
Randomness buys depth for approximate counting

Emanuele Viola∗

May 25, 2012

Abstract

We show that the promise problem of distinguishing n-bit strings of hamming weight
1/2+Ω(1/ lgd−1 n) from strings of weight 1/2−Ω(1/ lgd−1 n) can be solved by explicit,
randomized (unbounded fan-in) poly(n)-size depth-d circuits with error ≤ 1/3, but
cannot be solved by deterministic poly(n)-size depth-(d + 1) circuits, for every d ≥ 2;
and the depth of both is tight. Our bounds match Ajtai’s simulation of randomized
depth-d circuits by deterministic depth-(d + 2) circuits (Ann. Pure Appl. Logic; ’83),
and provide an example where randomization buys resources.

To rule out deterministic circuits we combine H̊astad’s switching lemma with an
earlier depth-3 lower bound by the author (Comp. Complexity 2009).

To exhibit randomized circuits we combine recent analyses by Amano (ICALP ’09)
and Brody and Verbin (FOCS ’10) with derandomization. To make these circuits
explicit we construct a new, simple pseudorandom generator that fools tests A1×A2×
. . . × Algn for Ai ⊆ [n], |Ai| = n/2 with error 1/n and seed length O(lg n), improving
on the seed length Ω(lg n lg lg n) of previous constructions.

∗Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 175 (2010)

1 Introduction

Approximate counting is the problem of computing the number of 1’s in a (potentially very
long) bit string with some error (which can be additive or relative). This is a central problem
in complexity theory, studied in a number of contexts ranging from circuit complexity [Ajt83,
ABO84, RW91, Ajt93, CR96] to parallel computation (cf. [CR96]), simulation of BPP in
the polynomial-time hierarchy PH [Sip83, Lau83, Vio09], approximation algorithms for #P
problems [Sto85], and AM protocols [GS86]. While some of these works explicitly study
the complexity of approximate counting in the model of polynomial-size small-depth circuits
(AC0), all the above works can be instructively seen as giving various bounds on AC0 circuits
for this problem, where the circuits are possibly randomized. The ability of small AC0 circuits
to count approximately arguably remains one of the most surprising and useful tasks such
circuits can accomplish.

Despite the importance of this problem, several basic questions remain open. In this
work we focus on the trade-off between the approximation parameter and the depth of the
polynomial-size circuits that count approximately. We obtain matching upper and lower
bounds both for deterministic and randomized circuits.

Before stating formally our results we recall a few standard conventions. The size of
a circuit is the number of its gates. A depth-d circuit consists of d alternating layers of
unbounded fan-in And and Or gates, with wires only between adjacent layers; the circuit
has access to both input bits and their negations. More liberal definitions of circuits are
equivalent to the above one up to only a constant-factor increase in size, see, e.g., [H̊as87].
A randomized circuit C is a circuit that takes two inputs x, r, and for every x it gives the
correct answer with probability ≥ 2/3 over the choice of r. A circuit on n bits is explicit
(a.k.a. uniform) if it can be constructed in time polynomial in n.

Theorem 1.1 (Depth complexity of 1/2±ε approximate counting). For every integer d ≥ 2:
There are randomized poly(n)-size depth-d circuits that distinguish n-bit strings of hamming
weight 1/2+ε from strings of weight 1/2−ε if and only if ε = Ω(1/ lgd−1 n). Moreover, when
the circuits exist they are explicit.

For every integer d ≥ 3: There are (deterministic) poly(n)-size depth-d circuits that
distinguish n-bit strings of hamming weight 1/2 + ε from strings of weight 1/2− ε if and only
if ε = Ω(1/ lgd−3 n).

To our knowledge, previously such a tight relationship was not known. In particular, note
that the bounds in the above Theorem 1.1 distinguish between randomized and deterministic
circuits. We are unaware of previous results distinguishing between the two types. Thus,
besides settling an arguably natural question, our result has a qualitative consequence for
the study of the power of randomness in computation. We elaborate on this next.

The power of randomness. Adleman showed [Adl78] that a randomized circuit C(x, r)
with error 1/3 can be simulated by a (non-uniform) deterministic circuit C ′(x) with only a
polynomial overhead. To prove this result one can use a Chernoff bound to exhibit a polyno-

1

mial number of choices a1, . . . , apoly(n) for the coin tosses r of the circuit C such that for any n-
bit input x the majority of the choices gives the correct answer. The deterministic simulation
tries all choices and then computes majority: C ′(x) := majority

(
C(x, a1), . . . , C(x, apoly(n))

)
.

The majority instances that arise in the above simulation have relative hamming weights
bounded away from 1/2 by a constant. This allows one to carry through the simulation
even in the restricted model AC0 of constant-depth unbounded fan-in circuits, thanks to
the result by Ajtai [Ajt83] (cf. [Vio09]) that majority on such instances can be computed by
polynomial-size circuits of depth 3. Moreover, using the fact that Ajtai’s circuit is monotone,
one can collapse its bottom layer of gates with the output gates of the poly(n) copies of C
(possibly after complementing circuits), to obtain: polynomial-size randomized circuits of
depth d can be simulated by deterministic polynomial-size circuits of depth d+2. Henceforth
we refer to this result as (A?). (For completeness we review Ajtai’s construction in §4.)

A line of research in pseudorandomness has shown that, under complexity assumptions
such as the existence of “hard” functions in E, the above simulations hold even in the uniform
setting (though in the bounded-depth model, the depth increases by more than 2 as in (A?),
see e.g. [IW97, Agr01, Vio04].

Such results all suggest that randomness can be removed with little overhead. But how
much is this overhead? A proof that, say, randomization buys cubic time for a natural
problem would be of significant interest regardless of how P =? BPP is resolved.

In this paper we prove a result showing that some overhead is necessary, in the AC0 model.
An immediate corollary to Theorem 1.1 is the existence of a promise problem [ESY84] that
can be solved by poly-size randomized circuits of depth d, but cannot by solved by poly-size
deterministic circuits of depth d+ 1. To our knowledge, this result was not known even with
d instead of d + 1. This weaker form would already give a separation between randomized
and deterministic circuits. Our results go further and show that the depth-2 increase in the
simulation (A?) is tight, at least for promise problems (the above simulations all hold for
promise problems as well).

Corollary 1.2 (Randomness buys depth). For every d ≥ 2 there is a promise problem Π
(distinguishing n-bit strings of hamming weight n(0.5± Ω(1/ lgd−1 n)) such that:

Π can be solved by explicit, randomized, poly(n)-size circuits of depth d with error 1/3;
Π cannot be solved by (deterministic) poly(n)-size circuits of depth d+ 1.

Corollary 1.2 provides an example where randomness buys resources, in the well-studied
model of small-depth circuits. As also hinted earlier, the power of randomness in this model
has been studied extensively. We add that it is the main question addressed by Ajtai and
Ben-Or in [ABO84].

For context, we point out next the simplest separation in the spirit of Corollary 1.2 we
are aware of. It is not hard to show that a poly(n)-size depth-2 circuit (e.g., a DNF) cannot
distinguish n-bit strings with relative hamming weight ≥ 2/3 from strings of weight ≤ 1/3.
On the other hand, a randomized poly(n)-size depth-2 circuit D(x, r), where |r| = lg n,
can distinguish them with probability ≥ 1/3 simply by selecting r at random in the set
{1, 2, . . . , n} (which we identify with {0, 1}lgn) and by outputting the r-th input bit, as

2

follows
D(x, r) = 1⇔

∨
i∈{0,1}lgn

i = r ∧ xi = 1 (1)

(note that i = r can be implemented with one And gate).
However, it is not clear how to extend this to higher depth, nor how to get the tight

separation of 2 in the depth. We now explain how we achieve that.

Constructing randomized circuits. We now explain how we construct randomized,
polynomial-size circuits of depth d that tell n-bit strings of relative hamming weight 1/2 + ε
from strings of weight 1/2 − ε, for ε = Ω(1/ lgd−1 n). First we mention a couple of natural
ideas which do not work. The first is to sample a few input bits, and compute majority.
However, to get constant error one needs to sample a number of bits which is quadratic
in the “bias,” i.e., 1/ε2 = Ω(lg2d−2 n) many bits. Computing their majority then requires
circuits of depth ≥ 2d − 1 [H̊as87], which falls short of proving our upper bound. Another
way to get circuits of depth 2d−Θ(1) is to use [ABO84, Lemma 2]. Finally, the depth of the
constructions by Ajtai [Ajt83] and Stockmeyer [Sto83] does not yield the bound in Theorem
1.1.

Instead, our starting points are recent works by Amano [Ama09] and by Brody and
Verbin [BV10]. Using calculations similar to those in [Ajt83, ABO84], these works exhibit
a deterministic circuit A of size poly(n) and depth d which solves the related problem of
distinguishing the following two distributions with error 1/3: i.i.d. bits X1, . . . , Xn such that
Pr[Xi = 1] ≥ 1/2 + Ω(1/ lgd−1 n) or such that Pr[Xi = 1] ≤ 1/2− Ω(1/ lgd−1 n).

In our setting, we do not have i.i.d. bits as inputs but we have to succeed w.h.p. on
every fixed input, and this distinction is crucial to separate randomness from determinism.
However, the probability gap Ω(1/ lgd−1 n) and the depth of the above circuit A correspond to
what we are aiming for in Theorem 1.1. Hence we try to reduce an instance x of our promise
problem to distinguishing these two distributions. A natural idea is to replace each input
gate of the above circuit A with a randomized poly(n)-size depth-2 circuit which outputs a
random bit in the input, as in Equation (1). By collapsing the output gates of these circuits
with the bottom gates of A, one obtains depth d + 1 instead of d. (The bottom gates are
those closest to the inputs.)

To get the tight result (depth d) we use the circuit A but with the layer closest to
the input removed. This is a depth d− 1 circuit A′ that can distinguish with error 1/3 the
following two distributions: i.i.d. bits X1, . . . , Xn such that Pr[Xi = 1] ≥ 1

n
(1+Ω(1/ lgd−2 n))

or Pr[Xi = 1] ≤ 1
n
(1−Ω(1/ lgd−2 n)). The layer that we removed from A is a layer of disjoint

And gates on lg n variables. Note that feeding A i.i.d. bits that equal 1 with probabilities
1/2±Θ(1/ lgd−1 n) is seen to have the same effect as feeding A′ i.i.d. bits that equal 1 with
probabilities 1

n
(1 ± Θ(1/ lgd−2 n)); and the decrease of the exponent of lg n is essential to

obtain the tight result.
For our construction, an obvious idea is to replace each input gate in A′ by a function

D′ that computes the And of lg n input bits that are selected at random using the random
input bits.

3

A difficulty arises. To avoid increasing the depth of the circuit too much, it is necessary
that this function D′ be computable by a poly-size DNF. This allows the output Or gate
of D′ to be merged with the Or gates in A closest to the input. However, we do not see
how to compute with these resources the naive implementation of D′ that uses lg n bits
of randomness for each bit to be selected. Instead, we reduce the randomness of D′ from
lg2 n to O(lg n), which allows for the whole computation to be done by a poly(n)-size DNF.
Specifically, rather than selecting the bits independently, we select them via a pseudorandom
generator for combinatorial rectangles, and prove that the error can be tolerated in the
analysis. A non-explicit construction is a straightforward application of the Chernoff bound.
But previous explicit constructions are insufficient as we explain next.

A new pseudorandom generator to make the construction explicit. As hinted
before, to make the upper bound explicit we use O(lg n) bits of randomness to select lg n
input bits so that if the input x ∈ {0, 1}n has weight α := 1/2±Θ(1/ lgd−1 n) then the And
of the randomly selected lg n bits has probability of being one equal to

1

n
(1±Θ(1/ lgd−2 n)) = αlgn ± o(1/n).

This amounts to constructing a pseudorandom generator for certain combinatorial rectangles.
I.e., if A ⊆ [n] is the set of bits of x that are 1, we need to fool the test

A× A× . . .× A︸ ︷︷ ︸
lgn

⊆ [n]lgn.

We stress that for the analysis we need both seed length O(lg n) and additive error ≤ 1/n.
This is not given by previous constructions: The generators for space-bounded computa-
tion [Nis92, NZ96, INW94] and the improvements for combinatorial rectangles [EGL+98,
ASWZ96, Lu02] all use seed length ≥ Ω(lg n lg lg n) to achieve error ≤ 1/n. Also, taking a
random walk on a constant-degree expander [AKS87] (cf. [Gol10, §5.3]) one gets only error
≥ 1/n1−ε.

However, we show how to get such a generator by a simple, recursive expander walk.
Specifically, we start by using O(lg n) bits to perform a walk v1, v2, . . . , v√lgn of length

√
lg n

on a poly(n)-size expander graph with degree 2O(
√

lgn). Then we interpret each vi as a
random walk of length

√
lg n on an expander graph with n nodes and again degree 2O(

√
lgn),

and we output the lg n nodes. Picking expander graphs with second largest eigenvalue
≤ 2−Ω(

√
lgn) and using upper and lower bounds on the hitting probability of expander walks

[Kah95, AFWZ95] we obtain the following theorem which allows us to make the construction
explicit.

Theorem 1.3 (Rectangle generator). There is an explicit generator G : {0, 1}O(lgn) → [n]lgn

such that for any set A ⊆ [n] of density p := |A|/n ≥ 0.001, we have for all sufficiently large
n, letting G(x) = (y1, . . . , ylgn):(

p− 1/2
√

lgn
)lgn

≤ Pr
x∈{0,1}O(lgn)

[∀i ≤ lg n : yi ∈ A] ≤
(
p+ 1/2

√
lgn
)lgn

.

4

In particular, if p = |A|/n = 1/2 then∣∣∣∣ Pr
x∈{0,1}O(lgn)

[∀i ≤ lg n : yi ∈ A]− 1/n

∣∣∣∣ ≤ 1/n.

The generator can be generalized in a few ways, see §5.
This concludes the overview of our construction of randomized circuits.

Ruling out deterministic circuit. Our starting point for the lower bound for determin-
istic circuits is the result that depth-3 circuits with bottom fan-in ≤ 0.5 lg n cannot tell n-bit
strings of weight ≥ 2n/3 from those of weight ≤ n/3. This is Theorem 1 in [Vio09], and as
discussed there the result can also be obtained using a switching lemma for small restrictions
by Razborov [Raz03, Lemma 4.4]. We obtain the lower bound in Theorem 1.1 by combining
this result with H̊astad’s switching lemma [H̊as87].

For context, we mention that papers by Shaltiel and the author [SV10] and by Aaronson
[Aar10] prove lower bounds for the problem of distinguishing i.i.d. input bits that equal 1
with probability α from i.i.d. input bits that equal 1 with probability β, for various α and
β. The lower bound in this paper does not follow easily from those in [SV10, Aar10], and
a qualitative difference is that the lower bounds in [SV10, Aar10] also apply to randomized
circuits, while the one in this paper, like Theorem 1 in [Vio09] on which it is based, does
not.

Organization. Because of Ajtai’s simulation of randomized circuits of depth d by deter-
ministic circuits of depth d+2 (cf. (A?) in the section “The power of randomness”), to prove
the two “if and only if” in Theorem 1.1 it is sufficient to prove Corollary 1.2. That is, it is
sufficient to give a construction of randomized circuits and a lower bound for deterministic
circuits. These are proved in § 2 and 3 respectively. In § 4 we review Ajtai’s simulation for
completeness. In §5 we generalize our generator for rectangles. Finally, in §6 we mention a
few open problems.

2 Upper bound

In this section we prove the construction of randomized circuits in Theorem 1.1, restated
next.

Theorem 2.1 (Randomized upper bound in Theorem 1.1). For every integer d ≥ 2 and
function g(n) := Ω(1/ lgd−1 n) there are explicit poly(n)-size depth-d randomized circuits that
tell n-bit strings of hamming weight ≥ n(0.5 + g(n)) from strings of weight ≤ n(0.5− g(n))
with error ≤ 1/3.

The starting point is the following result which is essentially in [Ama09] and [BV10].
Later we use it with k := d− 2.

5

Lemma 2.2. For every integer k ≥ 0 there are poly(n)-size circuits C : {0, 1}`=poly(n) →
{0, 1} of depth k + 1 s.t.:
If X+ ∈ {0, 1}` is a distribution of i.i.d. bits that equal 1 with probability p+ ≥ 1

n
(1 + 0.7 ·

10k/ lgk n), then Pr[C(X+) = 1] ≥ 2/3; while
If X− ∈ {0, 1}` is a distribution of i.i.d. bits that equal 1 with probability p− ≤ 1

n
(1 − 0.7 ·

10k/ lgk n), then Pr[C(X−) = 1] ≤ 1/3.

For completeness, we prove Lemma 2.2 at the end of this section.
To prove Theorem 2.1 we need to show how given an n-bit input x of relative hamming

weight 1/2±Θ(1/ lgd−1 n) we can generate independent bits with bias 1
n
(1±Θ(1/ lgd−2 n))

to feed to Lemma 2.2, using a poly(n)-size depth-2 circuit.
To build intuition, first we give a construction that is not explicit. For simplicity, this

construction will only work when the probability gap is ≥ C/ lgd−1 n for a certain constant
C. Then we show an explicit construction. This explicit construction will work for any
probability gap that is Ω(1/ lgd−1 n).

The proofs in the rest of this section use the following standard inequalities.

Fact 2.3.

∀x ∈ R 1 + x ≤ ex; (2)

∀x ∈ [0, 1] ex ≤ 1 + 2x (3)

∀x ∈ [0, 0.78] e−2x ≤ 1− 1.01x ≤ 1− x; (4)

∀x ∈ [0, 1/2] 1− x ≥ e−x−x
2

= e−x(1+x); (5)

∀x ≥ −1, r ≥ 1 (1 + x)r ≥ 1 + rx; (Bernoulli′s) (6)

∀x ≥ −1, r ∈ [0, 1] (1 + x)r ≤ 1 + rx; (7)

∀x, r ∈ R : x · r ∈ [0, 1] (1 + x)r ≤ 1 + 2rx. (8)

The parameters in Inequality (4) are not crucial for the proofs, but they are convenient
and may be verified numerically. Inequality (8) follows by combining Inequalities (2) and
(3).

In the remainder of the paper we sometimes write e(x) for ex. This is convenient when
x is a long expression.

2.1 A non-explicit construction

We start with a standard lemma about non-explicit pseudorandom generators. For concrete-
ness, we state it for combinatorial-rectangle tests.

Lemma 2.4 (Non-explicit generator for rectangles). For every integer c ≥ 4 there is a
collection C of nc lg n-tuples S1, . . . , Sn

c ∈ [n]lgn such that for every set A ⊆ [n] of relative
hamming weight α we have:∣∣∣Pr

i
[∀j ≤ lg n : Sij ∈ A]− αlgn

∣∣∣ ≤ 1/nc/3,

where Sij is the jth coordinate of the ith tuple.

6

Proof. Pick C uniformly at random. Fix any set A. Let Xi be the 0 − 1 indicator variable
of the event ∀j ≤ lg n : Sij ∈ A. Note that PrSi [Xi = 1] = αlgn, and Pri[∀j ≤ lg n : Sij ∈
A] =

∑
iXi/n

c. By a Chernoff bound,

Pr
C

[∣∣∣∣∣∑
i

Xi/n
c − αlgn

∣∣∣∣∣ ≥ ε

]
≤ e(−Ω(ncε2)).

Picking ε := 1/nc/3, the latter term becomes e(−Ω(nc/3)). In turn, for c ≥ 4 and n large
enough this is less than 2−n. Since there are at most 2n possible sets A, by a union bound
there is a fixed choice for C that achieves the desired conclusion.

We also use the next claim showing that shallow decision trees can be simulated in depth
2. Recall that a decision tree on m variables is a labeled binary tree where edges and leaves
are labeled with 0 or 1, and internal nodes with variables. A decision tree computes a
function in the intuitive way, starting at the root and following the path according to the
values of the input variables, and outputting the value at the reached leaf. We note that a
decision tree of depth s can be written as a DNF with ≤ 2s terms and bottom fan-in ≤ s,
by including a term of size ≤ s for each of the ≤ 2s paths in the tree. Analogously, it can be
written as a CNF with the same parameters, by first complementing the leaves of the tree,
writing that as a DNF, and then complementing the DNF to a CNF using De Morgan’s law.

Claim 2.5. Any function f : {0, 1}n → {0, 1} computable by a decision tree of depth t
is computable by a DNF or CNF of size 2O(t). In particular, any function f : {0, 1}n ×
{0, 1}O(lgn) → {0, 1} such that for any y the function f(·, y) depends only on O(lg n) bits of
x is computable by a poly(n)-size DNF and CNF.

Now we use the above lemmas to generate the distributions for Lemma 2.2.

Lemma 2.6. There is depth-2 circuit D(x, r) where |x| = n, |r| = O(lg n), of size poly(n)
such that for any 1/n ≤ β ≤ 0.7/ lg n we have:
∀x of hamming weight ≥ 1/2 + β: Prr[D(x, r) = 1] ≥ 1

n
(1 + β lg n);

∀x of hamming weight ≤ 1/2− β: Prr[D(x, r) = 1] ≤ 1
n
(1− β lg n).

The circuit can be written as a DNF or CNF.

Proof. Let C be a collection given by Lemma 2.4, for a sufficiently large constant c to be
determined later. We let the input string r of O(lg n) bits index the tuple Sr. On input x, r,
the circuit D outputs 1 if ∀j ≤ lg n : Srj ∈ x, i.e., if the Srj th bit of x is 1.

D can be implemented by a poly(n)-size DNF or CNF by Claim 2.5.
For the analysis, let x be a string of hamming weight ≥ 1/2 + β. Then

Pr
r

[D(x, r) = 1] ≥ (1/2 + β)lgn − 1/nc/3 (By Lemma 2.4)

=
1

n
(1 + 2β)lgn − 1/nc/3 ≥ 1

n
(1 + 2β lg n)− 1/nc/3 (By Ineq. 2.3-(6))

≥ 1

n
(1 + β lg n). (Since β ≥ 1/n and letting c be large enough)

7

Conversely, let x be a string of hamming weight ≤ 1/2− β. Then

Pr
r

[D(x, r) = 1] ≤ (1/2− β)lgn + 1/nc/3 (By Lemma 2.4)

=
1

n
(1− 2β)lgn + 1/nc/3 ≤ 1

n
e(−2β lg n) + 1/nc/3 (By Ineq. 2.3-(2))

≤ 1

n
(1− 1.01β lg n) + 1/nc/3 (By Ineq.2.3-(4) since β lg n ≤ 0.78)

≤ 1

n
(1− β lg n). (Since β ≥ 1/n and letting c be large enough).

We can now prove the upper bound for non-explicit circuit and with slightly specialized
probability gap.

Proof of Theorem 2.1 for non-explicit circuits when g(n) := 0.7 · 10d−2/ lgd−1 n. Combine the
circuits from Lemma 2.2 with k := d−2 and Lemma 2.6 into a circuit of depth (k+1)+1 = d,
by replacing inputs of the first with outputs of the latter. The transformation in Lemma 2.6
moves the biases to ≥ 1

n
(1 + 0.7 · 10d−2/ lgd−2 n) and ≤ 1

n
(1 − 0.7 · 10d−2/ lgd−2 n). This is

what can be detected by the circuit of depth d− 1 given by Lemma 2.2.

2.2 Explicit construction

In this section we make the construction explicit. The main tool is the following new gener-
ator for certain combinatorial rectangle tests.

Theorem 1.3 (Rectangle generator). (Restated.) There is an explicit generator G : {0, 1}O(lgn) →
[n]lgn such that for any set A ⊆ [n] of density p := |A|/n ≥ 0.001, we have for all sufficiently
large n, letting G(x) = (y1, . . . , ylgn):(

p− 1/2
√

lgn
)lgn

≤ Pr
x∈{0,1}O(lgn)

[∀i ≤ lg n : yi ∈ A] ≤
(
p+ 1/2

√
lgn
)lgn

.

In particular, if p = |A|/n = 1/2 then∣∣∣∣ Pr
x∈{0,1}O(lgn)

[∀i ≤ lg n : yi ∈ A]− 1/n

∣∣∣∣ ≤ 1/n.

The generator in Theorem 1.3 is based on expander graphs. As is well-known, there are
explicit expander graphs Gn on n nodes with second largest eigenvalue ≤ λ(n) and degree
(1/λ(n))O(1), for any explicit function λ(n). For example one can take powers of graphs with
degree O(1) and second largest eigenvalue 1− Ω(1).

We make use of the following standard hitting properties of walks on expander graphs.

8

Lemma 2.7 (Hitting properties of expander walk). Consider a regular graph such that all
(normalized) eigenvalues are at most λ in absolute value, except the biggest one. Fix any
subset A of the vertices that has density p. Let x be the probability that a random walk of
(edge) length ` on the graph (started at a uniform vertex) stays inside A. We have:

[Kah95] x ≤ p(p+ (1− p)λ)`;

[AFWZ95, Th. 4.2] p ≥ 6λ⇒ x ≥ p(p− 2λ)`.

We are only going to use the weaker bounds

(p− 2λ)`+1 ≤ x ≤ (p+ 2λ)`+1

(the upper bound with 2 instead of (1− p) is also in [AFWZ95], for large sets).

Proof of Theorem 1.3. Let ` := lg n, which we assume to be a square integer for simplicity.
For a regular graph G, we write λ(G) for the second largest eigenvalue in absolute value.

Consider an expander graph G1 on n nodes with λ(G1) =: α ≤ 1/2c
√
` for a universal

constant c to be determined later, and degree d = (1/α)O(1) = 2O(c
√
`) which for simplicity

we assume to be a power of 2. Walks of (vertex) length
√
` are in 1 − 1 correspondence

with bit-strings of length `+ (
√
`− 1) · lg(d) =: w = O(`), i.e. elements of [2w] =: W . Note

|W | = poly(n).
Now let γ := p/2c and consider another expander graph G2 on |W | nodes with λ(G2) ≤

γ
√
` and degree 1/γO(

√
`). Walks of length

√
` on G2 can be described with ≤ w +

√
` ·

lg
(

1/γO(
√
`)
)

= O(`) bits, for any fixed γ.

The generator G is defined as follows. Use the input to specify a walk of length
√
` on

G2. Let v1, . . . , v√` be the steps in the walk. Now interpret each vi as a walk of length
√
`

in G1, and output the corresponding
√
` ·
√
` = ` elements in [n].

Analysis. For any set A ⊆ [n], let B ⊆ W be the set of walks of length
√
` in G1 that

stay inside A. Let β := |B|/|W | and

m :=
√
`.

By Lemma 2.7, recalling α = λ(G1) ≤ 1/2c
√
` ≤ p/6, we have:

(p− 2α)m ≤ β ≤ (p+ 2α)m.

Using the fact that p is bounded away from 0, that α ≤ 1/2cm, that m is sufficiently large,
and Inequalities 2.3.(8) and 2.3.(6):

β ≤ (p+ 2α)m = pm(1 + 2α/p)m ≤ pm(1 + 4mα/p) ≤ pm(1 +
√
α);

β ≥ (p− 2α)m = pm(1− 2α/p)m ≥ pm(1− 2mα/p) ≥ pm(1−
√
α).

Now the probability τ that all outputs of G stay inside A is the probability that all steps
of a random walk in G2 stay inside B. By the upper bound in Lemma 2.7, using Inequality

9

2.3.(8) we have, recalling γ := p/2c:

τ ≤
(
pm(1 +

√
α) + 2γm

)m
≤ p`(1 + 1/2cm/2 + 2/2cm)m

≤ p`(1 + 3/2cm/2)m

≤ p`(1 + 6m/2cm/2)

≤ p`(1 + 1/2cm/4).

And this concludes the proof of the upper bound because c is arbitrary and for q := 1/2cm/4

we have p`(1 + q) ≤ p`(1 + q)` ≤ (p+ q)`.
For the lower bound, we start by noting that we can apply the lower bound in Lemma

2.7 because
β ≥ pm(1−

√
α) ≥ 0.5pm ≥ 6γm = 6(p/2c)m.

Hence, using that bound and Bernoulli’s Inequality 2.3.(6) we derive

τ ≥
(
pm(1−

√
α)− 2γm

)m
≥ p`(1− 1/2cm/2 − 2/2cm)m

≥ p`(1− 3/2cm/2)m

≥ p`(1− 3m/2cm/2)

≥ p`(1− 1/2cm/4).

And again this concludes the proof of the lower bound because c is arbitrary and for q :=
1/2cm/4 we have p`(1− q) ≥ p`(1− q)` ≥ (p− q)`.

To get a construction for any probability gap g(n) = Ω(1/ lgd−1 n) (as opposed to g(n) ≥
C/ lgd−1 n for some large C as in §2.1), we also need to boost the probability gap by a
constant. This is provided by the following lemma using recursive majorities.

Lemma 2.8 (Boosting gap by a constant). For any c > 0 there is k > 0 such that for all n:
There is an explicit map G : {0, 1}n × {0, 1}k lgn → {0, 1} such that
(1) For every y, G(x, y) depends on ≤ k bits of x;
(2) For every x ∈ {0, 1}n such that the weight of x is ≥ 1/2 + ε (≤ 1/2− ε) for ε ≤ 1/k

we have Pry[G(x, y) = 1] ≥ 1/2 + cε (Pry[G(x, y) = 1] ≤ 1/2− cε).

Proof. We let k := 3t for a value t depending only on c and define G to pick k independent
bits of x and output the recursive-majority-of-three of the bits. We just need to verify that
majority-of-three “amplifies.” Indeed, consider the majority of three i.i.d. bits x1, x2, x3

coming up 1 with probability 1/2 + β, where β ∈ [−1/2, 1/2]. We have:

Pr[maj(x1, x2, x3) = 1] = (1/2 + β)3 + 3(1/2 + β)2(1/2− β)

= 1/2 + β(3/2− β2).

Thus, when |β| is small enough this results in multiplying β by a constant bigger than 1,
say 1.1. So we can set t := lg1.1 c and for all sufficiently small β achieve (1) and (2).

10

We can now state and prove the construction of explicit DNF (or CNF).

Lemma 2.9. Let ε(n) := α/ lgb n for some α > 0 and b ≥ 1. There are explicit poly(n)-size
DNF (or CNF) D : {0, 1}n × {0, 1}O(lgn) → {0, 1} such that

(1) for any string x ∈ {0, 1}n of hamming weight ≥ 1/2 + ε we have Pry[D(x, y) = 1] ≥
1
n
(1 + 0.7 · 10b−1/ lgb−1 n);

(2) for any string x ∈ {0, 1}n of weight ≤ 1/2− ε we have Pry[D(x, y) = 1] ≤ 1
n
(1− 0.7 ·

10b−1/ lgb−1 n).

Proof. Let ` := lg n. Consider the map G from Lemma 2.8 with a sufficiently large c
depending on α, and let k = O(1) be the associated constant guaranteed by the lemma.
Note that the hypothesis ε ≤ 1/k in that lemma is satisfied, because ε = o(1). Now consider
the function f : {0, 1}n × {0, 1}O(k`)=O(`) → {0, 1} that on input (x, y) uses the generator
from Theorem 1.3 on input y to select ` random choices y1, . . . , y` for G, and then outputs
1 iff for all i ≤ ` we have G(x, yi) = 1.

Note for every y this function just depends on ` · c = O(lg n) bits of x. Hence by Claim
2.5 f can be written as a DNF or CNF of size poly(n).

Now fix any x of weight ≥ 1/2 + ε. For large enough c, we have:

Pr
y

[f(x, y) = 1] ≥
(

1/2 + cε− 1/2
√
`
)`

≥
(
1/2 + (c− 1)α/`b

)`
≥
(
1/2 + 0.7 · 10b−1/`b

)`
≥ 1

n
(1 + 0.7 · 10b−1/`b−1) (By Inequality 2.3.(6)).

Similarly, fix any x of weight ≤ 1/2− ε. For large enough c, we have:

Pr
y

[f(x, y) = 1] ≤
(

1/2− cε+ 1/2
√
`
)`

≤
(
1/2− (c− 1)α/`b

)`
≤ 1

n
(1− 2 · 0.7 · 10b−1/`b)`

≤ 1

n
e(−2 · 0.7 · 10b−1/`b−1).

Now, if b > 1 the argument of e(·) goes to 0 with n and so we conclude by Inequality
2.3.(4) that Pry[f(x, y) = 1] ≤ 1

n
(1− 0.7 · 10b−1/`b−1).

Otherwise, if b = 1 then we get Pry[f(x, y) = 1] ≤ 1
n
e(−2 · 0.7) = 1

n
(0.2465 . . .) <

1
n
(1− 0.7).

We can now prove the upper bound in the same way as we proved a special case at the
end of the previous subsection.

11

Proof of Theorem 2.1. Combine the circuits from Lemma 2.2 with k := d − 2 and Lemma
2.9 into a circuit of depth (k + 1) + 1 = d. The transformation in Lemma 2.9 moves the
biases to ≥ 1

n
(1 + 0.7 · 10d−2/ lgd−2 n) and ≤ 1

n
(1− 0.7 · 10d−2/ lgd−2 n). This is what can be

detected by the circuit of depth d− 1 given by Lemma 2.2.

2.3 Proof of Lemma 2.2

For completeness in this section we give the proof of the following lemma which is essentially
in [Ama09, BV10].

Lemma 2.2. For every integer k ≥ 0 there are poly(n)-size circuits C : {0, 1}`=poly(n) →
{0, 1} of depth k + 1 s.t.:
If X+ ∈ {0, 1}` is a distribution of i.i.d. bits that equal 1 with probability p+ ≥ 1

n
(1 + 0.7 ·

10k/ lgk n), then Pr[C(X+) = 1] ≥ 2/3; while
If X− ∈ {0, 1}` is a distribution of i.i.d. bits that equal 1 with probability p− ≤ 1

n
(1 − 0.7 ·

10k/ lgk n), then Pr[C(X−) = 1] ≤ 1/3.

Proof of Lemma 2.2. We proceed by induction on k.
Base case k = 0. C consists of one And gate on the complement of n bits. Then

Pr[C(X+) = 1] = (1− p+)n ≤ (1− 1

n
(1 + 0.7))n ≤ e(−(1 + 0.7)) ≤ 1/3; (By Ineq. 2.3-(2))

Pr[C(X−) = 1] = (1− p−)n ≥ (1− 1

n
(1− 0.7))n ≥ 1− (1− 0.7) = 0.7 ≥ 2/3. (By Ineq. 2.3-(6))

Complementing the circuit concludes the proof of this case.
Induction step k > 1. C consists of the circuit C ′ for k − 1 where each input gate is

replaced with the circuit, denoted by D, which is one And gate on the complement of bn lge nc
bits. The inputs to these gates are disjoint. All we need to verify is that D amplifies the
bias to the value that can be detected by C ′. Let c := 0.7 · 10k. We have

Pr[D(X−) = 1] = (1− p−)bn lge nc ≥ (1− 1

n
(1− c/ lgk n))n lge n

≥ e

(
−n lge n

[
1

n
(1− c/ lgk n)

] [
1 +

1

n
(1− c/ lgk n)

])
(By Ineq. 2.3-(5))

≥ e

(
− lge n(1− c/ lgk n)

[
1 +

1

n

])
≥ e(− lge n(1− 0.5c/ lgk n))

≥ 1

n
e(0.5c lge n/ lgk n)

≥ 1

n
(1 + 0.5c/(lg2 e lgk−1 n)) (By Ineq. 2.3-(2))

≥ 1

n
(1 + 0.7 · 10k−1/ lgk−1 n).

12

Conversely:

Pr[D(X+) = 1] = (1− p+)bn lge nc ≤ (1− 1

n
(1 + c/ lgk n))bn lge nc

≤ e
(
−(bn lge nc/n)(1 + c/ lgk n)

)
(By Ineq. 2.3-2)

≤ e
(
−(lge n− 1/n)(1 + c/ lgk n)

)
≤ e(− lge n− c lge n/ lgk n+ 2/n)

≤ 1

n
e(−c lge n/ lgk n) · e(2/n)

≤ 1

n
e(−c lge 2/ lgk−1 n)(1 + 4/n).

If k = 1 then we get Pr[D(X+) = 1] ≤ 1
n
e(−0.7 · 10 · lge 2)(1 + 4/n) ≤ 1

n
(1− 0.7).

If k > 1 then the argument to e(·) is small and we can use Inequality 2.3-(4) to get

Pr[D(X+) = 1] ≤ 1

n
(1− 0.5 · c · lge 2/ lgk−1 n)(1 + 4/n)

≤ 1

n
(1− 0.49 · 0.7 · 10k · lge 2/ lgk−1 n)

≤ 1

n
(1− 0.7 · 10k−1/ lgk−1 n).

Either way, Pr[D(X+) = 1] ≤ 1
n
(1− 0.7 · 10k−1/ lgk−1 n).

This achieves the desired bias amplification, except that X+ and X− are “swapped.”
Complementing the circuit C fixes this. Finally, inspection reveals that for any k the size of
the circuits (and in particular their input length) is polynomial in the parameter n.

3 Lower bound

In this section we prove the negative result for deterministic circuits in Theorem 1.1:

Theorem 3.1. For any d ≥ 3, c ≥ 1 there is ε = ε(d, c) such that for sufficiently large n:
Depth-d size-nc circuits cannot tell n-bit strings of hamming weight ≥ n(0.5 + ε/ lgd−3 n)
from strings of weight ≤ n(0.5− ε/ lgd−3 n).

To get a sense of the parameters, we note that for d = 3 the dependence of ε on c is
necessary, as can be verified using the arguments in [Ajt83] or [Vio09].

Theorem 3.1 implies that for any d ≥ 3 and any function g(n) = o(1/ lgd−3 n), poly(n)-
size circuits of depth d cannot tell n-bit strings of hamming weight ≥ n(0.5 + g(n)) from
strings of weight ≤ n(0.5− g(n)).

Recall that a restriction on m variables x1, x2, . . . , xm is a map ρ : {x1, x2, . . . , xm} →
{0, 1, ∗}. For a function f : {0, 1}m → {0, 1} we denote by f |ρ the function we get by doing
the substitutions prescribed by ρ. f |ρ will be a function of the variables that were given
the value * by ρ. Let Rδ·m

m denote the uniform distribution on restrictions on m variables
assigning exactly δm variables to ∗, and assigning random values to the others.

13

Lemma 3.2 (Switching lemma [H̊as87, Bea94]). Let ϕ be a DNF or a CNF formula in
m variables with bottom fan-in at most r. For every s ≥ 0, p < 1/7, the probability over
ρ ∈ Rp·m

m that the function computed by ϕ|ρ is not computable by a decision tree of height
strictly less than s is less than (7pr)s.

We prove Theorem 3.1 in two stages. First we prove it under the additional assumption
that the circuits have bottom fan-in ≤ 0.5 lg n. This is the next lemma. Then we get rid of
the assumption on the bottom fan-in.

Lemma 3.3. For any d ≥ 3, c ≥ 1 there is ε = ε(d, c) such that for sufficiently large n:
Depth-d size-nc circuits with bottom fan-in ≤ 0.5 lg n cannot tell n-bit strings of hamming
weight ≥ n(0.5 + ε/ lgd−3 n) from strings of weight ≤ n(0.5− ε/ lgd−3 n).

Proof of Lemma 3.3.
Induction on d.
For d = 3 and any c, one can take ε = 1/6 [Vio09, Theorem 1].
Fix any d > 3 and any c. Let C be a circuit of depth d and size nc. Let ρ be a random

restriction on n bits assigning exactly pn bits to ∗, where

p := 1/(4c+2 lg n),

which we assume to be even. We want to show that simultaneously two things happen:
(1) C|ρ is a circuit of depth d− 1, size ≤ nc+1, and bottom fan-in ≤ 0.5 lg n, and
(2) the bits fixed by ρ are balanced, i.e., exactly (n − pn)/2 bits are set to 1 by ρ. The

probability that (2) happens is ≥ Ω(1/
√
n− pn) ≥ Ω(1/

√
n) (standard approximation of

the central binomial coefficients).
The probability that (1) does not happen is at most the probability that some of the ≤ nc

gates at distance two from the input cannot be written as a decision tree of depth ≤ 0.5 lg n
(cf. the comment after Lemma 3.2 about writing such a decision tree as a CNF or a DNF
with bottom fan-in ≤ 0.5 lg n and size ≤

√
n). By Lemma 3.2, this probability is at most

nc(7p0.5 lg n)0.5 lgn ≤ nc
(

4
lg n

4c+2 lg n

)0.5 lgn

≤ 1/n.

So there exists ρ satisfying both (1) and (2). Fix such a ρ, and let C ′ := C|ρ. C ′ is a
circuit of depth d− 1 on

m := pn ≥ n0.9

input bits of size≤ nc+1 ≤ n2c ≤ m3c. By induction hypothesis, there is a constant ε(d−1, 3c)
such that for sufficiently large m, C ′ cannot distinguish m-bit strings of hamming weight
≥ m(0.5 + ε(d− 1, 3c)/ lgd−1−3m) from strings of weight ≤ m(0.5− ε(d− 1, 3c)/ lgd−1−3m).
Without loss of generality, consider an m-bit string of hamming weight ≥ m(0.5 + ε(d −
1, 3c)/ lgd−1−3m) on which C ′ mistakenly outputs 0. Since the restriction ρ sets to 1 exactly

14

(n − pn)/2 = (n −m)/2 bits, note that this output of C ′ is the same as the output of the
original circuit C on an n-bit input of hamming weight at least

(n−m)/2 +m(0.5 + ε(d− 1, 3c)/ lgd−1−3m) ≥ n

(
0.5 +

pε(d− 1, 3c)

lgd−1−3 n

)
(since n ≥ m)

= n

(
0.5 +

ε(d− 1, 3c)

4c+2 lgd−3 n

)
.

This concludes the proof for ε(d, c) := ε(d− 1, 3c)/4c+2.

Proof of Theorem 3.1. Fix any d ≥ 3 and any c, and let C be a circuit of depth d and size
nc, which we view as a circuit of depth d + 1 with bottom fan-in 1. Let ρ be a random
restriction on n bits assigning exactly m := pn bits to ∗, where

p := 1/(7 · 4c+1).

As in the previous proof, with non-zero probability both the bits fixed by ρ are balanced,
and C|ρ can be written as a circuit of depth d, size ≤ nc+1, and bottom fan-in ≤ 0.5 lg n.

By the previous proof, for some ε′ which depends on d and c, for large enough m the circuit
C ′ := C|ρ cannot distinguish m-bit strings of hamming weight ≥ m(0.5+ε(d, c+1)/ lgd−3m)
from strings of weight ≤ m(0.5 − ε(d, c + 1)/ lgd−3m). Without loss of generality, suppose
C ′ gives the wrong answer on a string of weight ≥ m(0.5 + ε(d, c + 1)/ lgd−3m) ≥ m(0.5 +
ε(d, c+ 1)/ lgd−3 n).

Therefore C gives the wrong answer on a string of weight

0.5(n−m) +m(0.5 + ε′/ lgd−3 n) = n(0.5 + pε′/ lgd−3 n).

This concludes the proof for ε(d, c) := pε′ = ε′/(7 · 4c+1).

4 Ajtai’s construction

In this section for completeness we include a proof of the following result by Ajtai.

Theorem 4.1 ([Ajt83]). For any n, ε > 0, there is a deterministic, monotone, And-Or-And
circuit of size nO(1/ε) that distinguishes n-bit strings with hamming weight ≥ 1/2 + ε from
weight ≤ 1/2− ε.

In particular, any function f : {0, 1}n → {0, 1} computable by randomized, poly(n)-size
circuits of depth d with error 1/3 can be computed by (deterministic) poly(n)-size circuits of
depth d+ 2.

Proof. We give a probabilistic construction that for every fixed input x has error probability
< 2−n. One can then apply a union bound.

Pick the And close to the input at random over c lg(n)/ε variables, for a large enough c.
Then the middle Or has fan-in nc/ε, and the output And has fan-in n. We write A(x), OA(x),

15

and AOA(x) for the output of a gate at distance 1, 2, and 3 from the input x. We also make
use of the inequalities in Fact 2.3.

Let x be any input with weight ≥ 1/2 + ε:

Pr[A(x) = 1] = (1/2 + ε)c lg(n)/ε = n−c/ε(1 + 2ε)c lg(n)/ε ≥ n−c/εec lgn;

Pr[OA(x) = 1] ≥ 1−
(
1− n−c/εec lgn

)nc/ε ≥ 1−
(
e−e

c lgn
)

;

Pr[AOA(x) = 1] ≥
(

1− e−ec lgn
)n
≥ 1− ne−ec lgn ≥ 1− 2−n

for c, n sufficiently large.
Conversely, let x be any input with weight ≤ 1/2− ε:

Pr[A(x) = 1] = (1/2− ε)c lg(n)/ε = n−c/ε(1− 2ε)c lg(n)/ε ≤ n−c/εe−2c lgn;

Pr[OA(x) = 1] ≤ 1−
(
1− n−c/εe−2c lgn

)nc/ε ≤ e−2c lgn;

Pr[AOA(x) = 1] ≤
(
e−2c lgn

)n ≤ 2−n.

The “in particular” part is obtained as follows. Run in parallel bn copies of the circuit
with independent choices for the random coins, for a large enough universal constant b. By a
Chernoff bound, you can fix the randomness so that for any input at least 2/3 of the outputs
equal f(x). Thus feeding these O(n) outputs to the circuit constructed in the first part of
the theorem we compute f correctly. By collapsing adjacent layers of gates, the final circuit
has depth d+2 in case each output was and And gate. If not, complement the circuit, apply
this construction, and complement again.

5 A more general generator

In this section we prove the following theorem.

Theorem 5.1. There is an explicit algorithm that given m, d, and p ≤ 1/2, uses a seed
x of length O(lgm + lg d + pd) to produce (y1, . . . , yd) ∈ [m]d such that for any d sets
A1, . . . , Ad ⊆ [m] of density 1− p = |Ai|/m each, we have

Pr
x

[∀i ≤ d : yi ∈ Ai] = (1− p)d(1± 100−(pd)2/3).

We recover the “in particular” part of Theorem 1.3 by setting m = n, d = lg n, and p =
1/2. However now we can also have, say, m = n, d = n lg n, and p = 1/n, and still use seed
length O(lg n) to obtain an error (1± o(1)) which is multiplicative in (1−p)d ≤ e− lgn ≤ 1/n
and hence, in additive terms, exponentially small in the seed length.

Proof. Let ` := pd. Divide the d dimensions in `1/3 blocks of d/`1/3 dimensions each. In each

block, use Lu’s generator [Lu02] with (additive) error c−`
2/3

for a sufficiently large constant
c to be determined later. This generator uses seed length h = O(lgm+ lg d+ `).

16

Now produce the `1/3 seeds for this generator by an expander walk over the space {0, 1}h

of seeds, of length `1/3 and with largest second eigenvalue ≤ c−`
2/3

2 , for a universal constant
c2 to be determined later. This takes seed length h + `1/3O(`2/3) = O(lgm + lg d + `), as
desired.

The set to hit has measure (1 − p)d/`1/3 ± c−`2/3 = e−Θ(`2/3) (using p ≤ 1/2), which is at
least six times the second largest eigenvalue by setting c2 appropriately. Hence by Lemma
2.7 we can bound the hitting probability as(

(1− p)d/`1/3 ± c−`2/3 ± 2c−`
2/3

2

)`1/3
= (1− p)d(1± c−`2/33)`

1/3

= (1− p)d(1± c−`2/34),

for appropriate constants c3, c4 which can be chosen arbitrarily large by increasing c and c2.
In the first equality we used again that (1− p)d/`1/3 = e−Θ(`2/3) because p ≤ 1/2.

6 Open problems

We now list a few open problems.
(1) Make the deterministic circuits explicit. This is only known for depth 3 [Vio09].
(2) Prove that small depth-3 circuits that tell weights 1/2 ± ε require bottom fan-in

Ω(lg(n)/ε). This seems to require new techniques (neither the switching lemma nor [Vio09]
gives this) and should imply a tight size lower bound in the superpolynomial regime.

(3) Obtain a generator like Theorem 1.3 but with additive error 1/n2 instead of 1/n, or
with the same error 1/n but to fool sets of relative size 1 − 1/ lg n instead of 1/2 (so that
the rectangle has constant relative size).

(4) Obtain a separation like Corollary 1.2 for non-promise problems.

Acknowledgments. We thank Kord Eickmeyer for helpful initial discussions on this prob-
lem, and Joshua Brody and Elad Verbin for sending us a preliminary version of [BV10]. We
are also grateful to Oded Goldreich and the anonymous referees for helpful comments on the
write-up.

References

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In 42nd ACM Symp. on
the Theory of Computing (STOC), pages 141–150. ACM, 2010.

[ABO84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth
computation. In 16th ACM Symp. on the Theory of Computing (STOC), pages
471–474, 1984.

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In 19th IEEE
Symp. on Foundations of Computer Science (FOCS), pages 75–83. 1978.

17

[AFWZ95] Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized
graph products. Computational Complexity, 5(1):60–75, 1995.

[Agr01] Manindra Agrawal. Hard sets and pseudo-random generators for constant depth
circuits. In 21st Foundations of Software Technology and Theoretical Computer
Science, pages 58–69. Springer-Verlag, 2001.

[Ajt83] Miklós Ajtai. Σ1 [1]-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–
48, 1983.

[Ajt93] Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In
Advances in computational complexity theory, pages 1–20. Amer. Math. Soc.,
Providence, RI, 1993.

[AKS87] Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation
in logspace. In 19th ACM Symp. on the Theory of Computing (STOC), pages
132–140, 1987.

[Ama09] Kazuyuki Amano. Bounds on the size of small depth circuits for approximating
majority. In 36th Coll. on Automata, Languages and Programming (ICALP),
pages 59–70. Springer, 2009.

[ASWZ96] Roy Armoni, Michael E. Saks, Avi Wigderson, and Shiyu Zhou. Discrepancy
sets and pseudorandom generators for combinatorial rectangles. In 37th IEEE
Symp. on Foundations of Computer Science (FOCS), pages 412–421, 1996.

[Bea94] Paul Beame. A switching lemma primer. Technical Report UW-CSE-95-07-01,
Department of Computer Science and Engineering, University of Washington,
November 1994. Available from http://www.cs.washington.edu/homes/beame/.

[BV10] Joshua Brody and Elad Verbin. The coin problem, and pseudorandomness for
branching programs. In 51th IEEE Symp. on Foundations of Computer Science
(FOCS), 2010.

[CR96] Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in
circuit complexity. In 28th ACM Symp. on the Theory of Computing (STOC),
pages 30–36, 1996.

[EGL+98] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic.
Efficient approximation of product distributions. Random Struct. Algorithms,
13(1):1–16, 1998.

[ESY84] Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise
problems with applications to public-key cryptography. Inform. and Control,
61(2):159–173, 1984.

18

[Gol10] Oded Goldreich. Pseudorandom Generators: A Primer, volume 55 of University
Lecture Series. AMS, 2010.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interac-
tive proof systems. In 18th ACM Symposium on Theory of Computing (STOC),
pages 59–68, 1986.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. MIT Press,
1987.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for
network algorithms. In 26th ACM Symp. on the Theory of Computing (STOC),
pages 356–364, 1994.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In 29th ACM Symp. on the Theory of
Computing (STOC), pages 220–229. ACM, 1997.

[Kah95] Nabil Kahale. Eigenvalues and expansion of regular graphs. J. of the ACM,
42(5):1091–1106, 1995.

[Lau83] Clemens Lautemann. BPP and the polynomial hierarchy. Information Processing
Letters, 17(4):215–217, 1983.

[Lu02] Chi-Jen Lu. Improved pseudorandom generators for combinatorial rectangles.
Combinatorica, 22(3):417–433, 2002.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4):449–461, 1992.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. of Com-
puter and System Sciences, 52(1):43–52, February 1996.

[Raz03] Alexander Razborov. Pseudorandom generators hard for k-dnf resolution
and polynomial calculus resolution, 2002-2003. Manuscript. Available from
http://www.mi.ras.ru/∼razborov/.

[RW91] Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-
treshold circuits. Inf. Process. Lett., 39(3):143–146, 1991.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In 15th ACM
Symposium on Theory of Computing, pages 330–335, Boston, Massachusetts,
25–27 April 1983.

[Sto83] Larry Stockmeyer. The complexity of approximate counting. In 15th Symposium
on Theory of Computing (STOC), pages 118–126. ACM, 1983.

19

[Sto85] Larry Stockmeyer. On approximation algorithms for #P. SIAM J. on Comput-
ing, 14(4):849–861, November 1985.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require ma-
jority. SIAM J. on Computing, 39(7):3122–3154, 2010.

[Vio04] Emanuele Viola. The complexity of constructing pseudorandom generators from
hard functions. Computational Complexity, 13(3-4):147–188, 2004.

[Vio09] Emanuele Viola. On approximate majority and probabilistic time. Computational
Complexity, 18(3):337–375, 2009.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

