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Abstract

The Unique Games conjecture (UGC) has emerged in recent years as the starting point for several
optimal inapproximability results. While for none of these results a reverse reduction to Unique Games is
known, the assumption of bijective projections in the Label Cover instance nevertheless seems critical in
these proofs. In this work we bypass the UGC assumption in inapproximability results for two geometric
problems, obtaining a tight NP-hardness result in each case.

The first problem, known as Lp Subspace Approximation, is a generalization of the classic least
squares regression problem. Here, the input consists of a set of points S = {a1, . . . ,am} ⊆ Rn and a
parameter k (possibly depending on n). The goal is to find a k-dimensional subspace H of Rn that min-
imizes the `p norm of the Euclidean distances to the points in S. For p = 2, k = n− 1, this reduces to
the least squares regression problem, while for p = ∞, k = 0 it reduces to the problem of finding a ball of
minimum radius enclosing all the points. We show that for any fixed p (2 < p < ∞), and for k = n−1, it
is NP-hard to approximate this problem to within a factor of γp−ε for constant ε > 0, where γp is the pth
norm of a standard Gaussian random variable. This matches the γp approximation algorithm obtained
by Deshpande, Tulsiani and Vishnoi [11] who also showed the same hardness result under the Unique
Games Conjecture.

The second problem we study is the related Lp Quadratic Grothendieck Maximization Problem,
considered by Kindler, Naor and Schechtman [26]. Here, the input is a multilinear quadratic form
∑

n
i, j=1 ai jxix j and the goal is to maximize the quadratic form over the `p unit ball, namely all x with

∑
n
i=1 |xi|p = 1. The problem is polynomial time solvable for p = 2. We show that for any constant p

(2 < p < ∞), it is NP-hard to approximate the quadratic form to within a factor of γ2
p− ε for any ε > 0.

The same hardness factor was shown under the UGC in [26]. We also obtain a γ2
p-approximation algo-

rithm for the problem using the convex relaxation of the problem defined by [26]. A γ2
p approximation

algorithm has also been independently obtained by Naor and Schechtman [29].
These are the first approximation thresholds, proven under P 6= NP, that involve the Gaussian ran-

dom variable in a fundamental way. Note that the problem statements themselves have no mention of
Gaussians.
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1 Introduction

The Unique Games Conjecture of Khot [21] asserts that a certain binary constraint satisfaction problem is
hard to approximate over a large enough alphabet. The conjecture has been shown in recent years to imply
optimal hardness results for various important combinatorial optimization problems such as Maximum Cut
[22], Vertex Cover [23] and more generally, constraint satisfaction problems [32] and ordering problems
[17]. However, arguably there has been little progress towards proving the conjecture. On the contrary, re-
cent algorithmic results have disproved some stronger variants of the conjecture [3], and solved the Unique
Games problem on special classes of instances like expanders [5] and more generally graphs with few “bad"
eigenvalues [18, 8]. Moreover, while the Unique Games Conjecture is known to imply optimal inapproxima-
bility results for Maximum Cut, Vertex Cover and several other problems, the converse is unknown in each
case. (In other words, we only know Unique-Games hardness results, but no “Unique-Games completeness"
results.) This leaves the possibility open that while the implications of the conjecture are true, the conjecture
itself is false.

For all these reasons, it is a worthwhile endeavor to investigate if the optimal inapproximability results
obtained via the Unique Games Conjecture can be shown without appealing to the conjecture. In this work,
we consider two geometric problems for which optimal inapproximability results based on the Unique Games
Conjecture have been shown previously, and obtain the same hardness results unconditionally, i.e., without
appealing to the conjecture.

1.1 Our Main Results

Lp Subspace Approximation Problem The first problem we consider is the Lp Subspace Approximation
Problem for 2 6 p < ∞ – a natural generalization of the least squares regression problem, the low rank matrix
approximation problem and the problem of computing radii of point sets. Here the input consists of a set of
points S = {a1, . . . ,am} ⊆ Rn, and an integer 1 6 k 6 n. The goal is to find a k-dimensional subspace H of
Rn that minimizes the `p norm of the Euclidean distances to the points in S. Formally, the goal is to compute:

Subp(S,k) = min
H⊆Rn:dim(H)=k

(
m

∑
i=1

dist(H,ai)
p

)1/p

, (1)

where dist(,) is the usual `2 distance between a subspace and a point. Informally, it is the problem of deter-
mining how close a given set of points is from lying in a smaller subspace, where the measure of closeness
to a subspace is the `p norm of the tuple of Euclidean distances of the set of points from the subspace. Such
problems arise naturally in classification of large data sets for applications in machine learning and data min-
ing. As an algorithmic question, it is a generalization of various special cases for different values of p such
as Low rank matrix approximation (p = 2) or Computing the radii of point sets (p = ∞). Generally speaking,
optimizing loss functions with small p is more robust againist outlier points while optimizing with a large
p gives stronger theoretical guarantee. We refer the reader to [11] for a more comprehensive discussion of
these connections.

In this work we focus on the hardness of approximating the Lp Subspace Approximation Problem for
the case when k = n− 1, i.e., the problem of finding a hyperplane that is closest to the set of points in the
measure defined above. Let γp denote the p’th norm of a normal random variable. Recently, Deshpande,
Tulsiani and Vishnoi [11] obtained a γp approximation for the problem, and showed a matching hardness
assuming the Unique Games Conjecture. Bypassing the need for the UGC, we obtain a (1− ε)γp hardness
of approximation unconditionally. The following theorem is proved in Section 4.
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Theorem 1.1. For any given p (2 < p < ∞) the Lp Subspace Approximation Problem is NP-hard to approx-
imate within a factor of (1− ε)γp for any ε > 0.

Lp Grothendieck Problem. The second problem we consider is that of maximizing a multilinear quadratic
form over the unit `p ball in Rn for constant p, 2 6 p < ∞. Formally, the input to the problem is a symmetric
n×n matrix A = (ai j) with zero diagonal entries, the goal is to compute the following quantity,

Valp(A) := max

{
n

∑
i, j=1

ai jxix j | ∑
i
|xi|p 6 1

}
, (2)

We refer to this problem as the Lp Quadratic Grothendieck Maximization Problem. In the case where p = 2,
Val2(A) is nothing but the maximum eigenvalue of the matrix A and hence is computationally tractable.
The case p = ∞ is commonly referred to as the Grothendieck problem and has been extensively studied
in mathematics and computer science for its applications to combinatorial optimization, graph theory and
correlation clustering [30, 2, 1, 10]. The case when 2 < p < ∞ has applications towards studying spin glass
systems in physics (See [26]).

Kindler, Naor and Schechtman [26] obtained a (γ2
p − ε)-hardness for every ε for the Lp-Grothendieck

problem assuming the UGC, and also exhibited an almost matching p
e + 30log p-approximation algorithm.

Bypassing the Unique Games Conjecture, we obtain a γ2
p hardness unconditionally for the problem. We also

obtain an approximation algorithm that exactly matches the hardness result for every p.

Theorem 1.2. For any constant p > 2, it is NP-hard to approximate Valp(A) to within γ2
p− ε for any ε > 0,

where A is a symmetric matrix with all diagonal entries zero.

Theorem 1.3. There is a polynomial time algorithm to approximate Valp(A) to within γ2
p for any symmetric

matrix A with all diagonal entries equal to zero.

A γ2
p approximation for Valp(A) has also been independently obtained by Naor and Schechtman [29] as

part of a more general result. Theorems 1.2 and 1.3 are proved in Sections 5 and 6 respectively.

1.2 Discussion of Our Results

The above mentioned NP-hardness results are noteworthy for the following reasons.
First, the inapproximability factors for both problems are irrational numbers arising from the Gaussian

distribution, although neither of the problems involve the Gaussian distribution directly. Inapproximability
factors arising from properties of the Gaussian distribution have previously been obtained for other problems
— such as Maximum Cut [22] — using the Unique Games Conjecture, reductions based on which naturally
involve the Gaussian distribution via analytic tools such as the Invariance Principle [28].

Second, the inapproximability factors obtained in each case arise directly from a semidefinite program
for the problem. Again, the optimality of semidefinite programs has been a recurring theme in UGC hardness
results, while this result is among the few NP-hardness results that highlight this phenomenon. In addition,
almost all these few known tight NP-hardness of approximation results have ratios being “nice” numbers, such
as 2/3 for Majority function on three variables and 1/2 for Max 3CSPs [36]. In comparison, our thresholds
are irrational and involve the Gaussian Distribution in a fundamental way. These properties of the thresholds
suggest that it is unlikely an alternative simple combinatorial algorithm will achieve the same approximation
ratio; at least to analyze such an algorithm one would have to define Gaussian Distribution and (probably)
introduce the central limit theorem which is not common for combinatorial algorithms.
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Third, the reductions in this work are based on a dictatorship test which quantitatively utilizes the Cen-
tral Limit Theorem, i.e. the distribution of a sum of significant number of independent Bernoulli random
variables is close to a Gaussian distribution. This is precisely the reason for the appearance of the Gaussian
distribution. A key ingredient in our reductions is the smooth version of Label Cover which enables us to
devise a more sophisticated decoding procedure which can be combined with the dictatorship test. It is per-
tinent to note that a couple of the (few) previous results using smooth versions of Label Cover, on hardness
of learning intersection of halfspaces [25] and monomials [14], have also used analysis based on versions
of the Central Limit Theorem. Our results imply that for many geometric (and possibly other combinatorial
optimization) problems, using Unique Games Conjecture is not necessary and the smooth label cover (which
is NP-hard) suffices in its place. Technically speaking, compared with previous work such as [14] (which
use smoothness of the Label Cover to bound the fourth moments in the invariance analysis), we believe the
decoding technique based on smooth Label Cover in this work is conceptually simpler and maybe useful for
bypassing UGC from other problems.

2 Motivation and Related Work

2.1 Lp Subspace Approximation Problem

Algorithmically various special cases of this problem have been well studied. For p = 2 it reduces to the
problem of determining a rank k approximation B to an n×m matrix A with respect to the Frobenius norm,
which can be computed in polynomial time by using Singular Value Decomposition of A [15]. Efficient
(1+ ε) approximations have been given various cases such as: for p = 1 and constant k by Feldman et
al. [13]; p = ∞ and constant k by Har-Peled and Varadarajan [19]; and for general p and constant k by
Shyamalkumar and Varadarajan [34] and Deshpande and Varadarajan [12]. On the other hand, the problem
can be approximated to within O(

√
logm) for any value of k for p = ∞ as shown by Varadarajan et al. [35]

building on the work of Nemirovski et al. [30].
On the complexity front, Brieden, Gritzman and Klee [9] showed that the problem is NP-hard to solve

optimally for k = n− 1 and p = ∞. Subsequently, the problem was shown to be NP-hard to approximate
within (logm)δ for k 6 n−nε for any 0 < ε < 1 and p = ∞ [35].

In more recent work, Deshpande,Tulsiani and Vishnoi [11] gave a
√

2γp approximation for this problem
for any k and any p > 2, and a γp approximation factor when k = n− 1. Assuming the Unique Games
Conjecture they also prove that the problem is hard approximate within a factor of (1−ε)γp when k = n−1.

2.2 Lp Quadratic Grothendieck Maximization Problem

The special case of the problem when p = ∞ (maximizing over the hypercube), has been extensively studied.
The problem is known to admit an O(logn) approximation [31, 30, 27, 10]. On the other hand, it was shown
to be NP-hard to approximate within some constant factor in [2] and [10]. In [4], Arora et al. gave the best
known inapproximability factor of (logn)c for some c > 0 for this problem.

The Lp Quadratic Grothendieck Maximization Problem for constant p such that 2 < p < ∞ has received
attention more recently in the work of Kindler, Naor and Schechtman [26]. They exhibit an algorithm to
approximate Valp(A) to within a factor of p

e +30log p and also show a Unique Games Conjecture [21] based
inapproximability factor of γ2

p−ε for all ε > 0. Here γp denotes the pth norm of a standard Gaussian variable.
Note that while asymptotically (i.e. as p→ ∞) the upper and lower bounds both tend to p

e (1+ o(1)), for a
fixed constant p (2 < p < ∞), there remained a gap between them.
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2.3 Overview of the Techniques

In the next few paragraphs we give an informal description of the techniques used in proving the results of
the paper and the new ingredients employed to build upon the work of [26] and [11].

2.4 NP-Hardness Reductions

Both hardness of approximation results shown in this work are obtained via reductions from the Smooth
Label Cover problem which is a variant of the well-known Label Cover problem. The Label cover problem,
a CSP with constraints on pairs of variables, is the starting point of a majority of reductions showing hardness
of approximation. In a label cover instance, the variables take values over a finite domain [R] = {1 . . .R}.
Every constraint π between two variables u,v is such that the value assigned to one of the variables (say u)
determines the value of the other (say v). The goal is to find an assignment satisfying the maximum number
of edges. Very strong hardness of approximation results are known for the label cover problem, and these in
turn are the starting point of almost all hardness of approximation results.

Unique Games is a special case of Label cover where every constraint is a bijection, i.e., the value of
either variable determines the other. While constraints being bijections is convenient for showing hardness
results, the difficulty of solving unique games is still conjectural.

Smooth label cover is a variant of label cover while while having properties similar to unique games, can
still be shown to be NP-hard to approximate. It was first introduced in [20] for proving hardness results in
hypergraph coloring and subsequently utilized for other applications in [24, 25, 14]. Roughly speaking, in a
smooth label cover instance, for every constraint u,v, while u determines the value of v, the value of v almost
always disambiguates the other. More precisely, for every vertex u, and given two or constantly many choices
of labels of u, and a random neighbour of v, the value assigned to v disambiguates between the choices. Note
that a unique games instance is always a smooth label cover instance.

Nowwe describe the reduction from Smooth Label Cover to Lp Subspace Approximation Problem. Anal-
ogous to the construction of [11], we formulate the label cover instance as a system of linear equations. More
precisely, there is a coordinate for every label of every vertex of the Smooth Label Cover instance. The con-
straints between the labels of vertices are translated to linear equations between the corresponding variables.
LetV denote the vector space of solutions to this linear system. The Lp Subspace Approximation instance we
construct will lie entirely in this subspaceV . This method of enforcing constraints of label cover is known as
folding [16]. Not every vector in V corresponds to a labelling of the Smooth label cover instance. In partic-
ular, every vertex can be assigned at most one label – the vector corresponding to a labelling is necessarily
sparse. Hence, the goal of solving Smooth Label Cover reduces to the problem of finding a sparse vector in
this linear space V .

The instance will consist of a set of points S inside V , such that if 〈w,x〉−θ = 0 is a subspace close in
the appropriate norm (Lp norm of the Euclidean distances) to S then w is a sparse vector in V . To this end,
for every vertex v in the label cover, we include 2R points in V as follows: set coordinates corresponding to
every other vertex to 0, set the coordinates corresponding to v randomly in {−1,1}, and finally project the
resulting vector in toV . This construction follows closely the construction in [11], except for the folding step
where the vector is projected in to the linear space V . Folding could not be used in [11] since unique games
does not have perfect completeness (optimal solution need not satisfy all constraints) and hence cannot be
translated in to a system of linear equations.

The crucial property that is used in the analysis is the Berry-Essen theorem. For a real vector v ∈ RR,
〈v,x〉 over a random x ∈ {−1,1}R, is distributed as a {−1,1} random variable if v corresponds to a valid
assignment. Hence, if v corresponds to a valid assignment, then the Lp norm of 〈v,x〉 is at most 1. On the
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other hand, by Berry-Essen theorem, if v is not sparse then the 〈v,x〉 is distributed like a Gaussian, thereby
having a Lth

p norm of γp. This lies at the core of the γp-hardness result for Lp subspace approximation. The
difficulty in the analysis is to show the converse that, every vector w, which is somewhat sparse (〈w,x〉 not
distributed as a Gaussian) corresponds to a good labelling of the label cover instance. Smoothness of the
label cover instance plays a crucial role in showing this fact.

For the Lp Quadratic Grothendieck Problem our overall approach is similar to that of [26]: use the
quadratic form to simulate a Long Code test on the vertices of the Smooth Label Cover (or Unique Games
in [26]). As before, the coordinates are the union of Long Codes for each vertex of Smooth Label Cover
instance. The quadratic form is given in terms of the Fourier coefficients of the various Long Codes. In our
case however, the quadratic form differs from that of [26] in order to avoid the usage of the Cauchy-Schwartz
inequality in the analysis which requires the uniqueness property of constraints afforded by an instance of
Unique Games. More specifically, the quadratic form in our construction simulates the dictatorship and con-
sistency tests on Long Codes. The dictatorship test yields a small set each of influential labels for a significant
fraction of vertices. This is combined with the consistency test to obtain a good labeling to the instance of
Smooth Label Cover. Our analysis crucially depends on the smoothness property of the constraints of the
instance which roughly stated is: for any vertex, given a small set of labels, most of the constraints involving
the vertex restricted to that set of labels appear structurally similar to constraints of an instance of Unique
Games. Formally, the projection constraints π : [M]→ [N] incident on any given vertex v of a Smooth Label
Cover instance form a hash family: for any pair a 6= b ∈ [N], one has π(a) 6= π(b) with high probability for a
random π incident on v. This “local uniqueness" property of the Label Cover constraints enables us to design
a two step decoding procedure which extracts the aforementioned good labeling to the instance.

2.5 Approximating the Lp Quadratic Grothendieck Maximization Problem

Our algorithm is essentially a simplification of the techniques in [26]. We define the following convex relax-
ation for Valp(A):

Vecp(A) = max

{
n

∑
i, j=1

ai j〈vi,v j〉 : {v1, . . . ,vn} ⊆ L2,
n

∑
i=1
‖vi‖p

2 6 1

}
. (3)

As observed in [26] the above convex program can be solved in polynomial time to arbitrary small precision.
We directly show that Vecp(A) is a γ2

p approximation to Valp(A). This can be easily derived from the fol-
lowing fact: there exist mean zero Gaussian random variables hi for i = 1, . . . ,n such that E[hih j] = 〈vi,v j〉.
Writing Vecp(A) as E

[
∑

n
i, j=1 ai jhih j

]
and normalizing each variable by (∑n

k=1 |hk|p)1/p yields the desired
approximation. The details appear in the full version included as an appendix. This differs from the proof of
[26] which obtains a slightly weaker approximation via a truncation based rounding algorithm. A generaliza-
tion of our approximation for convex bodies has been obtained independently by Naor and Schechtman [29]
and for the unit `p (p > 2) ball it essentially gives the same result as ours. Our proof also yields a polynomial
time rounding algorithm to compute a solution {xi}n

i=1 which approximates Valp(A) to within a factor of
γ2

p(1+δ ) for arbitrarily small δ > 0.

3 Preliminaries

We begin this section by first formally defining the two problems that we study.
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Definition 3.1. The Lp Subspace Approximation Problem, which we denote by Subspace(k, p) where k is a
parameter (possibly depending on n) is: given a set of points S = {a1, . . . ,am}⊆Rn, to compute the following
quantity,

Subp(S,k) = min
H⊆Rn:dim(H)=k

(
m

∑
i=1

dist(H,ai)
p

)1/p

, (4)

where the minimum is taken over all k-dimensional subspaces ofRn and dist(H,a) is the minimum Euclidean
distance between a and any point in H.

Definition 3.2. The Lp Quadratic Grothendieck Maximization Problem which we denote as QM(p) for 1 6
p<∞ is: given a symmetric matrixA∈Rn×n with diagonal entries all zero, to compute the following quantity,

Valp(A) := max

{
n

∑
i, j=1

ai jxix j |
n

∑
i=1
|xi|p 6 1

}
. (5)

We will denote by γp the pth norm of a standard Gaussian random variable. Formally, for any p > 0,
γp := (E[|g|p])1/p, where g is a Gaussian random variable with mean 0 and variance 1. The analysis of the
dictatorship tests in our reductions, requires lower bounds on the norms of sums of independent Bernoulli
variables. The following lemma, proved in [26] (as Lemma 2.5) gives us the required bound.

Lemma 3.3. Let X1, . . . ,Xn be independent Bernoulli random variables such that E[Xi] = 0 for all 1 6 i 6 n
and ∑

n
j=1E[X2

j ] = 1. Assume that for some τ ∈ (0,e−4), we have ∑
n
j=1E[|X j|3]6 τ . Then for every p > 1,(

E
[∣∣∣ n

∑
j=1

X j

∣∣∣p])1/p
> γp ·

(
1−4τ(log(1/τ))p/2

)
.

3.1 Smooth Label Cover

Our reductions require a special variant of the usual Label Cover problem, which is formally defined as
follows.

Definition 3.4. An instance of Smooth Label Cover L (G(V,E),N,M,{πe,v|e ∈ E,v ∈ e}) consists of a
regular connected (undirected) graph G(V,E) with vertex set V and edge set E. Every edge e = (v1,v2)
is associated with projection functions {πe,vi}2

i=1 where πe,vi : [M]→ [N]. A vertex labeling is a mapping
defined on L : V → [M]. A labeling L satisfies edge e = (v1,v2) if πe,v1(L(v1)) = πe,v2(L(v2)). The goal is to
find a labeling which satisfies the maximum number of edges.

The following theorem states the hardness of approximation for the Smooth Label Cover problem and
also describes the various structural properties, including smoothness, that are satisfied by the hard instances.
A proof of the theorem is included in Appendix A.

Theorem 3.5. There exists a constant c0 > 0 such that for any constant integer parameters J,R > 1, it is
NP-hard to distinguish between the following two cases for a Smooth Label Cover instance
L (G(V,E),N,M,{πe,v|e ∈ E,v ∈ e}) with M = 7(J+1)R and N = 2R7JR:
• (YES Case). There is a labeling that satisfies every edge.
• (NO Case). Every labeling satisfies less than a fraction 2−c0R of the edges.

In addition, the instance L satisfies the following properties:
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• (Smoothness) For any vertex w ∈ V , ∀i, j ∈ [M], i 6= j, Pre∼w [π
e,w(i) = πe,w( j)] 6 1/J, where the

probability is over a randomly chosen edge incident on w.
• The degree of the (regular) graph G, which we denote by d is a constant depending only on R and J.
• For any vertex v, edge e incident on v, and any element i ∈ [N], we have |(πe,v)−1(i)| 6 t := 4R; i.e.,
there are at most t = 4R elements in [M] that are mapped to the same element in [N].
• (Weak Expansion)For any δ > 0, let V ′ ⊆ V and |V ′| = δ · |V |, then the number of edges among the
vertices in |V ′| is at least (δ 2/2)|E|.

Note on notation. In the following sections, the parameter n need not denote the size of the instances and its
definition will be made clear at the beginning of each section.

4 Hardness reduction for Subspace(dim−1, p)

In this section, we describe the NP-hardness reduction from Smooth Label Cover to the Lp Subspace Ap-
proximation Problem for a fixed p > 2. Specifically, we will show the following.

Theorem 4.1. For any fixed p > 2 and ε > 0, there is polynomial time reduction from an instance L of
Smooth Label Cover with appropriately chosen parameters J and R to a set of points S⊆ Rn as an instance
of Subspace(n−1, p) such that,

• (Completeness) If L is a YES instance, then Subp(n−1,S) = 1.
• (Soundness) If L is a NO instance, then Subp(n−1,S)> γp(1− ε).

The above implies that it is NP-hard to approximate Subspace(n− 1, p) within a factor of (1− ε)γp for all
ε > 0.

Let the Smooth Label Cover instance be L (G(V,E),N,M,{πe,v|e ∈ E,v ∈ e}). We choose the parame-
ters J andR as part of the analysis in Section 4.4. For convenience let n := |V |. Note that n does not correspond
to the dimension of the point set constructed in the reduction. We do not explicitly calculate the dimension,
but use the notation dim to denote it. The set of points constructed is an instance of Subspace(dim−1, p).
The Euclidean distance of a point from a dimension (dim−1) subspace, i.e., a hyperplane through the origin,
is the same as the magnitude of the dot product of (the vector defining) that point with the unit normal vector
to the subspace. Therefore the problem Subspace(dim−1, p) is the same as computing a unit vector which
minimizes the sum of the pth powers of the dot products of the given points with the vector. Our reduction
will follow this latter formulation, with the goal being to compute such a unit normal vector. The reduction
proceeds in two steps: the first step yields a preliminary instance consisting of a set of points and the second
step applies a folding operation to generate the final instance.

For notational convenience, in this section we will represent vectors with boldface characters.

4.1 Step 1: Preliminary Instance Aprel

We begin by constructing the set of coordinates over which the instance is defined. For any vertex v ∈V , let
Pv be the set of coordinates {(v, i) | i ∈ [M]}, and P = ∪v∈V Pv. In other words, P contains a coordinate
for every label of every vertex. The instanceAprel will be over the spaceRP consisting of points constructed
as follows.
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For every vertex v ∈V , let the set Xv be the set of all points in RP which are zero in the coordinates not
corresponding to v i.e. P \Pv and take the values {−1,1} in the M coordinates Pv corresponding to v.
More formally,

Xv := {x ∈ RP | ∀i ∈ [M], x(v′, i) ∈ {−1,1} if v′ = v and 0 otherwise}.

The instance Aprel consists of the point set X := ∪v∈V Xv.
Consider a vector b ∈ RP . For any vertex v ∈V , define bv to be the vector which is same as b in the M

coordinates Pv and zero in rest of the coordinates. It is easy to see that for any v ∈V ,

Ex∈{−1,1}Pv

[
〈bv,x〉2

]
= ‖bv‖2

2 =
M

∑
j=1

b(v, j)2. (6)

Using the above definition, given Aprel as an instance, the problem of Subspace(dim−1,k) is equivalent to
computing a a unit normal vector b that minimizes Ev∈V

[
Ex∈{−1,1}Pv [|〈bv,x〉|p]

]
. More formally, Aprel as

an instance of Subspace(dim−1,k) is equivalent to the following optimization problem:

min
(
Ev∈V

[
Ex∈{−1,1}Pv [|〈bv,x〉|p]

])1/p

subject to, Ev∈V
[
‖bv‖2

2
]
= 1.

In the next step, we use folding to implicitly induce additional constraints on the structure of the vector b,
which incorporates the projection constraints of the edges and enables a good solution b to be decoded into
a good labeling of the Smooth Label Cover instance L .

4.2 Step 2: Folding and Final Instance A f inal

For any edge e = (u,v) and element j ∈ [N], define the vector he
j as follows,

he
j(w, i) =


1 if w = u and i ∈ (πe,u)−1( j)
−1 if w = v and i ∈ (πe,v)−1( j)
0 otherwise.

The above implies that for any vector b ∈ RP ,

∀e = (u,v) ∈ E, j ∈ [N], b⊥ he
j⇔ ∑

i∈(πe,u)−1( j)

b(u, i) = ∑
i′∈(πe,v)−1( j)

b(v, i′) (7)

We now define the subspace H of RP as: H := span({he
j | e ∈ E, j ∈ [N]}). Let RP = F

⊕
H where

F ⊥ H is a subspace of RP . The point set X constructed in Step 1 is folded over H, i.e. each point in X is
replaced (with multiplicity) with its orthogonal projection on F . Let the resultant set of points be X , which
constitutes the final instance A f inal . The point set as well as the expected solution, say b, are written in some
orthonormal basis for F . Let x∈ X be the orthogonal projection of a point x∈ X onto the subspace F , and let
b ∈ F be the expected solution. Clearly we have 〈b,x〉= 〈b,x〉. Also, since b⊥ H, we have from Equation
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(7),
∀e = (u,v) ∈ E, j ∈ [N], ∑

i∈(πe,u)−1( j)

b(u, i) = ∑
i′∈(πe,v)−1( j)

b(v, i′). (8)

We note that the objective value, which can be written as Ex∈X [|〈b,x〉|p], is unchanged under transformation
of orthonormal basis since it is a function of inner product of vectors. The folding operation only ensures that
the constraints given by Equation (8) are satisfied. Therefore, the instance A f inal of Subspace(dim−1, p) is
equivalent to the following optimization problem over solutions b ∈ RP :

min
(
Ev∈V

[
Ex∈{−1,1}Pv [|〈bv,x〉|p]

])1/p
(9)

subject to ,
Ev∈V

[
‖bv‖2

2
]
= 1 and, (10)

∑i∈(πe,u)−1( j) b(u, i) = ∑i′∈(πe,v)−1( j) b(v, i′), ∀e = (u,v) ∈ E, j ∈ [N]. (11)

Note that the last condition is equivalent to b⊥ H.

4.3 Completeness

If the instance L of Smooth Label Cover is a YES instance then there is a labeling L of the vertices of L
that satisfies all the edges. Using this we construct a solution b∗ to the instance A f inal as follows: for any
vertex v ∈V and element i ∈M, b∗(v, i) is 1 if L(v) = i and 0 otherwise.

Since L satisfies all edges, πe,u(L(u)) = πe,v(L(v)) for all edges e = (u,v). Therefore it is easy to see that
b ⊥ H. Moreover, since there is exactly one nonzero coordinate corresponding to each vertex on which b∗
is 1, we have ‖b∗v‖2 = 1, for all v ∈V . Therefore, b∗ is a valid solution for A f inal with objective value 1.

4.4 Soundness

We assume, towards contradiction, that b ∈ RP is a solution to the instance A f inal such that,

Ev∈V

[
Ex∈{−1,1}Pv [|〈bv,x〉|p]

]
6 γ

p
p (1−η), (12)

where η > 0 is a positive constant. We begin with a lemma upper bounding the `2
2 mass of blocks of coordi-

nates in b corresponding to small sets of vertices. This critically depends on the fact that p > 2.

Lemma 4.2. Let S⊆V be a set of size θ |V |= θn for some 0 < θ < 1. Then, ∑v∈S ‖bv‖2
2 6 γ2

pθ 1−2/pn.

Proof. We need to upper bound β where,

∑
v∈S
‖bv‖2

2 = βn.

Note that the above implies that,

Ev∈S
[
‖bv‖2

2
]
=

β

θ
. (13)
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We know from our assumption that Ev∈V

[
Ex∈{−1,1}Pv [|〈bv,x〉|p]

]
6 γ

p
p . This implies,

γ
p
p > Ev∈V

[[(
Ex∈{−1,1}Pv [|〈bv,x〉|p]

)1/p
]p]

> Ev∈V

[[(
Ex∈{−1,1}Pv

[
|〈bv,x〉|2

])1/2
]p]

(Since p > 2)

= Ev∈V
[
‖bv‖p

2

]
(By Equation (6))

> θEv∈S
[
‖bv‖p

2

]
(by averaging)

> θ
(
Ev∈S

[
‖bv‖2

2
]) p

2 (by Jensen’s Inequality)

= θ

(
β

θ

) p
2

(by Equation (13)).

Therefore, β 6 γ2
pθ 1−2/p which completes the proof of the lemma.

We next introduce the notion, of an irregular vertex : v is said to be irregular if there is a coordinate (v, i)
for some i ∈ [M] such that the value |b(v, i)| is large as compared to ‖bv‖2. Formally we have the following
definition.

Definition 4.3. (τ-irregular vertex) A vertex v ∈ V is said to be τ-irregular if there exists i ∈ [M] such that
|b(v, i)|> τ‖bv‖2. If not, the vertex is referred to as τ-regular.

The following lemma follows from Lemma 2.5 of [26] in an analogous manner to Lemma 5.3. We
therefore omit the proof.

Lemma 4.4. For an appropriately small choice of τ > 0 depending on p the following holds. If v ∈ V
τ-regular then,

Ex∈{−1,1}Pv [|〈bv,x〉|p] > γ
p
p‖bv‖p

2

(
1−
√

τ
)
. (14)

The next lemma shows that for small enough τ , there is a significant fraction of vertices that are τ-
irregular.

Lemma 4.5. Let Sirr be the set of vertices that are τ-irregular and let |Sirr|= θn. Then for a small enough
choice of τ = τ(η , p)> 0 (in terms of η and p), θ = θ(η , p)> 0 is a constant depending only on η and p.

Proof. By Lemma 4.2 we have,

∑
v∈Sirr

‖bv‖2
2 6 γ

2
pθ

1−2/pn

⇔ ∑
v∈V\Sirr

‖bv‖2
2 > n

(
1− γ

2
pθ

1−2/p
)

(15)
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Also, from our initial assumption on the objective value of b given by Equation (12) we have,

γ
p
p (1−η)n > ∑

v∈V
Ex∈{−1,1}Pv [|〈bv,x〉|p]

> ∑
v∈V\Sirr

Ex∈{−1,1}Pv [|〈bv,x〉|p]

> γ
p
p (1−

√
τ)n(1−θ)

(
1

(1−θ)n ∑
v∈V\Sirr

‖bv‖p
2

)
(by Lemma 4.4)

> γ
p
p (1−

√
τ)n(1−θ)Ev∈V\Sirr

[
‖bv‖p

2

]
> γ

p
p (1−

√
τ)n(1−θ)

(
Ev∈V\Sirr‖bv‖2

2
) p

2 (by Jensen’s Inequality)

> γ
p
p (1−

√
τ)n(1−θ)

(
1− γ

2
pθ

1−2/p
) p

2
(by Equation (15)) (16)

From the above, choosing 0 < τ 6 η6, we obtain that θ > 0 is a constant depending only on η and p.
Therefore, at least θ > 0 fraction of the vertices are τ-irregular where 0 < τ 6 η6 and θ = θ(η , p).

We choose an appropriately small value of τ = τ(η , p)> 0 given by the above lemma. To complete the
analysis of the soundness, in the rest of this section we show that the vector b can be decoded into a labeling
for L that satisfies a significant fraction of the its edges, thereby contradicting the soundness property of
Theorem 3.5.

Constructing a good labeling for L

We now describe how to decode the vector b into a labeling for the set of τ-irregular vertices Sirr. Observe
that since |Sirr|> θn, by the Weak Expansion property of Theorem 3.5,

|E(Sirr)| > (θ 2/2)|E|, (17)

where E(Sirr) is the set of edges induced by Sirr. For every vertex v ∈ Sirr, define,

Γ0(v) :=
{

i ∈ [M] | |b(v, i)|> τ

2
‖bv‖2

}
Γ1(v) :=

{
i ∈ [M] | |b(v, i)|> τ

10t
‖bv‖2

}
,

where t = 4R is the parameter from Theorem 3.5. Clearly, for every vertex v ∈ Sirr:

/0 6= Γ0(v)⊆ Γ1(v), |Γ0(v)|6
4
τ2 , and |Γ1(v)|6

100t2

τ2 . (18)

Let v be any vertex in Sirr. Call an edge e incident on v to be “good” for v if πe,v maps the set Γ1(v) injectively
(one to one) into [N]. Using the smoothness property of Theorem 3.5 yields the following bound on the
probability that a random edge incident on v is “good”:

Pre3v [e is “good” for v] > 1− |Γ1(v)|2

J
> 1− 10000t4

τ2J
=: 1−ζ . (19)

Since the graph of L is regular, this implies that the total number of edges induced by Sirr that are not
“good” for at least one of the end points in Sirr is at most 2ζ |E|. Let E ′ ⊆ E(Sirr) be the set of edges
induced by Sirr that are “good” for both endpoints. The above bounds combined with Equation (17) imply that
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|E ′|>
(

θ 2

2 −2ζ

)
|E|. The following lemma shows that the folding constraints enforce a structural property

on the sets Γ0(v) with respect to the edges in E ′.

Lemma 4.6. Let e = (u,v) be any edge in E ′. Then πe,u(Γ0(u))∩πe,v(Γ0(v)) 6= /0.

Proof. Clearly, u and v are τ-irregular. Without loss of generality assume that ‖bu‖2 > ‖bv‖2. Since u is
τ-irregular, there is a coordinate (u, iu) (iu ∈ [M]) such that |b(u, iu)|> τ‖bu‖2. By construction iu ∈ Γ0(u).

Let j0 := πe,u(iu). Since e∈ E ′, (πe,u)−1( j0)∩Γ1(u) = {iu}. This implies that for all i∈ (πe,u)−1( j0) and
i 6= iu, |b(u, i)|< τ

10t ‖bu‖2. Moreover, from Theorem 3.5 |(πe,u)−1( j0)|6 t. Combining these observations
yields, ∣∣∣∣∣ ∑

i∈(πe,u)−1( j0)

b(u, i)

∣∣∣∣∣ >
(

τ− t
(

τ

10t

))
‖bu‖2 =

(
9τ

10

)
‖bu‖2. (20)

We next show that (πe,v)−1( j0)∩Γ0(v) 6= /0, which would imply that j0 ∈ πe,u(Γ0(u))∩ πe,v(Γ0(v)) thus
completing the proof of the lemma.

For a contrapositive assume that (πe,v)−1( j0)∩Γ0(v) = /0. Moreover, since e∈E ′, (πe,v)−1( j0)∩Γ1(v)6
1. This yields the following bound,∣∣∣∣∣ ∑

i′∈(πe,v)−1( j0)

b(v, i′)

∣∣∣∣∣ 6
(

τ

2
+ t
(

τ

10t

))
‖bv‖2 = 0.6τ‖bv‖2. (21)

However, the folding constraints (Equation (8)) imply that,

∑
i∈(πe,u)−1( j0)

b(u, i) = ∑
i′∈(πe,v)−1( j0)

b(v, i′),

which is a contradiction to Equations (20) and (21) combined with ‖bu‖2 > ‖bv‖2 > 0 (by the definition of
Sirr). This completes the proof of the lemma.

Let L∗ be a labeling to the vertices in Sirr constructed by independently and uniformly at random choosing
a label from the set Γ0(v) for every vertex v∈ Sirr. By Lemma 4.6, every edge e = (u,v)∈ E ′ is satisfied with
probability at least 1

|Γ0(u)||Γ0(v)| >
τ4

16 (by Equation (18)). Therefore, in expectation the total fraction ∆ of edges

satisfied is bounded by, ∆ >
(

τ4

16

)(
θ 2

2 −2ζ

)
. Choosing J > (4R)5 and R� 1 large enough (depending on

η) so that ζ � θ one can ensure that ∆ > 2−c0R thereby yielding a contradiction to the soundness of Theorem
3.5.

5 Hardness Reduction for QM(p)

In this section we shall describe the NP-hardness reduction from Smooth Label Cover to the Lp Quadratic
Grothendieck Maximization Problem QM(p). Specifically we will show the following:

Theorem 5.1. For any fixed p > 2 and constant ε > 0, there is a polynomial time reduction from an instance
L of Smooth Label Cover with appropriately chosen parameters J and R to an instance A of QM(p) such
that,
• (Completeness) If L is a YES instance, then Valp(A) = 1.
• (Soundness) If L is a NO instance, then Valp(A)6 γ−2

p (1+ ε).
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The above implies that it is NP-hard to approximate QM(p) within a factor of (1− ε)γ2
p for all ε > 0.

The instance of QM(p) in our reduction is not explicitly given as a matrix. Instead we construct a set of
coordinates and a quadratic form over any mapping from the set of coordinates to real numbers. A solution
to this instance of QM(p) would be a mapping that maximizes the value of the quadratic form subject to the
appropriate bound on the pth norm of the mapping. While the initial construction would not ensure that the
diagonal terms of the quadratic form are all 0, our analysis shall prove that setting them to zero would not
change the optimum of the instance significantly.

We start with an instance of Smooth Label Cover L (G(V,E),N,M,{πe,v|e ∈ E,v ∈ e}) as given in The-
orem 3.5. The parameters J and R shall be chosen appropriately for the soundness analysis of the reduction
in Section 5.2. Let n := |V |. Define the parameters B and D as follows:

D := d ·n12 · |E|2 ·2M ·M and B := n10 · |E|2 ·2M, (22)

where d is the degree of the (regular) graph G of the instance L as given in Theorem 3.5. The first step of
our construction is to define the coordinates.

Coordinates. For each vertex v ∈V there are D sets of coordinatesC j
v for j = 1, . . . ,D. Each set C j

v consists
of 2M coordinates indexed by all elements of {−1,1}M, and we denote the coordinate corresponding to
x ∈ {−1,1}M by C j

v(x). Let,
C :=

⋃
v∈V

⋃
j∈D

⋃
x∈{−1,1}M

{C j
v(x)}

denote the set of all coordinates.

LetF : C 7→R be amapping from the set of coordinates to real numbers. The quadratic formwe construct
shall be defined over F . Before we do so, we need to define some additional quantities. Given F we define
f j
v , fv : {−1,1}M 7→ R for all v ∈V and j ∈ [D] by setting,

f j
v (x) = F(C j

v(x)) and, (23)
fv(x) = E j∈[D][ f

j
v (x)] ∀x ∈ {−1,1}M. (24)

In other words, fv is a point-wise average of f j
v over all j ∈ [D]. The Lq norm of F for q > 1 is given by:

‖F‖q :=
(
Ev∈VE j∈[D]

[
‖ f j

v ‖q
q
])1/q

, (25)

where ‖ f j
v ‖q =

(
Ex∈{−1,1}M | f j

v (x)|q
)1/q

. Now, since ‖ f‖q
q is a convex function for q> 1, we have by Jensen’s

inequality,
‖F‖q >

(
Ev∈V‖ fv‖q

q
)1/q

. (26)

We note that the functions fv (v ∈ V ) can be written in their Fourier expansion with the basis functions χS

(S⊆ [M]) with Fourier coefficients f̂v(S). Note that the Fourier coefficients are linear forms on the values of
the function fv. In our construction the quadratic form for F shall be defined as a quadratic form over the
Fourier coefficients. For convenience, we shall abuse notation to denote the Fourier coefficients correspond-
ing to singleton sets {i} (i ∈ [M]) by f̂v(i).

The Quadratic Form. We define quadratic forms on F : Acons(F),Adict(F) and Aprel(F) in terms of the
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Fourier coefficients of the functions fv (v ∈V ) as follows.

Acons(F) := −BEe=(u,w)

 ∑
j∈[N]

(
∑

i∈(πe,u)−1( j)

f̂u(i)− ∑
i′∈(πe,w)−1( j)

f̂w(i′)

)2


−BEv∈V

 ∑
S⊆[M]
|S|6=1

f̂v(S)2

 , (27)

Adict(F) = Ev∈V

[
∑

i∈[M]

f̂u(i)2

]
, (28)

and,
Aprel(F) = Acons(F)+Adict(F). (29)

In our reduction F denotes a solution to our instance of QM(p) over which the quadratic form is defined.
Therefore, F satisfies the bound on its p-norm: ‖F‖p = 1.

We shall prove the completeness and soundness claims for the quadratic form Aprel(F). However, we
note that the Aprel(F) may have non-zero diagonal terms. We address this issue in Section 5.3 wherein we
show the existence of another quadratic form A f in(F) such that |A f in(F)−Aprel(F)|6 1/n for all F such that
‖F‖p 6 1, which then suffices to prove Theorem 5.1.

Before we proceed, we state the instance of QM(p) as an optimization problem. The objective is to
compute:

max
F :C 7→R

Aprel(F) (30)

s.t. ‖F‖p = 1. (31)

5.1 Completeness

Suppose the Smooth Label Cover instance L has a labeling σ : V 7→ [M] that satisfies all edges. Then
construct the vector F by defining f j

v , for all v ∈V, j ∈ [D], as follows:

f j
v (x) = x(σ(v)), ∀x ∈ {−1,1}M.

The above also implies that fv(x) = x(σ(v)) for all x∈ {−1,1}M, i.e. fv is the ‘dictator’ function given by the
σ(v)-th coordinate. Therefore, we obtain f̂v(σ(v)) = 1 and f̂v(S) = 0 for all S 6= {σ(v)}. Clearly, ‖F‖p = 1
since F is either 1 or −1 at any coordinate.

To analyze the value of Aprel(F)we observe that πe,u(σ(u)) = πe,w(σ(w)) for all edges e = (u,w), which
along with the fact that fu(x) = x(σ(u)) and fw(x) = x(σ(w)) implies that Acons(F) = 0. Also, Adict(F) = 1,
which gives us that Aprel(F) = 1.

5.2 Soundness

For a contradiction we assume that there is a vector F such that Aprel(F) > γ−2
p (1+η) for some constant

η > 0. We shall show that this implies the existence of a labeling to L that satisfies a significant fraction of
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edges depending only on η .
The following is a straightforward upper bound on Adict(F):

Adict(F) = Ev∈V

[
∑

i∈[M]

f̂v(i)2

]
6 Ev∈V

[
‖ fv‖2

2
]

6
(
Ev∈V

[
‖ fv‖p

2

])2/p (By Jensen’s Inequality)

6
(
Ev∈V

[
‖ fv‖p

p
])2/p

(since ‖ f‖p > ‖ f‖2)

6 ‖F‖2
p 6 1. (32)

For every v ∈V define: av
1 := ∑|S|6=1,S⊆[M] | f̂v(S)| and av

2 :=
(

∑|S|6=1,S⊆[M] | f̂v(S)|2
)1/2

. Clearly, av
1 6 2M/2av

2.
Moreover, since Aprel(F)> 0, Equations (27), (29) and (32) along with the Cauchy-Schwarz inequality yield
the following:

1
B

> Ev∈V
[
(av

2)
2]

> (Ev∈V [av
2])

2

>
(
Ev∈V

[
2−M/2av

1

])2

⇒
(

2M

B

)1/2

> Ev∈V [av
1]

⇒
(

n22M

B

)1/2

> max
v∈V

av
1 =: amax (33)

For the remainder of the analysis our focus shall be on the degree one Fourier spectrum of the functions fv.
Define, for every vertex v: f=1

v := ∑i∈[M] f̂v(i)χ{i}, i.e. the function obtained by taking only the degree one
Fourier spectrum of fv. Clearly, we have | fv(x)− f=1

v (x)| 6 amax for all x ∈ {−1,1}M and v ∈ V . By the
triangle inequality for Lq,L′q norms (for q,q′ > 1) this implies,∣∣‖ fv‖q−‖ f=1

v ‖q
∣∣6 amax ∀v ∈V (34)

and,
∣∣∣∣(Ev∈V

[
‖ fv‖q′

q

])1/q′

−
(
Ev∈V

[
‖ f=1

v ‖q′
q

])1/q′
∣∣∣∣6 amax. (35)

By our setting of B, amax is at most 1/n4. Since p > 2 is a fixed constant, setting q = q′ = p in Equation (35)
implies (for large enough n),

Ev∈V
[
‖ f=1

v ‖p
p
]
6
(
‖F‖p +1/n4)p

6 1+1/n3. (By Equations (26), (31)) (36)

Using Jensen’s inequality we also obtain that,

Ev∈V
[
‖ f=1

v ‖2
p
]
6
(
Ev∈V

[
‖ f=1

v ‖p
p
])2/p

6
(
‖F‖p +1/n4)2

6 1+1/n3. (37)

Using the above we obtain the following upper bound on the sum of the values ‖ f=1
v ‖2

2 for small sets of
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vertices.

Lemma 5.2. Let S⊆V be a set of size θ |V |= θn for some 0 < θ < 1. Then,

∑
v∈S
‖ f=1

v ‖2
2 6 θ

1−2/pn(1+1/n3). (38)

Proof. We need to upper bound β where,

∑
v∈S
‖ f=1

v ‖2
2 = βn.

Note that the above implies that,

Ev∈S
[
‖ f=1

v ‖2
2
]
=

β

θ
. (39)

Equation (36) yields Ev∈V
[
‖ f=1

v ‖
p
p
]
6 1+1/n3. This implies,

1+1/n3 > Ev∈V
[
‖ f=1

v ‖
p
2

]
(since ‖ f‖p > ‖ f‖2)

> θEv∈S
[
‖ f=1

v ‖
p
2

]
(by averaging)

> θ
(
Ev∈S

[
‖ f=1

v ‖2
2
]) p

2 (by Jensen’s Inequality)

= θ

(
β

θ

) p
2

(by Equation (39)).

Therefore, β 6 θ 1−2/p(1+ 1/n3)2/p 6 θ 1−2/p(1+ 1/n3), (since p > 2) which completes the proof of the
lemma.

Before proceeding we choose a parameter τ > 0 which we shall later fix appropriately to depend only
on η and p. We now define the following set V ′ ⊂ V of vertices which have significantly large “mass” as
follows.

V ′ := {v ∈V | ‖ f=1
v ‖2

2 > 1/n3} (40)

Further, define a subset Sirr ⊆V ′ as:

Sirr := {v ∈V ′ | ∃i ∈ [M] s.t. | f̂=1
v (i)|> τ‖ f=1

v ‖2} (41)

We shall refer to Sirr as the set of τ-irregular vertices. Reusing notation for convenience, we assume that
|Sirr|= θn. Our goal is to show that θ is a significantly large constant depending on η and p (for an appro-
priate choice of τ , again depending on η and p). Lemma 5.2 applied to Sirr directly gives the following:

∑
v∈Sirr

‖ f=1
v ‖2

2 6 θ
1−2/pn(1+1/n3). (42)
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We also note that since Acons(F)6 0 by definition, Aprel(F)6 Adict(F) = Ev∈V
[
‖ f=1

v ‖2
2
]
. Therefore,

γ
−2
p (1+η)n 6 ∑

v∈V
‖ f=1

v ‖2
2

= ∑
v∈V ′\Sirr

‖ f=1
v ‖2

2 + ∑
v∈Sirr

‖ f=1
v ‖2

2 + ∑
v∈V\V ′

‖ f=1
v ‖2

2

6 ∑
v∈V ′\Sirr

‖ f=1
v ‖2

2 +θ
1−2/pn(1+1/n3)+1/n2,

where we used Equation (42) along with the bound ∑v∈V\V ′ ‖ f=1
v ‖2

2 6 n · (1/n3) = 1/n2. Rearranging the
above we obtain,

∑
v∈V ′\Sirr

‖ f=1
v ‖2

2 > γ
−2
p (1+η)n−θ

1−2/pn(1+1/n3)−1/n2. (43)

To show that θ is large, we need to upper bound the LHS of the above equation. For this we use the following
lemma which follows from Lemma 3.3.

Lemma 5.3. For an appropriately small choice of τ > 0 depending on p the following holds. For all vertices
v ∈V ′ \Sirr,

‖ f=1
v ‖2

p > γ
2
p‖ f=1

v ‖2
2
(
1−
√

τ
)
. (44)

Proof. We consider probability space given by the uniform distribution over x ∈ {−1,1}M. Defining Xi :=

xi

(
f̂v(i)
‖ f=1

v ‖2

)
we observe Xi are Bernoulli variables with E[Xi] = 0 for all 1 6 i 6 n and ∑

n
j=1E[X2

j ] = 1.
Moreover, since v ∈ V ′ \Sirr, ∑

n
j=1E[|X j|3] 6 τ . Applying Lemma 3.3 and observing that for small enough

τ > 0 depending on p, (1−4τ(log(1/τ))p/2)2 > (1−
√

τ), we obtain the desired bound.

The above analysis yields the following sequence of inequalities which gives us a lower bound on θ

depending on η .

(1+1/n3)n > ∑
v∈V
‖ f=1

v ‖2
p (By Equation (37))

> ∑
v∈V ′\Sirr

‖ f=1
v ‖2

p

> γ
2
p
(
1−
√

τ
)

∑
v∈V ′\Sirr

‖ f=1
v ‖2

2 (By Lemma 5.3)

>
(
γ

2
p
(
1−
√

τ
))(

γ
−2
p (1+η)n−θ

1−2/pn(1+1/n3)−1/n2
)

= n(1−
√

τ)
(

1+η− γ
2
pθ

1−2/p(1+1/n3)− γ
2
p/n
)

Choosing 0< τ 6 η6 in the above inequality, and using the fact that p> 2 is a fixed constant, for large enough
n, we obtain that θ > 0 is (at least) a positive constant depending on η and p. Therefore, Sirr contains at
least a constant fraction of vertices in V . To complete the soundness analysis we shall use this to obtain a
substantially good labeling to the instance L .
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Recovering a good labeling to L

F shall be decoded into a labeling for the set of τ-irregular vertices Sirr. Observe that since |Sirr| > θn, by
the Weak Expansion property of Theorem 3.5,

|E(Sirr)| > (θ 2/2)|E|, (45)

where E(Sirr) is the set of edges induced by Sirr. For every vertex v ∈ Sirr, define,

Γ0(v) :=
{

i ∈ [M] | | f̂=1
v (i)|> τ

2
‖ f=1

v ‖2

}
and,

Γ1(v) :=
{

i ∈ [M] | | f̂=1
v (i)|> τ

10t
‖ f=1

v ‖2

}
,

where t = 4R is the parameter from Theorem 3.5. Clearly, for every vertex v ∈ Sirr:

/0 6= Γ0(v)⊆ Γ1(v), |Γ0(v)|6
4
τ2 , and |Γ1(v)|6

100t2

τ2 . (46)

Let v be any vertex in Sirr. Call an edge e incident on v to be “good” for v if πe,v maps the set Γ1(v)
injectively (one to one) into [N]. Using the smoothness property of Theorem 3.5 yields the following bound
on the probability that a random edge incident on v is “good”:

Pre3v [e is “good” for v] > 1− |Γ1(v)|2

J
> 1− 10000t4

τ4J
=: 1−ζ . (47)

Since the graph ofL is regular, this implies that the total number of edges induced by Sirr that are not “good”
for at least one of the end points in Sirr is at most 2ζ |E|. Let E ′ ⊆ E(Sirr) be the set of edges induced by Sirr

that are “good” for both endpoints. The above bounds combined with Equation (45) imply,

|E ′|>
(

θ 2

2
−2ζ

)
|E|. (48)

The following lemma shows that the constraints given by Equation (27) enforce a structural property on the
sets Γ0(v) with respect to the edges in E ′.

Lemma 5.4. Let e = (u,v) be any edge in E ′. Then πe,u(Γ0(u))∩πe,v(Γ0(v)) 6= /0.

Proof. Clearly, u and v are in Sirr. Without loss of generality assume that ‖ f=1
u ‖2 > ‖ f=1

v ‖2 > 1/n3 where
the lower bound is because Sirr is a subset of V ′. Since u is τ-irregular, there is exists iu ∈ [M] such that
| f̂=1

u (iu)|> τ‖ f=1
u ‖2. By construction iu ∈ Γ0(u).

Let j0 := πe,u(iu). Since e∈ E ′, (πe,u)−1( j0)∩Γ1(u) = {iu}. This implies that for all i∈ (πe,u)−1( j0) and
i 6= iu, | f̂=1

u (i)|< τ

10t ‖ f=1
u ‖2. Moreover, from Theorem 3.5 |(πe,u)−1( j0)|6 t. Combining these observations

yields, ∣∣∣∣∣ ∑
i∈(πe,u)−1( j0)

f̂=1
u (i)

∣∣∣∣∣ >
(

τ− t
(

τ

10t

))
‖ f=1

u ‖2 =

(
9τ

10

)
‖ f=1

u ‖2. (49)

We shall now show that (πe,v)−1( j0)∩Γ0(v) 6= /0, which would imply that j0 ∈ πe,u(Γ0(u))∩πe,v(Γ0(v)) thus
completing the proof of the lemma.
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For a contrapositive assume that (πe,v)−1( j0)∩Γ0(v) = /0. Moreover, since e∈E ′, (πe,v)−1( j0)∩Γ1(v)6
1. This yields the following bound,∣∣∣∣∣ ∑

i′∈(πe,v)−1( j0)

f̂=1
v (i′)

∣∣∣∣∣ 6
(

τ

2
+ t
(

τ

10t

))
‖ f=1

v ‖2 = 0.6τ‖ f=1
v ‖2 6 0.6τ‖ f=1

u ‖2. (50)

Noting that for any vertex w ∈V and i ∈ [M], f̂=1
w (i) = f̂w(i), the constraints given by Equation (27) imply,∣∣∣∣∣ ∑

i∈(πe,u)−1( j0)

f̂=1
u (i) − ∑

i′∈(πe,v)−1( j0)

f̂=1
v (i′)

∣∣∣∣∣6 |E|√B
6

1
n5 ,

by our setting of B. Since τ > 0 is a constant, this is a contradiction to Equations (49) and (50) combined
with ‖ fu‖2 > 1/n3, for large enough n. This completes the proof of the lemma.

Let L∗ be a labeling to the vertices in Sirr constructed by independently and uniformly at random choosing
a label from the set Γ0(v) for every vertex v ∈ Sirr. By Lemma 5.4, every edge e = (u,v) ∈ E ′ is satisfied
with probability at least 1

|Γ0(u)||Γ0(v)| >
τ4

16 (by Equation (46)). Therefore, in expectation the total fraction ∆ of
edges satisfied is lower bounded by,

∆ >

(
τ4

16

)(
θ 2

2
−2ζ

)
.

Choosing J > (4R)5 and u� 1 large enough (depending on η) so that ζ � θ one can ensure that ∆ >
2−c0R thereby yielding a contradiction to the soundness of Theorem 3.5. This completes the analysis of the
soundness case.

5.3 Removing the Diagonal Terms

In this section we show that there is a quadratic form A f in(F) with no diagonal entries, such |A f in(F)−
Aprel(F)|6 1/n for F such that ‖F‖p = 1. Our reduction would output a slightly scaled version of A f in(F)
as the quadratic form to ensure that in the completeness case of Theorem 5.1 the optimum is at least 1. Since
the scaling is by at most a factor of (1+1/n) the error induced in the soundness case can be absorbed in the
constant ε > 0 of Theorem 5.1, thus completing its proof. The rest of this section is devoted to computing
A f in(F). We first note that there are two sources of the diagonal terms in Aprel(F):
(i) expressions of the form f̂v(S)2 for some v ∈V and S⊆ [M] and,

(ii) expressions of the form
(

∑s∈(πe,v)−1(r) f̂v(s)
)2

for some v ∈V , e∼ v and r ∈ [N].
We shall analyze each of the above separately as follows.

For any vertex v ∈V and set S⊆ [M] we have,

f̂v(S)2 =

(
E j∈[D]

[
f̂ j
v (S)

])2

=
1

D2 · ∑
j1, j2∈[D]

f̂ j1
v (S) f̂ j2

v (S)

=
1

D2 · ∑
j1, j2∈[D]

j1 6= j2

f̂ j1
v (S) f̂ j2

v (S)+
1

D2 · ∑
j∈[D]

f̂ j
v (S)2. (51)
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Note that the diagonal terms are a consequence of only the second term in the expression in Equation (51).
Therefore, the quadratic form f̂v(S)2−Tv(S) has no diagonal terms where,

Tv(S) :=
1

D2 · ∑
j∈[D]

f̂ j
v (S)2, (52)

for v ∈V and S⊆ [M]. Note that Tv(S)> 0. In addition we have,

Ev∈V

[
∑

S⊆[M]

Tv(S)

]
= Ev∈V

[
∑

S⊆[M]

1
D2 · ∑

j∈[D]

f̂ j
v (S)2

]

= Ev∈V

[
1

D2 ∑
j∈[D]

∑
S⊆[M]

f̂ j
v (S)2

]

=
1
D

(
Ev∈VE j∈[D]

[
∑

S⊆[M]

f̂ j
v (S)2

])

=
1
D

(
Ev∈VE j∈[D]

[
‖ f j

v ‖2
2
])

=
1
D
‖F‖2

2 6
1
D
‖F‖2

p =
1
D
. (53)

Now consider an expression of the form
(

∑s∈(πe,v)−1(r) f̂v(s)
)2

. We have,

(
∑

s∈(πe,v)−1(r)

f̂v(s)

)2

=

(
E j∈[D]

[
∑

s∈(πe,v)−1(r)

f̂ j
v (s)

])2

=
1

D2 · ∑
j1, j2∈[D]

j1 6= j2

[(
∑

s∈(πe,v)−1(r)

f̂ j1
v (s)

)(
∑

s∈(πe,v)−1(r)

f̂ j2
v (s)

)]

+
1

D2 · ∑
j∈[D]

(
∑

s∈(πe,v)−1(r)

f̂ j
v (s)

)2

(54)

Clearly, the contribution to the diagonal entries comes from the last term in the above sum. Therefore, the
quadratic form (

∑
s∈(πe,v)−1(r)

f̂v(s)

)2

−Re,v,r ,

does not have any diagonal entries where,

Re,v,r =
1

D2 · ∑
j∈[D]

(
∑

s∈(πe,v)−1(r)

f̂ j
v (s)

)2

(55)
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By Cauchy-Schwartz inequality we have that,

Re,v,r 6
1

D2 · ∑
j∈[D]

|(πe,v)−1(r)| ∑
s∈(πe,v)−1(r)

f̂ j
v (s)2

6
1

D2 · ∑
j∈[D]

M ∑
s∈(πe,v)−1(r)

f̂ j
v (s)2 (56)

Since the graph of L is regular, we have that,

Ee=(u,w)∈E

[
∑

r∈[N]

(Re,u,r +Re,w,r)

]
= 2MEv∈V

[
1

D2 ∑
j∈[D]

∑
s∈[M]

f̂ j
v (s)2

]

6
2M
D

, (57)

where the last inequality follows from Equation (53).
Again observing that the graph of L is regular, it can be seen that Acons(F) can be written as,

Acons(F) = −B ·Ee=(u,w)∈E

 ∑
r∈[N]

( ∑
s∈(πe,u)−1(r)

f̂u(s)

)2

+

(
∑

s′∈(πe,w)−1(r)

f̂w(s′)

)2


−B ·Ev∈V

 ∑
S⊆[M]
|S|6=1

f̂v(S)2


+Across(F)

whereAcross(F) is a quadratic form involving terms of the type f̂u(i) f̂w( j)where u,w∈V, u 6=w and i, j∈ [M],
and therefore does not contribute any diagonal terms. Defining A∗cons(F) as,

A∗cons(F) = Acons(F)+BEe=(u,w)∈E

[
∑

r∈[N]

(Re,u,r +Re,w,r)

]

+BEv∈V

[
∑

S⊆[M]
|S|6=1

Tv(S)

]
(58)

we see that A∗cons(F) does not contain any diagonal terms. Similarly, defining A∗dict(F) as,

A∗dict(F) = Adict(F)−Ev∈V

 ∑
S′⊆[M]
|S′|=1

Tv(S′)

 (59)

it can be seen that A∗dict(F) does not contain any diagonal terms. Let A f in(F) = A∗cons(F)+A∗dict(F). Using
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Equations (53), (57), (58) and (59) it is easy to see that,

|A∗cons(F)−Acons(F)|6 2BM+B
D

and |A∗dict(F)−Adict(F)|6 1
D
.

Therefore, we obtain the desired bound,∣∣A f in(F)−Aprel(F)
∣∣6 2BM+B+1

D
6 1/n, (60)

by our setting of B and D.

6 Approximation for QM(p)

In this section we shall prove the following theorem.

Theorem 6.1. For any fixed p > 2, Vecp(A) 6 γ2
p ·Valp(A) for any instance A of QM(p). This implies a

polynomial time γ2
p approximation for QM(p).

Furthermore, for all constants ε > 0, there is a polynomial time (randomized) rounding procedure that
rounds the solution to Vecp(A) to obtain a (1+ ε)γ2

p approximate solution to Valp(A).

Let A = (ai j)
n
i, j=1 be an n× n symmetric matrix with diagonal entries all zero, given as an instance of

QM(p) for a fixed p > 2. We have,

Valp(A) = max

{
n

∑
i, j=1

ai jxix j : {x1, . . . ,xn} ⊆ R,
n

∑
i=1
|xi|p 6 1

}
. (61)

As shown in Kindler et al. [26] the above can be relaxed to the following convex program,

Vecp(A) = max

{
n

∑
i, j=1

ai j〈ui,u j〉 : {u1, . . . ,un} ⊆ L2,
n

∑
i=1
‖ui‖p

2 6 1

}
. (62)

Let v1, . . . ,vn denote an optimal solution to the above convex program. Let h1, . . . ,hn be mean zero Gaussian
random variables obtained by defining hi := 〈G,vi〉 (1 6 i 6 n), where G is a random Gaussian vector in the
space spanned by v1, . . . ,vn. It is easy to see that the following properties are satisfied.

n

∑
i=1

(
E[h2

i ]
)p/2

6 1 and E

[
n

∑
i, j=1

ai jhih j

]
= Vecp(A). (63)
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Now we simply note that,

Vecp(A) = E

[
n

∑
i, j=1

ai jhih j

]

= E

( n

∑
k=1
|hk|p

)2/p[
∑

i, j=1
ai j

(
hi

(∑n
k=1 |hk|p)1/p

)(
h j

(∑n
k=1 |hk|p)1/p

)]
6 E

( n

∑
k=1
|hk|p

)2/p

·Valp(A)

 (By Definition of Valp(A))

6

(
n

∑
k=1

E [|hk|p]

)2/p

Valp(A) (By Jensens Inequality and since p > 2)

=

(
n

∑
k=1

γ
p
p
(
E
[
h2

k
])p/2

)2/p

Valp(A) (By Definition of γp and since hk is Gaussian)

6 γ
2
pValp(A) (By Equation (63))

which is the upper bound we wanted. Note that the upper bound is obtained directly without rounding the
vectors. To complete the proof of Theorem 6.1 we need to demonstrate a polynomial time rounding algorithm
that extracts a γ2

p(1+δ ) approximate solution x∗1, . . . ,x
∗
n toValp(A) from the vectors v1, . . . ,vn for any constant

δ > 0. This shall be our goal in the remainder of the section.
Before we do so we can first assume without the loss of generality that

|a12|= 1 = max
16i, j6n

|ai j|, (64)

by appropriately relabeling the entries of the matrix A and scaling them. Setting x1 = 1/2 and x2 = a12/|a12|
and x3, . . . ,xn = 0 we obtain that

Vecp(A)> Valp(A)> 1/4. (65)

The following is the rounding algorithm that we shall analyze.

Algorithm Round(A,{v1, . . . ,vn}):

1. Let T := n22. Sample T random Gaussian vectors G1, . . . ,GT in the span of v1, . . . ,vn.

2. Define random variables z(t)i := 〈Gt ,vi〉 for all 1 6 t 6 T and 1 6 i 6 n. In addition define

x(t)i :=
z(t)i(

∑
n
k=1 |z

(t)
j |p
)1/p ,

and,

∆t :=
n

∑
i, j=1

ai jx
(t)
i x(t)j .

3. Let t∗ ∈ {1, . . . ,T} be such that ∆t∗ = max16t6T ∆t . Output x∗1, . . . ,x
∗
n as the solution where x∗i = x(t

∗)
i
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for 1 6 i 6 n.

Let Et denote the expectation over the uniformly at random choice of t from 1, . . . ,T . We begin with the
following lemma.

Lemma 6.2. Given the random variables constructed in the procedure Round(A,{v1, . . . ,vn}), with proba-
bility at least 1−1/n8 over the choice of G1, . . . ,GT the following inequality holds,

n

∑
i, j=1

ai jEt [z
(t)
i z(t)j ]> (1−8/n2)Vecp(A). (66)

Proof. We begin by ignoring the terms corresponding to pairs i, j (1 6 i, j 6 n) such that 〈vi,v j〉 is very
small. Formally, Let R := {(i, j) ∈ [n]× [n] |

〈
vi,v j〉

∣∣> 1/n4}. We have,∣∣∣∣∣ ∑
(i, j)∈R

ai j〈vi,v j〉−
n

∑
i, j=1

ai j〈vi,v j〉

∣∣∣∣∣ 6 ∑
(i, j)6∈R

∣∣ai j〈vi,v j〉
∣∣

6 ∑
(i, j)6∈R

|ai j|
(

1
n4

)
6 n2

(
1
n4

)
= 1/n2. (By Equation (64)) (67)

Now consider any (i, j)∈ R. As before, we have Gaussian random variables hi and h j such that E[hih j] =
〈vi,v j〉. Moreover, since (i, j) ∈ R, |E[hih j]|> 1/n4. We also need a bound on the variance of hih j. Clearly,
Var[hih j] 6 E[h2

i h2
j ]. Also, from Equation (63) we have that E[h2

i ],E[h2
j ] 6 1. Therefore, E[h2

i h2
j ] is upper

bounded by E[g4] = 3 where g is a standard Gaussian variable with variance 1. We note that over the choice
of G1, . . . ,GT , the random variables z(t)i z(t)j are identically distributed as hih j for all 1 6 t 6 T . Moreover,
since G1, . . . ,GT are independent Gaussian vectors, the random variables z(t)i z(t)j are also independent for
1 6 t 6 T . Therefore,

Var
[
Et [z

(t)
i z(t)j ]

]
6

Var[hih j]

T
6

1
n20 , (68)

by our choice of T and where the variance is over the choice of G1, . . . ,GT . Moreover, since E
[
Et [z

(t)
i z(t)j ]

]
=

E[hih j], we have the following bound using Chebyshev’s inequality.

Pr
[∣∣∣Et [z

(t)
i z(t)j ]−E[hih j]

∣∣∣> 1/n5
]
6 1/n10. (69)

Since the above analysis holds for all pairs (i, j)∈ R, using a union bound over all pairs the above implies
that with probability at least 1−1/n8, the following holds,∣∣∣∣∣ ∑

(i, j)∈R
ai jEt [z

(t)
i z(t)j ]− ∑

(i, j)∈R
ai jE[hih j]

∣∣∣∣∣6 (1/n5) ∑
(i, j)∈R

ai j 6 1/n3, (70)

where the final inequality is obtained using Equation (64). Combining the above with Equation (67) implies
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that the following holds with probability at least 1−1/n8,∣∣∣∣∣ n

∑
i, j=1

ai jEt [z
(t)
i z(t)j ]−

n

∑
i, j=1

ai j〈vi,v j〉

∣∣∣∣∣6 1/n2 +1/n3 6 2/n2

This implies that with probability at least 1−1/n8,

n

∑
i, j=1

ai jEt [z
(t)
i z(t)j ]> Vecp(A)−2/n2 > (1−8/n2)Vecp(A),

where the last inequality follows from Equation (65). This completes the proof of the lemma.

The next lemma also proves a similar bound for the pth moments of the variables Gaussian variables hi.

Lemma 6.3. With probability at least 1− 1/n8 over the choice of G1, . . . ,GT the following holds for every
i = 1, . . . ,n. ∣∣∣Et [|z(t)i |

p]−E[|hi|p]
∣∣∣6 1/n4. (71)

Proof. Let us fix i ∈ {1, . . . ,n} for the moment. As noted before, over the choice of G1, . . . ,GT the random
variables z(t)i , 1 6 t 6 T , are independent random variables distributed identically to hi. Now we have,

Var[|hi|p]6 E[|hi|p]6 γ
p
p (E[|h2

i |])2/p 6 γ
p
p ,

where the second last inequality is by the definition of γp and the last inequality uses Equation (63). Since
z(t)i are independent for 1 6 t 6 T , this implies,

Var
[
Et [|z(t)i |

p]
]
6

Var[|hi|p]
T

6
γ

p
p

n22 6
1

n20 , (72)

for large enough n. Therefore, by Chebyshev’s inequality we obtain,

Pr
[∣∣∣Et [|z(t)i |

p]−E[|hi|p]
∣∣∣> 1/n5

]
6 1/n10. (73)

Taking a union bound over all i = 1, . . . ,n and rearranging Equation (73) proves the lemma.

We are now ready to prove the desired bounds on the performance of the rounding algorithm
Round(A,{v1, . . . ,vn}). For this we need to prove a upper bound on Vecp(A) in terms of ∆∗. This is shown
through the following series of inequalities implied by the two previous lemmas whose conditions hold with
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probability at least 1−2/n8.

(1−8/n2)Vecp(A) 6 Et

[
n

∑
i, j=1

ai jz
(t)
i z(t)j

]
(By Lemma 6.2)

6 Et

[
(

n

∑
k=1
|z(t)k |

p)2/p
n

∑
i, j=1

ai j

(
z(t)i

(∑n
k=1 |z

(t)
k |p)1/p

)(
z(t)j

(∑n
k=1 |z

(t)
k |p)1/p

)]

6 Et

[
(

n

∑
k=1
|z(t)k |

p)2/p
∆
∗

]
(By the definition of ∆

∗)

6

(
n

∑
k=1

Et [|z(t)k |
p]

)2/p

∆
∗ (By Jensen’s inequality since p > 2)

6

(
n

∑
k=1

[
E[|hk|p]+1/n4])2/p

∆
∗ (By Lemma 6.3)

=

(
n

∑
k=1

[
γ

p
p (E[|hk|2])p/2 +1/n4

])2/p

∆
∗ (By Definition of γp)

6 γ
2
p
(
1+1/n3)2/p

∆
∗. (By Equation (63))

Since the parameter n is large enough the above analysis proves the approximation achieved by the rounding
algorithm. This completes the proof of Theorem 6.1 and concludes this section.
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A Construction of Smooth Label Cover and Proof of Theorem 3.5

An instance φ of Max-3-SAT(5) is a 3-CNF formula in which each variable occurs in exactly 5 clauses. The
PCP Theorem [7, 6] states that it is NP-hard to decide whether φ is satisfiable (YES instance), or at most
1− ε0 fraction of its clauses can be satisfied by any assignment, for some universal constant ε0 > 0 (NO
instance).

Consider the following reduction fromMax-3-SAT(5) to a 2-Prover 1-Round Game. Given an instance φ

of Max-3-SAT(5), the verifier chooses a subsetC of (J+1)R clauses at random, and a subsetC ′ of R clauses
from C . Independently for each clause in C ′, the verifier chooses a variable uniformly at random from those
in the clause. Let the collection of these variables be X . The verifier sends the set C of clauses to the first
prover, and the sets C \C ′ of clauses and X of variables to the second prover. The verifier expects back
from each prover an assignment to all the variables received by it, and accepts if the answers of the provers
are consistent on the common variables and satisfy all the clauses in C .
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The above construction is due to Khot [20], and is equivalent to a bipartite Label Cover instance B on
vertex setsU andV , with projections πvu : [M] 7→ [N] for edges between u∈U and v∈V , where M = 7(J+1)R

and N = 2R7JR. The graph is bi-regular with the degree of vertices inU being 5R, and of vertices in V being(
(J+1)R

R

)
3R. For each i ∈ [N] and edge (u,v),

∣∣π−1
vu (i)

∣∣6 t := 4R. The size of the construction is nO(JR), where
n is the number of clauses in φ . A pair of labelings σU : U 7→ [N] and σV : V 7→ [M] satisfy an edge (u,v) if
σU(u) = πvu(σV (v)).

Consider an R-round parallel repetition of the standard clause-variable 2-Prover 1-Round game derived
from φ . It is shown formally by Khot [20] that this game can be embedded into L . Therefore, the PCP
Theorem and the Parallel Repetition Theorem [33] yield a universal constant c0 > 0 such that,

• (YES Case) If φ is a YES instance then there is a labeling toU and V that satisfies all the edges of B.

• (NO Case) If φ is a NO instance then every labeling to U and V satisfies less than a fraction 2−c0R

fraction of edges of B.

Furthermore, as Khot [20] shows, the instance B satisfies the following smoothness property: for any vertex
w ∈V and i, j ∈ [M] s.t. i 6= j,

Pru∼w [πwu(i) = πwu( j)]6 1/J,

where the probability is taken over a random neighbor u of w. This is because i and j correspond to distinct
assignments to a fixed set of clauses C (received by first prover) differing on at least one clause, say C ∈ C .
The LHS of the above equation is upper bounded by the probability (over the choice of C ′) that C ∈ C ′,
which is at most 1/J.

The above instance is converted into an instance L of Smooth Label Cover with vertex set V and label
sets [M] and [N] as follows: for every vertex u∈U and its neighbors v andw, add an edge e= {v,w} inL with
projections πe,v = πvu and πe,w = πwu. The bi-regularity and smoothness of B along with this construction
directly imply thatL is regular with degree depending only on R and J, and satisfies the smoothness property
in Theorem 3.5.

Given labelings σU and σV that satisfy all edges in B, σV satisfies all edges in L . Thus, a YES instance
B is transformed into a YES instance L . On the other hand, assume that there is a labeling σV to V that
satisfies ζ fraction of edges of L . Consider the following randomized labeling σU to U : independently
for each u ∈U , choose a neighbor v ∈ V u.a.r, and assign u the label πe,v(σV (v)). It is easy to see that the
expected fraction edges of B satisfied by σV and σU is the probability over a uniformly random u ∈U , and
two of its neighbors v and w chosen independently and u.a.r, that πvu(σV (v)) = πwu(σV (w)). This is exactly
the probability over the choice of a random edge e = {v,w} of L , that πe,v(σV (v)) = πe,w(σV (w)). By our
assumption this is at least ζ . Therefore, if B is a NO instance, then L is also a NO instance.

Finally, to see the weak expansion property, let V ′ ⊆ V s.t. |V ′| = δ |V |. For each u ∈U , let pu be the
fraction of the neighbors of u which are in V ′. Thus, Eu[pu] = δ , and the fraction of edges 1 in L induced
by V ′ is Eu[p2

u]> Eu[pu]
2 = δ 2.

1We are also counting the (negligible) fraction self-loops produced in L . These are satisfied by any labeling, and are ignored in
the hardness reductions.
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