinitely many Mersenne primes, no proof or disproof is known. It seems that
our question on the cardinality of M ersenne 15 also difficult to answer. We have,
however, determined 50 elements of M persenne by computer search. These fifty
numbers M; = 2" — 1 = pg € M Mersenne With their smaller prime divisors p are
listed in Table 3.2. The first 33 numbers in My persenne are My, Mas, ..., Msog.
However, we do not know whether Mgg; is the 34th number in My versenne OT
not.
We summarize our results below.

PROPOSITION 3.18. |Mj Mersenne| > 50.

It seems reasonable to conjecture that |Moa persenne| = 00.

The set M persenne does enable us to improve query complexity in Efre-
menko’s framework through Itoh and Suzuki’s composition method (Theo-
rem 2.8). However, to apply this method, we have to make sure that the
elements of M versenne are pairwise relatively prime.

PROPOSITION 3.19. (a) Any two distinct elements in Ml pepsenne are relatively
prime. (b) Elements in Ml yersenne are relatively prime to 511.

PrROOF. (a) Let M; = 2" — 1 = pqg € Mo Mersenne and let ¢; and ¢y be the
multiplicative orders of 2 in Z; and Z;, respectively. Then t1|t and to|t, which
in turn implies t; = t, = ¢ since ¢ is prime and 1,5 > 1. Suppose there are two
distinct numbers My, My € Mo versenne such that ged (Mg, My) > 1. Then M,
and My have a common prime factor, say p. It follows that ¢ = ¢’ = ord,(2),
the multiplicative order of 2 € Z;. Hence, we have M; = My, which is a
contradiction.

(b) Suppose that M, = 2! — 1 € My \fersenne 1S such that ged(M;, 511) > 1.
Then either 7|M; or 73| M;. The multiplicative orders of 2 in Z% and Z%, are 3
and 9 respectively. Hence, 3|t or 9|t. However, ¢ is prime and greater than 9,
which yields a contradiction. U

The result below follows from Propositions 3.18 and 3.19.

COROLLARY 3.20. There are at least 51 elements in My which are pairwise
relatively prime.

Although Theorem 3.5 provides a rather general method of finding new ele-
ments in My (since Ma yersenne € M), it does not provide a way for disproving
membership in My that is easier than exhaustive search. Itoh & Suzuki (2010)
showed that 15 ¢ M, by exhaustive search. The next result shows that it is
possible to avoid exhaustive search in proving that 15 ¢ M.
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m | p m | p

My, | 23 Mars | 25569151

My | 47 Mo | 180818808679

M | 223 My | 614002928307599

M, | 13367 Mz | 150327409

Mso | 179951 Mg | 4871

My, | 193707721 Mias | 160188778313202118610543685368878688932828701136501444932217468039063

My | 167 Mayr | 176062917118154340379348818723316116707774911664453004727494494365756
929328171096762265466521858927

My, | 11447 Mzgo | 4148386731260605647525186547488842396461625774241327567978137

Mo, | 7432339208719 Mgs; | 26431

Mygs | 2550183799 Moz | 23917104973173909566916321016011885041962486321502513

Moo | 745988807 Mogs | 1808226257914551209964473260866417929207023

Mys, | 263 Mooy | 167560816514084819488737767976263150405095191554732902607

Mz, | 32032215596496435569 Miogs | 1485761479

Myso | 5625767248687 My | 19054580564725546974193126830978590503

My | 86656268566282183151 My | 24464753918382797416777

Mg | 2349023 Mg | 81679753

Mygr | 7487 Magyr | 1217183584262023230020873

My | 164504919713 Magro | 25324846649810648887383180721

Moy | 26986333437777017 Mayse | 21926805872270062496819221124452121

My | 22000409 Masso | 6719

Mg | 13822297 Mgz | 101833

My, | 15242475217 Mo | 61944189981415866671112479477273

Mg | 80929 Migso | 919724609777

Maos | 40122362455616221971122353 | Meoss | 11155520642419038056369903183

My | 14143189112952632419639 Mo | 458072843161

Table 3.2: Fifty elements in My persenne
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ProprosITION 3.21. Let p, q, m, t, v, and Z be as defined in Proposition 3.6.
Then m € My if and only if there are cyclotomic cosets E, and Es of 2 modulo
m («, 8 € Z,) such that E, U Eg does not contain any multiples of p or ¢ and
nonnegative integers c,d < t such that

(3.22) (a,c) # (8,d),
aso1 2¢ Bso1 24
(3.23) (M) (%)
Ym T Yo+ A

PROOF. Suppose m € M,. By Proposition 3.1, there is an S,,-decoding
polynomial f(X) € F with exactly three monomials. By Proposition 3.2,
there is a g(X) € G with exactly three monomials. Without loss of generality,
let u,v € Z,, \ {0} be distinct and a,b € Fq \ {0} be such that g(X) =

X"+ aX" 4+ b € Fu[X]. It follows that (3.3) and (3.4) hold, and therefore
det(I',,) = 0, which in turn implies the following identity

(3.24) (1) Vo 700 = Vo + 907 ) i+ 10™).

Since all cyclotomic cosets of 2 modulo m form a partition of Z,,, there exist
a,B € Zy, such that v € E, and v € Eg, where I, and Ejs are cyclotomic
cosets of 2 modulo m with representatives o and 3, respectively.

Suppose that hp € E, for some integer h. Then ¢ 1 h, for otherwise a = 0
and therefore u = 0, which is a contradiction. Since u € E,, there is an integer [
such that u = 2'hp mod m. It follows that % +~2501 = (yhP4fpsor)2 2 — () since
hpser = hp mod m. By identity (3.24), we have (7% + ~“510)(y2 + ysor) = (.
Since hpsip # hp mod m, we have v + 44510 = (yhP 4 yhps10)2 £ () which in
turn implies that 72, + 2% = 0 and therefore pjv. Thus, 7510 = %2Y’thm =
(yfps10)2" = 1 and 42510 = (4#$10)/P = 1. In other words, the second row of T,
s (1,1,1), which implies 1 + a + b = 0 by (3.3), contradicting (3.4). Hence,
E, does not contain any multiples of p. Similarly, F, does not contain any
multiples of ¢ and Ej3 does not contain any multiples of p or g.

For uw € E, and v € Ejg, there exist nonnegative integers c,d < t such that
u = 2°amod m and v = 298 mod m. The fact that u # v implies (o, c) #
(8,d). Let u = 2°«x and v = 293 in (3.24). Then (3.23) follows.

It remains to show that the converse is also true. Let u = 2°@ mod m and
v = 298 mod m. Then u,v € Z,, are nonzero and distinct. Let z; = 410,
Zg = o1 2t = P50 and zh = Y51, Then it is easy to verify that ord(z;) =

m

ord(z}) = p, Ord(ZQ) = ord(zy) = q and (z1, 22) # (21, 25). Then (3.23) implies

(3.25) (21 + 29) /(2129 + 20) = (2] + 25) /(212 + 25).
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Note that (3.25) shows that Z is a multiset which contains an element of multi-
plicity greater than one. By Proposition 3.6, we have m € My, which completes
the proof. O

Proposition 3.21 provides a rough characterization of elements in M. How-
ever, it turns out to be helpful for proving that some integers are not in M.
In particular, we obtain a computer-free proof of the following result of Itoh &
Suzuki (2010).

COROLLARY 3.26. 15 ¢ M.

PROOF. The multiplicative order of 2 € Zj; is t = 4, and S15 = {1,6,10}.
Let Fos = Fy[y]/(7* + v + 1) and let v be a primitive 15-th root of unity.
The cyclotomic cosets of 2 modulo 15 are Ey = {0}, £y = {1,2,4,8}, E5 =
{3,6,9,12}, Es = {5,10}, and E; = {7,14,13,11}. If 15 € M, then by
Proposition 3.21, there are cyclotomic cosets E, and Ejs such that E, U Eg
does not contain any multiples of three or five and nonnegative integers c,d < 4
such that (3.22) and (3.23) hold. It follows that {a, 8} C {1,7}.

= 8= 1, then ((v+7°)/(v+719)% = (747°)/ (7 + %)% by (3.23),
that is, v32° = %2’ It follows that ¢ = d and therefore (o, ¢) = (3,d), which
is a contradiction.

If o =3 =7 then (77 +7)/(37 + 7)) = (47 +7)/ (77 +77)* by
(3.23), that is, 7122 = 412" Tt follows that ¢ = d and thereby (o, ¢) = (3, d),
which is a contradiction

If {a, 8} = {L,7}, then (7 +9)/(y + 7)) = (" +9")/ (3" + ")
by (3.23), that is, 4¥2 = 4112 Smce gcd(QC 15) = ged(2¢, 15) = 1, we have
that ord(y?) = ord(y!!). However, ord(y?) = 5 # 15 = ord(y!), which is a
contradiction. O

4. Improved LDCs and PIR Schemes

In this section, we apply the set My persenne t0 the constructions of LDCs and
information-theoretic PIR schemes. Consequently, we obtain a new family of
query-efficient LDCs and a new family of PIR schemes with few servers. Com-
pared with previous results of Efremenko (2009) and Itoh & Suzuki (2010), the
new LDCs and PIR schemes do achieve quantitative improvements of efficiency
which are considerable.

4.1. Query-Efficient Locally Decodable Codes. By Corollary 3.20, The-
orem Theorem 2.7, Theorem 2.8 and Table 3.1, we have the following theorem:
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THEOREM 4.1. Let N, = exp(exp(O(y/logn(loglogn) =1))). Then the fol-
lowing statements hold:

(a) For every positive integer r < 103, there is a k-query linear LDC of length

N, for which
| < (V3), if r is even
~ 8- (vV3) 3, ifris odd.

(b) For every integer r > 104, there is a k-query linear LDC' of length N, for
which k < (3/4)5" - 27

(¢) If |Ma persenne| = 00, then for every integer r > 1, there is a k-query linear
LDC of length N, for which k is the same as in (a).

Proor. (a) Let r € [103] be even. By Corollary 3.20, we can take distinct
mi, ..., My/s € My which are pairwise relatively prime. There is a 3-query
linear LDC of length N5 based on each of them by the definition of M, and
Theorem 2.7. Applying Theorem 2.8 /2 — 1 times, we obtain a k-query
linear LDC of length N, for which k& < 3'/2, that is, k < (\/5)7"

Let r € [103] be odd. If r = 1, then the Hadamard code is a 2-query linear
LDC of length N; = exp(n) satisfying the required condition. If r > 3,
then r = 2 - % + 3 and we can take distinct mq, ... ,Mrs € My which

are pairwise relatively prime. Since there are infinitely many primes, we
can always take another mr—1 to be a product of three distinct odd primes

such that mr_1 is relatively 2plrime to all of myq, ... yMrs. By Theorem 2.7,
there are a 3-query linear LDC of length N, based on each of mq,...,mr—s

and a ks-query linear LDC of length N3 for which k3 < 23. Applying
Theorem 2.8 (r — 3)/2 times gives a k-query linear LDC of length N, for
which k <372 -8 =8 (v/3)" 3.

(b) If r > 104, we take distinct my, ..., ms € My and msy a product of r — 102
distinct odd primes such that ged(m;, m;) = 1 for all distinct 4, j € [52].
By Theorem 2.7, there is a 3-query linear LDC of length N, based on each
of my,...,ms and a k,_jpe-query linear LDC of length N, 192 based on

ms2. Application of Theorem 2.8 gives a k-query linear LDC of length N,
for which k < 351 . 27102 = (3/4)51 . 9,

(c) It suffices to prove the statement for r > 104. If r is even, we take r/2
distinct elements from My versenne and if 7 is odd, we take (r —3)/2 distinct
elements from My persenne together with m, a product of three distinct odd
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primes such that ged(m,m;) =1 for all i € [(r — 3)/2]. In both cases, an
application of Theorem 2.8 yields the required conclusion. O

4.2. Private Information Retrieval Schemes with Fewer Servers. An
important application of LDCs is in the construction of information-theoretic
PIR schemes. A PIR scheme allows a user U to retrieve a data item z; from
a database © = (x1,...,2,) € {0,1}" while keeping the identity i secret from
the database operator. Since its introduction by Chor et al. (1998), many
constructions have been proposed (Ambainis 1997; Beimel et al. 2005, 2002;
Chor et al. 1998; Efremenko 2009; Itoh 1999; Itoh & Suzuki 2010; Raghavendra
2007; Woodruff & Yekhanin 2007; Yekhanin 2008). The efficiency of a PIR
scheme is mainly measured by its communication complexity. In this section,
we turn our new query-efficient LDCs into PIR schemes that are more efficient
than those of Efremenko (2009) and Itoh & Suzuki (2010).

DEFINITION 4.2 (PIR Scheme). A one-round k-server PIR scheme is a triplet
of algorithms P = (Q, A, C), where Q is a probabilistic query algorithm, A is
an answer algorithm, and C is a reconstruction algorithm. At the beginning
of the scheme, U picks a random string aux, computes a k-tuple of queries
que = (quey, ..., que;) = Q(k,n, i, aux) and sends each query que; to server S;.
After receiving que;, the server S; replies to U with ans; = A(k, n, j, 7, que;).
At last, U outputs C(k,n, i, aux, ansy, ..., ansy) such that:

Correctness: For every integer n, x € {0,1}", i € [n], and aux,

C(k,n,1,aux, ansy, ..., ansg) = ;.

Privacy: For every iy,is € [n], j € [k], and query que,

Pr[Q;(k,n, i1, aux) = que| = Pr[Q;(k, n, iy, aux) = que].

The communication complexity of P, denoted Cp(k,n), is the total number
of bits exchanged between the user and all servers, maximized over z € {0, 1}",
i € [n], and random string aux. We denote by (k,n; Cp(k,n))-PIR a k-server
PIR scheme with communication complexity Cp(k,n).

Katz & Trevisan (2000) were the first to show generic transformations be-
tween information-theoretic PIR schemes and LDCs. Subsequently, Trevisan
(2004) introduced the notion of perfectly smooth decoders:
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DEFINITION 4.3 (Trevisan 2004). A k-query LDCC : X" — I'V is said to have
a perfectly smooth decoder if it has a local decoding algorithm D satisfying:

(i) In every invocation, each query of D is uniformly distributed over [N].
(i) For every x € ¥" and i € [n], Pr[DC®@ (i) = z;] = 1.

LDCs with perfectly smooth decoders directly give information-theoretic
PIR schemes.

PROPOSITION 4.4 (Trevisan 2004). If there is a k-query LDC C : ¥" — I'N
which has a perfectly smooth decoder, then there is a (k,n; k(log N 4 log |T'|))-
PIR scheme.

The LDCs obtained by Efremenko (2009) and Itoh & Suzuki (2010) both
have perfectly smooth decoders, and so do the LDCs we construct in Sec-
tion 4.1. Applying Proposition 4.4 to the Itoh-Suzuki LDCs, one obtains a
family of positive integers {k("},>4 for which £(") < 3-27~2  such that for every
r > 4, there is a k(M-server PIR scheme whose communication complexity is
exp(O(y/logn(loglogn)s—1)), where s = log k™ +2—1log 3. These PIR schemes
are among the most efficient PIR schemes before this work. Here, we improve
their results with the following theorem (an easy consequence of Theorem 4.1
and Proposition 4.4).

THEOREM 4.5. The following statements hold:

(a) There is a family of positive integers {k‘"}1< <103 for which k") < (v/3)"
if r is even, and k" < 8- (\/§)’"_3 if v is odd, such that for every r €
[103], there is a k'")-server PIR scheme with communication complexity
exp(O(y/log n(loglog n)s~1)), where s = 2log k" /log3 if r is even, and
s = (2log k™ — 6 + 3log 3)/log 3 if r is odd.

(b) There is a family of positive integers {k‘"},>104 for which k™ < (3/4)%*.2",
such that for every r > 104 there is a k() _server PIR scheme with com-
munication complexity exp(O(+/logn(loglogn)s—1)), where s = log k" +
102 — 511log 3.

(¢) If |Ma \ersenne| = 00, then there is a family of positive integers {kY 51
for which k" < (\/§)T if v is even, and k" < 8 - (\/3)7’_3 if r is odd, such
that for every r > 1 there is a k() _server PIR scheme with communication
complexity exp(O(y/log n(loglogn)s~1)), where s = 2log k" /log 3 if r is
even, and s = (2log k" — 6 + 3log3)/log 3 if r is odd.
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5. Conclusion

In this paper, we showed that every Mersenne number which is the product of
two primes can be used to improve the query complexity by a factor of 3/4 in
Efremenko’s framework for constructing LDCs. Based on the 50 elements in
M Mersenne We discovered, a new family of query-efficient LDCs of subexponen-
tial length with better performance than those of Efremenko (2009) and Itoh
& Suzuki (2010) were obtained. Applying our new LDCs to the construction of
PIR schemes, we obtained a new family of PIR schemes, which are also more
efficient than those of Efremenko (2009) and Itoh & Suzuki (2010). It is an in-
teresting open problem to determine whether |Ms persenne| = 00. Furthermore,
identifying new elements in My persenne Can improve our results and is also of
interest on its own right.
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