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Abstract

We construct pseudorandom generators for combinatorial shapes, which substantially gener-
alize combinatorial rectangles, ε-biased spaces, 0/1 halfspaces, and 0/1 modular sums. A func-
tion f : [m]n → {0, 1} is an (m,n)-combinatorial shape if there exist sets A1, . . . , An ⊆ [m] and
a symmetric function h : {0, 1}n → {0, 1} such that f(x1, . . . , xn) = h(1A1

(x1), . . . , 1An
(xn)).

Our generator uses seed length O(logm + log n + log2(1/ε)) to get error ε. When m = 2, this
gives the first generator of seed length O(log n) which fools all weight-based tests, meaning that
the distribution of the weight of any subset is ε-close to the appropriate binomial distribution in
statistical distance. Along the way, we give a generator for combinatorial rectangles with seed
length O(log3/2 n) and error 1/poly(n), matching Lu’s bound [ICALP 1998].

For our proof we give a simple lemma which allows us to convert closeness in Kolmogorov
(cdf) distance to closeness in statistical distance. As a corollary of our technique, we give an
alternative proof of a powerful variant of the classical central limit theorem showing convergence
in statistical distance, instead of the usual Kolmogorov distance.

∗Work done while an intern at Microsoft Research, Silicon Valley.
†Work done while visiting Microsoft Research, Silicon Valley.
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1 Introduction

Pseudorandom generators are of fundamental importance in complexity theory, cryptography, and
beyond. A pseudorandom generator (PRG) takes as input a short random seed and outputs a long
string which appears random to a class of functions.

Definition 1.1. A function G : {0, 1}s → [m]n is a pseudorandom generator (PRG) with seed-
length s and error ε for a class of functions F : [m]n → {0, 1} – or more succinctly, G ε-fools F
with seed-length s – if for all f ∈ F ,∣∣∣ Pr

x∈u{0,1}s
[f(G(x)) = 1]− Pr

y∈u[m]n
[f(y) = 1]

∣∣∣ ≤ ε.
We say the generator is explicit if it can be computed in time polynomial in the output length.

While we know very strong PRGs under computational assumptions, constructing provably-
good PRGs without assumptions is a major challenge. Some of the most powerful unconditional
constructions are PRGs for space-bounded computations. In particular, the PRGs of Nisan [Nis92]
and Impagliazzo, Nisan, and Wigderson [INW94] use a seed of length O(log2 n) to fool polynomial-
width branching programs. These generators have played a central role in studying the rela-
tive strength of randomness vs. memory. In particular, reducing their seed-length to O(log n)-
bit would show that RL=L, namely every randomized algorithm can be derandomized with only
a multiplicative constant blow-up in its memory. Improving [Nis92, INW94] is a central open
question, not only for the possibility of proving RL=L, but also for other important applications
[Ind00, Siv02, KNR05, HHR06]. Despite much effort, the above constructions have not been im-
proved in nearly two decades.

While PRGs with logarithmic-seed that fool polynomial-width branching programs are still not
known, logarithmic-seed PRGs for weaker classes of distinguishers have been previously constructed
and found many applications. In this paper we define a natural common generalization and sig-
nificant extension of many of these distinguisher classes, which we name combinatorial shapes.
Combinatorial shapes look at their inputs in consecutive chunks of logm bits (usually m would be
at most polynomial in n). On each chunk of bits the combinatorial shape may apply an arbitrary
Boolean function. These Boolean functions are combined into a single output by a symmetric
(i.e., order independent) function. Combinatorial shapes generalize combinatorial rectangles, half-
spaces with 0/1 coefficients, and modular sums. Our main result is a construction of PRGs with
seed-length O(log n) that fools combinatorial shapes.

Definition 1.2. A function f : [m]n → {0, 1} is an (m,n)-combinatorial shape if there exist
sets A1, . . . , An ⊆ [m] and a symmetric function h : {0, 1}n → {0, 1} such that f(x1, . . . , xn) =
h(1A1(x1), . . . , 1An(xn)). We denote the class of such functions by CShape(m,n).

We call them combinatorial shapes because they generalize combinatorial rectangles, which are
simply the subset of CShape(m,n) where the symmetric function h is the AND function. PRGs for
combinatorial rectangles have received considerable attention [EGL+92, ASWZ96, Lu02], and have
applications to numerical integration.

The class CShape(2, n) is interesting in its own right, as it comprises all Boolean functions
f : {0, 1}n → {0, 1} that are symmetric functions of a subset S ⊆ [n] of variables. In order to fool
CShape(2, n), the distribution of

∑
i∈S xi needs to be ε-close to BIN(|S|, 1

2) in statistical distance for
every S ⊆ [n]. 1 Prior to our work, the best known generator for this problem was Nisan’s generator

1For n > 0, p ∈ [0, 1], BIN(n, p) denotes the binomial distribution of order n and bias p.
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[Nis92] which gives seed-length O(log2 n). Similarly, PRGs for CShape(m,n) imply generators that
can fool such tests under Poisson binomial distributions2, by choosing the set Ai so that 1Ai(xi) = 1
with probability pi.

Parities of subsets are a special case of CShape(2, n); hence PRGs that fool CShape(2, n) are a
strengthening of the ever so versatile ε-biased generators [NN93]. Recently, a different strengthening
of ε-biased generators was considered, where bit-generators were given that fool sums modulo larger
primes or composites [LRTV09, MZ09a]. The seed-length of these constructions is super-logarithmic
unless the moduli is constant. It is easy to argue that a generator that fools CShape(2, n) also fools
sums modulo an arbitrary moduli, or even non-modular sums.3

Note that in the above examples of combinatorial shapes, the symmetric function h could
be computed by a constant-width branching program. In this sense, combinatorial shapes seem
significantly more powerful. For instance, halfspaces with 0/1 coefficients are a special case of
CShape(2, n) where the symmetric function cannot be evaluated by a constant-width branching
program. PRGs which fool halfspaces were recently given in [DGJ+10, MZ10]; the latter will be
a useful tool in our construction. Note however that these results only guarantee that

∑
i∈S xi

is close to BIN(|S|, 1
2) in Kolmogorov distance, whereas our goal is to get closeness in statistical

distance. (For definitions of these distances, see Section 2.)

1.1 Main Results

Our main result is a PRG construction which fools CShape(m,n).

Theorem 1.3 (Main). For every ε > 0, there exists an explicit PRG that ε-fools CShape(m,n)
with seed-length O(logm+ log n+ log2(1/ε)).

When m is polynomial in n, these PRGs have seed-length O(log n + log2(1/ε)). Previously,
the best known PRGs had seed-length O(log2 n), even for m = 2; these were the PRGs for space-
bounded computation by Nisan and Impagliazzo, Nisan and Wigderson.

Along the way we also give a new PRG for combinatorial rectangles with seed-length O(log3/2 n)
and error 1/poly(n). This matches the parameters of the previous best generator due to Lu [Lu02]
for polynomially small ε.

Theorem 1.4. For every ε > 0, there exists an explicit PRG that ε-fools (m,n)-combinatorial
rectangles with seed-length O(log(mn) ·

√
log(1/ε)).

Our constructions are based on a simple lemma about the convolution of two real-valued dis-
tributions. This lemma enables us to amplify closeness in Kolmogorov distance to closeness in
statistical distance. We further use this lemma to give a new proof of a powerful variant of the clas-
sical Central Limit Theorem which guarantees convergence to the appropriate binomial distribution
in statistical distance, as opposed to Kolmogorov distance.

The classical Central Limit Theorem (CLT) says that a sum of independent random vari-
ables should be close, in Kolmogorov distance, to the corresponding Gaussian or Binomial random
variable. The Kolmogorov distance is weaker than statistical (total variation) distance dTV, since
Kolmogorov distance allows only special types of statistical tests, namely threshold functions. Nev-
ertheless, if the random variables are integer-valued, then under some reasonable conditions it is

2These are distributions obtained by taking a sum of independent Binomial variables (which are not-necessarily
identical).

3Note that [LRTV09, MZ09a] gives generators that fool sums with arbitrary coefficients. Generators that fool
CShape(2, n) also fool modular (and non-modular) sums with 0/1 coefficients.
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known that a sum of independent variables approaches the appropriate binomial distribution in
statistical distance. Such theorems are called discrete central limit theorems.

For clarity, in the introduction we only state our discrete central limit theorem for the case of
Poisson binomial distributions.

Theorem 1.5. Let X1, . . . , Xn be independent indicator random variables with Pr[Xi = 1] = pi.
Let X =

∑
iXi, E[X] = µ,Var[X] =

∑
i pi(1 − pi) = σ2 ≥ 4. Then, for Z ← BIN(m, q), where

m = bµ2/(µ− σ2)c, q = (µ− σ2)/µ, dTV(X,Z) = O
(√

log(σ)/σ
)

.

The parameters m, q above are chosen so that E[Z] = E[X] and Var[Z] = Var[X]. Limit
theorems as above with almost optimal error estimates (Θ(1/σ)) are known in the probability
literature (see [BX99, BC02] and references therein). However, most previous results use Fourier
techniques or Stein’s method and appear significantly more complicated, at least to us. In contrast
our proof is elementary, relying only on the classical Berry-Esséen theorem and few simple properties
of the binomial distribution. We also obtain a more general invariance principle, Theorem 5.2, for
the case of sums of integer-valued random variables.

Discrete central limit theorems as above have, at least implicitly, been used before in computer
science. Two prominent instances are the works of Daskalakis and Papadimitriou [DP07, DP08]. A
main technical result in these works can be viewed as a discrete limit theorem and roughly says the
following: given a Poisson binomial distribution (or more generally, a multivariate-Poisson bino-
mial distribution), the probabilities of each of the indicator variables can be rounded to multiples
of a parameter 1/ε, so as to not incur too much of a loss in statistical distance. Their argu-
ments for showing the discrete CLT are quite involved and use a variety of sampling and Poisson
approximation techniques. Given the generality of our argument for proving Theorem 1.5, it is
conceivable that a similar argument can be extended to the more nuanced discrete limit theorems
of [DP07, DP08].

1.2 Outline of Constructions

For intuition, it is easier to work with the equivalent goal of fooling combinatorial sums in statistical
distance.

Definition 1.6. A function f : [m]n → {0, 1, . . . , n} is an (m,n)-combinatorial sum if there exist
sets A1, . . . , An ⊆ [m] such that f(x1, . . . , xn) = 1A1(x1) + 1A2(x2) + · · ·+ 1An(xn). We denote this
class of functions by CSum(m,n).

It is straightforward to verify that fooling combinatorial shapes with error ε implies fooling
combinatorial sums with error ε in statistical distance.

The basic building block for our constructions is a natural extension, GH,k,t, of the main gen-
erator for fooling halfspaces over {0, 1}n of Meka and Zuckerman [MZ10] (see Equation 4.1 for the
exact definition), which in turn is a simplified version of a hitting set generator due to Rabani and
Shpilka [RS10]. The generator GH,k,t uses a random hash function from H to map variables to
t buckets pairwise independently and then uses k = O(1)-wise independence within each bucket.

Roughly speaking, our generator for combinatorial sums has four steps. Below we give a high
level description of these steps. To avoid repetition, we avoid defining some of the technical terms
in this informal description.

Step 1. We first show that GH,k,t fools combinatorial sums with small variance in statistical
distance. We show that since the combinatorial sum restricted to each bucket has very small
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variance, bounded independence fools the sum restricted to a bucket in statistical distance. We
then take a union bound across the different buckets. A weak bound for fooling the sum in each
bucket is easy; however to apply the union bound requires a much stronger bound, which we prove
using the “sandwiching polynomials” technique introduced by Bazzi [Baz09].

Step 2. We next show that GH,k,t fools combinatorial sums with high variance in Kolmogorov
distance. We use the pairwise independence of H to argue that the total variance is well spread
among the t buckets and then apply the Berry-Esséen theorem to show that the distribution is
close to the right distribution in Kolmogorov distance. The analysis for this case is similar to the
argument of Meka and Zuckerman [MZ10] for regular halfspaces.

Step 3. We construct a generator Hm,n fooling n dimensional combinatorial sums in statistical
distance by recursively combining a generator fooling n/2 dimensional sums in Kolmogorov distance
with a generator fooling n/2 dimensional sums in statistical distance. Unfolding this recursion, the
generator Hm,n hashes variables into log n buckets of geometrically increasing sizes and applies the
generator GH,k,t to each bucket. We view this recursive construction and analysis of the Hm,n as
the most novel part of our PRG construction.

The starting point for the recursive construction and its analysis is the following elementary
probability lemma which says that two distributions that are close in Kolmogorov distance when
convolved with a shift-invariant distribution become close in statistical distance. Call a real valued
random variable Y α-shift invariant if dTV(Y, Y + 1) ≤ α. Several commonly studied random
variables such as binomial, Gaussian and Poisson binomial are all shift-invariant (with α inversely
proportial to their standard deviation).

Lemma 1.7 (Main Convolution Lemma). Let X be an α-shift invariant distribution and let Y,Z
be integer-valued distributions with support contained in [a, a+ b] for some a ∈ R, b > 0 ∈ R. Then,

dTV(X + Y,X + Z) ≤ 4
√
αbdcdf(Y,Z).

Given the above lemma, we analyze our recursive PRG construction by applying the lemma at
every step. To give some intuition for how the lemma is used we next describe the proof of the
discrete central limit theorem Theorem 1.5 which is similar in spirit and can be seen as a special
case of the recursive analysis.

Let X1, . . . , Xn be indicator variables as in the statement of Theorem 1.5. We partition the
variables into two sets S and T such that XS =

∑
i∈S Xi and XT =

∑
i∈T Xi have approximately

the same mean and variance. We introduce variables YS and YT which are two independent copies of
BIN(m/2, q). Then, the Berry-Esséen theorem, which is a quantitative form of the classical central
limit theorem, guarantees the closeness of XS , YS and XT , YT in Kolmogorov distance. Secondly,
Poisson binomial distributions are shift-invariant. Hence we bound the statistical distance between
XS + XT and YS + YT , by using our Convolution lemma to show that each of them is close to
XS + YT in statistical distance.

In relation to the above argument, the analysis of our recursive construction works by using Step
2 to get variables that are close in Kolmogorov distance and the recursive nature of the construction
to get variables that are shift-invariant and apply the lemma as above. However, the actual details
are a bit more involved.

Step 4. We next derandomize the generator GH,k,t and the recursive construction of Hm,n using
the PRGs for small-space machines of Impagliazzo, Nisan and Wigderson [INW94], and Nisan and
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Zuckerman [NZ96]. We improve the seed-length of GH,k,t by generating the seeds for each bucket
using PRGs for small-space machines. Finally, we reduce the randomness used in the recursion
by using PRGs for small-space machines to generate the seeds used by the PRGs in different lev-
els of the recursion. The analysis of these improvements proceeds by constructing small-width
sandwiching branching programs for combinatorial sums by using the monotone trick of Meka and
Zuckerman [MZ10].

We obtain our result on fooling combinatorial rectangles, Theorem 1.4, by setting the parameters
of GH,k,t appropriately and then derandomizing the construction using [INW94, NZ96] as above.
The analysis however is different and uses a simple application of the principle of inclusion-exclusion
and several properties of k-wise independent hash functions.

1.3 Prior Work

Independently and simultaneously, Watson [Wat11] studied the special case of combinatorial shapes
where the symmetric function h is the parity function which Watson called combinatorial checker-
boards. Watson obtains a seed-length of O(logm+log n log log n+log3/2(1/ε)) which is better than
our seed-length for small ε, but worse for large ε.

As indicated earlier, PRGs for several special cases of combinatorial shapes have been studied
previously. There was a lot of classical work on low-discrepancy sets for axis-parallel rectangles in
low dimension; see for example [Mat99]. Even, Goldreich, Luby, Nisan, and Velickovic [EGL+92]
were the first to give good constructions in high dimension; they gave PRGs for combinatorial
rectangles which used an O(log2 n) bit seed to achieve error 1/poly(n) when m = poly(n). Ar-
moni, Saks, Wigderson, and Zhou [ASWZ96] improved the parameters to achieve a seed of length
O(logm+ log n+ log2(1/ε)). The best construction is by Lu [Lu02], who achieved a seed-length of
O(logm+ log n+ log3/2(1/ε)).

Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola [DGJ+10] showed that O(log2(1/ε)/ε2)-
wise independence ε-fools halfspaces, which gives a seed of length O((log n) log2(1/ε)/ε2). Meka
and Zuckerman [MZ10] gave a different PRG with seed-length O(log n+ log2(1/ε)).

The notion of ε-biased spaces was introduced by Naor and Naor [NN93], who gave a PRG
using O(log n + log(1/ε)) bits. Alon, Goldreich, Hastad, and Peralta [AGHP92] gave alternate
constructions matching this bound. Lovett, Reingold, Trevisan, and Vadhan [LRTV09] gave a PRG
over bits that fools sums modulom, requiring a seed of lengthO(log n+log(m/ε) log(m log(1/ε))). A
similar, somewhat weaker construction was found independently by Meka and Zuckerman [MZ09a].

2 Notation and Preliminaries

We use the following notation.

• Most upper case letters X,Y, Z, . . . denote real-valued random variables.

• For integer-valued random variables X,Y , the statistical distance dTV(X,Y ) between X,Y is
defined as follows:

dTV(X,Y ) ≡ sup
A⊆Z
|Pr[X ∈ A]− Pr[Y ∈ A]| = 1

2

∑
i

|Pr[X = i]− Pr[Y = i]|.

• For real-valued random variables X,Y , the Kolmogorov distance (or cdf distance) dcdf(X,Y )
between X,Y is defined by dcdf(X,Y ) ≡ supθ∈R |Pr[X < θ]− Pr[Y < θ]|.
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• For a real-valued random variable X, we let µ(X), σ(X),Var[X] denote the expectation,
standard deviation and variance of X respectively. For a, b ∈ R, b > 0, N (a, b) denotes the
Gaussian distribution with mean a and variance b.

We use the following formulation of the Berry-Esséen theorem:

Theorem 2.1 ([Fel71], [She07]). For Y =
∑

i Yi a sum of independent random variables and
Z ← N (0, 1),

dcdf

(
Y − E[Y ]

σ(Y )
, Z

)
≤

(
∑

i E[ |Yi − E[Yi]|3 ] )

σ(Y )3
≤

(
∑

i E[ |Yi − E[Yi]|4 ] )1/2

σ(Y )2
.

Corollary 2.2 (Berry-Esséen for Poisson Binomials). For Y =
∑

i Yi a sum of independent indi-
cator variables, Z ← N (0, 1),

dcdf ( (Y − E[Y ])/σ(Y ), Z ) ≤ 1/σ(Y ).

Proof. Follows from Theorem 2.1, as for 0, 1 valued Yi,
∑

i E[|Yi−E[Yi]|4] ≤
∑

i E[|Yi−E[Yi]|2].

Fact 2.3. For Z1 ← N (µ1, σ
2
1), Z2 ← N (µ2, σ

2
2), for σ1, σ2 ≥ 1,

dcdf(Z1, Z2) = O

(
|µ1 − µ2|

σ1
+

√
|σ2

1 − σ2
2| log(σ1)

σ1

)
.

Proof. We’ll use the following anti-concentration property of Gaussians: for Z ← N (0, σ2), δ > 0,
Pr[Z ∈ [θ, θ + δ]] = O(δ/σ). Suppose that µ2 > µ1. Then,

dcdf(Z1,N (µ2, σ
2
1)) ≤ 2Pr[Z1 ∈ [µ1, µ2]] = O(|µ2 − µ1|/σ1).

Thus, it suffices to study the case when µ1 = µ2 = 0. Let σ2 > σ1 and λ =
√
σ2

2 − σ2
1. Observe

that Z2 can be generated as Z2 = Z1 + Z ′, where Z ′ is an independent N (0, λ2) random variable.
Now, Pr[|Z ′| > 3λ

√
log σ1] ≤ 1/σ1. Therefore, for any θ ∈ R,

Pr[Z2 < θ] = Pr[Z1 + Z ′ < θ]

≤ Pr[Z1 < θ + 3λ
√

log σ1] + Pr[|Z ′| > 3λ
√

log σ1]

≤ Pr[Z1 < θ] + Pr[Z1 ∈ [θ, θ + 3λ
√

log σ1]] + 1/σ1

≤ Pr[Z1 < θ] +O(3λ
√

log σ1/σ1) + 1/σ1.

The claim now follows from a similar argument by starting from Z1 instead of Z2.

Fact 2.4. Any Poisson binomial variable X with Var[X] = σ2 is (2/σ)-shift invariant.

Proof. A simple induction shows that Poisson binomial distributions are unimodal, with the density
function being maximized either at a unique value j or at j and j + 1. For this value j, it holds
that dTV(X,X + 1) = Pr[X ≤ j]− Pr[X + 1 ≤ j] = Pr[X = j]. We now use the anti-concentration
of X, which follows from the Berry-Esséen theorem. Indeed by Corollary 2.2, if Z ← N (0, 1), then
Pr[X = j] ≤ Pr [Z = (j − E[X])/σ] + 2/σ = 2/σ.

The following follows from Bernstein’s inequalities.

Fact 2.5. For a Poisson binomial variable X, and δ > 0, Pr[ |X −E[X]| ≥ 3σ(X)
√

log(1/δ) ] ≤ δ.
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Below we define some of the standard tools in derandomization that we use.

Definition 2.6 (Hash Families). A family of hash functions H = {h : [n]→ [t]} is k-wise indepen-
dent if for all distinct i1, . . . , ik ∈ [n] and all `1, . . . , `k ∈ [t],

Pr
h∈uH

[h(i1) = `1 ∧ h(i2) = `2 ∧ · · · ∧ h(ik) = `k ] =
1

tk
.

Efficient constructions of H as above with |H| = O((n + t)k) are known [CW79]. A pairwise
independent family of permutations H = {h : [n] → [n]} is defined similarly, with the additional
requirement that the hash functions h : [n]→ [n] be permutations.

Definition 2.7 (k-wise independent spaces). A generator G : {0, 1}r → [m]n is said to generate a
k-wise independent space if for y ∈u {0, 1}r, for all distinct i1, . . . , ik ∈ [n], and all b1, . . . , bk ∈ [m],

Pr[ (G(y))i1 = b1 ∧ (G(y))i2 = b2 ∧ · · · ∧ (G(y))ik = bk ] =
1

mk
.

Efficient constructions of generators G as above with r = O(k(logm+log n)) are known [AS00].
We also use the following generalization of k-wise independence to arbitrary non-uniform distribu-
tions.

Definition 2.8. A collection of random variables (X1, . . . , Xn) over a universe U is k-wise inde-
pendent if for all distinct i1, . . . , ik ∈ [n], and all u1, . . . , uk ∈ U ,

Pr[Xi1 = u1 ∧ Xi2 = u2 ∧ · · · ∧Xik = uk ] = Pr[Xi1 = u1 ] · Pr[Xi2 = u2 ] · · ·Pr[Xik = uk ].

Finally, we describe the pseudorandom generators for small-width read-once branching programs
(ROBPs) of [Nis92, INW94, NZ96] which play a crucial role in reducing the seed-length of our
constructions. We remark that we only use these results in a black-box fashion.

Definition 2.9 (ROBP). A (S,D, T )-ROBP (read-once branching program) M is a layered directed
multi-graph with T+1 layers and at most 2S vertices in each layer. The first layer has a single start
vertex v0 and the vertices in the last layer are labeled 0 (accepting) or 1 (rejecting). For 0 ≤ i < T ,
a vertex v in layer i of M has 2D outgoing edges labeled with distinct elements of {0, 1}D, all leading
to vertices in layer i+ 1.

A ROBP M as above defines a natural function M : ({0, 1}D)T → {0, 1}, where on input
(z1, . . . , zT ) we traverse the graph according to the edge labels z1, . . . , zT and output the label of the
final vertex reached.

Definition 2.10 (PRGs for ROBPs). A generator G : {0, 1}r → ({0, 1}D)T is said to ε-fool
(S,D, T )-ROBPs if for all (S,D, T )-ROBPs M ,∣∣∣∣ Pr

y∈u{0,1}r
[M(G(y)) = 1 ]− Pr

x∈u({0,1}D)T
[M(x) = 1 ]

∣∣∣∣ ≤ ε.
Nisan [Nis92] gave a PRG that ε-fools (S,D, T )-ROBPs with seed-lengthO((S+D+log(T/ε)) log T ).

We use the PRG of Impagliazzo et al. [INW94] with slightly better seed-length of O(D + (S +
log(T/ε)) log T ) for fooling (S,D, T )-ROBPs with error ε. We also use the result of Nisan and
Zuckerman [NZ96] who obtained a better PRG for the case when T = poly(S,D). In particu-
lar, they gave a PRG with seed-length O(S + D) for fooling (S,D, T )-ROBPs with error ε, when

T = poly(S,D) and ε ≥ 2log1−γ(S+D) for arbitrary γ > 0.
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3 Main Convolution Lemma

We now prove Lemma 1.7. Recall that it enables us to translate closeness in Kolmogorov distance
to closeness in statistical distance, and hence plays a key role in our results. The lemma implies
that if we consider two distributions Y,Z that are close in cdf distance and bounded by b, and
convolve them with a distribution which is (1/b)-shift invariant, then the resulting distributions are
statistically close.

Proof of Lemma 1.7. Without loss of generality suppose that Y,Z are supported in [0, b]. For
d ∈ Z+ to be chosen later, let Yd be the integer random variable with support over Sd = {id : i ∈
Z+, i ≤ bb/dc}, with pdf pd defined by, pd(id) = Pr[Y ∈ [id, (i+ 1)d)]. We first show that

dTV(X + Y,X + Yd) ≤ αd.

There is a natural coupling of Y and Yd: we set Yd = id with probability pd(id) and then sample
Y = Yd + Ȳ from the interval [id, (i+ 1)d) according to the marginal distribution of Y conditioned
on the event that Y ∈ [id, (i+ 1)d). Note that Ȳ ∈ {0, 1, . . . , d− 1} and it is an integer. We have

dTV(X + Y,X + Yd) = dTV(X + Yd + Ȳ , X + Yd).

Further, conditioned on a particular value of Yd = id,

dTV(X + Yd + Ȳ , X + Yd) = dTV(X + Ȳ , X) ≤ αd,

where the last inequality follows from the shift invariance of X and the fact that Ȳ ∈ {0, . . . , d−1}.
Therefore,

dTV(X + Y,X + Yd) = dTV(X + Yd + Ȳ , X + Yd) ≤ αd.

We define Zd similarly. It follows that dTV(X + Z,X + Zd) ≤ αd. Next we bound dTV(Yd, Zd).
Observe that Yd, Zd both have supports of size at most b/d. For any i,

| Pr[Yd = id]− Pr[Zd = id] | = | Pr[Y ∈ [id, (i+ 1)d) ]− Pr[Z ∈ [id, (i+ 1)d) ] | ≤ 2dcdf(Y, Z).

Hence dTV(Yd, Zd) ≤ (2b/d)dcdf(Y, Z). Combining the above equations,

dTV(X + Y,X + Z) ≤ dTV(X + Y,X + Yd) + dTV(X + Yd, X + Zd) + dTV(X + Zd, X + Z)

≤ 2αd+
2bdcdf(Y, Z)

d
.

The lemma now follows by setting d = d
√
bdcdf(Y, Z)/αe.

One can weaken the boundedness requirement to say that Y and Z rarely exceed b. We record
the following easy corollary without proof.

Corollary 3.1. Let X be a α-shift invariant distribution and let Y,Z be two integer-valued distri-
butions. Then, for a ∈ R and b ∈ R+

dTV(X + Y,X + Z) ≤ 4
√
αbdcdf(Y,Z) + Pr[Y 6∈ [a, a+ b)] + Pr[Z 6∈ [a, a+ b)].
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4 PRGs for Combinatorial Shapes

We use the following extension of the main generator for fooling halfspaces over {0, 1}n of Meka and
Zuckerman [MZ10]. Fix k, t > 0 and let d = n/t. Let H = {h : [n]→ [t]} be a pairwise independent
family of hash functions. Let Gk : {0, 1}rk → [m]d generate a k-wise independent space over [m]d.
Efficient constructions of H with |H| = poly(n) and Gk with rk = O(k(logm+ log d)) are known.
To avoid some technicalities that can be overcome easily, we assume that every hash function
h ∈ H is evenly distributed meaning for all j ∈ [t], |{i : h(i) = j, i ∈ [n]}| = n/t. The generator
GH,k,t : H× ({0, 1}rk)t → [m]n is defined as follows:

GH,k,t(h, z
1, . . . , zt) = x, where xh−1(i) = Gk(z

i) for i = 1, . . . , t. (4.1)

As sketched in the introduction we work with fooling combinatorial sums in statistical distance and
first study the case of combinatorial sums with small variance.

Definition 4.1. A generator G : {0, 1}r → [m]n ε-fools CSum(m,n) in statistical distance if for
any f ∈ CSum(m,n), the random variables X = f(G(x)), x ∈u {0, 1}r and Y = f(y), y ∈u [m]n

satisfy dTV(X,Y ) ≤ ε. Similarly, we say that G ε-fools CSum(m,n) in Kolmogorov (cdf) distance
if X and Y satisfy dcdf(X,Y ) ≤ ε.

We first set up some notation to be used henceforth. Let f : [m]n → {0, . . . , n} be an (m,n)-
combinatorial sum with f(x) =

∑n
i=1 1Ai(xi) for Ai ⊆ [m]. For xi ∈u [m], define the indicator

variable Xi = 1Ai(xi). Let

pi = E[Xi], σ
2
i = Var[Xi] = pi(1− pi), µ =

n∑
i=1

pi, σ
2 =

n∑
i=1

σ2
i .

Let X =
∑n

i=1Xi, so E[X] = µ and Var[X] = σ2 provided the Xi’s are pairwise independent.

4.1 Fooling Small Combinatorial Sums

We now study the case of combinatorial sums with small variance. The strategy is as follows: since
Var[f ] is small, there is a small set L ⊆ [n] of large variance variables, such that all other indicator
random variables Xi = 1Ai(xi), i 6∈ L, have small variance. To handle variables in L, we argue
that they will each be hashed into a different bucket. Thus the distribution on these variables
is truly uniform, and moreover, conditioned on their values, the distribution of the output of the
generator in each bucket is (k − 1)-wise independent. We then use the fact that the combinatorial
sum restricted to each bucket has very small total variance and show that bounded independence
fools the sum restricted to a bucket in statistical distance. Finally we take a union bound across
the different buckets to show the desired claim. As mentioned in the introduction, we use the
“sandwiching polynomials” technique introduced by Bazzi to show a sufficiently strong bound for
fooling the sum in each bucket so as to apply a union bound.

Theorem 4.2 (Fooling Small Combinatorial Sums). Let f ∈ CSum(m,n) with Var[f ] ≤ 6/ε2. For
k = 35 and t = C/ε15, the generator GH,k,t O(ε)-fools f in statistical distance, where C > 0 is a
universal constant.

Fix a f ∈ CSum(m,n) with σ2 ≤ 6/ε2 and let k, t be as above. Let L = {i : σ2
i ≥ ε5}. Since

σ2 =
∑

i σ
2
i ≤ 6/ε2, we have |L| ≤ 6/ε7. For each bucket Bj = h−1(j) we define the variable

Tj =
∑

i∈Bj\L σ
2
i . We say a hash function h ∈ H is good if the following conditions hold:
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1. All variables in L are mapped to distinct buckets.

2. For every bucket Bj , Tj ≤ ε.

Lemma 4.3. A random hash function h ∈u H is good with probability at least 1− 13ε.

Proof. By the pairwise independence of H, each pair of variables i 6= j ∈ L maps to the same
bucket with probability 1

t . By a union bound, the probability that condition (1) fails is at most
|L|2/2t ≤ ε.

Fix j ∈ [t] and for i ∈ Lc, let Ii be the indicator of the event h(i) = j. Then Tj =
∑

i∈Lc σ
2
i Ii,

E[T 2
j ] = E[ (

∑
i∈Lc

σ2
i Ii)

2 ] ≤
∑
i∈Lc

σ4
i

t
+
∑

i 6=l∈Lc

σ2
i σ

2
l

t2

≤ (max
i∈Lc

σ2
i )
∑
i∈Lc

σ2
i

t
+

1

t2

(∑
i∈Lc

σ2
i

)2

≤ ε5σ2

t
+
σ4

t2
≤ 12ε3

t
.

Therefore, by Markov’s inequality

Pr[Tj > ε] <
E[T 2

j ]

ε2
≤ 12ε

t
.

By a union bound, Tj ≤ ε holds for all j ∈ [t] except with probability 12ε.
Thus overall h is good with probability 1− 13ε.

The above lemma essentially reduces us to the case where all the indicator random variables in
each bucket have very small variance, and thus have bias very close to 0 or 1. We remark that the
constant 13 only contributes to O( ) factors in the final bound. The following lemma now lets us
handle such variables.

Lemma 4.4. Let X =
∑n

i=1Xi and Y =
∑n

j=1 Yj be sums of independent indicator random

variables such that E[X],E[Y ] ≤ ε. Let D be a (2d+ 2)-wise independent distribution over {0, 1}2n
such that for (X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n) ← D, Pr[Xi = 1] = Pr[X ′i = 1] and Pr[Yi = 1] = Pr[Y ′i =

1] for all i ∈ [n]. Then, for (X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n) ← D, (

∑
iX
′
i,
∑

i Y
′
i ) is Od(ε

d/2)-close in
statistical distance to (X,Y ).

We note that a bound of O(ε) is trivial for the lemma above: each of X and Y are non-zero
with probability at most ε under a pairwise independent distribution. However we need a stronger
O(εd) bound so that we can use the union bound over all buckets, and this requires more work.
We first prove Theorem 4.2 assuming the above lemma.

Proof of Theorem 4.2. Let x ∈ [m]n be the string generated by GH,k,t and let y ∈u [m]n. Let
Xi = 1Ai(xi) and Yi = 1Ai(yi) be the indicator variables on each coordinate. Assume that the hash
function h is good in the sense of Lemma 4.3. Then, each variable in L is mapped to a distinct
bucket, so the values of {xi}i∈L are uniform and independent. By coupling the variables xi and yi
for i ∈ L, it suffices to show that

∑
i∈Lc Xi and

∑
i∈Lc Yi are close in statistical distance when the

distribution within each bucket Bj is (k − 1)-wise independent, and the buckets are independent.
To simplify our notation, we henceforth assume that L = ∅ and Lc = [n].

10



Fix a bucket Bj . We can partition Bj into B0
j = {i ∈ Bj : pi <

1
2} and B1

j = {i ∈ Bj : pi ≥ 1
2}.

Let X̄i = 1 − Xi for i ∈ B1
j , so that Pr[X̄i = 1] = 1 − pi. Define variables Zj =

∑
i∈B0

j
Xi and

Z ′j =
∑

i∈B1
j
X̄i. ∑

i∈Bj

Xi =
∑
i∈B0

j

Xi +
∑
i∈B1

j

(1− X̄i) = Zj − Z ′j + |B1
j |.

Now, since h is good, Tj ≤ ε, and E[Zj ],E[Z ′j ] ≤ 2ε. Since the distribution in each bucket is (k−1)-

wise independent, we can apply Lemma 4.4 to the collections {Xi : i ∈ B0
j }, {1−Xi : i ∈ B1

j } with

d = 16 to conclude that (Zj , Z
′
j) is O(ε16)-close in statistical distance to the distribution when the

variables Xi ∈ Bj are truly independent.
This implies that

∑
i∈Bj Xi is O(ε16)-close in statistical distance to

∑
i∈Bj Yi. Since variables

across buckets are independent of one another, we conclude by a union bound that
∑

i∈[n]Xi =∑
j∈[t]

∑
i∈Bj Xi is (O(tε16) = O(ε))-close in statistical distance to

∑
i∈[n] Yi.

4.1.1 Proof of Lemma 4.4

We start with a simple concentration bound for k-wise independent variables.

Lemma 4.5. Let X1, . . . , Xn be k-wise independent {0, 1} variables such that
∑n

i=1 E[Xi] ≤ β.
Then for all ` ≥ k,

Pr[
n∑
i=1

Xi ≥ ` ] ≤
(
eβ

`

)k
.

Proof. Let Sk(X1, . . . , Xn) =
∑

J⊆[n];|J |=k
∏
j∈J Xj . By the k-wise independence of X1, . . . , Xn,

E[Sk(X1, . . . , Xn)] =
∑

J⊆[n];|J |=k

∏
j∈J

E[Xj ].

But since
∑

i E[Xi] ≤ β, it follows that

E[Sk(X1, . . . , Xn)] ≤
(
n

k

)
βk

nk
.

This can be proved by the power-mean inequality, or a weight-shifting argument.
Note that if

∑
iXi ≥ `, then Sk(X1, . . . , Xn) ≥

(
`
k

)
. Hence by Markov’s inequality,

Pr[
∑
i

Xi ≥ ` ] ≤ E[Sk(X1, . . . , Xn)](
`
k

) ≤
(
n
k

)
βk

nk
(
`
k

) ≤ (eβ
`

)k
.

The following easy corollary follows by taking k = `:

Corollary 4.6. If indicator random variables X1, . . . , Xn are (fully) independent with
∑

i E[Xi] ≤
ε, then for ` ∈ [n],

Pr[
n∑
i=1

Xi ≥ `] ≤
(eε
`

)`
.

For r ∈ Z, let Ir : Z → {0, 1} be the indicator function defined by Ir(x) = 1 if x = r and 0
otherwise. We next show that indicator events Ir(x) · Is(y) have good sandwiching polynomials.
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Lemma 4.7. Let X =
∑

iXi, Y =
∑

i Yi where X1, . . . , Xn and Y1, . . . , Yn are indicator random
variables as above. For any d ≥ 2 an even integer and r, s ∈ {0, . . . , d} there are polynomi-
als Pr,s(X,Y ) and Qr,s(X,Y ) where deg(Pr,s),deg(Qr,s) ≤ 2d + 2, Pr,s(X,Y ) ≤ Ir(X)Is(Y ) ≤
Qr,s(X,Y ) and

E[Qr,s(X,Y )− Pr,s(X,Y )] = O(εd).

Proof. We first show the existence of a degree at most d polynomialQr with the following properties:

Qr(r) = 1, Qr(x) = 0, ∀x ∈ {0, 1, . . . , d− 1} \ {r}, 0 ≤ Qr(x) ≤ xd

r!(d− r)!
, ∀x ≥ d. (4.2)

To see this, assume that d− r is even and let

Qr(x) =
1

r!(d− r)!
∏

i∈{0,...,d}\{r}

(x− i).

Clearly, Ir(x) = Qr(x) = 0 for x ∈ {0, 1, . . . , d} \ {r}. Further, since d− r is even, we have

Qr(r) =
1

r!(d− r)!
∏

i∈{0,...,d}\{r}

(r − i) = (−1)d−r = 1.

Finally, the last inequality in Equation 4.2 follows from the degree bound on Qr. In the case when
d− r is odd, it holds that r ≤ d− 1 and d− 1− r is even and we can repeat the above construction
with d− 1 instead of d.

By a similar argument, we get a degree at most d polynomial Qs( ) satisfying conditions
analogous to Equation 4.2 for Is( ).

Now, let Pr,s(x, y) = Qr(x) ·Qs(y) · (1− (x− r)2 − (y − s)2) and Qr,s(x, y) = Qr(x)Qs(y). It is
easy to check that Pr,s(x, y) ≤ Ir(x)Is(y) ≤ Qr,s(x, y). Further,

E[Qr,s(X,Y )− Pr,s(X,Y )] = E[Qr(X)Qs(Y ) · (X − r)2 +Qr(X)Qs(Y )(Y − s)2 ] =

E[Qr(X)(X − r)2 ] · E[Qs(Y )] + E[Qr(X)] · E[Qs(Y )(Y − s)2 ]. (4.3)

Note that Qr(x) = 0 for x ∈ {0, 1 . . . , d− 1} \ {r}. Therefore, by Equation 4.2 and Corollary 4.6,

E[Qr(X)(X − r)2] ≤
∑
`≥d

Qr(`)(`− r)2 Pr[X ≥ `] ≤
∑
`≥d

`d+2

r!(d− r)!
·
(eε
`

)`
≤ (eε)d

r!(d− r)!
∑
`≥d

1

``−d−2

= O(εd).

Similarly,

E[Qs(Y )] ≤ Qs(s) +
∑
`≥d

Qs(Y ) · Pr[Y ≥ `] ≤ 1 +
∑
`≥d

`d

r!(d− r)!
·
(eε
`

)`
≤ 1 +

(eε)d

r!(d− r)!
∑
`≥d

1

``−d
= O(1).
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Hence, E[Qr(X)(X − r)2] ·E[Qs(Y )] = O(εd). A similar argument shows that E[Qr(X)] ·E[Qs(Y ) ·
(Y − s)2] = O(εd). Therefore, from the above equations and Equation 4.3 we get

E[Qr,s(X,Y )− Pr,s(X,Y )] = O(εd).

We now show that (2d+2)-wise independence on (X1, . . . , Xn, Y1, . . . , Yn) suffices to fool (X,Y )
in statistical distance. To do this we shall use the following observation due to Bazzi.

Lemma 4.8. Let f, g, h : V → R be functions on a universe V such that f ≤ g ≤ h. Further, let
D,D′ be two distributions on V such that Eu←D[h(u)− f(u)] ≤ ε and

| E
v←D′

[f(v)]− E
u←D

[f(u)]| ≤ δ, | E
v←D′

[h(v)]− E
u←D

[h(u)]| ≤ δ.

Then,
| E
v←D′

[g(v)]− E
u←D

[g(u)]| ≤ ε+ δ.

Proof. Let u← D, v ← D′. Then,

E[g(v)] ≤ E[h(v)] ≤ E[h(u)] + δ ≤ E[f(u)] + ε+ δ ≤ E[g(u)] + ε+ δ.

A similar chain starting with f instead of h shows the lower bound and the lemma.

Proof of Lemma 4.4. Let X ′ =
∑

iX
′
i, Y

′ =
∑

i Y
′
i . Fix r, s ∈ {0, 1 . . . , d}. Observe that, by

linearity of expectation, for any ` ≥ 1, `-wise independence fools degree ` polynomials. We
next invoke Lemma 4.8 with V = {0, 1}2n, and f, h obtained from Pr,s and Qr,s. Therefore,
as (X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n) is (2d+ 2)-wise independent, by Lemma 4.7 and Lemma 4.8 we get

|Pr[(X,Y ) = (r, s)]− Pr[(X ′, Y ′) = (r, s)]| = |E[Ir(X)Is(Y )]− E[Ir(X
′)Is(Y

′)]| = O(εd).

Further, by Lemma 4.5, Pr[X ′ ≥ d+ 1 ∨ Y ′ ≥ d+ 1] ≤ O(εd+1). Therefore,

dTV((X,Y ), (X ′, Y ′)) =
1

2

∑
0≤r,s≤n

|Pr[(X,Y ) = (r, s)]− Pr[(X ′, Y ′) = (r, s)]|

≤
∑

0≤r,s≤d
|Pr[(X,Y ) = (r, s)]− Pr[(X ′, Y ′) = (r, s)]|+

Pr[X ≥ d+ 1 ∨ Y ≥ d+ 1] + Pr[X ′ ≥ d+ 1 ∨ Y ′ ≥ d+ 1]

≤ d2O(εd) +O(εd) = Od(ε
d).

4.2 Fooling Large Combinatorial Sums in Kolmogorov Distance

We next show that the generator GH,k,t fools combinatorial sums in Kolmogorov distance when the
variance σ2 of the sum is large.

Theorem 4.9 (Fooling Large Combinatorial Sums). Let f ∈ CSum(m,n) with Var[f ] ≥ 1/ε2.
Then for k ≥ 4 and t ≥ 1/ε2, the generator GH,k,t O(ε)-fools f in Kolmogorov distance.
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We use the following property of pairwise independent hash functions. For a hash function
h ∈u H, let Bj = {i : h(i) = j} denote the jth bucket of variables. Let Pj =

∑
i∈Bj pi and

Sj =
∑

i∈Bj σ
2
i . Finally, let Sh = (

∑t
j=1 S

2
j )

1
2 .

Lemma 4.10. We have Eh[Sh] ≤ σ + σ2/
√
t.

Proof of Lemma 4.10. Fix j ∈ [t]. For each i ∈ [n], let Ii be the indicator of the event h(i) = j
where h ∈u H. Then, Eh[Ii] = 1/t and for l 6= i, Eh[IiIl] = 1/t2 by pairwise independence. As
Sj =

∑n
i=1 Iiσ

2
i ,

E
h

[S2
j ] =

n∑
i=1

σ4
i E
h

[Ii] + 2
∑
i 6=l

σ2
i σ

2
j E[IiI`]

≤ 1

t

n∑
i=1

σ2
i +

2

t2

∑
i 6=l

σ2
i σ

2
` since σ4

i ≤ σ2
i

≤ σ2

t
+
σ4

t2
.

Since S2
h =

∑t
j=1 S

2
j , using linearity of expectation we get

E
h

[S2
h] ≤

t∑
j=1

E
h

[S2
j ] ≤ σ2 +

σ4

t
.

The claim now follows using Eh[Sh] ≤
√
Eh[S2

h].

Proof of Theorem 4.9. Let random variable Y = f(y) for y ∈u [m]n. Then, Y has a Poisson
binomial distribution with variance σ2 =

∑
i pi(1− pi) ≥ 1/ε2. Therefore, by Corollary 2.2,

dcdf

(
Y − µ
σ

,N (0, 1)

)
≤ 1

σ
≤ ε. (4.4)

Let x ∈ [m]n be generated according to the generator GH,k,t with parameters as in the theorem
and let indicator random variables Xi = 1Ai(xi) and let X =

∑
iXi. We shall show that (X−µ)/σ

is also close to N (0, 1). Fix a hash function h ∈ H. Let Zj =
∑

i∈Bj Xi. Since the Xis are 4-wise

independent, E[Zj ] = Pj , Var[Zj ] =
∑

i∈Bj σ
2
i = Sj . Further, we have

E[(Zj − Pj)4] = E[(
∑
i∈Bj

(Xi − pi))4]

=
∑
i∈Bj

E[(Xi − pi)4] + 3
∑

i 6=l∈Bj

E[(Xi − pi)2]E[(Xl − pl)2]

≤
∑
i∈Bj

σ2
i + 3

∑
i 6=l∈Bj

σ2
i σ

2
l since (Xi − pi)4 ≤ (Xi − pi)2

≤ Sj + 3S2
j .

Therefore, summing over all j we get

t∑
j=1

E[(Zj − Pj)4] ≤
t∑

j=1

Sj + 3
t∑

j=1

S2
j = σ2 + 3S2

h.
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Using the Berry-Esséen theorem applied to independent random variables Z1, . . . , Zt, for a fixed
hash function h,

dcdf

(
X − µ
σ

,N (0, 1)

)
≤

(σ2 + 3S2
h)1/2

σ2
≤ 2

(
1

σ
+
Sh
σ2

)
.

Further, as dcdf is a convex function, using Lemma 4.10,

dcdf

(
X − µ
σ

,N (0, 1)

)
≤ 2

(
1

σ
+

Eh[Sh]

σ2

)
≤ 2

(
2

σ
+

1√
t

)
≤ 6ε.

By Equation 4.4 we get dcdf((X − µ)/σ, (Y − µ)/σ) = O(ε) which implies dcdf(X,Y ) = O(ε).

4.3 Reducing the Seed-length via INW

We now derandomize GH,k,t using PRGs for small space sources of Impagliazzo, Nisan, and Wigder-
son [INW94], which we call the INW PRG. The derandomization follows from Theorems 4.2, 4.9
and replacing the independent seeds z1, . . . , zt in Equation 4.1 with the output of the INW PRG.

Theorem 4.11 (Derandomizing GH,k,t). There exists a generator G ≡ Gm,n,ε : {0, 1}rm,n,ε → [m]n

with seed-length rm,n,ε = O(logm + log n + log2(1/ε)) with the following properties for all f ∈
CSum(m,n):

1. If Var[f ] < 6/ε2, then G O(ε)-fools f in statistical distance.

2. If Var[f ] ≥ 1/ε2, then G O(ε)-fools f in Kolmogorov distance.

3. The output of G is pairwise independent with each coordinate uniformly distributed over [m].

Consider GH,k,t with parameters set so as to satisfy the conditions of Theorems 4.2, 4.9. Note
that the seed-length of GH,k,t is O((log n + logm)poly(1/ε)). We will reduce the seed-length by
choosing the seeds z1, . . . , zt from the output of the INW PRG (instead of independently as before).
The analysis proceeds roughly by arguing that for any (m,n)-combinatorial sum f and hash function
h ∈ H, f(GH,k,t(h, z

1, . . . , zt)) ≡ gh(z1, . . . , zt) is computable by a small-space machine when viewed
as a function of z1, . . . , zt. Let INW : {0, 1}r → ({0, 1}rk)t be the INW generator that ε-fools
(30 log(1/ε), rk, t), read-once branching programs. Define

G : H× {0, 1}r → [m]n by G(h, y) = GH,k,t(h, INW(y)).

We claim that a minor modification of G satisfies the conditions of Theorem 4.11.

Proof of Theorem 4.11. The claim on the seed-length of G follows from the seed-length of the INW
generator. As stated at the end of Section 2, INW uses r = O(rk + (log(1/ε) + log(t/ε)) log t) =
O(logm+ log n+ log2(1/ε)) bits (recall that t = 1/εO(1)). We next show that G satisfies properties
(1), (2).

Fix an (m,n)-combinatorial sum f(x1, . . . , xn) =
∑

i 1Ai(xi) and let x be the output of generator
GH,k,t with parameters as above. Fix a hash function h ∈ H and define gh : ({0, 1}rk)t → [n] by
gh(z1, . . . , zt) = f(GH,k,t(h, z

1, . . . , zt)). For ` ∈ [t], let B` = {i : h(i) = `} and let random variable
Y` =

∑
j∈B` 1Aj (xj). Then, Y` depends only on z` and gh(z1, . . . , zt) =

∑
` Y`.

There is a natural (log n, rk, t)-ROBP M for computing gh: the vertices of M are labeled
{0, 1, . . . , n} with states in layer ` corresponding to the possible values of the partial sum

∑
i≤` Yi

and the edges out of layer ` are drawn according to the change in the value of the partial sum.
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However, using M directly to do the derandomization is problematic as INW only fools O(log(1/ε))
space ROBPs. We get over this hurdle by appropriately sandwiching M between smaller-width
branching programs.

Case 1: Var[f ] < 6/ε2. Observe that x1, . . . , xn are k-wise independent. Therefore, by an
argument similar to that of Lemma 4.5 (the low-variance assumption plays the same role as the
bound on the total expectation in the proof of Lemma 4.5), it follows that for ` ∈ [t],

Pr[ |
∑
j≤`

(Yj − µ(Yj))| > 6e/ε4 ] ≤ ε2k. (4.5)

We exploit this fact by ignoring all states ofM corresponding to partial sums not in I = [−6e/ε4, 6e/ε4].
Fix a statistical test function F : {0, 1, . . . , n} → {0, 1}. Observe that for z̄ = (z1, . . . , zt) ∈

({0, 1}rk)t, F (z̄) ≡ F (gh(z̄)) = F (M(z̄)) is computable by a (log n, rk, t)-ROBP, say M ′. We now
sandwich M ′ between two small-width branching programs. Let Mu be a ROBP that works the
same as M ′ except that it accepts all strings z̄ that lead to a partial sum

∑
i≤`(Yi − µ(Yi)) /∈ I.

Similarly, let Ml be a ROBP that works the same as M ′ except that it rejects all strings z̄ that
lead to a partial sum

∑
i≤`(Yi − µ(Yi)) /∈ I. Then, Ml ≤M ′ ≤Mu and Ml,Mu are computable by

((log |I|) + 1, rk, t)-ROBPs. Further, from Equation 4.5 and a union bound over ` ∈ [t],

Pr[Mu(z̄) = 1]− Pr[Ml(z̄) = 1] ≤ tε2k = O(ε).

Now, as INW fools Mu,Ml with error at most ε, it follows from the above equation and the
sandwiching property (Lemma 4.8) that INW fools M ′ with error at most O(ε). Therefore, for any
fixed hash function h ∈ H,∣∣∣∣ Pr

z̄∈u({0,1}rk )t
[M ′(z̄) = 1]− Pr

y∈u{0,1}r
[M ′(INW(y)) = 1]

∣∣∣∣ = O(ε).

Taking a convex combination over h ∈u H, we get that∣∣∣∣ Pr
h∈uH,z̄∈u({0,1}rk )t

[F (f(GH,k,t(h, z̄))) = 1]− Pr
h∈uH,y∈u{0,1}r

[F (f(G(h, y))) = 1]

∣∣∣∣ = O(ε).

Therefore, by the above equation, Theorem 4.2 and the triangle inequality, the generator G fools
the composition of the statistical test F and the combinatorial sum f with error at most O(ε). As
the above argument works for all F : {0, 1, . . . , n} → {0, 1}, it follows that G fools low-variance
combinatorial sums in statistical distance with error O(ε).

Case 2: Var[f ] ≥ 1/ε2. Here we only want to fool the combinatorial sum in Kolmogorov distance,
which corresponds to fooling functions Kol : ({0, 1}rk)t → {0, 1}, where Kol(z1, . . . , zt) = 1 if and
only if gh(z1, . . . , zt) > θ for some θ ∈ R. As was the case for computing Kol, there is a natural
(log n, rk, t)-ROBP M ′ for computing gh (in fact one only needs to choose the accepting states
appropriately from M). The monotone trick argument of Meka and Zuckerman (see Section 4.3 in
[MZ09b]—we do not need the assumption of high-variance here) says that for such threshold ROBPs
there exist two (log(2t/ε), rk, t)-ROBPs Ml,Mu such that Ml ≤M ′ ≤Mu and for z̄ ∈u ({0, 1}rk)t,

Pr[Mu(z̄) = 1]− Pr[Ml(z̄) = 1] ≤ ε.

As t = C/ε15, log(2t/ε) < 30 log(1/ε) so that INW fools Ml,Mu with error at most ε. Therefore,
by Lemma 4.8, INW fools M ′. The second item in the theorem now follows from combining the
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above statement with Theorem 4.9 and using triangle inequality as in the analysis of Case 1.

We are almost done, except for the third condition, which we satisfy by combining the output
of G with a pairwise independent distribution over [m]n as follows. Let X ∈ [m]n be the output
of G for a uniformly random seed. Let Y = (Y1, . . . , Yn) ∈ [m]n be pairwise independent random
variables with Yi uniformly distributed over [m] for all i and independent of X. Let X ′i = (Xi + Yi
mod m) + 1. For any fixing of Y , we have that X ′ satisfies the first and second conditions of the
theorem since X does and combinatorial sums are closed under relabelling the individual coordinate
ranges. Similarly, for any fixing of X we have that X ′ satisfies the third condition as Y does.
Therefore, X ′ satisfies all the properties. As Y can be efficiently generated with O(logm + log n)
bits, the number of bits needed to generate X ′ is

O(log(|H|)) + r +O(logm+ log n) = O(logm+ log n+ log2(1/ε)).

4.4 Fooling Combinatorial Sums

We now combine the generators from the previous sections to get our final generator fooling combi-
natorial sums in statistical distance. The basic idea is as follows: we partition the n variables into
two subsets L,R with |L| ∼ n/2, and then use Gm,n/2,ε for the variables in R and an independent
Hm,n/2 on the variables in L. We analyze the construction by induction and considering two cases.
If the variance of the combinatorial sum is small, we invoke Theorem 4.11 (1). So now assume that
the variance is large.

Let f be a combinatorial sum with Var[f ] ≥ 6/ε2 and write f = fL + fR, where fL, fR are the
combinatorial sums obtained by restricting to variables in L,R respectively. We use the induction
hypothesis to get a statistical distance guarantee for fL and use Theorem 4.11 (2) to get a Kol-
mogorov distance guarantee for fR. We then argue that the combinatorial sum fL has high variance
and hence is shift invariant. We then apply Lemma 1.7 and get a statistical distance guarantee for
f = fL + fR.

Without loss of generality suppose that ε ≤ 1/ log n and n + 1 is a power of 2 (else, we can
add dummy coordinates). Let s = log(n+ 1) and H1 = {π : [n]→ [n]} be a pairwise independent
family of permutations. Efficient constructions of H1 with |H1| = poly(n) are known [AS00]. We
pick π ∈u H1 and use it to partition [n] into s buckets of geometrically increasing sizes. We
define sets B1, . . . , Bs where Bj = {π(2j−1), . . . , π(2j − 1)}, thus |Bj | = 2j−1. Let rj be the seed-
length of the generator Gm,2j−1,ε from Theorem 4.11. For brevity, we suppress the dependence
on m, ε in the following as these parameters do not change. Our main generator Hm,n,ε ≡ Hn :
H1 × {0, 1}r1 × · · · × {0, 1}rs → [m]n uses an independent sample from Gm,2j−1,ε for each bucket
Bj :

Hn(π, z1, . . . , zs) = x, where xBj = Gm,2j−1,ε(z
j). (4.6)

As before, let f(x1, . . . , xn) =
∑n

i=1Xi where Xi = 1Ai(xi) has mean pi and variance σ2
i . For

each bucket Bj , let Sj =
∑

i∈Bj σ
2
i . Let q ∈ {1, . . . , s} be the least index such that E[Sq] > 3/ε2.

Call a permutation π bad if at least one of the following conditions holds and good otherwise:

1. There exists an index j ∈ {q, . . . , s} such that Sj /∈ [0.5E[Sj ], 1.5E[Sj ]].
2. There exists j ∈ {1, . . . , q − 1} such that Sj ≥ 6/ε2.

Note that the sequence {E[Sj ]}sj=1 is in geometric progression. If π is good, then {Sj}sj=q is roughly
geometric, and none of {Sj}j≤q are too large.
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Claim 4.12. Prπ∈uH1 [π is bad] ≤ 2ε.

Proof. Fix j ∈ {1, . . . , s}. Let Zi be the indicator of the event π−1(i) ∈ {2j−1, . . . , 2j − 1} and
hence i ∈ Bj . Then

Sj =
n∑
i=1

σ2
i Zi ⇒ E[Sj ] =

σ22j−1

n
.

By the pairwise independence of π,

E[S2
j ] =

∑
i

σ4
i E[Zi] +

∑
i 6=l

2σ2
i σ

2
l E[ZiZl] ≤

σ22j−1

n
+
σ42j−1(2j−1 − 1)

n(n− 1)

≤ σ22j−1

n
+
σ422(j−1)

n2
,

hence, Var[Sj ] = E[S2
j ]− E[Sj ]

2 ≤ σ22j−1/n = E[Sj ].

We now bound the probability of bad event (1). Fix j ∈ {q, . . . , s} so that E[Sj ] ≥ 3
ε2

. By
Chebychev’s inequality

Pr

[
|Sj − E[Sj ]| >

E[Sj ]

2

]
≤ 4 Var[Sj ]

(E[Sj ]2)
≤ 4

E[Sj ]
≤ 2ε2.

Similarly, to bound bad event (2), we observe that E[Sj ] ≤ 3/ε2 for j ≤ q − 1, hence

Pr[Sj ≥ 6/ε2] ≤ Pr[|Sj − E[Sj ]| ≥ 3/ε2] ≤ ε4 Var[Sj ]/9 ≤ ε2.

Since ε ≤ 1/ log n, the claim follows by a union bound over j ∈ {1, . . . , s}.

Theorem 4.13. The generator Hn fools CSum(m,n) with error O(log n
√
ε log(1/ε)).

Proof. Let x ∈ [m]n be sampled from Hn, while y ∈u [m]n. Let Xi = 1Ai(xi), Yi = 1Ai(yi) and

Xj =
∑
i∈Bj

Xi, Y j =
∑
i∈Bj

Yi, X≤j =
∑
l≤j

X l, Y ≤j =
∑
l≤j

Y l.

We assume from now on we condition on the chosen permutation π being good. Observe that
E[Xj ] = E[Y j ] and by Theorem 4.11 (3),

Var[Xj ] = Var[Y j ] =
∑
i∈Bj

Var[Xi] =
∑
i∈Bj

σ2
i = Sj .

We claim that there is a constant C such that for j ∈ [s],

dTV(X≤j , Y ≤j) ≤ Cj
√
ε(log(1/ε)). (4.7)

The proof is by induction on j. It is easy to prove for j ≤ q. Since Var[X l] = Var[Y l] = Sl < 6/ε2

for all l ≤ j, by Theorem 4.11 (1), dTV(X l, Y l) = O(ε). As X1, . . . , Xj are independent of one
another, we have dTV(X≤j , Y ≤j) ≤ O(jε). Now consider j ∈ {q + 1, . . . , s}. We have

dTV(X≤j−1 +Xj , Y ≤j−1 + Y j) ≤ dTV(X≤j−1 +Xj , Y ≤j−1 +Xj) + dTV(Y ≤j−1 +Xj , Y ≤j−1 + Y j).
(4.8)
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The first term can be bounded using the induction hypothesis:

dTV(X≤j−1 +Xj , Y ≤j−1 +Xj) ≤ dTV(X≤j−1, Y ≤j−1) ≤ C(j − 1)
√
ε(log(1/ε)). (4.9)

To bound the second term, we will apply Corollary 3.1. As π is good and j > q, Var[Xj ] =
Var[Y j ] = Sj ≥ E[Sj ]/2 > 1/ε2. Thus the variance is sufficiently large to apply Theorem 4.11 (2),
which gives dcdf(X

j , Y j) = O(ε). Moreover, by Fact 2.5,

Pr

[
|Y j − E[Y j ]| > 3

√
Sj log(1/ε)

]
≤ ε.

Since Xj and Y j have the same mean and dcdf(X
j , Y j) < ε, we get similar concentration for Xj :

Pr

[
|Xj − E[Xj ]| > 3

√
Sj log(1/ε)

]
≤ 3ε.

Thus, with probability 1− 4ε, we have Xj , Y j ∈ [E[Xj ]− b,E[Xj ] + b], where b = 3
√
Sj log(1/ε).

Further, since π is good, we have

Var[Y ≤j−1] ≥ Var[Y j−1] = Sj−1 ≥ E[Sj−1]/2 ≥ E[Sj ]/4 ≥ Sj/6.

Hence by Fact 2.4, Y ≤j−1 is α = (6/
√
Sj)-shift invariant. We can now apply Corollary 3.1 with

α = 6/
√
Sj and b = 6

√
Sj log(1/ε) to get

dTV(Y ≤j−1 +Xj , Y ≤j−1 + Y j) ≤ O
(√

ε log(1/ε)
)
. (4.10)

Substituting the bounds from Equations 4.9 and 4.10 back into Equation 4.8 gives

dTV(X≤j , Y ≤j) ≤ C(j − 1)
√
ε log(1/ε) +O

(√
ε log(1/ε)

)
≤ Cj

√
ε log(1/ε),

where C is a sufficiently large constant.

We now derandomize the generator of Theorem 4.13 to get our main result for fooling combi-
natorial shapes.

Proof of Theorem 1.3. We derandomize the generator Hn of Equation 4.6 as was done in Theo-
rem 4.11 by choosing the seeds z1, . . . , zs from the output of PRGs for ROBPs. Fix δ > 0 and set
the parameters of Hn as in Theorem 4.13 with ε = δ/(log(1/δ) · log n). Fix a (m,n)-combinatorial
shape f and note that for a permutation π ∈ H1, f(Hn(π, z1, . . . , zs)) when viewed as a function of
z1, . . . , zs is computable by a (S,D, T )-ROBP, where S = log n, D = O(logm+ log n+ log2(1/ε)),
and T = s = O(log n). Further, as T = O(S + D), such ROBPs can be fooled with error ε and
seed-length O(logm+ log n+ log2(1/ε)) by using the PRG of [NZ96].

Let G be the generator obtained from Hn by using the PRG of [NZ96] with parameters as above
to generate the seeds z1, . . . , zs of Equation 4.6 instead of independently as before. Then, by The-
orem 4.13, G O(δ)-fools (m,n)-combinatorial sums with seed-length O(logm+ log n+ log2(1/ε)) =
O(logm+ log n+ log2(1/δ)).
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5 Discrete Central Limit Theorems

We now prove the discrete central limit theorem Theorem 1.5. As outlined in the introduction, the
proof proceeds by partitioning the variables appropriately and using the convolution lemma. The
following tricky fact whose proof uses Hall’s theorem is used to partition the variables.

Lemma 5.1. Given a1, . . . , an > 0 and b1, . . . , bn > 0, there exists a set S ⊆ [n] such that

|
∑
i∈S

ai −
∑

j aj

2
| ≤ maxi ai −mini ai

2
, |

∑
i∈S

bi −
∑

j bj

2
| ≤ maxi bi −mini bi

2
.

Proof. Let n be even, the case of n odd is similar. Let A =
∑

i ai, B =
∑

i bi. Suppose that
a1 ≤ a2 ≤ · · · ≤ an and let π : [n] → [n] be a permutation such that bπ(1) ≤ bπ(2) ≤ · · · ≤ bπ(n).
Form a bipartite graph G = (L,R,E), where |L| = |R| = n/2 with vertices on left corresponding
to pairs {(a1, a2), (a3, a4), . . . , (an−1, an)} and vertices on right corresponding to {(bπ(2i−1), bπ(2i)) :
i ∈ [n/2]}. Finally, add an edge in G between vertices (ai, ai+1) and (bπ(j), bπ(j+1)) if and only if
{i, i+ 1} ∩ {π(j), π(j + 1)} 6= ∅.

Note that the vertices in G are either in isolated edges or have degree exactly two. Thus, G is a
union of isolated edges and a 2-regular graph and by Hall’s theorem there exists a perfect matching
M in G. For each i ∈ [n/2], let M connect vertex (a2i−1, a2i) ∈ L to a vertex (bj , bj′) ∈ R so that
index ri ∈ {2i − 1, 2i} ∩ {j, j′}. Let S = {ri : i ∈ [n/2]}. We claim that S satisfies the required
properties. Let A0 =

∑
i∈[n/2] a2i−1 and Ae =

∑
i∈[n/2] a2i. Then,

Ao =
∑

i∈[n/2]

a2i−1 ≤
∑

i∈[n/2]

ari ≤
∑

i∈[n/2]

a2i = Ae.

Further, Ae −Ao ≤ an − a1. Thus,

A− (an − a1)

2
≤ Ao ≤

∑
i

ari ≤ Ae ≤
A+ (an − a1)

2
.

The lemma now follows by a similar argument applied to bri for i ∈ [n/2].

Proof of Theorem 1.5. By the above lemma applied to the numbers E[X1], . . . ,E[Xn] and Var[X1], . . . ,Var[Xn],
there exists a set S ⊆ [n] such that∣∣∣∣∣∑

i∈S
E[Xi]− µ/2

∣∣∣∣∣ ≤ 1/2,

∣∣∣∣∣∑
i∈S

Var[Xi]− σ2/2

∣∣∣∣∣ ≤ 1/2. (5.1)

Let T = [n] \S and XS =
∑

i∈S Xi and XT =
∑

i∈T Xi and σ2
S =

∑
i∈S Var[Xi] ≥ σ2/4. Let YS , YT

denote two independent copies of BIN(m/2, q)4. Note that,

|m · q − µ| ≤ 1,
∣∣mq(1− q)− σ2

∣∣ ≤ 1. (5.2)

We proceed to bound the various quantities (α, b and dcdf) required to apply the convolution
lemma. By Corollary 2.2, Fact 2.3 and Equations 5.1, 5.2,

dcdf(XS , YS) ≤ dcdf(XS ,N (E[XS ], σ2
S)) + dcdf(YS ,N (E[YS ],Var[YS ]))+

dcdf(N (E[XS ], σ2
S),N (E[YS ],Var[YS ]))

≤ O
(

1

σ

)
+O

(√
log(σ)

σ

)
= O

(√
log(σ)

σ

)
. (5.3)

4We assume that m is even here; the case when m is odd can be handled similarly.
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Further, by Fact 2.4, XS , YS are (α = 4/σ)-shift invariant. Finally, similar bounds hold for XT , YT
as well.

Next we show that XS , XT , YS , YT are bounded in a small interval with high probability. By
Fact 2.5, for b = 12(σ

√
log σ), Pr[ |XS − E[XS ]| > b ] ≤ 1/4σ, and a similar statement holds for

XT , YS , YT . We then apply the union bound. Therefore, applying Corollary 3.1,

dTV(XS +XT , YS + YT ) ≤ dTV(XS +XT , XS + YT ) + dTV(XS + YT , YS + YT )

≤ 4
√
α (2b) dcdf(XT , YT ) + 4

√
α (2b) dcdf(XS , YS) +

1

σ

= O
(√

log(σ)/σ
)
. (By Equation 5.3)

We next generalize Theorem 1.5 to sums of independent integer-valued variables (as opposed to
indicator random variables). The error term in the statistical distance guarantee we get depends on
the Kolmogorov distance guarantee given by the Berry-Esséen theorem and on the shift invariance
of the individual random variables. The dependence on these terms is in some sense unavoidable
(as explained below). As for the case of indicator random variables our bound is weaker than those
of the more fine-grained results of [BX99, BC02]. However, the arguments and exact technical
conditions of [BX99, BC02] are complicated and the parameters we get are comparable up to Ω(1)
factors in the exponents.

Theorem 5.2. Let X̄ = (X1, . . . , Xn), Ȳ = (Y1, . . . , Ym) be two sets of independent integer-valued
variables. Let X =

∑
iXi, Y =

∑
i Yi and let E[X] = E[Y ], Var[X] = Var[Y ] = σ2 ≥ 4. Further,

let

ν = max
i
{Var[Xi],Var[Yi]} ≤ σ2/2, max(

∑
i

E[ |Xi − E[Xi]|3 ],
∑
i

E[ |Yi − E[Yi]|3 ] ) ≤ ρ,

4 ≤ U = min(
∑
i

(1− dTV(Xi, Xi + 1)),
∑
j

(1− dTV(Yj , Yj + 1)) ).

Then,

dTV(X,Y ) = O

((
ρ log(σ)

σ2U1/2

)1/2

+ (log σ)
( ν
U

)1/4
+

ρ

σ3
+

1

σ

)
.

Note that for a limit theorem as above to hold, we need assumptions on X,Y stronger than
matching means and variances which was enough for the Berry-Esséen theorem. For instance, the
X could be supported on even integers and Y on odd integers with X,Y having the same mean and
variances. In this case the statistical distance between X,Y is 1, whereas the Kolmogorov distance
could still be small. Thus, the additional assumption that Xi’s, Yi’s have some shift-invariance is
a natural restriction to have.

We also use the following elegant lemma of Barbour and Xia [BX99] which they show using
an elementary coupling argument. Intuitively, the lemma says that shift-invariance amplifies when
taking sums of independent shift-invariant variables.

Lemma 5.3 (Barbour and Xia, Proposition 4.6). Let Z1, . . . , Zn be independent integer-valued
random variables, Z =

∑
i Zi and UZ =

∑
i(1− dTV(Zi, Zi + 1)). Then dTV(Z,Z + 1) ≤ 2/

√
UZ .
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Proof of Theorem 5.2. Now, by Lemma 5.1 applied to Var[X1], . . . ,Var[Xn] and (1−dTV(X1, X1 +
1)), . . . , (1− dTV(Xn, Xn + 1)), there exists a subset S ⊆ [n] such that

|
∑
i∈S

Var[Xi]−
σ2

2
| ≤ ν

2
, |

∑
i∈S

(1− dTV(Xi, Xi + 1))− UX
2
| ≤ 1

2
.

Similarly, there exists a subset T ⊆ [m] such that

|
∑
i∈T

Var[Yi]−
σ2

2
| ≤ ν

2
, |

∑
i∈T

(1− dTV(Yi, Yi + 1))− UY
2
| ≤ 1

2
.

Let XS =
∑

i∈S Xi, X
′
S =

∑
i/∈S Xi and let YT , Y

′
T be defined similarly. Without loss of generality

suppose that E[XS ] = E[YT ] = E[X ′S ] = E[Y ′T ] = 0 (if not, we can translate the variables accord-
ingly). Then, by the above equations and Lemma 5.3 it follows that XS , X

′
S , YT , Y

′
T are α-shift

invariant for α = 4/
√
U .

Let δ = ρ/(σ2−ν)3/2. Now, by an argument similar to that of Equation 5.3 and the Berry-Esséen
theorem,

dcdf(XS , YT ) ≤ dcdf(XS ,N (0,Var[XS ])) + dcdf(YT ,N (0,Var[YT ]))

+ dcdf(N (0,Var[XS ]),N (0,Var[YT ]))

≤ 23/2ρ

(σ2 − ν)3/2
+

23/2ρ

(σ2 − ν)3/2
+O

(√
ν ·
√

log σ

σ

)
.

≤ 8δ +O

(√
ν · log σ

σ

)
.

Now, by the Berry-Esséen theorem, for b = O(σ
√

log(σ)),

Pr[|XS | > b] ≤ 2δ + 1/σ, Pr[|YT | > b] ≤ 2δ + 1/σ.

Further, similar inequalities hold for X ′S , Y
′
T as well. Therefore, by Corollary 3.1, and the above

inequalities,

dTV(XS +X ′S , YT + Y ′T ) ≤ dTV(XS +X ′S , XS + Y ′T ) + dTV(XS + Y ′T , YT + Y ′T )

≤ 4
√
α (2b) dcdf(X

′
S , Y

′
T ) + 4

√
α (2b) dcdf(XS , YT ) +O(δ) +O(1/σ)

= O

(
σ log(σ)ρ

(σ2 − ν)3/2U1/2

)1/2

+ (log σ) ·
( ν
U

)1/4
+O(δ) +O(1/σ).

The theorem now follows as ν ≤ σ2/2.

6 PRGs for Combinatorial Rectangles

We prove that the generator GH,k,t of Equation 4.1 with k = O(
√

log(1/ε)) and t = exp(O(
√

log n))
andH k-wise independent fools combinatorial rectangles. We then derandomize the generator using
the INW generator as in the proofs of Theorems 4.11 and 1.3 to get our final PRG for combinatorial
rectangles. Our construction and analysis can be seen as a simplification of Lu’s construction.
Specifically, Lu’s generator, at a high level, involves a two-level hashing scheme and a two-level
application of the PRGs for small-space machines. In contrast, we use a single hashing step and
a single application of PRGs for small-space machines. The final seed-length we achieve is weaker
than that of Lu; however we match Lu’s parameters for the important case when the desired error
ε = 1/poly(n).
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Theorem 6.1. For a sufficiently large constant C > 0, the generator GH,k,t with k = C
√

log(1/ε)
an even integer, t = exp(C

√
log(1/ε)) and H a k-wise independent family of hash functions, fools

combinatorial rectangles with error at most O(ε).

We use the following properties of a k-wise independent family of hash functions.

Lemma 6.2. For H = {h : [n]→ [t]}, k-wise independent, the following properties hold.

1. For any L ⊆ [n], |L| ≤ r, Pr[ ∃`, |h−1(`) ∩ L| ≥ k/2 ] ≤ t · (2re/kt)k/2.
2. Let q1, . . . , qn ∈ [0, 1],

∑
i qi ≤ Q and maxi qi ≤ βQ. Then, for any ` ∈ [t],

Pr[
∑

i:h(i)=`

qi ≥ Q/t+ β1/4Q ] ≤ 2(kβ1/2 log(1/β))k/2.

Proof. (1). Without loss of generality, let L = {1, . . . , r}. Fix ` ∈ [t] and let X1, . . . , Xn be indicator
random variables with Xi = 1 if h(i) = ` and 0 else. Then, X1, . . . , Xr are k-wise independent and

Pr[
∑
i

Xi ≥ k/2 ] ≤ E[
∑

J⊆[r],|J |=k/2

∏
j∈J

Xj ] =

(
r

k/2

)
1

tk/2
≤
(

2re

kt

)k/2
.

The claim now follows by taking a union bound over ` ∈ [t].

(2). Fix ` ∈ [t] and let X1, . . . , Xn be as above. Then, X =
∑

i:h(i)=` qi =
∑

i qiXi, where the
Xi are k-wise independent with Pr[Xi = 1] = 1/t. Let Y1, . . . , Yn be independent indicator random
variables with Pr[Yi = 1] = 1/t and Y =

∑
i qiYi. Then, by Hoeffding’s inequality, for all γ > 0,

Pr[ |Y − E[Y ]| ≥ γ ] ≤ 2 exp(−2γ2/
∑
i

q2
i ) ≤ 2 exp(−2γ2/βQ2).

Let k be even and fix γ > 0 to be chosen later. Then, as Y ≤ Q,

E[ (Y − E[Y ])k ] ≤ γk +Qk Pr[ |Y − E[Y ]| ≥ γ ] ≤ γk +Qk2 exp(−2γ2/βQ2).

Since E[(X − E[X])k] = E[(Y − E[Y ])k], it follows from Markov’s inequality that for any θ > 0,

Pr[ |X − E[X]| ≥ θ ] ≤ γk +Qk2 exp(−2γ2/βQ2)

θk
.

Setting θ = β1/4 ·Q, γ = (2kβ log(1/β))1/2Q, we get

Pr[X ≥ Q/t+ β1/4Q ] ≤ 4(2kβ1/2 log(1/β))k/2.

Proof of Theorem 6.1. Fix an (m,n)-combinatorial rectangle f : [m]n → {0, 1} with f(x1, . . . , xn) =
1A1(x1) ∧ 1A2(x2) · · · 1An(xn). Let y ∈u [m]n and Yi = 1Ai(yi), qi = 1− E[Yi]. Let x be the output
of the generator with parameters as in the statement and let Xi = 1Ai(xi). Note that

Pr[f(y) = 1] = (1− q1)(1− q2) · · · (1− qn) ≤ exp(−
∑
i

qi).

Therefore, if
∑

i qi > log(1/ε), then Pr[f(y) = 1] < ε. We accordingly consider two cases to analyze
our generator.
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Case 1: Q =
∑

i qi ≤ 3 log(1/ε). Let L = {i : qi > Q/
√
t}, Lc = [n] \ L. Call a h ∈ H good if

a) max` |h−1(`) ∩L| ≤ k/2 and b) for every ` ∈ [t], Q` ≡
∑

i:h(i)=`,i/∈L qi < 6 log(1/ε)/t1/8. We first
show that a random hash function is good with high probability.

By definition, |L| <
√
t. Thus, by Lemma 6.2 (1) it follows that a random h ∈u H satisfies

condition (a) with probability at least 1 − 1/tΩ(k) = 1 − ε for C sufficiently large. Let β = 1/
√
t.

Then, maxi/∈L qi ≤ βQ. By applying Lemma 6.2 (2) to {qi : i /∈ L} it follows that a random h ∈u H
satisfies condition (b) with probability at least 1 − ε. Thus, by a union bound, a random h ∈u H
is good with probability at least 1−O(ε). In the following we condition on this event.

Fix a good hash function h ∈ H and ` ∈ [t]. Note that the variables {Xi : i ∈ L, h(i) = `} are
truly independent. Further, conditioned on any fixing of these variables, the remaining variables in
the bucket, {Xi : i /∈ L, h(i) = `} are (k/2)-wise independent. Thus, by the principle of inclusion-
exclusion, for B′` = B` \ L,

|Pr[∧i∈B′`Xi]− Pr[∧i∈B′`Yi]| ≤ 2
∑

J⊆B′`,|J |=k/2

Pr[∧i∈JXi]

≤ 2

(
|B′`|
k/2

)(
Q`

|B′`|

)k/2
(power-mean inequality)

≤ 2

(
2eQ`

k

)k/2
=

(
O(
√

log(1/ε))

t1/8

)k/2
= O(ε/t),

for C sufficiently large.
From the above arguments it follows that for any ` ∈ [t],

|Pr[∧i∈B`Xi]− Pr[∧i∈B`Yi]| = O(ε/t).

The claim now follows from a union bound as the Xi’s in different buckets are independent of one
another.

Case 2:
∑

i qi > 3 log(1/ε). Let j ∈ [n] be the maximum index such that
∑

i≤j qi ≤ 3 log(1/ε).
Then,

∑
i≤j qi ≥ 3 log(1/ε)− 1 > 2 log(1/ε). Therefore, Pr[∧i≤jYi = 1] ≤ exp(−

∑
i≤j qi) ≤ ε. Now,

by applying the argument of the previous case to the collection of variables X1, . . . , Xj it follows
that Pr[∧i≤jXi = 1] = O(ε). Therefore, Pr[∧iXi = 1] = O(ε) from which the claim follows.

Proof of Theorem 1.4. The theorem follows by derandomizing GH,k,t with parameters as above by
using the INW PRG to generate z1, . . . , zt of Equation 4.1 instead of independently as before.
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