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Abstract

We prove two new multivariate central limit theorems; the first relates the sum of indepen-
dent distributions to the multivariate Gaussian of corresponding mean and covariance, under the
earthmover distance matric (also known as the Wasserstein metric). We leverage this central limit
theorem to prove a stronger but more specific central limit theorem for “generalized multinomial”
distributions—a large class of discrete distributions, parameterized by matrices, that generalize
binomial and multinomial distributions, and describe many distributions encountered in computer
science. This central limit theorem relates a generalized multinomial distribution to a multivari-
ate Gaussian distribution, discretized by rounding to the nearest lattice points. In contrast to the
metric of our first central limit theorem, this bound is in terms of statistical distance, which imme-
diately implies that any algorithm with input drawn from a generalized multinomial distribution
behaves essentially as if the input were drawn from a discretized Gaussian with the same mean
and covariance. Such tools in the multivariate setting are rare, and we hope this new tool will be
of use to the community.

In the second part of the paper, we employ this central limit theorem to establish a lower
bound of Ω( n

log n ) on the sample complexity of additively estimating the entropy or support size

of a distribution (where 1/n is a lower bound on the probability of any element in the domain).
Together with the canonical estimator constructed in the companion paper [33], this settles the
longstanding open question of the sample complexities of these estimation problems, up to constant
factors. In particular, for any constants c1 < log 2, and c2 < 1

2 , there is a family of pairs of
distributions D,D′ each of whose elements occurs with probability at least 1/n, whose entropies
satisfy H(D)−H(D′) > c1, and whose support sizes differ by at least c2n, such that no algorithm
on o( n

log n ) samples can distinguish D from D′ with probability greater than 2/3. For the problem
of estimating entropy, we also provide a bound on the rate of convergence of an optimal estimator,

showing that the sample complexity of estimating entropy to within additive c is Ω
(

n
c log n

)
. The

previous lower-bounds on these sample complexities were n/2Θ(
√
log n), for constant c, from [34].

We explicitly exhibit such a family of pairs of distributions D,D′ via a Laguerre polynomial
construction that may be of independent interest.
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1 Introduction

Perhaps the chief triumph of modern statistics is the central limit theorem. During the past cen-
tury, our understanding of the various settings for which central limit theorems apply has expanded
immensely. Nevertheless, most of the attention has been on univariate formulations. And as one
might expect, the number of useful formulations of the central limit theorem seems to grow with the
dimension. So perhaps it is not surprising that the particularly natural and useful versions we prove
here seem absent from the statistics literature[14].

We prove two new multivariate central limit theorems; the first relates the sum of independent dis-
tributions to the multivariate Gaussian of corresponding mean and covariance, under the earthmover
distance matric (also known as the Wasserstein metric). Our proof of this central limit theorem is via
Stein’s method. We leverage this central limit theorem to prove a stronger but more specific central
limit theorem for “generalized multinomial” distributions—a large class of discrete distributions, pa-
rameterized by matrices, that generalize binomial and multinomial distributions, and describe many
distributions encountered in computer science (for example, [16, 17, 34, 30]).

We then apply this central limit theorem to the problem of lower bounding the sample complexity
of additively estimating the entropy, or support size, of a distribution. These two estimation problems
have a long history of study in statistics and computer science, and have practical applications across
many fields, including Biology, Ecology, Genetics, Linguistics, Neuroscience, and Physics (see, for
example, the list of hundreds of references in [11], and the discussion in [26]). Despite much work,
the sample complexity of these estimation problems was still largely open. One explanation for the
weakness in the lower bounds was the lack of a characterization for the distribution over sets of
sample. Our central limit theorem for generalized multinomial distributions provides precisely this
characterization.

We leverage this central limit theorem—albeit through considerable additional effort involving two
polynomial constructions that may be of independent interest, one involving Laguerre polynomials,
one involving Hermite polynomials—to establish a lower bound of Ω( n

logn) on the sample complexity
of additively estimating the entropy, or support size, of a distribution (where n is a bound on the
support size1). Together with the canonical estimator constructed in the companion paper [33], this
settles the longstanding open question of the sample complexities of these estimation problems (up
to constant factors). In particular, for any positive constants c1 < log 2, and c2 < 1

2 , there is a
family of pairs of distributions D,D′ each of whose elements occurs with probability at least 1/n,
whose entropies satisfy H(D) − H(D′) > c1, and whose support sizes differ by at least c2n, such
that no algorithm on o( n

logn) samples can distinguish D from D′ with probability greater than 2/3.

Additionally, D and D′ have supports of size at most n, and each element in their domains occurs with
probability at least 1

n . For the problem of estimating entropy, we also provide a bound on the rate of
convergence of an optimal estimator, showing that the sample complexity of estimating entropy to

within additive c is Ω
(

n
c logn

)
. The previous lower-bounds on these sample complexities, for constant

c, were n/2Θ(
√
logn), given by Valiant in [34], and a prior slightly weaker bound of n/2Θ(

√
logn·log logn)

for support size given by Raskhodnikova et al. [28].
The connection between our central limit theorem for generalized multinomial distributions, and

estimating symmetric properties of distributions, such as entropy and support size, is that generalized
multinomial distributions capture the distribution over vectors (m1,m2, . . .), where mi is the number
of domain elements for which we see i representatives in a sample. Our central limit theorem allows
us to cleanly reason about the statistical distance between these distributions of summary statistics.

1For the problem of estimating the distribution support size, it is typically assumed that all elements in the support
occur with probability at least 1/n, since without a lower bound on this probability it is impossible to estimate support
size.
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Specifically, this will allow us to argue that there are pairs of very different distributions D,D′—
different in terms of entropy, or support size, for example—such that there is small statistical distance
between the distribution of what we will see given k samples from D and the distribution of what we
will see given k samples from D′; thus we can conclude that no algorithm can distinguish a set of k
samples from D from a set of k samples from D′ with high probability, which, in particular, implies
that no estimator for entropy, when given k samples from D, can accurately return H(D), rather
than H(D′).

1.1 Related Work

Since Stein’s seminal paper [31], presented in 1970, in which he described an alternative proof
approach—what became known as “Stein’s method”— for proving Berry-Esseen-style central limit
theorems, there has been a blossoming realization of its applicability to different settings. There have
been several successful applications of Stein’s method in multivariate settings[19, 15, 29]. We closely
follow the treatment for the multivariate limit theorem given by Götze in [19] (see also [10] for an
exposition). The distinction between our first central limit theorem (which is in terms of earthmover
distance), and that of Götze, lies in the distance metric. Götze’s result shows convergence in terms of
the discrepancy between the probabilities of any convex set. Applying this result, intuitively, seems
to require decomposing some high-dimensional set into small convex pieces, which, unfortunately,
tends to weaken the result by exponential factors. It is perhaps for this reason that, despite much
enthusiasm for Götze’s result, there is a surprising absence of applications in the literature, beyond
small constant dimension.

The problem of estimating an unknown discrete distribution from few samples has a very rich
history of study in both Statistics and Computer Science. The specific problem of estimating the
support size of an unknown distribution (also referred to as the problem of estimating the number
of species in a population) has a very long history of study and arises in many contexts (see [11] for
several hundred references). Because arbitrarily many species can lie in an arbitrarily small amount
of probability mass, analysis of the sample complexity of this problem is generally parameterized in
terms of n, where elements of the distribution are restricted to have probability mass at least 1/n.
Tight multiplicative bounds of Ω(n/α2) for approximating this problem to a multiplicative factor of
α are given in [3, 13] though they are somewhat unsatisfying as the worst-case instance consists of
distinguishing a distribution with support size one from a distribution of support size α2. The first
strong lower bounds for additively approximating the support size were given in [28], showing that for
any constant δ > 0, any estimator that obtains additive error at most (1/2− δ)n with probability at
least 2/3 requires at least n/2Θ(

√
logn·log log n) samples. Prior to the upper bound of O( n

logn) matching
our lower bound, shown in the companion paper [33], to the best of our knowledge there were no
improvements upon the trivial Ω(n) upper bound for this problem.

For the problem of entropy estimation, there has been recent work from both the computer science
and statistics communities. Batu et al. [5, 6, 7], Guha et al. [20], and Valiant [34] considered the
problem of multiplicatively estimating the entropy. In [26, 27], Paninski proved, non-constructively,
the existence of a sublinear sample estimator for additively approximating the entropy. The best
previous lower bound of n/2Θ(

√
logn) is given in [34].

There has also been considerable interest and work in the related problems of estimating these
properties in the streaming model in which one has access to very little memory and can perform
only a single pass over the data [1, 2, 9, 12, 22, 23, 24, 35].
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1.2 Outline

The paper is divided into two parts. In Section 2 we introduce our two central limit theorems, which
are presented in full in Appendices A and B. These appendices are self-contained, and include all
necessary definitions.

In Section 3 we state and prove our lower bounds for the sample complexity of estimating entropy
and support size. We now state some definitions and examples used in the body of the paper.

1.3 Definitions and Examples

We state the key definitions, and provide some illustrative examples.

Definition 1. A distribution on [n] = {1, . . . , n} is a function p : [n]→ [0, 1] such that
∑

i p(i) = 1.
Let Dn denote the set of distributions over domain [n].

Throughout this paper, we will use n to denote the size of the domain of our distribution, and k
to denote the number of samples from it that we have access to. (Specifically, it will prove helpful
to consider a set of samples whose size is distributed according to a Poisson process of expectation
k, as discussed in Section 1.3.2.) For a distribution D ∈ Dm, we denote the entropy H(D) :=
−
∑

i p(i) log p(i), and the support size S(D) := |{i : p(i) > 0}|.
Entropy and support size are symmetric properties, in that their value is invariant to relabeling

the domain: for any distribution D, and any permutation σ, H(D) = H(D ◦σ), and similarly for the
support size.

Definition 2. Given a sequence of samples X = x1, . . . , xk, the associated fingerprint, denoted FX ,
is the “histogram of the histogram” of the samples. Formally, FX is the vector whose ith component,
FX(i) is the number of elements in the domain that occur exactly i ≥ 1 times in sample X. In cases
where the sample X is unambiguous, we omit the subscript.

Note that for the two properties in question, the fingerprint of a sample contains all the useful
information about the sample: for any estimator that uses the actual samples, there is an estimator of
equal performance that takes as input only the fingerprint of the samples (see [5, 8] for an easy proof
for general symmetric properties). Note that in some of the literature the fingerprint is alternately
termed the pattern, histogram, or summary statistics of the sample.

Analogous to the fingerprint of a set of samples, is what we call the histogram of the distribution,
which captures the number of domain elements that occur with each frequency. Any symmetric
property is clearly a function of only the histogram of the distribution.

Definition 3. The histogram of a distribution p is a mapping h : (0, 1] → Z, where h(x) = |{i :
p(i) = x}|.

For clarity of exposition, we often relax the above definition to allow histograms h : (0, 1] → R,
that do not take integral values. For the range of parameters that we use, the rounding issues that
arise are insignificant.

We now define what it means for two distributions to be “close”; because the values of the
properties in question depend only upon the histograms of the distributions, we must be slightly
careful in defining this distance metric so as to ensure that it will be well-behaved with respect to
the properties we are considering.

Definition 4. We define the relative earthmover distance between two histograms of distributions,
R(h1, h2), as the minimum over all schemes of moving the probability mass of the first histogram
to yield the second histogram, of the cost of moving that mass, where the per-unit cost of moving
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mass from probability x to y is | log(x/y)|. Equivalently, the dual formulation considers the class L
of differentiable functions f : R+ → R such that |f ′(x)| ≤ 1

x , and defines

R(h1, h2) = sup
f∈L

(Ex←h1 [f(x)]− Ex←h2 [f(x)]) = sup
f∈L

 ∑
x:h1(x)̸=0

x · h1(x)f(x)−
∑

x:h2(x) ̸=0

x · h2(x)f(x)

 .

Note that the statistical distance is upper bounded by relative earthmover distance. The following
easy fact shows that entropy and support size are well-behaved with respect to the relative earthmover
distance:

Fact 5. For any pair of distribution h, h′ with R(h, h′) ≤ δ, we have |H(h) − H(h′)| ≤ δ, and
|S(h)− S(h′)| ≤ nδ, where 1

n ≤ min{x : h(x) ̸= 0, or h′(x) ̸= 0}.

The structure of the distribution of fingerprints intimately involves the Poisson distribution.
Throughout, we use Poi(λ) to denote the Poisson distribution with expectation λ, and for a non-

negative integer j, poi(λ, j) := λje−λ

j! , denotes the probability that a random variable distributed
according to Poi(λ) takes value j. Additionally, for integers i ≥ 0, we refer to the function poi(x, j),
viewed as a function of the variable x, as the jth Poisson function.

1.3.1 Examples

We now provide two clarifying examples of the above definitions:

Example 6. Consider a sequence of fish species, found as samples from a certain lake X = (a, b, a, c, c,
d, a, e, b), where each letter denotes a distinct fish species. We have FX = (2, 2, 1), indicating that
two species occurred exactly once (species d and e), two species occurred exactly twice (species b and
c), and one species occurred exactly three times (species a).

Suppose that the true distribution of fish is the following:

Pr(a) = 1/2, P r(b) = 1/4, P r(c) = Pr(d) = Pr(e) = 1/12.

The associated histogram of this distribution is h : R+ → Z defined by h(1/12) = 3, h(1/4) = 1,
h(1/2) = 1, and for all x ̸∈ {1/12, 1/4, 1/2}, h(x) = 0. If we now consider a second distribution
over {j, k, ℓ} defined by the probabilities Pr(j) = 1/2, P r(k) = 1/4, P r(ℓ) = 1/4, and let h′ be

its associated histogram, then the relative earthmover distance R(h, h′) = 1
4 | log

1/4
1/12 |, since we must

take all the mass that lies on frequency 1/12 and move it to frequency 1/4 in order to turn the first
distribution into one that yields a histogram identical to h′.

Example 7. Consider the uniform distribution on [n], which has histogram h such that h( 1n) = n,
and h(x) = 0 for x ̸= 1

n . Let k ← Poi(5n) be a Poisson-distributed random number, and let X be the
result of drawing k independent samples from the distribution. The number of occurrences of each
element of [n] will be independent, distributed according to Poi(5). Note that FX(i) and FX(j) are
not independent (since, for example, if FX(i) = n then it must be the case that FX(j) = 0, for i ̸= j).
A fingerprint of a typical trial will look roughly like F(i) ≈ n · poi(5, i).

1.3.2 Property Testers

A property tester takes as input k independent samples from a distribution, and is considered good
if it correctly classifies the distribution with probability at least 2

3 .
In this paper, we consider the very related notion of a “Poissonized” tester, which, for distribution

p receives input constructed in the following way:
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• Draw k′ ← Poi(k).

• Return k′ samples from p.

The reason why Poissonized testers are substantially easier to analyze, is the fundamental fact,
illustrated in Example 7, that the number of samples drawn from each element of the support of p
will be independent of each other, and, specifically, distributed as independent (univariate) Poisson
processes.

Further, we note that these two notions of testing—“regular” testing, and Poissonized testing—
have sample complexities within a constant factor of each other, since one can simulate each with
the other, with high probability (via tail bounds). The criteria that testers succeed with probability
2
3 is arbitrary, and, indeed, may be amplified exponentially by repeating the tester and returning the
majority answer.

1.3.3 Generalized Multinomial Distributions

Definition 8. The generalized multinomial distribution parameterized by a nonnegative matrix ρ each
of whose rows sum to at most 1, is denoted Mρ, and is defined by the following random process: for
each row ρ(i, ·) of matrix ρ, interpret it as a probability distribution over the columns of ρ—including,
if
∑k

j=1 ρ(i, j) < 1, an “invisible” column 0—and draw a column index from this distribution; return
a row vector recording the total number of samples falling into each column (the histogram of the
samples).

The “invisible” column is used for the same reason that the binomial distribution is taken to be a
univariate distribution; while one could consider it a bivariate distribution, counting heads and tails
separately, it is convenient to consider tails “invisible”, as they are implied by the number of heads.

2 Two Multivariate Central Limit Theorems

We introduce our two main central limit theorems here, though see Appendix A for the full presen-
tation.

Our aim is to prove a central limit theorem that approximates the discrete generalized multinomial
distribution in the statistical distance metric. The main tool is Stein’s method, which is uniquely
well-suited to the task of comparing distributions to Gaussians.

We note, however, that prima facie the statistical distance between a multinomial and a Gaussian
is 1. This is simply because the multinomial is a discrete distribution, and thus is not close in a
distributional sense, to any smooth distribution. We must thus conduct the analysis in two parts.

2.1 A Multivariate CLT for Earthmover Distance (See Appendix A)

Stein’s method is in some sense very dependent on smoothness of the target distribution, in our case,
a multivariate Gaussian. It represents the Gaussian as the distribution induced by a certain random
walk—that is, the Gaussian is the stationary distribution of the random walk. It compares the given
distribution S to the Gaussian by then examining how the random walk would affect S.

The infinitesimal nature of a random walk makes earthmover distance particularly well-suited for
analysis by this method. In short, in this part, we show that the generalized multinomial distribution
is well-approximated in the earthmover distance sense by a Gaussian. In the next part, we leverage
several convexity properties of the multinomial and Gaussian distributions to show that this in fact
suffices to show that, when rounded to the nearest lattice points, the Gaussian distribution actually
approximates the multinomial in the stronger statistical distance sense.
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Definition. Given two distributions A,B in Rk, then, letting Lip(Rk, 1) denote the set of functions
h : Rk → R with Lipschitz constant 1, that is, where for any x, y ∈ Rk we have |h(x)−h(y)| ≤ ||x−y||,
then the earthmover distance between A and B is defined as

dW (A,B) = sup
h∈Lip(Rk,1)

E[h(A)]− E[h(B)].

Theorem 2. Given n independent distributions {Zi} of mean 0 in Rk and a bound β such that
||Zi|| < β for any i and any sample, then the earthmover distance between

∑n
i=1 Zi and the normal

distribution of corresponding mean (0) and covariance is at most βk(2.7 + 0.83 log n).

2.2 A CLT for Generalized Multinomial Distributions (See Appendix B)

In this section we leverage the central limit theorem of Theorem 2 to show our second central limit
theorem that bounds the statistical distance, denoted by Dtv between generalized multinomial distri-
butions and (discretized) Gaussian distributions. While Theorem 2 certainly applies to generalized
multinomial distributions, the goal of this section is to derive a bound in terms of the rather more
stringent statistical distance. The main hurdle is relating the “smooth” nature of the Gaussian dis-
tribution and earthmover distance metric to the “discrete” setting imposed by a statistical distance
comparison with the discrete generalized multinomial distribution.

The analysis to compare a Gaussian to a generalized multinomial distribution proceeds in two
steps. Given the earthmover distance bound provided by Theorem 2, we first smooth both sides
via convolution with a suitably high-variance distribution to convert this bound into a statistical
distance bound, albeit not between the original two distributions but between convolved versions
of them. The second step is via a “deconvolution” lemma that relies on the unimodality in each
coordinate of generalized multinomial distributions.

The central limit theorem that we leverage in the rest of the paper to prove property testing lower
bounds is the following:

Definition. The k-dimensional discretized Gaussian distribution, with mean µ and covariance ma-
trix Σ, denoted N disc(µ,Σ), is the distribution with support Zk obtained by picking a sample according
to the Gaussian N (µ,Σ), then rounding each coordinate to the nearest integer.

Theorem 4. Given a generalized multinomial distribution Mρ, with k dimensions and n rows, let µ
denote its mean and Σ denote its covariance matrix, then

Dtv

(
Mρ,N disc(µ,Σ)

)
≤ k4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3,

where σ2 is the minimum eigenvalue of Σ.

3 Lower Bounds for Property Estimation

In this section we use the central limit theorem for generalized multinomial distributions, Theorem 4,
to show our lower bounds for property testing.

We provide an explicit construction via Laguerre polynomials of two distributions that are close,
in the relative earthmover metric, to uniform distributions respectively on n and n

2 elements, for
n = Θ(k log k). This pair of distributions is constructed to have the additional property that their
fingerprint expectations are very close. As we aim to approximate the distributions of fingerprints by
Gaussians, which are parameterized by their mean and covariance matrices, we must argue that the
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covariance matrices corresponding to these two distributions are also very close. We prove this via a
general result that applies to all distributions, and not just the constructed pair; the proof appears
in Appendix C and relies heavily on Hermite polynomials.

Applying the central limit theorem requires one additional construction. Because the convergence
bound in Theorem 4 is in terms of the smallest eigenvalue of the covariance matrix, in order to
obtain a satisfactory bound, we “fatten” each distribution so that it has sufficient variance in every
direction. Such a “fattening” changes both distributions correspondingly, and has only a small effect
on the distributions under the relative earthmover metric.

Our theorem, which we prove over the course of this section is the following:

Theorem 1. For any positive constant ϕ < 1
4 , there exists a pair of distributions p+, p− that are

O(ϕ| log ϕ|)-close in the relative earthmover distance, respectively, to the uniform distributions on n
and n

2 elements, but which are indistinguishable to k = ϕ
32 ·

n
logn -sample testers.

The above theorem has the following immediate implication for estimating entropy or support
size:

Corollary 9. For any positive constant ϵ < log 2
2 , estimating the entropy of distributions of support

at most n to within additive ϵ with probability of success at least 2
3 requires Θ

(
n

logn

)
independent

samples.
Similarly, for any positive constant ϵ < 1

4 , estimating the support size of distributions whose
domain elements occur with probability at least 1/n, to within additive ϵn with probability of success

at least 2
3 requires Θ

(
n

logn

)
independent samples.

Further, given Theorem 1, by choosing a positive ϵ < 1 and then constructing the distributions
p+ϵ , p

−
ϵ , defined by drawing with probability ϵ a sample from p+, p−, and otherwise returning another

symbol ∆, we note that the entropy gap between p+ϵ , p
−
ϵ is an ϵ fraction of the gap between the original

distributions, and distinguishing p+ϵ from p−ϵ requires a factor 1
ϵ more samples than distinguishing p+

from p−, thus we have the following corollary:

Corollary 10. For large enough n, and ϵ ∈ (0, 1), the sample complexity of estimating entropy to

within additive ϵ grows as Ω
(

n
ϵ logn

)
.

We will construct the p+, p− of Theorem 1 explicitly, via Laguerre polynomials. We now state
the properties of these polynomials that we will use.

Let Lj(x) denote the jth Laguerre polynomial, defined as Lj(x) =
ex

j!
dj

dxj

(
e−xxj

)
.

Fact 11. For each integer j ≥ 0,

1. For x ∈ [0, 1j ], Lj(x) ∈ [1− jx, 1];

2. Lj has j real roots, all lying in [1j , 4j];

3. Letting xi denote the ith root of Lj, for i ∈ {1, . . . , j}, we have xi ≥ i2

3j ;

4. For i < j/2, |dLj(x)
dx (xi)| ≥ exi/2j1/4

2x
3/4
i

and for any i, |dLj(x)
dx (xi)| ≥ exi/2√

πx
3/4
i

.

Proof. Since Lj is a polynomial of degree j with j positive real roots, none of the inflection points lie
below the smallest root. Since Lj(0) = 1, L′j(0) = −j, and L′′j (0) > 0, we have that Lj(x) ≥ 1 − jx

for x less than or equal to the smallest root of Lj . Thus the smallest root of Lj must be at most 1
j ,

and Lj(x) ≥ 1− jx for x ≤ 1
j . The fact that the largest root is at most 4j follows from [32], Theorem

6.32. The third fact appears in [32], p. 129, and the fourth fact follows from p. 100.
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Definition 12. Given real number ϕ ∈ (0, 14) and letting j = log k, consider the degree j+2 polynomial

Mj,ϕ(x) , −(x − ϕ1
j )(x − 2ϕ1

j )Lj(x). Let v(x) be the function that takes value 1/M ′j,ϕ(x) for every

x where Mj,ϕ(x) = 0, and is 0 otherwise, where M ′ is the derivative of M . Define the distributions
p+j,ϕ, p

−
j,ϕ such that for each x where v(x) > 0, the distribution p+j,ϕ contains v(x)ex/32 probability mass

at probability 1
32kx, and for each x where v(x) < 0 the distribution p−j,ϕ contains |v(x)|ex/32 probability

mass at probability 1
32kx, where each distribution is then normalized to have total probability mass 1.

We note that since each element in the support of either p+log k,ϕ or p−log k,ϕ is defined to have

probability at least ϕ
32k log k , both distributions have support at most 32

ϕ k log k, which we take as n,
in the context of both the entropy and the support size problems.

Lemma 13. Distributions p+log k,ϕ and p−log k,ϕ are O(ϕ| log ϕ|)-close, respectively, in the relative earth-

mover distance to the uniform distributions on 32
ϕ k log k and 16

ϕ k log k elements.

Proof. Letting j = log k, consider the values of d
dxMj,ϕ(x) at its zeros. We first consider the two zeros

at ϕ
j and 2ϕ

j . Note that − d
dx(x−ϕ1

j )(x−2ϕ1
j ) = −2x+3ϕ1

j , having values ±ϕ1
j respectively at these

two points. By the product rule for differentiation, d
dxMj,ϕ(x) at these points is thus respectively

≤ ϕ1
j and ≥ −ϕ1

j , by the first part of Fact 11.

Let xi denote the ith zero of Lj . We note that since by definition, ϕ < 1
4 , and from Fact 11,

each xi ≥ 1
j , we have (xi − ϕ1

j )(xi − 2ϕ1
j ) ≥

3
8x

2
i . At each xi, we may thus bound | ddxMj,ϕ(x)| =

|(x − ϕ1
j )(x − 2ϕ1

j )
d
dxLj(x)| ≥ 3

8x
2 ex/2j1/4

2x3/4 for i ≤ j/2 and by 3
8x

2 ex/2√
πx3/4 otherwise, which we will

denote as 3
8e

x/2x5/4
(
j1/4

2 [i > j/2] + 1√
π
[i ≥ j/2]

)
.

Consider the unnormalized versions of p+j,ϕ, p
−
j,ϕ, that is, containing probability mass |1/ d

dxMj,ϕ(x)|ex/32

at each probability 1
32kx where d

dxMj,ϕ(x) is positive or negative respectively (without scaling so as to
make total probability mass be 1). Let c1, c2 respectively be the constants that p+j,ϕ, p

−
j,ϕ respectively

must be multiplied by to normalize them. Recall from above that | ddxMj,ϕ(x)| ≤ ϕ1
j for the point

x = ϕ1
j in the support of p+j,ϕ and the point x = 2ϕ1

j in the support of p−j,ϕ, which implies that the

probability mass at each of these points is at least e
ϕ 1

j
/32 j

ϕ ≥
j
ϕ . From these point masses alone we

conclude c1, c2 ≤ ϕ
j .

We now consider the earthmover cost of moving all the weight of the unnormalized version of p+j,ϕ
to x = ϕ1

j or all the weight of the unnormalized version of p−j,ϕ to x = 2ϕ1
j , which we will then multiply

by c1, c2 respectively. Note that the per-unit-weight relative earthmover cost of moving weight from
an xi to either x = ϕ1

j or x = 2ϕ1
j is at most log |ϕ| + log(jxi). As we have bounded the weight

at xi (for either p+j,ϕ or p−j,ϕ) as 8
3e
−15xi/32x

−5/4
i

(
2

j1/4
[i < j

2 ] +
√
π[i ≥ j

2 ]
)
, and since, from Fact 11,

xi ≥ i2

3j , we may thus bound the relative earthmover distance by substituting this into the preceding

expression, multiplying by the cost | log ϕ|+ log(jxi) and our bound c1, c2 ≤ ϕ
j , and summing over i:

j∑
i=1

ϕ

j
(| log ϕ|+ 2 log i)

8

3
e
− 5i2

32j

(
i2

3j

)−5/4(
2

j1/4
[i < j/2] +

√
π[i ≥ j/2]

)
= O(ϕ| log ϕ|),

where the asymptotic analysis follows by considering two cases. For i < j/2, all powers of j cancel;

we may simply bound e
− 5i2

32j ≤ 1, and the remaining expression, up to constants, is
∑j

i=1 ϕ(| log ϕ|+
log i)i−5/2, which is seen to be O(ϕ| log ϕ|). For i ≥ j/2, the powers of j multiply to j1/4, and the
exponential is bounded by e−5j/128; their product is bounded by a universal constant, and thus the
analysis proceeds as in the previous case. Thus we have the desired O(ϕ| log ϕ|) bound.
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We note the following general fact that we will use to bound the discrepancy in the fingerprint
expectations of p+j,ϕ and p−j,ϕ.

Fact 14. Given a polynomial P of degree j whose roots {xi} are real and distinct, letting P ′ be the

derivative of P , then for any ℓ ≤ j − 2 we have
∑j

i=1
xℓ
i

P ′(xi)
= 0.

Proof. We assume, without loss of generality, that P is monic.
To prove this, consider the general prescription for constructing a degree j−1 polynomial through

j given points (xi, yi): f(x) =
∑j

i=1 yi

(∏
m̸=i(x− xm)

)/(∏
m̸=i(xi − xm)

)
. We note that the

coefficient of xj−1 in this polynomial is
∑j

i=1 yi

(∏
m̸=i(xi − xm)

)−1
, where for each i, the expression(∏

m̸=i(xi − xm)
)−1

is exactly 1/P ′(xi). Thus since polynomial interpolation is unique,
∑j

i=1
xℓ
i

P ′(xi)

computes the xj−1 coefficient in the polynomial xℓ, which, for ℓ ≤ j − 2 equals 0, as desired.

Fact 15. (From [18].) For λ > 0, and an integer n ≥ λ,

∞∑
i=n

poi(λ, i) ≤ poi(λ, n)

1− λ/(n+ 1)
.

Lemma 16. For any i, the ith fingerprint expectations for distributions p+j,ϕ, p
−
j,ϕ are equal to within

o(1).

Proof. Recall that the expected contribution of an element of probability x to the ith fingerprint
entry equals poi(xk, i).

Consider, as in the proof of Lemma 13, the unnormalized versions of p+j,ϕ, p
−
j,ϕ, that is, for each

root x of Mj,ϕ, containing weight |1/ d
dxMj,ϕ(x)|ex/32 at probability 1

32kx where d
dxMj,ϕ(x) is positive

or negative respectively (without scaling so as to make total probability mass be 1), and let c1, c2
respectively be the constants that p+j,ϕ, p

−
j,ϕ respectively must be multiplied by to normalize them.

Fact 14 directly implies that for any i between 1 and j + 1, the ith fingerprint expectations
for (unnormalized) p+j,ϕ and p−j,ϕ are identical; we can see this by noting that the histogram entry

corresponding to probability x
32k in the corresponding distribution equals 1

x
32k

ex/32

| ddxMj,ϕ(x)| , and thus the

difference between their ith fingerprint expectations is

∑
x:Mj,ϕ(x)=0

32k · ex/32

x · d
dxMj,ϕ(x)

poi(
x

32
, i) =

k

i!32i−1

∑
x:Mj,ϕ(x)=0

xi−1

d
dxMj,ϕ(x)

= 0

Consider the fingerprint expectations for i > j = log k. We note that
∑∞

i=0 i ·poi(xk, i) = xk, and
thus the sum over all i of i times the ith fingerprint expectations is exactly xk times the probability
mass of the unnormalized distribution we started with. We thus relate c1 and c2 in this way.

By construction, p+j,ϕ and p−j,ϕ consist of elements with probability at most log k
8k . Thus, for x ≤ log k

8k ,
we bound

∑∞
i=1+log k i ·poi(xk, i). We note that i ·poi(xk, i) = xk ·poi(xk, i−1), yielding, from Fact 15

a bound xk
∑∞

i=log k poi(
1
8 log k, i) ≤

7
8xk · poi(

1
8 log k, log k). We compare this to poi(log k, log k) ≤ 1

by noting that, in general, poi(y/8,y)
poi(y,y) = e7y/8

8y ≤ 3.3−y, yielding a bound of 7
8xk · 3.3

− log k = o(x).
That is, for an element of the distribution with probability x, its total contribution to the expected
fingerprint entries with index greater than log k is o(x); summing over all x yields o(1) for the sum
of these fingerprint entries.

As noted above, the sum over all fingerprint entries equals k. Thus, this method of computing
the total probability mass of (unnormalized) p+j,ϕ and p−j,ϕ has a relative contribution of only o( 1k )

9



from the i > log k portion; since the fingerprint expectations are identical for i ≤ log k, we conclude
that the normalizing constants c1, c2 are within a factor 1± o( 1k ) of each other.

We conclude that since the unnormalized distributions had identical expected fingerprints for
i ≤ log k, the normalized distributions have fingerprints differing by at most a factor of 1 ± o( 1k ),
as desired. Further, the above argument implies that for any (normalized) distribution consisting of
elements of probabilities at most 1

8 log k, the expected total fingerprint entries above log k is o(1),
yielding that the corresponding expectations for p+j,ϕ and p−j,ϕ match to within this bound.

Our overall aim here is to mold p+j,ϕ and p−j,ϕ into distributions with the property that the dis-
tributions of their respective fingerprints are “close”, respectively, to two very similar multivariate
Gaussian distributions. As fingerprints are integer-valued vectors, while Gaussian distributions are
continuous, we instead consider Gaussian distributions rounded to the nearest lattice point. Discrete-
ness is still an obstacle, however, and the central limit theorem we put forward thus yields better
bounds as the variance of the distributions in each direction increases. With this motivation in
mind, we introduce the next construction which will modify p+j,ϕ and p−j,ϕ very little in the relative
earthmover metric, while making the distributions of their histograms suitably “fat”.

Definition 17. Define the fattening operator F that, given a histogram p, constructs a new histogram
pF as follows:

• Provisionally set pF (x) =
(
1− (log k)−1

2 log2 k

)
p(x) for each x;

• For each integer i ∈ {1, . . . , log k}, increment pF ( ik )← pF ( ik ) +
k

log3 k

We note that, given a distribution, fattening returns a distribution. Further, for the sake of
distribution support size lower bounds, we note that no elements are added below probability 1

k , so

that pF+
j,ϕ and pF−j,ϕ retain the bound of ϕ

32k log k on the probability of each domain element. Finally,
we note that the bounds of Lemma 16 may only improve under fattening, as identical modifications
are made to each distribution.

Claim 18. The relative earthmover distances between the fattened and original version of p+j,ϕ and

p−j,ϕ respectively are both O( | log ϕ|+log log k
log k ).

Proof. We note that all the probabilities of p+j,ϕ and p−j,ϕ are between ϕ
32k log k and log k

k , incurring a per-
unit-mass relative earthmover cost of at most O(| log ϕ| + log log k). Since Definition 17 introduces
less than 1

log k new probability mass, shrinking the original histogram to make room, we can thus
“move earth” from the original distribution to the modified distribution at cost the product of these
two terms, namely O( | log ϕ|+log log k

log k ).

We next show that for any fattened distribution, the variance of the distribution of the fingerprint
is large in any direction. Specifically, for any unit vector v ∈ Rlog k, we find an integer i such that
elements of probability i

k—such as those added in Definition 17—have high-variance fingerprints along

the direction v. Instead of proving this result only for pF+
j,ϕ and pF−j,ϕ , we prove it more generally, so

that we may more easily invoke our central limit theorem.

Lemma 19. For any vector v ∈ Rlog k of length 1, there exists an integer i ∈ {1, . . . , log k} such that,
drawing ℓ ← Poi(i) conditioned on ℓ ≤ log k, the variance of v(ℓ) is at least 1

6 log9/2 k
, where we take

v(0) = 0.

10



Proof. We note the crucial stipulation that v(0) = 0, for otherwise, a uniform vector would have zero
variance.

Given a unit vector v, there exists i ∈ {1, . . . , log k} such that |v(i) − v(i − 1)| ≥ 1
log2 k

, since

otherwise (since v(0) = 0) we would have |v(i)| ≤ i
log2 k

, implying
∑log k

i=1 v(i)2 < 1. Consider such an

i.
Since in general, i! ≤ ii

ei
3
√
i, we have that poi(i, i − 1) = poi(i, i) = iie−i

i! ≥
1

3
√
i
, which implies

that, just the two possibilities Poi(i) = i or Poi(i) = i − 1 alone are enough to induce variance in
v(ℓ) of the product of our bound on their total probability mass, 2

3
√
i
≥ 2

3 log1/2 k
and the square of

half |v(i)− v(i− 1)| ≥ 1
log2 k

, yielding 1
6 log9/2 k

.

As a final ingredient before we may assemble the pieces of our main result, we show how to
compare the variances of the respective distributions of fingerprints of the distributions pF+

log k,ϕ and

pF−log k,ϕ. Lemma 16 has already shown that the fingerprint expectations are very close. One might
suspect that analyzing the variances would require entirely different bounds, but as it turns out,
“close fingerprint expectations imply close fingerprint variances”.

To analyze this claim, we note that, for a histogram h, the ith fingerprint expectation is
∑

x:h(x)̸=0

h(x)· poi(xk, i). Since, for random variables X,Y , their covariance equals E[XY ]−E[X]E[Y ], and co-
variance sums for independent distributions, we have that the covariance of the ith and jth fingerprint
entries, for i ̸= j, equals −

∑
x:h(x) ̸=0 h(x)poi(xk, i)poi(xk, j). We simplify this product,

poi(xk, i)poi(xk, j) =
(xk)i+je−2xk

i!j!
= 2−(i+j)

(
i+ j

i

)
poi(2xk, i+ j),

to reveal a scaled version of a “squashed” version of the usual Poisson—that is, with 2xk instead
of xk as the argument. The variance of the ith fingerprint entry may similarly be computed as∑

x:h(x) ̸=0 h(x)·
(
poi(xk, i)− poi(xk, i)2

)
, where, similarly, poi(xk, i)2 = 2−2i

(
2i
i

)
poi(2xk, 2i).

The point of the next result, proved in Appendix C, is that one may express “squashed” Poisson
functions poi(2xk, i) as linear combinations of Poisson functions poi(xk, j); thus, since the expecta-
tions relative to (regular) Poisson functions poi(xk, j) match for pF+

log k,ϕ and pF−log k,ϕ, the same will hold
true (though with greater error) for the expectations relative to the “squashed” Poisson functions
poi(2xk, i), and hence the variances and covariances will also approximately match.

Lemma 20. For any ϵ > 0 and integer i ≥ 0, one may approximate poi(2x, i) as a linear combination∑∞
j=0 α(j)poi(x, j) such that

1. For all x ≥ 0, |poi(2x, i)−
∑∞

j=0 α(j)poi(x, j)| ≤ ϵ; and

2.
∑∞

j=0 |α(j)| ≤
1
ϵ · 200max{ 4

√
i, 24 log3/2 1

ϵ}.

We are thus equipped to bound the statistical distance between the distributions of fingerprints,
which implies the indistinguishability of pF+

j,ϕ and pF−j,ϕ to k-sample property testers.

Proposition 21. For a positive constant ϕ < 1/4, the statistical distance between the distribution of
Poi(k)-sample fingerprints from pF+

log k,ϕ and pF−log k,ϕ goes to 0 as k goes to infinity.

Proof. We note that since both p+log k,ϕ and p−log k,ϕ consist of elements with probabilities at most log k
8k ,

tail bounds (see the proof of Lemma 16 for the calculations) show that the probability that any such
element occurs more than log k times is o(1). We thus assume for the rest of this proof that this has
not occurred.
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Consider, for either fattened distribution, pF+
log k,ϕ or pF−log k,ϕ, the portion of the fingerprint above

log k, which we denote F>log k. Since by assumption, only the “fattened” portion of either distribution
contributes to F>log k, and since these portions are identical, we have that the probability of a given
F>log k occurring from pF+

log k,ϕ equals its probability of occurring from pF−log k,ϕ. We complete the proof
by comparing, for each F>log k, the conditional distributions of the fingerprints at or below log k
conditioned on the value F>log k and which elements of the distribution contributed to F>log k.

Note that the fattening process introduces k
log3 k

elements to the distribution at probability i
k for

each i ∈ {1, . . . , log k}. Since the number of occurrences of one of these elements is distributed as
Poi(i), for i ≤ log k, in expectation no more than half of these elements will be sampled more than
log k times. Since the number of times each element is sampled is independent (as we are taking a
Poisson-distributed number of samples), Chernoff bounds imply that the number of elements sampled

more than log k times will be at most 3
4

k
log3 k

with probability 1−ek
Θ(1)

, for each i. By a union bound

over i ≤ log k, with probability at least 1 − o(1), conditioning on which elements contribute to
F>log k will leave at least 1

4
k

log3 k
elements at each probability i

k that are not fixed in the conditional

distributions.
By Lemma 19, for each unit vector v ∈ Rlog k, there is an index i such that each element of

probability i
k contributes 1

6 log9/2 k
to the (conditional) fingerprint variance in the direction of v. As

the previous paragraph showed that there are at least 1
4

k
log3 k

elements with this property that are

disjoint from the elements comprising F>log k. Thus the fingerprint variance is at least σ
2 := k

24 log15/2 k
,

in any direction v.
We thus apply our central limit theorem, Theorem 4, to the distributions of fingerprints of each

of pF+
log k,ϕ and pF−log k,ϕ, conditioned on F>log k. We note that each such distribution is a generalized

multinomial distribution (see Definition 8) with log k columns and at most n = 32
ϕ k log k rows. We

invoke the central limit theorem, to conclude that each such distribution may be approximated by the
multivariate Gaussian distribution of the same mean and covariance, rounded to the nearest lattice

points, to within statistical distance log4/3 k
σ1/3 · 2.2 · (3.1+ 0.83 log n)2/3, which is o(1) since the k in the

numerator of σ2 = k
24 log15/2 k

dominates the logarithmic terms.

For a given F>log k, let µ
+, µ− denote respectively the vectors of conditional fingerprint expecta-

tions, for pF+
log k,ϕ and pF−log k,ϕ respectively; let Σ+,Σ− denote respectively the corresponding covariance

matrices. As we have just shown that the conditional distributions of fingerprints are statistically
close to the multivariate Gaussian distributions N (µ+,Σ+), N (µ−,Σ−), respectively, each rounded
to the nearest lattice point, it remains to compare the statistical distance of these distributions. We
note immediately that rounding to the nearest lattice point can only decrease the statistical distance.
We thus must bound Dtv(N (µ+,Σ+),N (µ−,Σ−)), which we will do with Proposition 32 once we
have analyzed the disparities between the means and covariances.

Lemma 16 showed that the fingerprint expectations of p+log k,ϕ and p−log k,ϕ match to within o(1).
Fattening can only improve this, and since the conditioning applies only to the identical fattened
region, it remains true that |µ+(i)− µ−(i)| = o(1) for each i.

As we noted in the discussion preceding this result, approximating Poisson functions poi(2xk, i)
as linear combinations of Poisson functions poi(xk, j) means that we can approximate each entry of
the covariance matrix Σ by a linear combination of entries of the expectation vector µ. We thus
invoke Lemma 20 for ϵ = 1√

k
to see that, indeed, there exist constants αi(j) with

∑∞
j=0 |αi(j)| ≤√

k · 200max{ 4
√
i, 24 log3/2

√
k} = O(

√
k log3/2 k) such that we may approximate entries Σ(ℓ,m) via

coefficients αℓ+m(j), where the error contributed by each domain element is at most ϵ. As there are
at most n = 32

ϕ k log k domain elements, this approximation error is at most 32
ϕ

√
k log k. Thus by the

triangle inequality, the discrepancy |Σ+(ℓ,m)− Σ−(ℓ,m)| for each element of the covariance matrix
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is bounded by twice this, plus the discrepancy due to |αi(j)| times the difference |µ+(i)−µ−(i)|. We
combine the bounds we have just derived to yield

|Σ+(ℓ,m)− Σ−(ℓ,m)| = O(

√
k

ϕ
log3/2 k).

The two Gaussians N (µ+,Σ+) and N (µ−,Σ−) thus have means within o(1), covariance matrices

within O(
√
k
ϕ log3/2 k), and variances at least σ2 = k

24 log15/2 k
in each direction—which thus lower-

bounds the magnitude of the smallest eigenvalues of Σ+,Σ− respectively. For any positive constant
ϕ, as k gets large, Proposition 32 implies that Dtv(N (µ+,Σ+),N (µ−,Σ−)) = o(1), as claimed.

Theorem 1. For any positive constant ϕ < 1
4 , there exists a pair of distributions p+, p− that are

O(ϕ| log ϕ|)-close in the relative earthmover distance, respectively, to the uniform distributions on n
and n

2 elements, but which are indistinguishable to k = ϕ
32 ·

n
logn -sample testers.

Proof. Let k be such that n = 32
ϕ k log k. Construct p+ = pF+

log k,ϕ and p− = pF−log k,ϕ according to

Definition 12 followed by Definition 17. Then Lemma 13 and Claim 18 imply that p+, p− that are
O(ϕ| log ϕ|)-close in the relative earthmover metric, respectively, to the uniform distributions on n
and n

2 elements. Proposition 21 shows that the distribution of inputs seen by a property tester in the
two cases are statistically close to within o(1). Thus no tester can distinguish them with probability
2/3.

For the second part of the theorem we let ϕ be such that ϕ| log ϕ| = ϵ. Claims 1 and 2 follow from
the relative earthmover continuity of the entropy and support size functions, respectively.
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A A Multivariate Central Limit Theorem for Earthmover Distance

While the central limit theorem is foundational to modern statistics, most of the attention has been
on univariate formulations. And as one might expect, the number of useful formulations of the central
limit theorem seems to grow with the dimension. So perhaps it is not surprising that the particularly
natural version we prove in this section seems absent from the statistics literature.

The main result of this section is a general central limit theorem for sums of independent random
variables in high dimension. As with the Berry-Esseen bound, and the classic multivariate central
limit theorem of Götze[19], our bound is in terms of what may be considered the third moments of
the distribution, under a suitable change of basis. We note that our bounds have an extra logarithmic
term and suspect this could be removed with a tighter analysis. The results of this section apply
for both discrete and continuous distributions; we leverage these results in the next section for the
discrete case.

The Berry-Esseen theorem bounds convergence to the Gaussian in terms of the maximum dis-
crepancy between their respective cumulative distribution functions. Multiplying by two, this metric
may be seen as a stand-in for the following: the maximum, over all intervals in R, of the discrepancy
between the probabilities of that interval under the two distributions. Götze’s result can be thought
of as generalizing this notion in the natural way to higher dimensions: convergence is shown relative
to the discrepancy between the probabilities of any convex set ([19], and see [10] for discussion).
Applying this result, intuitively, seems to require decomposing some high-dimensional set into small
convex pieces, which, unfortunately, tends to weaken the result by exponential factors. It is perhaps
for this reason that, despite much enthusiasm for Götze’s result, there is a surprising absence of
applications in the literature, beyond small constant dimension.

For our purposes, and, we suspect, many others, convergence with respect to a more versatile dis-
tance metric is desired. The bound in our central limit theorem is in terms of (Euclidean) earthmover
distance. We leverage this result to show, in Appendix B, a central limit theorem for generalized
multinomial distributions in terms of statistical distance, the metric of choice for obtaining results in
property testing.

Given a distribution Sn that is the sum of samples from n independent distributions X1, . . . , Xn

in Rk, we aim to bound the earthmover distance of Sn from the Gaussian G of corresponding mean
and covariance. We aim to bound the earthmover distance (also known as the Wasserstein distance)
between Sn and G, which we will denote as dW (Sn, G). Intuitively, this distance dW (A,B) is defined
as “the minimum, over all schemes of moving the probability mass of A to make B, of the cost of
moving this mass, where the per-unit cost of moving mass from point x to point y is simply the
(Euclidian) distance between x and y.” It is often easier to define and work with the dual formulation
of earthmover distance (this is the Kantorovich-Rubinstein theorem, [25], but may be intuitively seen
as exactly what one would expect from linear programming duality):

Definition 22. Given two distributions A,B in Rk, then, letting Lip(Rk, 1) denote the set of functions
h : Rk → R with Lipschitz constant 1, that is, where for any x, y ∈ Rk we have |h(x)−h(y)| ≤ ||x−y||,
then the earthmover distance between A and B is defined as

dW (A,B) = sup
h∈Lip(Rk,1)

E[h(A)]− E[h(B)].

It will be convenient for us to assume that our test functions, h, in addition to being Lipschitz
continuous, are also differentiable. We note that even restricting the test functions to be smooth
does not affect the above definition, as, for any Lipschitz-continuous function h, letting hϵ be the
convolution of h with a Gaussian of radius ϵ for any ϵ > 0, we note that hϵ is smooth, and |h(x) −
hϵ(x)| ≤ ϵ

√
k; thus for any random variables A, limϵ→0E[hϵ(A)] = E[h(A)], and the earthmover

distance definition remains unaltered.
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The main central limit theorem of this section is:

Theorem 2. Given n independent distributions {Zi} of mean 0 in Rk and a bound β such ||Zi|| < β
for any i and any sample, then the earthmover distance between

∑n
i=1 Zi and the normal distribution

of corresponding mean (0) and covariance is at most βk(2.7 + 0.83 log n).

We prove this as a consequence of the following theorem, which is somewhat tighter though more
unwieldy. As it turns out, if the variance of

∑n
i=1 Zi is much larger in a certain direction than

in others, then the earthmover bound is more forgiving of samples from Zi that are large in that
direction.

We prove this theorem using an adaptation of the celebrated Stein’s method (see [4] for an
introduction) as implemented for the multivariate case in [19]. (See also [10].)

Theorem 3. Given n independent distributions {Zi} in Rk, each having mean 0, and having total
covariance equal to k× k matrix Σ, let T be the Cholesky factorization of Σ—that is, a k × k matrix
such that TT ᵀ = Σ, making T−1

∑n
i=1 Zi have covariance equal to the k × k identity matrix. Then

the earthmover distance between
∑n

i=1 Zi and the normal distribution of mean 0 and covariance Σ is
at most

n∑
i=1

1.16E
[
||Zi|| · ||T−1Zi||

]
·E
[
||T−1Zi|| log

(
1 +

2.76

||T−1Zi||

)]
+ 0.49E

[
||Zi|| · ||T−1Zi||2 · log

(
1 +

9.41

||T−1Zi||

)]
. (1)

Proof of Theorem 2. We prove this from Theorem 3. In Equation 1 we note that both the first and
second term have exactly one factor of ||Zi||, which we may upper-bound by β. Further, since the
function f(x) = x log(1+ 1

x) is increasing for positive x, the rearrangement inequality implies that the
first term is bounded by the corresponding expression with all parts put inside a single expectation.
Thus Equation 1 is bounded by

β

n∑
i=1

E

[
||T−1Zi||2

(
1.16 log

(
1 +

2.76

||T−1Zi||

)
+ 0.49 log

(
1 +

9.41

||T−1Zi||

))]
(2)

Define a new distribution Y such that for every vector x, Pr[Y = x] = 1
c ||x||

∑n
i=1 Pr[T−1Zi = x],

where c =
∑n

i=1E[||T−1Zi||] is chosen so that Y is a valid distribution (that is, having total probability
mass 1). (If the Zi are continuous random variables, we define the distribution Y correspondingly.)
We note that, letting g(x) = x · (1.16 log(1+ 2.76

x )+0.49 log(1+ 9.41
x )), we have that Equation 2 equals

βc·E[g(||Y ||)]. The concavity of f implies the concavity of g, which implies by Jensen’s inequality that
E[g(||Y ||)] ≤ g(E[||Y ||]). We have that E[||Y ||] = 1

c

∑n
i=1E[||T−1Zi||2] = E

[
||T−1

∑n
i=1 Zi||

]
= k

c ,
since covariance adds for independent distributions, and T is the matrix that transforms

∑n
i=1 Zi to

have covariance the identity matrix.
Thus the earthmover distance is bounded by βk(1.16 log(1 + 2.76c

k ) + 0.49 log(1 + 9.41c
k )). As

this is an increasing function of c, it remains to bound c. We can crudely bound c by defining the
distribution W that uniformly picks i ∈ {1, . . . , n} and then draws a sample from T−1Zi; we note that
c = n · E[||W ||]. We bound c by observing that E[||W ||2] = k

n , from which, by the convexity of the

squaring function and Jensen’s inequality, we have that c = nE[||W ||] ≤ n
√

E[||W ||2] =
√
nk ≤ k

√
n.

Thus the earthmover distance is bounded by βk(1.16 log(1+2.76
√
n)+ 0.49 log(1+9.41

√
n)), which,

for n ≥ 1 is easily seen to be less than the desired bound of βk(2.7 + 0.83 log n).
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A.1 A CLT via Stein’s Method

We now prove Theorem 3 via Stein’s method.

Proof of Theorem 3. We let Xi = T−1Zi and work with Xi instead of Zi throughout. While the
earthmover distance in the original basis is defined via the supremum over differentiable “test func-
tions” in Lip(Rk, 1), when we work with Xi, the test functions instead range over T ◦Lip(Rk, 1), that
is, for ℓ ∈ Lip(Rk, 1), we take h(x) = ℓ(Tx).

The heart of Stein’s method consists of constructing a simple transformation h → fh that takes
test functions h ∈ T ◦ Lip(Rk, 1) and transforms them to appropriate functions fh such that for any
distribution Sn, we have

E[h(Sn)]− E[h(Φ)] = E[Sn · ∇fh(Sn)−△fh(Sn)], (3)

where △fh represents the Laplacian of fh and ∇fh the gradient of fh. When one takes Taylor
expansions of each of the two terms on the right hand side, one can arrange to have a pair of terms
that have second-order dependence on Sn cancel, leaving only third-order terms remaining, which is
what will yield the third-order dependence in the theorem. We cite [10] for the result that Equation 3

is satisfied when, letting ϕr(x) , (2πr2)−k/2e−
||x||
2r2 be the k-dimensional Gaussian of mean 0 and

radius r, we define

fh(x) ,
∫ ∞
0

(h ∗ ϕ√1−e−2s)(e
−sx)− E[h(Φ)] ds, (4)

where E[h(Φ)] represents the expectation of h as its input is drawn from the standard k-dimensional
Gaussian distribution of mean 0 and identity covariance; we admit the slight abuse of notation and
consider h ∗ ϕ0 = h.

We take Sn =
∑n

i=1Xi, and let S−i denote Sn − Xi, that is, the sum of samples from all but
one of the distributions; by definition S−i is independent of Xi. We use the first-order expansion
f(x+ y) = f(x) +

∫ 1
0 y · ∇f(x+ ty) dt, where y · ∇f(x+ ty) is simply the directional derivative of f

in the direction y evaluated at x+ ty. In coordinates, this is

f(x+ y) = f(x) +

∫ 1

0

k∑
a=1

y(a)Daf(x+ ty) dt,

where we use Da to denote the partial derivative in the ath coordinate. Similarly, the second-order
expansion is

f(x+ y) = f(x) + y · ∇f(x) +
∫ 1

0
(1− t)

k∑
a,b=1

y(a)y(b)Dabf(x+ ty) dt,

where as above,
∑k

a,b=1 y(a)y(b)Dabf(x + ty) is just the “directional second derivative” of f , in the
direction y, evaluated at x + ty. Thus we may expand Sn · ∇f(Sn) =

∑n
i=1Xi · ∇f(S−i + Xi) =∑n

i=1

∑k
a=1Xi(a)Daf(S−i +Xi) to second order as

n∑
i=1

k∑
a=1

Xi(a)

Daf(S−i) +

(
k∑

b=1

Xi(b)Dabf(S−i)

)
+

∫ 1

0
(1− t)

k∑
b,c=1

Xi(b)Xi(c)Dabcf(S−i + t ·Xi) dt

 .

(5)
We note that since Xi has mean 0 and is independent of S−i, the first term has expectation 0.

We now aim to cancel the expectation of the second term against an expansion of △f(Sn). Note
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that the expected value of the factor Xi(a)Xi(b) in the second term is just the (a, b)th component
of the covariance matrix of Xi, which we write as Cov(Xi)(a, b). Since by assumption, the sum
over i of the covariance matrices Cov(Xi) equals the identity matrix, we may rewrite △f(Sn) =∑k

(a=b)=1Dabf(Sn) =
∑n

i=1

∑k
a,b=1Cov(Xi)(a, b)Dabf(Sn). Expanding the ith term of this to first

order centered at S−i, for each i, yields

n∑
i=1

k∑
a,b=1

Cov(Xi)(a, b)

(
Dabf(S−i) +

∫ 1

0

k∑
c=1

Xi(c)Dabcf(S−i + t ·Xi) dt

)
, (6)

where the expectation of the first term above is seen to be exactly the expectation of the second
term of Equation 5, and thus the difference between the expectations of Equations 5 and 6, which
for f = fh equals E[h(Sn)]−E[h(Φ)] by construction, will consist only of the last, third-order terms
from each expression.

Let ζi denote the expectation of the last term of Equation 5 for the corresponding i, and ηi denote
the expectation of the last term of Equation 6 for the corresponding i. By the above, dW (Sn,Φ) is
thus bounded by the supremum over h ∈ T ◦Lip(Rk, 1) of

∑n
i=1 |ζi|+ |ηi|. We thus turn to bounding

ζi, ηi. We assume throughout that Xi ̸= 0, as, when Xi = 0 the corresponding terms of Equations 5
and 6 are trivially seen to be 0.

Defining gs(x) = h(e−sx), we note that we may reexpress the first term in the definition of fh
as (h ∗ ϕ√1−e−2s)(e−sx) = (gs ∗ ϕ√e2s−1)(x). Letting X̃i denote an independent sample from the

distribution Xi, we note that we may replace Cov(Xi)(a, b) in Equation 6 by E[X̃i(a)X̃i(b)], thus
yielding that ηi equals the expectation of∫ ∞

0

∫ 1

0

k∑
a,b,c=1

X̃i(a)X̃i(b)Xi(c)Dabc(gs ∗ ϕ√e2s−1)(S−i + t ·Xi) dt ds,

where we note that the final term E[h(Φ)] of Equation 4 is constant, and hence its third derivative
does not contribute to ηi, and is thus omitted in the above equation.

We note that the expression
∑k

a,b,c=1 X̃i(a)X̃i(b)Xi(c)Dabc is just a third directional derivative,

with two differentiations in the direction of the vector X̃i and one in the direction Xi, which we
may denote as D

X̃i
D

X̃i
DXi . Since convolution commutes with differentiation, ηi thus equals the

expectation of∫ ∞
0

∫ 1

0
(D

X̃i
gs ∗DX̃i

DXiϕ
√
e2s−1)(S−i + t ·Xi) dt ds

=

∫ ∞
0

∫ 1

0

∫
Rk

D
X̃i
gs(x)DX̃i

DXiϕ
√
e2s−1(S−i + t ·Xi − x) dx dt ds

=

∫ ∞
0

∫
Rk

D
X̃i
gs(x)

∫ 1

0
D

X̃i
DXiϕ

√
e2s−1(S−i + t ·Xi − x) dt dx ds

Because h, by definition, is the composition of matrix T with a differentiable function of Lipschitz
constant 1, gs is the composition of T with a function of Lipschitz constant e−s and thus we can
bound the absolute value of this last expression by∫ ∞

0
||TX̃i||e−s

∫
Rk

∣∣∣∣∫ 1

0
D

X̃i
DXiϕ

√
e2s−1(t ·Xi + x) dt

∣∣∣∣ dx ds, (7)

where we have made the substitution S−i − x → x. We bound the integral over Rk in two ways.
First, since a univariate Gaussian of variance r2 is unimodal, the integral of the absolute value of its
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derivative is simply twice its maximum, namely 2· 1√
2πr2

. Since ϕr can be expressed as the product of k

univariate Gaussians along orthogonal basis directions, each of variance r2, and having integral 1, we

have that
∫
Rk |DX̃i

ϕ√e2s−1| dx = 2||X̃i||√
2π(e2s−1)

, just the corresponding univariate expression in the basis

direction X̃i

||X̃i||
. Since integration is the inverse of differentiation, we have that

∫ 1
0 D

X̃i
DXiϕ

√
e2s−1(t ·

Xi+x) dt = D
X̃i
ϕ√e2s−1(Xi+x)−D

X̃i
ϕ√e2s−1(x), and by the triangle inequality we may thus bound

the Rk integral of Equation 7 as twice what we just computed: 4||X̃i||√
2π(e2s−1)

.

For large s, however, this bound is not effective, and in this case we instead take∫
Rk

∣∣∣∣∫ 1

0
D

X̃i
DXiϕ

√
e2s−1(t ·Xi + x) dt

∣∣∣∣ dx ≤ ∫
Rk

∫ 1

0

∣∣∣DX̃i
DXiϕ

√
e2s−1(t ·Xi + x)

∣∣∣ dt dx
=

∫
Rk

∣∣∣DX̃i
DXiϕ

√
e2s−1(x)

∣∣∣ dx
Letting yi =

Xi
||Xi|| denote the unit vector in the Xi direction, and zi denote an orthogonal unit

vector such that, for real numbers u, v we have X̃i = u · yi + v · zi, we thus have D
X̃i
DXi = ||Xi||(u ·

D2
yi + v ·DziDyi), and by the triangle inequality we may bound∫

Rk

∣∣∣DX̃i
DXiϕ

√
e2s−1(x)

∣∣∣ dx ≤ ||Xi||
∫
Rk

∣∣∣u ·D2
yiϕ
√
e2s−1(x)

∣∣∣+ ∣∣∣v ·DyiDziϕ
√
e2s−1(x)

∣∣∣ dx, (8)

where we may now leverage the orthogonality of yi and zi.
As above, we note that since the Gaussian can be expressed as the product of one-dimensional

Gaussians along any orthogonal basis, and since yi and zi are orthogonal unit vectors, we have

that
∫
Rk |DyiDziϕ

√
e2s−1(x)| dx =

(
2√

2π(e2s−1)

)2

= 2
π(e2s−1) , just the square of the univariate case

we computed above. Similarly,
∫
Rk |D2

yiϕ
√
e2s−1(x)| dx equals the corresponding expression for a

univariate Gaussian, the integral of the absolute value of its second derivative, which by definition
is the total variation of its first derivative. As the derivative of a univariate Gaussian of variance r2

takes maximum and minimum values at ±r, at which locations it has values respectively ∓ e−1/2

r2
√
2π
,

and has no other local optima, its total variation is just four times this, which, for r2 = e2s − 1 gives

us
∫
Rk |D2

yiϕ
√
e2s−1(x)| ds =

4e−1/2

(e2s−1)
√
2π
.

Thus, since |u|2+|v|2 = ||X̃i||2, we bound Equation 8 as ||Xi||
e2s−1 times |u|4e−1/2

√
2π

+|v| 2π . We bound this

last expression by the Cauchy-Schwarz inequality as ||X̃i||
√(

4e−1/2√
2π

)2
+
(
2
π

)2
= ||X̃i|| 2π

√
1 + 2πe−1.

Equation 8 is thus bounded by ||Xi|| · ||X̃i|| 1
e2s−1

2
π

√
1 + 2πe−1. Combining this bound with the bound

computed above yields

|ηi| ≤ E

[
||TX̃i|| · ||X̃i||

∫ ∞
0

e−smin

{
4√

2π(e2s − 1)
,
||Xi||
e2s − 1

2

π

√
1 + 2πe−1

}
ds

]
(9)

Because the expression for ζi will be similar, we derive a general bound for
∫∞
0 e−smin{ 1√

e2s−1 ,
α

e2s−1}ds.
Note that the first term is less than the second term when

√
e2s − 1 < α, namely, when s <

log
√
α2 + 1. Further, it is straightforward to check that

∫
e−s
√
e2s−1ds = e−s

√
e2s − 1, and

∫
e−s

e2s−1ds =
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e−s − log es+1√
e2s−1 . Thus we evaluate

∫ ∞
0

e−smin{ 1√
e2s − 1

,
α

e2s − 1
}ds =

∫ log
√
α2+1

0

e−s√
e2s − 1

ds+ α

∫ ∞
log
√
α2+1

e−s

e2s − 1
ds

=
α√

α2 + 1
+ α

[
log

√
α2 + 1 + 1

α
− 1√

α2 + 1

]

= α log

√
α2 + 1 + 1

α
≤ α log

(
1 +

2

α

)
(10)

We may thus bound |ηi| from Equations 9 and 10 by setting α = 1√
2π
||Xi||

√
1 + 2πe−1. Since

2
π

√
1 + 2πe−1 < 1.16 and 2 · 4√

2π
/( 2π
√
1 + 2πe−1) < 2.76, we have that

|ηi| < 1.16E

[
||TX̃i|| · ||X̃i||||Xi|| log

(
1 +

2.76

||Xi||

)]
= 1.16E [||TXi|| · ||Xi||]E

[
||Xi|| log

(
1 +

2.76

||Xi||

)]
(11)

We now turn to bounding the last term of Equation 5, whose expectation we have denoted as ζi.
Similarly to above, we have

k∑
a,b,c=1

∫ 1

0
(1− t)Xi(a)Xi(b)Xi(c)Dabcfh(S−i + t ·Xi) dt

=

∫ 1

0
(1− t)D3

Xi
fh(S−i + t ·Xi) dt

=

∫ ∞
0

∫ 1

0
(1− t)D3

Xi
(gs ∗ ϕ√e2s−1)(S−i + t ·Xi) dt ds

=

∫ ∞
0

∫ 1

0
(1− t)(DXigs ∗D2

Xi
ϕ√e2s−1)(S−i + t ·Xi) dt ds

=

∫ ∞
0

∫
Rk

DXigs(x)

∫ 1

0
(1− t)D2

Xi
ϕ√e2s−1(S−i + t ·Xi − x) dt dx ds

≤ ||TXi||e−s
∫ ∞
0

∫
Rk

∣∣∣∣∫ 1

0
(1− t)D2

Xi
ϕ√e2s−1(t ·Xi + x) dt

∣∣∣∣ dx ds
As above, if we take an orthonormal basis that includes a vector in the direction of Xi then we can

decompose D2
Xi
ϕ√e2s−1 into the product of the corresponding expression for a univariate Gaussian

in the direction of Xi, and univariate Gaussians along all the other basis directions. Thus, if we let

ϕ̄r denote the univariate version of ϕr, namely, ϕ̄r(x) =
1

r·
√
2π
e−

x2

2r2 , then the above integral over Rk

equals exactly

||Xi||2
∫ ∞
−∞

∣∣∣∣∫ 1

0
(1− t)ϕ̄′′√

e2s−1(x+ ||Xi||t) dt
∣∣∣∣ dx (12)

As above, we bound this expression in two ways. First, we bound it by moving the absolute values
inside the integral, swapping the order of integration, and then making the substitution y = x+||Xi||t
to yield

||Xi||2
∫ 1

0

∫ ∞
−∞

∣∣∣(1− t)ϕ̄′′√
e2s−1(y)

∣∣∣ dy dt
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The integral may thus be expressed as the product of separate integrals over t and y: since∫ 1
0 1−t dt = 1

2 , and as we computed above,
∫∞
−∞ |ϕ̄

′′√
e2s−1(y)| dy = 4e−1/2

(e2s−1)
√
2π
, we have that Equation 12

is at most ||Xi||2 2e−1/2

(e2s−1)
√
2π
.

For the second bound, we first note that we may simplify slightly by replacing (1 − t) by t in
Equation 12 (this is the change of variables t→ (1− t), x→ −x− ||Xi||, relying on the fact that ϕ̄′′

is symmetric about 0). It will be convenient to consider the inner integral as being over R instead of
just [0, 1], and we thus introduce the notation (t)[0,1] to represent t if t ∈ [0, 1] and 0 otherwise. Thus
we bound Equation 12 as

||Xi||2
∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

(t)[0,1]ϕ̄
′′√
e2s−1(x+ ||Xi||t) dt

∣∣∣∣ dx
= ||Xi||2

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

(
(t)[0,1] −

(
− x

||Xi||

)
[0,1]

)
ϕ̄′′√

e2s−1(x+ ||Xi||t) dt

∣∣∣∣∣ dx
≤ ||Xi||2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣
(
(t)[0,1] −

(
− x

||Xi||

)
[0,1]

)
ϕ̄′′√

e2s−1(x+ ||Xi||t)

∣∣∣∣∣ dx dt
= ||Xi||2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣
(
(t)[0,1] −

(
t− y

||Xi||

)
[0,1]

)
ϕ̄′′√

e2s−1(y)

∣∣∣∣∣ dy dt
= ||Xi||2

∫ ∞
−∞

∣∣∣ϕ̄′′√
e2s−1(y)

∣∣∣ ∫ ∞
−∞

∣∣∣∣∣(t)[0,1] −
(
t− y

||Xi||

)
[0,1]

∣∣∣∣∣ dt dy
where the first equality holds since ϕ′′ has integral 0, and hence we can add any multiple of it
(independent of t) to the inner integral; the second equality is just the substitution x→ y − ||Xi||t.

To bound this integral, we note the general fact that, if a function f has total variation a, then∫∞
−∞ |f(x) − f(x − b)| dx ≤ a|b|. Thus since the function (t)[0,1] has total variation 2, the inner

integral is bounded by 2 y
||Xi|| . Since ϕ̄

′′
r crosses 0 at ±r, and integration by parts yields

∫
yϕ̄′′r (y) dy =

yϕ̄′r(y)−
∫
ϕ̄′r(y) dy = −ϕ̄r(y)(1 +

y2

r2
) and hence

∫∞
−∞ |yϕ̄

′′
r(y)| dy = −2

∫ r
0 yϕ̄′′r(y) dy + 2

∫∞
r yϕ̄′′r(y) =

−2ϕ̄r(0) + 8ϕ̄r(r) =
8e−1/2−2
r·
√
2π

we may thus bound Equation 12 by ||Xi|| 16e
−1/2−4√

2π(e2s−1)
.

Thus, similarly to above, we have

|ζi| ≤ ||TXi|| · ||Xi||
∫ ∞
0

e−smin

{
16e−1/2 − 4√
2π(e2s − 1)

,
||Xi|| · 2e−1/2

(e2s − 1)
√
2π

}
ds.

Since 2e−1/2
√
2π

< 0.49 and 2 · 16e−1/2−4√
2π

/2e−1/2
√
2π

< 9.41, we have from Equation 10 that |ζi| < 0.49 ·
E[||TXi|| · ||Xi||2 log(1 + 9.41

||Xi||)]. Combining this and Equation 11 yields the theorem.

B A Central Limit Theorem for Generalized Multinomial Distribu-
tions

In this section we leverage the central limit theorem of Theorem 2 to show our second central limit
theorem that bounds the statistical distance, denoted by Dtv between generalized multinomial distri-
butions and (discretized) Gaussian distributions. While Theorem 2 certainly applies to generalized
multinomial distributions, the goal of this section is to derive a bound in terms of the rather more
stringent statistical distance. The main hurdle is relating the “smooth” nature of the Gaussian dis-
tribution and earthmover distance metric to the “discrete” setting imposed by a statistical distance
comparison with the discrete generalized multinomial distribution.
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The analysis to compare a Gaussian to a generalized multinomial distribution proceeds in two
steps. Given the earthmover distance bound provided by Theorem 2, we first smooth both sides
via convolution with a suitably high-variance distribution to convert this bound into a statistical
distance bound, albeit not between the original two distributions but between convolved versions of
them. The second step is via a “deconvolution” lemma (Lemma 26) that relies on the unimodality
in each coordinate of generalized multinomial distributions.

We begin by showing this unimodality via a result about homogeneous polynomials that general-
izes the classic Newton inequalities.

Given a polynomial p in k variables, and a nonnegative integer vector v ∈ Zk, we denote by p(v)

the coefficient of the term x
v(1)
1 x

v(2)
2 · . . . · xv(k)k in p.

Fact: Multivariate Newton Inequalities (Fact 1.10:2 of [21]). Given a homogeneous polyno-
mial p of degree n in k variables, with nonnegative coefficients, if it is the case that for any complex
x1, . . . , xk with strictly positive real parts, p(x1, . . . , xk) ̸= 0, then for any nonnegative integer vector
v and letting ∆ = (1,−1, 0, . . . , 0) ∈ Zk, we have p2(v) ≥ p(v+∆)p(v−∆).

(We note that the actual result from [21], in analogy with Newton’s inequalities, is tighter by a

factor
∏

i v(i)!
2/
∏

i(v+∆)(i)!(v−∆)(i)! = v(1)v(2)
(1+v(1))(1+v(2)) , though for our purposes we need only the

simpler bound.)

Definition 23. The generalized multinomial distribution parameterized by a nonnegative matrix
ρ each of whose rows sum to at most 1, is denoted Mρ, and is defined by the following random
process: for each row ρ(i, ·) of matrix ρ, interpret it as a probability distribution over the columns
of ρ—including, if

∑k
j=1 ρ(i, j) < 1, an “invisible” column 0—and draw a column index from this

distribution; return a row vector recording the total number of samples falling into each column (the
histogram of the samples).

The “invisible” column is used for the same reason that the binomial distribution is taken to be a
univariate distribution; while one could consider it a bivariate distribution, counting heads and tails
separately, it is convenient to consider tails “invisible”, as they are implied by the number of heads.

Definition 24. A function f : Z→ R+ is log-concave if its support is an interval, and ∀i ∈ Z, f(i)2 ≥
f(i− 1)f(i+ 1).

The logarithm of a log-concave function is concave (interpreting log 0 as−∞); thus any log-concave
function is unimodal (i.e., monotonically increasing to the left of some point, and monotonically
decreasing to the right). We note that we consider “unimodal” in the non-strict sense, so that, for
example, the constant function is unimodal.

Lemma 25. Generalized multinomial distributions are log-concave—and in particular, unimodal—in
any coordinate.

Proof. Given a generalized multinomial distribution parameterized by ρ, where ρ has n rows and k
columns, we define ρ̄ to be the matrix whose columns are indexed 0 through k, and which consists of
ρ extended so that for each i ∈ {1, . . . n},

∑k
j=0 ρ̄(i, j) = 1.

Let p be the homogeneous polynomial of degree n in k variables defined as p(x1, . . . , xk) =∏n
i=1(ρ̄(i, 0)x0 + . . . + ρ̄(i, k)xk). We note that for any nonnegative integer vector v, the coefficient

p(v) equals, by definition, the probability of drawing v from the multinomial distribution (ignoring
the implicit “0th coordinate”).

We invoke the multivariate Newton inequalities (with the coordinates renumbered as necessary)
by noting that, first, p clearly has nonnegative coefficients, and second, if x0, . . . , xk are complex
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numbers with strictly positive real parts, then each term (ρ̄(i, 0)x0+ . . .+ ρ̄(i, k)xk) will have strictly
positive real part, and hence be nonzero, which implies that p(x0, . . . , xk) ̸= 0. Thus the multivariate
Newton inequalities imply that the multinomial distribution (with its “0th coordinate” ignored) is
log-concave in its first coordinate; by symmetry, it is log-concave in every coordinate.

Given this general structural result about the distributions at hand, we now construct the second
ingredient of our proof, the “deconvolution” lemma. What this shows is that, given a convolution
f ∗g that closely approximates a third function h, we can leverage the unimodality of f under certain
conditions to “deconvolve” by g and relate f and h directly. We will apply this univariate result in
the proof of the central limit theorem by applying it inductively along lines in each of the k coordinate
directions.

Lemma 26. Given an integer ℓ > 0, a unimodal function f : Z → R+, a function g : {−ℓ,−ℓ +
1 . . . , ℓ − 1, ℓ} → R+ with

∑
i g(i) = 1, and an arbitrary bounded function h : Z → R+ then, letting

f ∗ g denote the convolution of f and g, we have

∞∑
i=−∞

|f(i)− h(i)| ≤ 10ℓ

(
sup
i

h(i)

)
+

∞∑
i=−∞

|(f ∗ g)(i)− h(i)|.

Proof. Assume that we have scaled f and h so that supi h(i) = 1. Let f− denote the function that
is the (pointwise) minimum of f and 1, and let f+ denote f − f−. We note that f+ and f− are
unimodal. For the following inequality, we let [[0, j]] denote the set of integers {0, . . . , j − 1} when
j > 0, the set {j, . . . ,−1} when j < 0, and the empty set when j = 0: by the definition of convolution,
two applications of the triangle inequality, and a rearrangement of terms we have

∞∑
i=−∞

|f−(i)− (f− ∗ g)(i)| =

∞∑
i=−∞

∣∣∣∣∣∣
ℓ∑

j=−ℓ
g(j)(f−(i)− f−(i− j))

∣∣∣∣∣∣
≤

∞∑
i=−∞

ℓ∑
j=−ℓ

g(j)|f−(i)− f−(i− j)|

≤
∞∑

i=−∞

ℓ∑
j=−ℓ

∑
k∈[[0,j]]

g(j)|f−(i− k)− f−(i− k + 1)|

=

 ℓ∑
j=−ℓ

g(j)|j|

 ∞∑
i=−∞

|f−(i)− f−(i+ 1)|

≤ ℓ

∞∑
i=−∞

|f−(i)− f−(i+ 1)|.

Since f− is unimodal and bounded between 0 and 1,
∑

i |f−(i)− f−(i+ 1)| ≤ 2, and we thus bound
the above inequality by 2ℓ.

We note that since f is unimodal, it exceeds 1 on a contiguous (possibly empty) interval, which
we denote [u, v]. Since f ∗ g = f− ∗ g + f+ ∗ g, we have the triangle inequality |(f ∗ g)(i) − h(i)| ≤
|(f+ ∗ g)(i)| + |(f− ∗ g)(i) − h(i)|. Since f− ∗ g = 1 on the interval [u + ℓ, v − ℓ], and f+ ∗ g is
confined to the interval [u− ℓ, v + ℓ], then we actually have equality everywhere except the intervals
[u− ℓ, u+ ℓ− 1] and [v− ℓ+1, v+ ℓ]. On these intervals, we consider the reverse inequality (another
triangle inequality) |(f ∗g)(i)−h(i)| ≥ |(f+∗g)(i)|−|(f−∗g)(i)−h(i)| which, since (f−∗g)(i) ∈ [0, 1],
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we bound as being at least |(f+ ∗ g)(i)|+ |(f− ∗ g)(i)− h(i)| − 2 on these intervals. Thus

∞∑
i=−∞

|(f ∗ g)(i)− h(i)| ≥
∞∑

i=−∞
|(f+ ∗ g)(i)|+

∞∑
i=−∞

|(f− ∗ g)(i)− h(i)|+
u+ℓ−1∑
i=u−ℓ

(−2) +
v+ℓ∑

i=v−ℓ+1

(−2)

= −8ℓ+
∞∑

i=−∞
|f+(i)|+

∞∑
i=−∞

|(f− ∗ g)(i)− h(i)|

≥ −10ℓ+
∞∑

i=−∞
|f+(i)|+

∞∑
i=−∞

|f−(i)− h(i)|

= −10ℓ+
∞∑

i=−∞
|f(i)− h(i)|,

where the last inequality is what we proved above, and the last equality is true term-by-term since
the region where f+ is nonzero is exactly the region where f−(i) = 1 ≥ h(i), and thus we have the
lemma.

We are now equipped to assemble the components and prove the central limit theorem. Our
central limit theorem related the generalized multinomial distribution to the “discretized” version of
the Gaussian distribution of identical mean and covariance, as defined below.

Definition 27. The k-dimensional discretized Gaussian distribution, with mean µ and covariance
matrix Σ, denoted N disc(µ,Σ), is the distribution with support Zk obtained by picking a sample ac-
cording to the Gaussian N (µ,Σ), then rounding each coordinate to the nearest integer.

Theorem 4. Given a generalized multinomial distribution Mρ, with k dimensions and n rows, let µ
denote its mean and Σ denote its covariance matrix, then

Dtv

(
Mρ,N disc(µ,Σ)

)
≤ k4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3,

where σ2 is the minimum eigenvalue of Σ.

Thus if σ2 = ω(k8 log4 n) then the multinomial distribution is well-approximated by the natural
discrete Gaussian approximation.

Proof. Adopting the notation of Theorem 2, we let Zi denote the distribution induced by the ith row
of ρ, that is, a distribution over (0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), where Mρ is
thus distributed as

∑n
i=1 Zi. Since the range of Zi has diameter

√
2, each sample from Zi is within√

2 of its mean. Theorem 2 implies that dW (Mρ,N (µ,Σ)) < k
√
2(2.7 + 0.83 log n).

For notational convenience, let ϕ = N (µ,Σ), and let ϕdisc = N disc(µ,Σ) denote the corresponding

discretized Gaussian of Definition 27. We note that, since every point in Rk is within distance
√
k
2

from a lattice point, dW (ϕ, ϕdisc) ≤
√
k
2 ≤

k
2 . Thus the triangle inequality yields dW (Mρ, ϕdisc) <

k
√
2(3.1 + 0.83 log n).
Given positive integers d, ℓ, let Rd,ℓ denote the distribution over Zk where the first d coordinates

are each independent samples from the binomial distribution B(2ℓ, 12), shifted by −ℓ so as to lie in
{−ℓ, . . . , ℓ} and the rest of the coordinates are 0.

The binomial distribution B(2ℓ, 12) is unimodal, with the probability of hitting its mode bounded
by 1√

πℓ
, which implies that the statistical distance between B(2ℓ, 12) and a version shifted by an integer

c is at most c√
πℓ
; thus the same holds for shifting Rk,ℓ by c along any coordinate axis, since each
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coordinate is distributed as an independent (shifted) copy of B(2ℓ, 12). By the triangle inequality,

if we shift by an integer vector x, then the statistical distance is at most 1√
πℓ

∑k
i=1 |x(i)|. The

Cauchy-Schwarz inequality yields
∑k

i=1 |x(i)| ≤
√
k||x||, yielding a bound on the statistical distance

of
√
k√
πℓ
||x||.

We are now prepared to make the key transformation from stating our central limit theorem in
terms of earthmover distance, to stating a central limit theorem for statistical distance.

Consider a particular component of a “scheme to move earth” from Mρ to ϕdisc; for example,
“move probability mass m from x to y”. The bound of the previous paragraph implies that the

statistical distance between copies of Rk,ℓ centered at x, and at y, respectively, is at most
√
k√
πℓ
||x−y||.

Thus, in this sense, convolution by Rk,ℓ converts earthmover bounds to statistical distance bounds,

losing a factor of
√
k√
πℓ
. We conclude that

dTV (M
ρ ∗Rk,ℓ, ϕ

disc ∗Rk,ℓ) ≤
√
2k · k√
πℓ

(3.1 + 0.83 log n). (13)

Were it not for the convolution by Rk,ℓ in the above expression, we could conclude here. We now
consider how to “remove” these convolutions.

Consider ϕ (not ϕdisc) shifted by a vector x. Since ϕ has variance at least σ2 in every direction,
then, when restricted to any line in the direction of x, ϕ will be a univariate normal distribution
of variance at least σ2. We may thus bound the statistical distance of ϕ and its shifted version
by the corresponding univariate bound. Note that the univariate Gaussian is unimodal, and thus
the statistical distance between itself and a version shifted ||x|| is at most ||x|| times the pdf at
its mode, which is at most 1

σ
√
2π
. Applying this bound for each x drawn from Rk,ℓ, where for

each such x, ||x|| ≤ ℓ
√
k we have dTV (ϕ, ϕ ∗ Rk,ℓ) ≤ ℓ

√
k

σ
√
2π
. Since Rk,ℓ is a distribution on the

lattice points, taking ϕ ∗ Rk,ℓ and rounding samples to the nearest integer is distributed identically

to ϕdisc ∗ Rk,ℓ. Thus we have dTV (ϕ
disc, ϕdisc ∗ Rk,ℓ) ≤ ℓ

√
k

σ
√
2π
, yielding, by the triangle inequality,

dTV (M
ρ ∗Rk,ℓ, ϕ

disc) ≤
√
2k·k√
πℓ

(3.1 + 0.83 log n) + ℓ
√
k

σ
√
2π

Having “removed” the second convolution by Rk,ℓ in Equation 13, we now turn to the first.
Recalling that Ri,ℓ is the distribution whose first i coordinates are distributed as (shifted) versions of
the binomial distribution B(2ℓ, 12) where the remaining k−i coordinates are 0, we aim to “deconvolve”
by this binomial, coordinate-by-coordinate, so that when i reaches 0 we will have the desired central
limit theorem. Our tool is Lemma 26, which we will use to show by induction that for every i ∈
{0, . . . , k} we have

dTV (M
ρ ∗Ri,ℓ, ϕ

disc) ≤ (k − i)
5ℓ

σ
√
2π

+
ℓ
√
k

σ
√
2π

+

√
2k · k√
πℓ

(3.1 + 0.83 log n) (14)

Letting i = 0 and ℓ = 1
62/3

σ2/3k1/3(3.1 + 0.83 log n)2/3 yields the theorem.
To prove Equation 14, we assume as our induction hypothesis that it holds for some i > 0 and will

derive it for i−1. Consider Mρ∗Ri,ℓ, M
ρ∗Ri−1,ℓ, and ϕdisc restricted to a line L in the ith coordinate

direction. We note that the pdf of ϕ restricted to this line will be a multiple of a univariate normal
distribution of variance at least σ2, and thus has the property that its maximum is at most 1

σ
√
2π

times its integral; as this is true for every such line, it is also true in expectation for a distribution of
lines, and is thus true for the distribution of lines that will be rounded to L. Thus ϕdisc restricted to
the line L has the property that its maximum is at most 1

σ
√
2π

times its total. With a view towards

applying Lemma 26, we note that Ri−1,ℓ is itself a generalized multinomial distribution, and hence so
is Mρ ∗Ri−1,ℓ, from which we invoke Lemma 25 to see that Mρ ∗Ri−1,ℓ is unimodal along L. We thus
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apply Lemma 26 with f equal to the restriction of Mρ ∗Ri−1,ℓ to L, g equal to the binomial B(2ℓ, 12)
shifted so as to have support on {−ℓ, . . . , ℓ}, and h equal to the restriction of ϕdisc to L. Since f ∗ g
is the restriction of Mρ ∗Ri,ℓ to L, we conclude that,

∑
x∈L
|(Mρ ∗Ri−1,ℓ)(x)− ϕdisc(x)| ≤ 10ℓ

(
max
x∈L

ϕdisc(x)

)
+
∑
x∈L
|(Mρ ∗Ri,ℓ)(x)− ϕdisc(x)|

≤ 10ℓ

σ
√
2π

∑
x∈L

ϕdisc(x) +
∑
x∈L
|(Mρ ∗Ri,ℓ)(x)− ϕdisc(x)|

Summing over all such lines L yields the induction (since statistical distance has a normalizing factor
of 1

2).

C Linear Combinations of Poisson Functions

In this section we show that one can closely approximate the function poi(2x, i) as a sum
∑∞

j=0 αj ·
poi(x, j), such that

∑
j |αj | is not too large. We note that the Stone-Weierstrass theorem of Analysis

trivially implies the convergence of this type of approximation; however, we require much stronger
bounds on the relationship between the approximation factor and the coefficient sizes.

We prove these strong bounds via a Fourier analysis approach relying on properties of Hermite
polynomials.

To see the intuition both behind the result, and our approach, consider the above problem but
with Poisson functions replaced by Gaussians, and all errors evaluated in the L2 sense: for each ϵ > 0
there exists a function Kϵ of L2 norm 1

ϵ that when convolved with N (0, 1) approximates N (0, 12)

to within ϵ, in the L2 sense. Let K̂ϵ be the ratio of the Fourier transforms of the pdfs of N (0, 1)

and N (0, 12) respectively, restricted to be 0 outside the interval [−2
√

log 1
ϵ , 2
√

log 1
ϵ ] and let Kϵ be

the inverse Fourier transform of K̂ϵ. By Parseval’s theorem, we may bound the L2 norm of Kϵ and
the L2 norm of the error ||N (0, 12),Kϵ ∗ N (0, 1)||2, as the L2 norms of their corresponding Fourier

transforms. As the Fourier transform of Kϵ is K̂ϵ, which grows as ex
2/4 but is zero outside the interval

[−2
√

log 1
ϵ , 2
√
log 1

ϵ ], its L2 norm is roughly 1
ϵ . Further, the Fourier transform of Kϵ ∗N (0, 1) equals

K̂ϵ · N (0, 1), which by construction is exactly the Fourier transform of N (0, 12) within the interval

[−2
√

log 1
ϵ , 2
√
log 1

ϵ ], and zero outside this interval. Since the Fourier transform of N (0, 12) decays as

e−x
2/4, the L2 norm of the portion outside this interval is thus roughly ϵ, the desired bound.
Our proof of the following lemma relies on the substitution x→ x2 to make the Poisson functions

“look like” Gaussians, where the relationship between the transformed Poisson functions and Gaus-
sians is controlled by properties of Hermite polynomials. Additionally, since we require an L1 bound
on the coefficients, as opposed to the L2 bound that comes more naturally (via Parseval’s theorem),
instead of a sharp cutoff outside a designated interval (as we had done in the previous paragraph in
our construction of Kϵ), we must use a smooth cutoff function T , constructed as the convolution of
the indicator function of an interval with a Gaussian of carefully chosen width.

Lemma 20⋆ For any ϵ > 0 and integer i ≥ 0, one may approximate poi(2x, i) as a linear combination∑∞
j=0 α(j)poi(x, j) such that

1. For all x ≥ 0, |poi(2x, i)−
∑∞

j=0 α(j)poi(x, j)| ≤ ϵ; and

2.
∑∞

j=0 |α(j)| ≤
1
ϵ · 200max{ 4

√
i, 24 log3/2 1

ϵ}.
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Proof. Let gk(x) := poi(x2/2, k) = e−x2/2x2k

2kk!
. We consider the Fourier transform of gk(x), using the

facts that the Fourier transform of f(x) = e−x
2/2 is f̂(w) = e−w

2/2, and that if f(x) is differentiable
with Fourier transform f̂(w), then the Fourier transform of d

dxf(x) is −iwf̂(w) :

ĝk(w) = (−i)2k d2k

dw2k

(
e−w

2/2
)
· 1

2kk!

=
(−1)ke−w2/2H2k(w)

2kk!
,

where Hj(x) := (−1)jex2/2 dj

dxj e
−x2/2, is the jth Hermite polynomial. Since Hermite polynomials form

an orthogonal basis with respect to the Gaussian measure e−w
2/2, and the even numbered Hermite

polynomials are even functions while the odd numbered Hermite polynomials are odd functions, we
have that the even numbered Hermite polynomials form an orthogonal basis with respect to the Gaus-
sian measure e−w

2/2 for the set of even functions. Incorporating the (square root) of the normalizing
function e−w

2/2 into the basis yields that the set of functions ĝk(w)e
w2/4 form an orthogonal basis for

the set of even functions with respect to the uniform measure. In particular, since the set of functions

e−w
2/4H2k(w)/

√
(2k)!

√
2π, sometimes known as the Hermite functions, are orthonormal, we define

the orthonormal basis for even functions Gk(w) = ĝk(w)e
w2/4 2kk!√

(2k)!
√
2π
.

Define hi(x) = gi(x
√
2). Recall our goal of approximating hi as a linear combination of {gj}.

We work in Fourier space, and more specifically, to compute a linear combination of {ĝj} which

approximates ĥi, we multiply both sides by ew
2/4 so that we may make use of the orthonormal basis

{Gj}. Explicitly, defining Tr,c(w) = I[−r,r](w) ∗ e−cw
2
√
c√
π
, where I[−r,r] denotes the indicator function

of the interval [−r, r], for constants c and r to be specified later, and “∗” denotes convolution, we
use the basis {Gj} to express Tr,c(w) · ew

2/4 · ĥi(w). Since {Gj} is orthonormal, the coefficient of Gj is
exactly the inner product of Gj with this expression. That is, defining

βi,r,c(j) ,
∫ ∞
−∞

Tr,c(w) · ew
2/4 · ĥi(w)Gj(w)dw =

2jj!√
(2j)!

√
2π

∫ ∞
−∞

Tr,c(w) · ew
2/2 · ĥi(w)ĝj(w)dw

we have expressed Tr,c(w) · ew
2/4 · ĥi(w) =

∑∞
j=0 βi,r,c(j) · Gj(w). Invoking the definition of Gj and

dividing both sides by ew
2/4, we see that if we define

αi,r,c(j) ,
2jj!√

(2j)!
√
2π

βi,r,c(j) =
22j(j!)2

(2j)!
√
2π

∫ ∞
−∞

Tr,c(w) · ew
2/2 · ĥi(w)ĝj(w)dw, (15)

then we have expressed

Tr,c(w) · ĥi(w) =
∞∑
j=0

αi,r,c(j) · ĝj(w). (16)

We bound |αi,r,c(j)| in two ways from Equation 15.
We first note that since for a real number a ̸= 0, the Fourier transform of a function s(x) =

f(a · x) is ŝ(w) = 1
a f̂(w/a), we have ĥi(w) = 1√

2
ĝi(

w√
2
). Further, we recall the basic fact that

|Gj(w)| is maximized, over all j and w, when j = w = 0 (see [32] p. 190). Thus by definition of

Gj(w), we bound |ew2/4ĝj(w)| ≤
√

(2j)!
√
2π

2jj!
G0(0) =

√
(2j)!

2jj!
, and thus since ĥi(w) =

1√
2
ĝi(

w√
2
), we have

|ew2/8ĥi(w)| ≤
√

(2i)!

2ii!
√
2
. Thus we may bound

|αi,r,c(j)| ≤
2jj!√
(2j)!2π

√
(2i)!

2ii!
√
2

∫ ∞
−∞

Tr,c(w) · ew
2/8dw
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To evaluate this integral, we use a trick which we will use twice more below: we “complete the
square” and make the substitution (in this case) s = t c

c−1/8 , yielding

Tr,c(w) · ew
2/8 ,

√
c√
π

∫ r

−r
ew

2/8e−c(w−t)
2
dt

=

√
c√
π

∫ r

−r
e−(w
√

c−1/8−tc/
√

c−1/8)2e
t2 c

8(c−1/8) dt

=
c− 1

8√
cπ

∫ rc/(c−1/8)

−rc/(c−1/8)
e−(w−s)

2·(c−1/8)es
2· c−1/8

8c ds

=
c− 1

8√
cπ

[
I[−r c

c− 1
8

,r c

c− 1
8

](w) · e
c−1/8

8c
·w2

]
∗ e−(c−

1
8
)w2

.

We may thus integrate this over R as the product of the integrals of the terms on each side of the

convolution, that is:
c− 1

8√
cπ
·
√
8πc√
c−1/8

erfi

(
r
√

c
8(c− 1

8
)

)
·
√
π√

c−1/8
=
√
8πerfi

(
r
√

c
8(c− 1

8
)

)
, where erfi is the

imaginary error function, defined as erfi(x) , 2√
pi

∫ x
0 ey

2
dy. Noting the bound that erfi(x) ≤ 3

4
1
xe

x2

(which can be derived by differentiating), we have

|αi,r,c(j)| ≤
2jj!√
(2j)!2π

√
(2i)!

2ii!
√
2

√
8π

3

4

√
8

r

√
c− 1

8

c
e

r2

8
c

c−1/8 =
2jj!√
(2j)!

√
(2i)!

2ii!

3

r

√
c− 1

8

c
e

r2

8
c

c−1/8 (17)

To bound αi,r,c(j) a second way, we first note that a second application of “completing the square”
allows us to reexpress part of Equation 15 as

Tr,c(w) · ew
2/2 =

c− 1
2√

cπ

[
I[−r c

c− 1
2

,r c

c− 1
2

](w) · e
c−1/2

2c
·w2

]
∗ e−(c−

1
2
)w2

.

Let fr,c(x) be the inverse Fourier transform of I[−r c

c− 1
2

,r c

c− 1
2

](w) · e
c−1/2

2c
·w2

. We thus evaluate

Equation 15 by noting that inner products are preserved under Fourier transform, that the (inverse)

Fourier transform of e−(c−
1
2
)w2

equals 1√
2(c− 1

2
)
e
− 1

4(c−1/2)
x2

, and that multiplication and convolution

swap roles under the Fourier transform, we have that

αi,r,c(j) =
22j(j!)2

(2j)!
√
2π

√
c− 1

2√
2cπ

∫ ∞
−∞

[(
fr,c(x) · e−

1
4(c−1/2)

x2
)
∗ hi(x)

]
· gj(x)dx (18)

By definition of the Fourier transform, for any function f , we have ||f ||∞ ≤ 1√
2π
||f̂ ||1. Thus we

may bound the maximum value of |fr,c| by 1√
2π

times the L1 norm of its Fourier transform, that is,

|fr,c(x)| ≤
1√
2π

∫ r c

c− 1
2

−r c

c− 1
2

e
c−1/2

2c
w2

dw =

√
c

c− 1
2

erfi

(
r√
2

√
c

c− 1
2

)

We now bound gj(x) =
e−x2/2x2j

2jj!
, the final term of Equation 18, by noting that, since x ≤ ex−1

always, and replacing x by x/y yields x ≤ ex/y−1y, we set y =
√
2j and raise both sides to the power

2j to yield that, for positive x,

gj(x) =
e−x

2/2x2j

2jj!
≤ e−x

2/2+x
√
2j−2jjj

j!
= e−

1
2
(x−
√
2j)2 e

−jjj

j!
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Thus by definition of hi(x) = gi(x
√
2) we have hi(x) ≤ e−(x−

√
i)2 e−iii

i! for positive x. Generally,

we may see that hi(x) ≤
(
e−(x−

√
i)2 + e−(x+

√
i)2
)

e−iii

i! for all x. We may thus bound Equation 18 as

|αi,r,c(j)| ≤
22j(j!)2

(2j)!2π
erfi

(
r√
2

√
c

c− 1
2

)
e−iii

i!

e−jjj

j!

∑
±,±

∫ ∞
−∞

[
e
− 1

4(c−1/2)
x2

∗ e−(x±
√
i)2
]
· e−

1
2
(x±
√
2j)2dx,

where the summation is over the four possible combinations of the two choices of “±”. We note
that the integral is equal to the convolution of the three terms inside of it, evaluated at x = 0,

namely

√
8(c− 1

2
)

4c+1 e−
1

4c+1
(x±
√
i±
√
2j)2
∣∣∣∣
x=0

, since the denominators in the exponents of Gaussians add

under convolution. Thus we bound

|αi,r,c(j)| ≤
22j(j!)2

(2j)!2π
erfi

(
r√
2

√
c

c− 1
2

)
e−iii

i!

e−jjj

j!

√
8(c− 1

2)

4c+ 1
· 4 · e−

1
4c+1

|
√
i−
√
2j|2

Since, as noted above, erfi(x) ≤ 3
4
1
xe

x2
, we have

|αi,r,c(j)| ≤
22je−jjjj!

(2j)!2π

e−iii

i!

4(c− 1
2)√

c(4c+ 1)
· 3
r
· e

r2

2
c

c−1/2
− 1

4c+1
|
√
i−
√
2j|2

We bound 22je−jjjj!
(2j)! ≤ 1 as a combination of Stirling’s formula, e−jjj ≤ j!√

2πj
, and the bound on

the middle binomial coefficient
(
2j
j

)
≥ 22j√

2πj
. A second application of Stirling’s formula yields that

e−iii

i! ≤
1√
2πi

, and we trivially bound
4(c− 1

2
)√

c(4c+1)
≤ 2 to yield

|αi,r,c(j)| ≤
3

πr
√
2πi
· e

r2

2
c

c−1/2
− 1

4c+1
|
√
i−
√
2j|2

(19)

Having thus derived two bounds on |αi,r,c(j)|, that of Equation 17 and that of Equation 19, we
now aim to bound

∑
j≥0 |αi,r,c(j)| via a combination of these bounds: using Equation 17 when 2j is

near i, and using Equation 19 otherwise.
Let c = r2, and consider two cases.

Case 1: i ≤ 2c2.

We first bound
∑

j≥4c2 |αi,r,c(j)| from Equation 19. Specifically, consider
∑

j≥4c2 e
− 1

4c+1
|
√
i−
√
2j|2 .

We note that the first term of the sum is at most e−
2c2

4c+1 ≤ e−
c
2 e

1
8 . To bound the ratio between

successive terms, we note that d
dj (
√
i−
√
2j)2 = 2(1−

√
i√
2j
) ≥ 1, which implies

∑
j≥4c2 e

− 1
4c+1

|
√
i−
√
2j|2 ≤

e−
c
2 e

1
8
∑

ℓ≥0 e
− 1

4c+1
ℓ = e−

c
2 e

1
8

1
1−e−1/(4c+1) . We note the general inequality ea ≥ 1 + a, or equivalently,

e1/a ≥ 1 + 1
a , which may be rearranged to 1

1−e−1/a ≤ a+ 1, yielding a bound of (4c+ 2)e−
c
2 e

1
8 on the

sum. To bound the sum of Equation 19, we note that for c ≥ 1, we have r2

2
c

c−1/2 ≤
c
2 +

1
2 , leading to

a bound of
∑

j≥4c2 |αi,r,c(j)| ≤ 3
π
√
2πic

(4c+ 2)e5/8 < 5
√

c
i

To bound |αi,r,c(j)| for small j we instead use Equation 17. We note for ℓ ≥ 1 the bounds on the

middle binomial coefficient of 1√
2πℓ
≤ 2−2ℓ

(
2ℓ
ℓ

)
≤ 1. Further, for c ≥ 1 we have r2

8
c

c−1/8 ≤
c
8 + 1

56 ,

yielding that
∑

j<4c2 |αi,r,c(j)| ≤ 4c2
4
√
2π · 4c2 3re

1/56ec/8 < 28c2ec/8. Combining this with the result

of the previous paragraph yields
∑∞

j=0 |αi,r,c(j)| ≤ 32c2ec/8.

Case 2: i > 2c2.
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We use the bound of Equation 17 when j ∈ ( i2 − 2c
√
i, i

2 + 3c
√
i), and Equation 19 otherwise.

Consider
∑

j≥ i
2
+3c
√
i |αi,r,c(j)|. Invoking Equation 19, we analyze

∑
j≥ i

2
+3c
√
i e
− 1

4c+1
|
√
i−
√
2j|2 . We

aim for |
√
i−
√
2j| ≥

√
2c, and show this by considering (

√
i+
√
2c)2 = i+2

√
2
√
ic+2c2 < i+3

√
2
√
ic <

2j, as desired. Thus the first term of this sum is at most e−
2c2

4c+1 ≤ e−
c
2 e

1
8 . As above, we bound the

ratio of successive terms by noting that d
dj (
√
i −
√
2j)2 = 2(1 −

√
i√
2j
) ≥ c

√
2√
i
, which implies that∑

j≥ i
2
+3c
√
i e
− 1

4c+1
|
√
i−
√
2j|2 ≤ e−

c
2 e

1
8
∑

ℓ≥0 e
− c

√
2

(4c+1)
√

i = e−
c
2 e

1
8

1

1−e−c
√
2/((4c+1)

√
i)
, which, as analyzed in

the previous case, yields a bound of e−
c
2 e

1
8 ( (4c+1)

√
i

c
√
2

+ 1) ≤ 4
√
ie−

c
2 on

∑
j≥ i

2
+3c
√
i e
− 1

4c+1
|
√
i−
√
2j|2 .

We now bound the small terms of the sum,
∑

j≤ i
2
−2c
√
i e
− 1

4c+1
|
√
i−
√
2j|2 . As above, we show that

√
i−
√
2j ≥

√
2c for such j by noting that (

√
i−
√
2c)2 = i−2

√
2
√
i+2c2 > 2j. Thus the last term in

the sum is at most e−
2c2

4c+1 ≤ e−
c
2 e

1
8 . As above, we bound the ratio of successive terms, this time as j

decreases, by noting d
dj (
√
i−
√
2j)2 = 2√

2j
(
√
2j−
√
i), which since 2j < i, has magnitude at least 2

√
2c√
i
.

Thus the bound of the previous paragraph holds, yielding
∑

j≤ i
2
−2c
√
i e
− 1

4c+1
|
√
i−
√
2j|2 ≤ 4

√
ie−

c
2 . As

shown in Case 1, the remaining part of Equation 19 is bounded as 3
πr
√
2πi
· e

r2

2
c

c−1/2 ≤ 3
πr
√
2πi

ec/2e1/2,

yielding
∑

j /∈( i
2
−2c
√
i, i

2
+3c
√
i) |αi,r,c(j)| ≤ 8

√
i 3
πr
√
2πi

e1/2 < 6.

For intermediate j ∈ ( i2 − 2c
√
i, i

2 + 3c
√
i) we bound |αi,r,c(j)| from Equation 17. From the

fact that i! lies between its Stirling estimate and 1.1 times its Stirling estimate, we have that
2jj!√
(2j)!
∈ ( 4
√
πj, 1.1 4

√
πj). Thus, since j < 6i, we have 2jj!√

(2j)!

√
(2i)!

2ii!
≤ 1.1 4

√
6 < 2, and we thus bound

Equation 17 as |αi,r,c(j)| ≤ 23
re

1/56ec/8, and the sum of the 5c
√
i of these terms as at most 31

√
ciec/8.

Combining this result with that of the previous paragraph yields
∑∞

j=0 |αi,r,c(j)| ≤ 32
√
ciec/8.�

Having bounded
∑∞

j=0 αi,r,c(j)|, namely the second claim of the theorem, we now turn to bounding
the first claim of the theorem—showing that the error of our approximation is small. As above, our
expressions will involve the parameter c; as the final step of the proof, we choose c appropriately to
obtain the claimed bounds.

Taking the inverse Fourier transform of both sides of Equation 16 yields that the difference between
hi(w) and

∑∞
j=0 αi,r,c(j) · gj(w) equals the inverse Fourier transform of (1 − Tr,c(w))ĥi(w); we thus

aim to bound the absolute value of this, pointwise. We note that from the definition of the Fourier
transform, for a function f , ||f ||∞ ≤ 1√

2π
||f̂ ||1, so thus the maximum error of our approximation

is bounded by 1√
2π

∫∞
−∞(1− Tr,c(w))|ĥi(w)|dw ≤

√
(2i)!

2ii!2
√
π

∫∞
−∞(1− Tr,c(w))e

−w2/8dw. Again using the

“completing the square” trick yields that this integral equals
√
8πerfc

(
r
√

c
8(c+ 1

8
)

)
≤
√
8πerfc(

√
c√
8
),

where erfc = 1 − erf is the complementary error function. Noting the general bound that erfc(x) ≤
e−x2

x
√
π
, and from the above bound that 2jj!√

(2j)!
≥ 4
√
πj, the maximum error of our approximation is seen

to be at most 8
4√πi
√
c
e−c/8.

We have thus shown that
∑∞

j=0 αi,r,c(j)poi(x, j) approximates poi(2x, i) to within 8
4√πi
√
c
e−c/8,

pointwise, while
∑∞

j=0 |αi,r,c(j)| is at most 32ec/8max{c2,
√
ci}, where c is arbitrary. Thus for desired

error ϵ, we may choose c ≤ 8| log ϵ| so as to make 8
4√πi
√
c
e−c/8 = ϵ, yielding that

∞∑
j=0

|αi,r,c(j)| ≤ 32ec/8max{c2,
√
ci} = 1

ϵ
· 200max{ 4

√
i,
c
√
c

4
√
i
} ≤ 1

ϵ
· 200max{ 4

√
i, 24 log3/2

1

ϵ
},
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as desired.

D Gaussian Facts

This section contains a straightforward analysis of the statistical distance between two multivariate
Gaussians. The result in this section that is used in the main body of the paper is Proposition 32,
which bounds this distance when the covariance matrices have no small eigenvalues, and are close
element-by-element.

Fact 28. Given independent real-valued random variables W,X, Y, Z the total variation distance
satisfies Dtv ((W,X), (Y, Z)) ≤ Dtv(W,Y ) +Dtv(X,Z), where (W,X) and (Y,Z) denote joint distri-
butions.

Proof.

Dtv ((W,X), (Y,Z)) =
1

2

∫ ∫
|PW (a)PX(b)− PY (a)PZ(b)|da db

=
1

4

∫ ∫
|(PW (a)− PY (a))(PX(b) + PZ(b)) + (PW (a) + PY (a))(PX(b)− PZ(b))|da db

≤ 1

4

∫ ∫
|(PW (a)− PY (a))(PX(b) + PZ(b))|da db

+
1

4

∫ ∫
(PW (a) + PY (a))(PX(b)− PZ(b))|da db

=
1

2

∫
|(PW (a)− PY (a))|da+

1

2

∫
(PX(b)− PZ(b))|db = Dtv(W,Y ) +Dtv(X,Z).

Fact 29. Letting N (µ, σ2) denote the univariate Gaussian distribution,

Dtv(N (µ, 1),N (µ+ α, 1)) ≤ |α|/
√
2π.

Fact 30. Letting N (µ, σ2) denote the univariate Gaussian distribution,

Dtv(N (µ, 1),N (µ, σ2)) ≤ max(σ2, 1/σ2)− 1√
2πe

.

Fact 31. Given two Gaussian distributions in m dimensions G1 = N (µ1,Σ1), and G2 = N (µ2,Σ2),
where Σ1 = TT ′, is the Cholesky decomposition of Σ1, then

Dtv(G1, G2) ≤
m∑
i=1

max(λi, 1/λi)− 1√
2πe

+
||T−1(µ1 − µ2)||√

2π
,

where λi is the ith eigenvalue of T−1Σ2T
′−1.

Proof. Since variational distance is affine-invariant, applying the affine transformation T−1, we have
Dtv(G1, G2) = Dtv

(
N (0, T−1Σ1T

′−1),N (T−1(µ1 − µ2), T
−1Σ2T

′−1)
)
, where we have T−1Σ1T

′−1 =
I, the m×m identity. Thus, by the triangle inequality, this distance is at most

Dtv

(
N (0, I),N (T−1(µ1 − µ2), I)

)
+Dtv

(
N (0, I),N (0, T−1Σ2T

′−1)
)
.
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Viewing N (T−1(µ1 − µ2), I) as the joint distribution of m independent univariate Gaussians, where
the first m−1 distributions are N (0, 1), and the mth distribution is N (||T−1(µ1−µ2)||, 1), by Facts 28
and 29 we get that

Dtv

(
N (0, I),N (T−1(µ1 − µ2), I)

)
≤ ||T

−1(µ1 − µ2)||√
2π

.

To bound the other component, view N (0, T−1Σ2T
′−1) as the joint distribution of m independent

univariate Gaussians, where the ith distribution is N (0, λi), with λi the ith eigenvalue of T−1Σ2T
′−1,

and use facts Facts 28 and 30, to yield the claimed result.

Proposition 32. Given two m-dimensional Gaussians G1 = N (µ1,Σ1), G2 = N (µ2,Σ2) such that
for all i, j ∈ [m], |Σ1(i, j)− Σ2(i, j)| ≤ α, and min(eig(Σ1)) > λ,

Dtv(G1, G2) ≤
||µ1 − µ2||√

2πλ
+

mα√
2πe(λ− α)

.

Proof. Let Σ1 = PDDP ′, where D is a diagonal matrix, and P is a unitary matrix. Note that the
minimum entry on the diagonal of D is

√
λ. We now write Σ2 = Σ1 +A, for some symmetric matrix

A whose entries are bounded in magnitude by α. By Fact 31, the contribution to Dtv(G1, G2) from
the discrepancy in the means is at most

||D−1P ′(µ1 − µ2)||√
2π

≤ ||µ1 − µ2||√
2πλ

.

We now consider the contribution to Dtv(G1, G2) from the discrepancy in the covariance matrices. We

consider the eigenvalues of D−1P ′Σ2PD−1 = I+D−1P ′APD−1. We have maxv
||D−1P ′APD−1v||

||v|| ≤ α
λ ,

and thus the maximum eigenvalue of I+D−1P ′APD−1 is at most 1+ α
λ , and the minimum eigenvalue

is at least 1− α
λ ; thus from Fact 31 we have

Dtv(G1, G2) ≤
||µ1 − µ2||√

2πλ
+

m
(

1
1−α/λ

)
− 1

√
2πe

=
||µ1 − µ2||√

2πλ
+

mα√
2πe(λ− α)

.
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