
A note on exponential circuit lower bounds

from derandomizing Arthur-Merlin games

Scott Aaronson

MIT

aaronson@csail.mit.edu

Barış Aydınlıog̃lu

University of Wisconsin-Madison

baris@cs.wisc.edu

Harry Buhrman

CWI & University of Amsterdam

buhrman@cwi.nl

John Hitchcock∗

University of Wyoming

jhitchco@cs.uwyo.edu

Dieter van Melkebeek†

University of Wisconsin-Madison

dieter@cs.wisc.edu

November 12, 2010

Abstract

We present an alternate proof of the recent result by Gutfreund and Kawachi that derandom-
izing Arthur-Merlin games into PNP implies linear-exponential circuit lower bounds for ENP.
Our proof is simpler and yields stronger results. In particular, consider the promise-AM prob-
lem of distinguishing between the case where a given Boolean circuit C accepts at least a given
number b of inputs, and the case where C accepts less than δ ·b inputs for some positive constant
δ. If PNP contains a solution for this promise problem then ENP requires circuits of size Ω(2n/n)
almost everywhere.

1 Introduction

Derandomization has strong ties with circuit lower bounds. In the setting of randomized decision
procedures the existence of pseudorandom generators is equivalent to circuit lower bounds for
E

.
= DTIME(2O(n)). At the high end, pseudorandom generators that yield BPP = P are equivalent

to E requiring circuits of linear-exponential size. At the low end, pseudorandom generators that put
BPP in deterministic subexponential time are equivalent to E requiring circuits of superpolynomial
size.

Whether any deterministic simulation of BPP implies the same circuit lower bounds as a simu-
lation through pseudorandom generators would, remains open. In recent years some partial results
along those lines were established at the low end of the derandomization spectrum. Impagli-
azzo et al. [IKW02] showed that simulations of promise-BPP in deterministic subexponential time

∗Partially supported by an NWO travel grant and by NSF grants 0652601 and 0917417.
†Partially supported by NSF grants 0728809 and 1017597.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 174 (2010)

imply that NE
.
= NTIME(2O(n)) requires circuits of superpolynomial size. Kabanets and Impagli-

azzo [KI04] proved that the same level of derandomization for BPP proper implies that either NE
requires circuits of superpolynomial size or else the permanent over the integers requires arithmetic
circuits of superpolynomial size. Kinne et al. [KvMS09] (see also [AvM10]) showed that the circuit
lower bound for NE in the latter statement can be made linear-exponential and holds for NE∩coNE.
However, a genuine high-end result remains elusive, i.e., that a simulation of (promise-)BPP in P
implies that E requires circuits of linear-exponential size.

In the setting of Arthur-Merlin games we know that pseudorandom generators that yield non-
deterministic simulations are equivalent to nondeterministic circuit lower bounds for NE ∩ coNE.
As for circuit lower bounds that follow from any type of nondeterministic simulation of AM, Im-
pagliazzo et al. [IKW02] showed that a low-end derandomization of MA yields a language in NE
that requires deterministic circuits of superpolynomial size. Very recently, Gutfreund and Kawachi
[GK10] established the first result at the high end, namely that derandomizing promise-AM into
PNP implies that ENP requires deterministic circuits of linear-exponential size.

Theorem 1 (Gutfreund-Kawachi [GK10]). 1 If promise-AM can be simulated in PNP, then

ENP requires circuits of size 2ǫn for every constant ǫ < 1 and infinitely many input lengths n.

Gutfreund and Kawachi also argued that the same lower bound follows from derandomizing into
NP a specific promise problem that is closely related to approximate counting.

Theorem 2 (Gutfreund-Kawachi [GK10]). 2 Let C denote a Boolean circuit on m inputs, b
an integer in binary, and c a positive real. If there is a language in NP that contains all instances

(C, b) where |C−1(1)| ≥ b, and does not contain any instances where |C−1(1)| < δ(m) · b for

δ(m) = 1 − 1/mc, then ENP requires circuits of size 2ǫn for ǫ = 1 − O(1/c) and infinitely many

input lengths n.

Note that the promise problem in Theorem 2 is known to lie in promise-AM [GS89].

2 Statement

In this note we present a simpler proof of Theorems 1 and 2 that leads to the following stronger
result.

Theorem 3. Let C denote a Boolean circuit, and b an integer in binary. If for some positive

constant δ there is a language in PNP that contains all instances (C, b) where |C−1(1)| ≥ b and

does not contain any instances where |C−1(1)| < δ · b, then there is a language in ENP that requires

circuits of size α2n/n for some positive constant α and all but finitely many input lengths n.

Recall that the maximum circuit complexity is Θ(2n/n). Theorem 3 is stronger than Theorem 1
because the circuit lower bound is Ω(2n/n) rather than 2ǫn for any constant ǫ < 1, and also because

1Gutfreund and Kawachi only state Theorem 1 for some constant ǫ > 0. A careful analysis of their proof and some
tweaks to the results they rely on reveals that their approach works for any constant ǫ < 1.

2Gutfreund and Kawachi state their result using an additional unary input a, and set δ = 1 − 1/a. They need
a = mc for c > 10 to establish the lower bound for some constant ǫ > 0. A careful analysis of their proof and
some tweaks to the results they rely on reveals that their approach with a = mc yields ǫ = 1 − Θ(1/c).

2

the lower bound holds almost everywhere rather than infinitely often. Theorem 3 is stronger than
Theorem 2 for the same reasons and also because we only need a derandomization into PNP (rather
than into NP) and because the gap between the two cases of the promise problem can be constant
(rather than polynomially small).

3 Proof Idea

Apart from the above strengthenings, our proof is significantly simpler than the one in [GK10].
The proof in [GK10] consists of a case distinction and relies on results about strong Karp-Lipton
collapses and learning circuits with the use of an oracle for NP. In contrast, our proof is direct and
elementary.

Our idea is to follow Kannan’s approach [Kan82] and construct a language that requires large
circuits by setting the prefix of its characteristic sequence so as to quickly diagonalize against all
small circuits. More specifically, we mimic the process of successively setting the next bit of the
characteristic sequence to the minority vote of the circuits of size α2n/n that are consistent with the
sequence constructed thus far. This ideal process would reduce the number of consistent circuits
by at least half in each step, implying that we’d be done after O(α2n) steps. Now, let A be a
language in PNP that solves the promise problem described in the statement of Theorem 3. Using
A as an oracle, we can mimic the above ideal process and guarantee that we reduce the number
of consistent circuits by some constant factor β < 1, where β depends on δ. To do so, it suffices
to approximate the number of circuits consistent with the sequence thus far extended with a zero,
do the same for the extension with a one, and select the extension that gives the smaller estimate.
This can be can be done by calling A with an input C that embodies the characteristic sequence,
and performing a binary search on the other input b. The process ends after O(α2n/ log(1/β))
steps, which is less than 2n for sufficiently small α and sufficiently large n. Since A lies in PNP,
the resulting process yields a language in ENP that has no circuits of size α2n/n for all but finitely
many input lengths n.

4 Formal Proof and Parameterized Statement

We now fill in the details and given a formal proof of Theorem 3. We first introduce some parameters
that will allow us to state a generalization of Theorem 3.

Let s(n) ≥ n denote the circuit lower bound we are shooting for, i.e., we want to construct a
language L that requires circuits of size s(n) for all but finitely many input lengths n.

Let A denote a language that solves the promise problem given in the statement of Theorem 3
but where δ can be a function of the number of inputs of the circuits. For a given Boolean circuit
C on m inputs and an integer b in binary, A contains (C, b) if |C−1(1)| ≥ b and does not contain
(C, b) if |C−1(1)| < δ(m) · b. In the middle case where |C−1(1)| ∈ [δ(m) · b, b), the membership of
(C, b) to A can be arbitrary.

The circuits C we supply to A take as input the description of a circuit D of size s(n) on n
inputs. Thus, C takes m = O(s(n) log s(n)) inputs.

We construct L iteratively, where in iteration i = 0, 1, . . . , we determine χi, the ith symbol of the
characteristic string χ of L. To explain iteration i we denote by Si the set of circuits of size s(n)

3

on n inputs that agree with χ up to its ith symbol, i.e., a circuit D is in Si iff for j = 0, . . . , i − 1,
D outputs χj when given as input the n-bit binary encoding of integer j. In iteration i we first
tentatively set χi to 0 and use A to obtain an estimate σ0 on the size of Si+1. Then we set χi to 1
and obtain an estimate σ1. We finalize χi to the value c ∈ {0, 1} such that σc = min(σ0, σ1) (say
we set c = 0 in case of a tie).

To estimate |Si+1|, first we construct a circuit C that recognizes Si+1. The circuit C takes as
input a binary string of length m that is the description of a size s(n) circuit D on n inputs,
and returns 1 iff D ∈ Si+1. More precisely, C contains as hardcode the characteristic string χ
constructed thus far and simulates its input D on inputs j = 0, . . . , i, and accepts iff D agrees with
χ for all j. Next, we run a binary search for the largest integer b∗ such that (C, b∗) ∈ A. Note
that (C, 0) ∈ A so b∗ exists. The binary search returns a value b̃ such that (i) (C, b̃) ∈ A and (ii)
(C, b̃+1) 6∈ A. As A(C, ·) may not be perfectly monotone, b̃ may differ from b∗ but the specification
of A guarantees that |C−1(1)| ≥ δ(m) · b̃ (because of (i)) and |C−1(1)| < b̃ + 1 (because of (ii)), so
our estimate b̃ satisfies |Si+1| ≤ b̃ ≤ |Si+1|/δ(m).

At the end of iteration i, if the smaller estimate σc turns out 0 then we conclude that the
diagonalization is complete and we terminate the iterations. Finally, to decide whether x ∈ {0, 1}n

belongs to L, we interpret x as an integer and accept if x is less than the length of χ and the xth
symbol of χ is 1; we reject x otherwise. This completes the construction of L.

For the construction to work, we need to make sure that the diagonalization is completed by the
time we exhaust the 2n inputs of length n. Consider the number of circuits eliminated in round i.
According to our estimate this number is σ¬c, but actually it may be as little as δ(m) · σ¬c. Since
the total number of circuits under consideration at round i is at most 2σ¬c, it follows that at least
a δ(m)/2 fraction of those circuits are eliminated during round i. Thus, |Si| ≤ (1−δ(m)/2)i · |S0| ≤
exp(−iδ(m)/2) · 2m. The latter quantity is less than 1 for i > 2 ln(2)m/δ(m). So, as long as
2 ln(2)m/δ(m) < 2n, we can complete the diagonalization process as required. Note that the
condition is met if m/δ(m) = O(2n) for every m(n) = O(s(n) log s(n)).

Let us now analyze the complexity of the resulting language L. The circuits C used in the ith
step can be constructed in time poly(i, s(n)). The binary search in each step requires at most m
calls to A, as b∗ ranges up to 2m. Assuming A can be decided in time a(N) on inputs of length N
(when given access to an oracle for NP), the amount of time for the ith step is O(m ·a(poly(i, s(n)))
(when given access to NP). By the previous paragraph, the number of steps is O(m/δ(m)). Hence,
given access to NP, the amount of time over all steps is

O

(

m2

δ(m)
· a(poly(

m

δ(m)
, s(n)))

)

= O

(

a(poly(s(n),
1

δ(O(s(n) log s(n)))
))

)

, (1)

where we assume that a(N) and 1/δ(m) are monotone and, without loss of generality, that a(N) ≥
N . If s(n) and 1/δ(m) are constructible as well, (1) also bounds the overall time complexity of L.

We have thus proved the following result, of which Theorem 3 is a special case.

Theorem 4. Let a, 1/δ, and s be functions such that a and 1/δ are monotone, 1/δ and s are con-

structible, and m/δ(m) = O(2n) whenever m(n) = O(s(n) log s(n)). Let C denote a Boolean circuit

on m inputs, and b an integer in binary. If there is a language in DTIME(a(n))NP that contains all

instances (C, b) where |C−1(1)| ≥ b and does not contain any instances where |C−1(1)| < δ(m) · b,
then there is a language in DTIME(t(n))NP that requires circuits of size s(n) for all but finitely

4

many input lengths n, where

t(n) = a

(

(s(n) ·
1

δ(O(s(n) log s(n)))
)O(1)

)

.

Theorem 4 gives the following interesting instantiations that yield that a hard language in ENP.

Corollary 1. For each combination of the parameters a, δ, and s in the table below, under the

hypothesis of Theorem 4, there is a language in ENP that requires circuits of size s(n) for all but

finitely many input lengths n.

a(n) δ(n) s(n)

nO(1) Ω(1) Ω(2n/n)

2(log n)O(1)
1/2(log n)O(1)

2nΩ(1)

2no(1)
1/nO(1) nω(1)

Theorem 3 follows from the first line of the table.

References

[AvM10] Scott Aaronson and Dieter van Melkebeek. A note on circuit lower bounds from de-
randomization. Technical Report TR 10-105, Electronic Colloquium on Computational
Complexity, 2010.

[GK10] Dan Gutfreund and Akinori Kawachi. Derandomizing Arthur-Merlin games and ap-
proximate counting implies exponential-size lower bounds. In Proceedings of the IEEE

Conference on Computational Complexity, pages 38–49, 2010.

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Randomness and Computation, volume 5 of Advances in Computing

Research, pages 73–90. JAI Press, Greenwich, 1989.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. Journal of Computer and

System Sciences, 65:672–694, 2002.

[Kan82] Ravi Kannan. Circuit-size lower bounds and nonreducibility to sparse sets. Information

and Control, 55:40–56, 1982.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13:1–46, 2004.

[KvMS09] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators and
typically-correct derandomization. In Proceedings of the International Workshop on

Randomization and Computation, pages 574–587, 2009.

5

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

