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Abstract

The c-Balanced Separator problem is a graph-partitioning problem in which given a
graph G, one aims to find a cut of minimum size such that both the sides of the cut have
at least cn vertices. In this paper, we present new directions of progress in the c-Balanced
Separator problem. More specifically, we propose a family of mathematical programs, that
depend upon a parameter p > 0, and is an extension of the uniform version of the SDPs proposed
by Goemans and Linial for this problem. In fact for the case, when p = 1, if one can solve this
program in polynomial time then simply using the Goemans-Williamson’s randomized rounding
algorithm for Max Cut [11] will give an O(1)-factor approximation algorithm for c-Balanced
Separator improving the best known approximation factor of O(

√
log n) due to Arora, Rao

and Vazirani [4]. This family of programs is not convex but one can transform them into so
called concave programs in which one optimizes a concave function over a convex feasible set.
It is well known that the optima of such programs lie at one of the extreme points of the feasible
set [26]. Our main contribution is a combinatorial characterization of some extreme points of
the feasible set of the mathematical program, for p = 1 case, which to the best of our knowledge
is the first of its kind. We further demonstrate how this characterization can be used to solve
the program in a restricted setting. Non-convex programs have recently been investigated by
Bhaskara and Vijayaraghvan [6] in which they design algorithms for approximating Matrix p-
norms although their algorithmic techniques are analytical in nature. It is important to note
that the properties of concave programs allows one to apply techniques due to Hoffman [18] or
Tuy et al [26] to solve such problems with arbitrary accuracy that, for special forms of concave
programs, converge in polynomial time.

∗A significant portion of this work was done when the author was a B-Tech, M-Tech dual degree student at
IIT-Kanpur, India
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1 Introduction

Graph partitioning is a problem of fundamental importance both in practice and theory. Many
problems belonging to the several areas of computer science namely clustering, PRAM emulation,
VLSI layout, packet routing in networks can be modeled as partitioning a graph into two or more
parts ensuring that the number of edges in the cut is “small”. The word “small” doesn’t refer to
finding the min-cut in the graph as it doesn’t ensure that the number of vertices in both sides of the
cut is large. To enforce this balance condition one needs to normalize the cut-size in some sense.
For the known notions of normalization like conductance, expansion and sparsity, finding optimal
separators is NP-hard for general graphs. Hence, the objective is to look for efficient approximation
algorithms. Because of the huge amount of work done to design good approximation algorithm for
these problems, graph partitioning has become one of the central objects of study in the theory of
geometric embeddings and random walks. Two fundamental problems which we will focus on are
Sparsest Cut and Balanced Separator. These graph partitioning problems originally came
up in the context of multi-commodity flows in which we are given a graph with capacities on the
edges and a set of pairs of vertices (also called source-destination pairs) each having a demand
and the aim is to find a cut that minimizes the ratio of capacity of the cut and the total demand
through the cut. When the demand and capacities are all unit then the problem is called uniform
and in case of general demands and capacities the problem is called non-uniform.

1.1 Uniform Version

The first approximation algorithm for such graph partitioning problems, came out of the study
of Reimannian manifolds in form of the well known Cheegar’s Inequality [8] which says that if
Φ(G) is the conductance of the graph and λ is the second largest eigenvalue of graph Laplacian
then 2Φ(G) ≥ λ ≥ Φ(G)2/2. Because of the quadratic factor in the lower bound, the true ap-
proximation is 1

Φ(G) which in worst case can be Ω(n) in worst case. The first true approximation

algorithm for Sparsest Cut and Graph Conductance was designed by Leighton and Rao [22]
whose approximation factor was O(log n). This also gave an O(log n) pseudo-approximation

algorithm for c-Balanced Separator. This algorithm is referred to as a pseudo-approximation
algorithm because instead of returning a c-balanced cut, it returns a c′-balanced cut for some fixed
c′ < c whose expansion is at most O(log n) times the optimum expansion of best c-balanced cut.
Their algorithm was based on an LP framework motivated from the idea of Multi-commodity flows.
Their main contribution was to derive an approximate max-flow, min-cut theorem corresponding
to multi-commodity flow problem and the sparsest cut. Subsequently, a number of results were
discovered which showed that good approximation algorithms exist when one is considering ex-
treme cases such as the number of edges in the graphs is either very small or very large. In fact,
it is known that for planar graphs one can find balanced cuts which are twice as optimal [10] and
for graph with an average degree of Ω(n), one can design (1 + ǫ)-factor approximation algorithms
where ǫ > 0 with running time polynomial in input size [2] (such an algorithm is called a Polyno-



mial Time Approximation Scheme or PTAS). The approximation factor of O(log n) was improved
to O(

√
log n) in a breakthrough paper by Arora, Rao and Vazirani [4]. Their algorithm is based

on semi-definite relaxations of these problems . The techniques and geometric structure theorems
proved in their paper have subsequently led to breakthroughs in the field of metric embeddings. The
basic philosophy behind these approximation algorithms is to embed the vertices of the input graph
in an abstract space and derive a “nice” cut in this space. Recently, following a series of papers
graph expansion has been related to the Unique Games that ultimately led to sub-exponential
time algorithms for Unique Games [5].

1.2 Non-uniform Version

The non-uniform version of the cut problems is inextricably linked with low distortion metric em-
bedding. It is easy to see that cut problems can be framed as optimization over l1 metric which in
general is NP-Hard. So the incentive is to embed the points in a space on which one can optimize
efficiently for eg. the l22 metric over which can optimize using SDPs. More specifically, using ideas
from ARV and the measured descent technique of [14], firstly Lee [16] gave an O(log n) approxi-
mation algorithm for the non-uniform Sparsest Cut, which was later improved to O(log3/4 n) by
Chawla, Gupta and Rache [12]. A major breakthrough came from Arora, Lee and Naor [15] who
improved this bound to O(

√
log n log log n) almost matching an old lower bound due to Enflo [17]

which says that there is an n point metric in l1 which need Ω(
√

log n) distortion to be embedded
into l2.

1.3 Negative Results

Graph partitioning problems like Sparsest Cut and Balanced Separator are considered to
among the few NP-hard problems which have resisted various attempts to prove inapproximability
results. After the result of ARV, there has been a lot of impetus towards proving lower bounds on
approximation factors. It has been shown by Ambuhl et al [1] that Sparsest Cut can’t have a
PTAS unless NP-complete problems can be solved in randomized sub-exponential time. Because of
the strong connections between semi-definite programming and the Unique Games Conjecture
(UGC) of Khot [20], inapproximability results are also known which assume UGC. More specifically,
in a breakthrough result, Khot and Vishnoi [21] showed that UGC implies super-constant lower
bounds on the approximation factor for the non-uniform version of the problems. Lee and Naor
[24] gave an analytical proof of the result that by exhibiting an n point metric on the Heisenberg
Group that is of negative type and needs ω(1) distortion to be embedded in l1. Recently, it has
been shown by Cheeger, Kleiner and Naor [13], that the integrality gap of the non-uniform version
of the sparsest cut SDP is Ω(logO(1) n). Devanur et al [9] showed that the integrality gap of the
SDP relaxation of Arora-Rao-Vazirani is Ω(log log n) thereby disproving the original conjecture of
ARV that the integrality gap of their SDP relaxation is atmost a constant.



1.4 Non-Convex Programming

In this paper we work with a form of non-convex programs called Concave Programming. In
order to define concave programming one first needs to define a concave function. A function
f : R

d → R with domain domf is said to be concave if domf is convex and for all x, y ∈ domf ,
f(λx+(1−λ)y) ≥ λf(x)+ (1−λ)f(y) for all λ ∈ [0−1]. Therefore, f is concave iff −f is a convex
function. Based on this definition one defines concave programming as a form of mathematical
programming in which one optimizes a concave function over a convex feasible set. More formally,
a concave programming problem can be written as [minx∈C f(x)] where C is a convex set in R

d

and f is a concave function. The following is well known result for concave programming [19].

Fact 1. For every concave programming problem there is an extreme point of the convex feasible
set C which globally minimizes the optimization problem.

The first algorithm for concave programming was designed by Tuy [27] in a restricted scenario
when the feasible set is a polytope. A more general case, when the feasible set is convex but not
necessarily polyhedral, was solved by Horst [19] and subsequently by Hoffman [18], Tuy and Thai
[28]. General concave programming is NP-hard as {0, 1}-integer programming can be cast as a
concave program. There has been work towards designing efficient algorithms for some special
class of concave programming. A comprehensive list of works done in concave programming can
be found in Vaserstein’s homepage [31]. Recently, using analytical techniques Bhaskara and Vija-
yaraghvan [6] have successfully used non-convex programs to design algorithms for approximating
matrix p−norms.

1.5 Our Contributions

Our main contribution is to initiate the study of combinatorial geometric properties of a non-
convex relaxation for the -̧ Balanced Separator problem. We show that an efficient solution to our
proposed program will imply improved an approximation algorithm for this problem. In section
2, we formally introduce the notions of sparsity and balanced cuts and sketch the Semi-Definite
relaxation for c-Balanced Separator of ARV. We then start section 4 by introducing a family
of relaxations for c-Balanced Separator which is generated by a parameter p > 0 and show
that one can use its solution to design an O(1) -factor approximation algorithm for the problem.
Our result, although conditional, proposes new directions of progress on this problem and also
a family of optimization problems which are more powerful than semi-definite programs in the
context of approximation algorithms. Section 5 and 6 are devoted to find interesting properties on
the geometry of the feasible region of our program and in section 7 we show how these properties
can be used to design an efficient algorithm to search over a subset of extreme point called vertices.
We end the paper with Section 8 in which we present conclusions and future directions.



2 Problem Definition

We now formally define the versions of balanced graph partitioning problem that we focus on, in
this paper. c-Balanced Separator 1

Given a graph G = (V,E) with |V | = n, |E| = m, the c-Balanced Separator problem is to find
αc(G) where αc(G) = min

S⊂V,cn<|S|<(1−c)n
E(S, S̄).

Although out techniques can potentially be generalized to Sparsest Cut 2 and other balanced
graph partitioning problems.

2.1 SDP Relaxation for c-Balanced Separator

Unifying the spectral and the metric based (linear programming) approaches, ARV used the fol-
lowing SDP relaxation to get an improved (pseudo)-approximation algorithm for the c-Balanced
Separator. Let us call this program SDPBS ,

min
1

4

∑

i,j∈E

‖vi − vj‖2

‖vi‖2 = 1 ∀i
‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2 ∀i, j, k∑

i<j

‖vi − vj‖2 ≥ 4c(1 − c)n2

It is easy to see that this indeed is a vector program (and hence an SDP) and is a relaxation
for the c-Balanced Separator problem. To show that this is a relaxation we have to show that
for every cut we can get an assignment of vectors such that all the constraints are satisfied and the
value of the objective function is the size of the cut. Given a cut (S, S̄) if one maps all the vertices
in S to a unit vector n and the vertices in S̄ to −n then the value of the function is indeed the
cardinality of E(S, S̄). The main idea behind their algorithm is to show that for any set of vectors
which satisfy the constraints of the SDP there always exist two disjoint subsets of “large” size such
that for any two points belonging to different subsets the squared Euclidean distance between them

is at least Ω
(

1√
log n

)
. The same idea is also used to get an improved approximation algorithm for

Sparsest Cut in [4]. Subsequently, this key idea has crucially been used in various other SDP
based approximation algorithms and in solving problems related to metric embeddings.

1In [4] c-Balanced Separator is defined as the minimum sparsity of c-balanced cuts, we will be working with
a definition which upto constant factors is equivalent to their definition

2Given a graph G = (V, E) with |V | = n, |E| = m, for each cut (S, S̄) define sparsity of the cut to be the quantity

A(S) = |E(S,S̄)|

|S||S̄|
. The uniform sparsest cut problem is to find α(G) where

α(G) = min
S⊂V

A(S).



3 Non-Convex Relaxation for c-Balanced Separator

Consider the following family of optimization problems which depend on a parameter p ≥ 0. This
family is essentially an extension of the semi-definite program proposed by ARV. Throughout the
paper we will use ‖.‖ to represent the l2 norm. Let us call this family of programs F p

BS .

min
1

2p

∑

i,j∈E

‖vi − vj‖p

‖vi‖2 = 1 ∀i
‖vi − vj‖p + ‖vj − vk‖p ≥ ‖vi − vk‖p ∀i, j, k∑

i,j∈E

‖vi − vj‖2 ≥ 4c(1 − c)n2

Note that for p = 2 this is the SDP relaxation used by ARV. For p = 1, we are mapping
the points onto a unit sphere, therefore we do not have to force the additional triangle inequality
constraint of l2 metric. The same mapping described for SDPBS of the vertices of the graph onto
the unit sphere allows us to conclude that each program in this family is also a relaxation for
c-Balanced Separator. In most part of the paper we will be working with the case p = 1. Now
it is easy to see that if we can solve this program for p = 1, then simply using the randomized
rounding algorithm of Goemans and Williamson [11] will give an O(1)-approximation algorithm for
the problem. This is because of the fact that the last constraint ensures that a random hyperplane
will find two sets of large size on both sides with constant probability [4]. Another way to look at
it is that in this program we are actually embedding the points in an l2 metric which in turn is in
l1 metric.Therefore we have the following theorem:

Theorem 1. An efficient algorithm for solving F p
BS for p = 1 implies an O(1)-factor approximation

algorithm for c-Balanced Separator.

4 A Concave Programming Formulation

In this section, we consider the family of optimization problems F p
BS proposed above and transform

it into a concave program. This formulation allows us to use the algorithms which have been
developed to solve a concave program with arbitrary accuracy. We now write F p

BS as a program
with variables as matrix entries and not as d-dimensional vectors. The variables in the new program
are of the form xij = 〈vi, vj〉. Since all vi’s are unit vectors we can write ‖vi−vj‖ as

√
2 − 2 〈vi, vj〉.

If we consider the matrix X with ijth entry as xij use the transformation zij = (1 − xij), the new
optimization problem becomes:

min
1

2p/2

∑

i,j∈E

z
p/2
ij



z
p/2
ij + z

p/2
jk ≥ z

p/2
ik ∀i, j, k∑

i<j

zij ≥ c(1 − c)n2

zii = 0 ∀i
1− Z � 0

where 1 is the matrix with all entries as 1.
Let us call the above program F̃ p

BS . This formulation allows us to prove the following lemma:

Theorem 2. F̃ p
BS is a concave program for 0 < p < 2.

Proof. See Appendix.

5 Case p = 1

In this case the our feasibility problem now looks like the following:

min
1√
2

∑

i,j∈E

√
zij

√
zij +

√
zjk ≥ √

zik ∀i, j, k∑

i<j

zij ≥ c(1 − c)n2

zii = 0 ∀i
1− Z � 0

where 1 is the matrix with all entries as 1. Since −1 ≤ xij ≤ 1, 0 ≤ zij ≤ 2. Let us denote the
region in R

d, which satisfies the last two constraints as P, the triangle inequality constraints as T
and the “well-separated” constraint as H. We will denote by F the feasible region. Also if C is an
inequality constraint, then C∗ be the equality constraint corresponding to it. The following is an
easy observation which follows essentially from the definition.

Observation 1. P ⊆ T .

5.1 The 3-Dimensional Intuition

If we just focus our attention to 3-variables and look at the feasible set (with out the positive semi-
definite constraint), then because of the nature of the triangle inequality constraints the geometry
of the feasible set looks as shown in the Figure 5.1. Notice that the feasible set is not polyhedral
but it has one dimensional line segments on its boundary. The shaded region enclosed by the points
p1, p2, p3, p4, p5, p6 and p7, depicts the feasible set. The line segments which are on the boundary of
this object are p1p6, p3p5, p2p4. p6p7, p7p4 and p5p7. Also p1p2, p2p3 and p3p1 are non-linear arcs
which are on the boundary of the feasible set. Given this description the following is easy to show.
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p2
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Figure 1: The picture in 3-D

Lemma 1. Let f = xp
1 + xp

2 + xp
3 where p < 1/2 be the objective function to be minimized over F ,

then the optimum is achieved at one of extreme points p1, p2 or p3.

6 Combinatorial Geometry of the Feasible Set

In this section we separately consider the constraints and develop tools to understand the geometry
of the feasible set which can potentially help us in getting an efficient algorithm to solve the
feasibility problem.
Our aim in the sections to follow is to give a tight characterization of the “vertices” of the proposed
program which are defined as follows:

Definition 1 (Vertex). A point p ∈ R
d is called a vertex-set of the feasible set F if p ∈ F and

there exists equality constraints C∗
1 , C∗

2 , . . . C∗
r such that p =

⋂r
k C∗

k .

Definition 2 (Arc). An arc a of F is a closed one-dimensional curve joining two vertices of F



such that there exists equality constraints C∗
1 , C∗

2 , . . . C∗
r such that a =

⋂r
i C∗

i

Notice that we can analogously define vertices and arcs corresponding to the regions P,H and
T . From the previous section it is clear that some arcs are line segments while others are not. The
arcs which are line segments we will call them edges. In the subsequent sections we will consider
the constraints separately.

6.1 The Triangle Inequality Constraints

We will now look at the geometric structure posed by the Triangle Inequality Constraints inside
the [0 − 2]d hypercube and prove some structural results on those.

Definition 3. Let R denote the region inside [0 − 2]d that is formed by the intersections of the
constraints zij + zjk ≥ zkl, for all i, j, k.

Observation 2. The 0 vector is a vertex of T .

Observation 3. e(p) is an edge(vertex) of T iff it is an edge(vertex) of R.

We now take a deviation and first characterize all the symmetric n × n matrices with 0, 1 en-
tries and main diagonal as 0 which satisfy the triangle inequality constraints. Since such matrices
represent the adjacency matrix of some graph, we essentially need to characterize all graphs whose
corresponding matrices satisfy the triangle inequality constraints. As we will see later this char-
acterization will be helpful in analyzing the geometry of the triangle inequality constraints. But
before that, we first need to define the following class of graphs:

Definition 4. A graph G(V,E) is called partial-clique if there exists pairwise disjoint sets S1, S2, . . . Sr ⊆
V , such that G = KV \ {⋃r

i=1 KSi
} where KS denotes edges in the complete graph on S ⊆ V .

We also define the following which will be of our interest later and subsequently prove a series
of combinatorial results based on these.

Definition 5. A partial-clique G = KV \ {⋃r
i=1 KSi

} over a vertex set V is called a multi-clique

if
⋃r

i=1 Si = V .

(In the literature these graphs are popularly known as multi-partite graphs.) For the sake of
brevity we will assume that the empty graph (V = ∅) is a multi-clique. We will also allow, again
for the sake of simplification, that one can take Si’s of cardinality 1.

Theorem 3. A graph satisfies the triangle inequality constraints if and only if it is a partial-clique.



Proof. It is easy to see that if the graph is a partial clique then it satisfies the triangle inequality
constraints. Let S1, S2, . . . , Sr be the corresponding set of subsets. Consider any three vertices
vi, vj , vk, the following cases may arise: (i) none of of them lies in a subset S, (ii) all three lie in
distinct Si1 , Si2 , Si3 (iii) two of them lie in a set Si1 and one lie in Si2 (iv) only one of them lies in a
subset Si1 (v) all lie in the same subset Si. In all these cases one can easily verify that the triangle
inequality holds. Hence a partial-clique satisfies the triangle inequality constraints.
For the converse part consider a graph that satisfies the triangle inequality constraints and assume
that it is not a partial-clique. Clearly the graph can’t be disconnected because in that case one can
easily find three vertices violating the corresponding triangle inequality. The triangle inequality
essentially says that for all i, j, k, if two edges vivj and vjvk are not present in the graph then
the edge vivk should also not be present. Now assume that the complement of the graph has m
connected components. Consider any one component say H. Let S1 ⊆ V be the set of vertices
in the component H with an edge vivj ∈ H. If H has just these two vertices vi1 and vi2 then it
is already a clique. Let vi3 be a vertex which share an edge with vi1 or vi2 . W.l.g let it be vi1 .
Since vi1vi2 and vi1vi2 is in the complement, vi3vi2 also have to be in the complement, which forms
a 3-clique. We can repeat the same argument for the next vertex vi4, which will share an edge
with at least one vertex in {vi1 , vi2 , vi3}, to show that it forms a 4-clique. Repeating this argument
for all the vertices of the component we can show that H is a clique. The same holds for all the
components.

Lemma 2. The edges of R are of the form λB where B is a bi-clique on V = {1, 2, . . . , n}.

Proof. One way is easy to verify. For the other side, Notice that if the intersection of a set of
equalities actually results into a line then there will be a set of variables xij such that all of them
are equal and rest are all zeros (hence there is just one variable). Therefore the line will actually
be a vector with some entries as λ and rest as 0. Since the 0/1 vectors which satisfy the triangle
inequalities are the partial-cliques such a vector with pass through a partial clique Gv . Consider
the graph Gλv which represents a weighted partial-clique with all edges with weight λ. Now if such
a partial clique is not a bi-clique then either one of the two cases are possible: 1. One can find an
edge {i, j} such that weight of {i, j} is λ and there is no pair of the form {j, k} or {i, k′} such that
w{j,k} = 0 or w{i,k′} = 0.
2. Gλ is a multi-clique with λ as edge weights.

If it is the first case let {i, j} and {i1, j1} be the two pairs which have weight λ and since both
have value λ, the intersection of the planes which we have chosen implies zij = zi1j1 . This means
there must be some be some k such that one of zij + zjk = zik, zij + zik = zjk and zik + zjk = zij is
chosen and zjk = zi1j1 or zik = zi1j1 is implied by the rest of the planes chosen. But in both these
cases, one of zik or zjk is zero which is a contradiction.
For the second case, let i, j, k be three vertices lying in sets V1, V2 and V3, whose cliques are removed,
respectively. Now due to the way equality of two variables is implied by a set of constraints, for



the edge {i, j} to have the same value as {i, k} there must exist some j′ ∈ V2 and k′ ∈ V3 such
that the plane containing variable xij′ and xik′ is chosen, buth this implies xj′k′ = 0 which is a
contradiction.

Lemma 3. Let T be the set of all 0/1 vectors in the hypercube which satisfy the triangle inequality
constraints, then T is exactly the set of all 0-dimensional faces of R.

Proof. It is easy to see that the vertices of the cube are n-dimensional 0/1 vectors and edges
are formed by joining those vertices which have hamming distance 1. Since R is essentially the
intersection of the Hamming cube with the unbounded polytope corresponding to the triangle
inequalities, all the vertices of the cube which satisfy the triangle inequality constraints will also
be the vertices of R. We only need to show that there is no other vertices of R. Since vertices
form the boundary of the edges, the vertices of R are formed as a result of the intersection of edges
of the cube H with P or edges of P with H. But we can show that every edge of H intersects
the boundary of P only at its end points and also that every edge of P intersects the supporting
planes of H only at the vertices of H hence the vertices of R can only be the vertices of H. To
show the first claim let (a12, a13, . . . , λ, . . . , a(n−1)n, ann) be an edge of H in which all aij’s except
one are fixed to either 0 or 1 and only one coordinate is varying as λ ∈ [0 − 1]. Now consider any
plane corresponding to the triangle inequality constraints of the form xij + xjk = xik. Since there
is only one co-ordinate in the line this equality can’t be satisfied for any 0 < λ < 1, and hence
intersection is only possible when λ is either 0 or 1. Based on Lemma ?? it is easy to see that the
edges intersect the supporting planes of H only at vertices of H.

Theorem 4. The line segment joining two vertices u and v of R is an edge of R if and only if the
subgraphs of Gλu+(1−λ)v corresponding to the edges with weights λ and 1 − λ respectively are both
bi-cliques.

Proof. (if part) Let u and v be the vertices of R and Gu = KV \{⋃2
i=1 KSi

} Gv = KV \{⋃2
i=1 KRi

}
(since both are bi-cliques). Recall that by definition for any two vertices ui and vj in Si ∩ Rj the
edge between them is not present. Also the set of edges with weight λ will be those which are
present in Gu and not in Gv vice versa for edges with weights 1 − λ. Let Hλ and H1−λ be the
subgraphs comprising of edges with weights λ and 1 − λ respectively. Consider Hλ. Since this
graph is given to be a bi-clique we can assume it to be Hλ = KV ′ \ {KT1 ∪ KT2}. We now choose
hyperplanes such that their intersection gives us Gλu+(1−λ)v . For every i, j, k ∈ V ′ such that i, j is
in some Ti1 and k is in some Ti2 , i1, i2 ∈ {1, 2} with Ti1 6= Ti2 choose the hyperplanes zij +zjk = zik

and zij + zik = zjk among the set of planes. Note that this implies that zik = zjk and zij = 0. As a
result of selecting these hyperplanes we will get all the variables zij where {i, j} is an edge in Hλ

to be equal. Take this equal value as λ. Also for all {i, j} which are not edge set of Hλ will have
weight 0. Repeat the same exercise of choosing hyperplanes for the subgraph H1−λ but this time
instead of taking the equal value as λ take the value as 1−λ. For all the rest of the edges {i, j} with
weight 1 choose the hyperplane zij = 1. To link these values we need to choose some other planes.



For all i, j, k such that {i, j} ∈ Hλ and {j, k} ∈ H1−λ choose the plane zij + zjk = zik. It is now
easy to verify that the intersection of all these planes indeed gives the line segment λu + (1 − λ)v.

(only if part) Let u and v be vertices of R and the graph Gλu+(1−λ)v doesn’t satisfy above
mentioned condition. Similar to Lemma ??, it can be verified that in this case it is always the case
that at least one the following two scenarios will arise:
1. The subgraph Hλ has more than one edge and one can find a pair {i, j} such that w{i,j} is λ (or
1 − λ) and there is no pair of the form {j, k} or {i, k′} such that w{j,k} = 0 or w{i,k′} = 0.
2. The subgraph Hλ (or H1−λ) is a collection of disconnected multi-cliques.

If it is the first case let {i, j} and {i1, j1} be the two pairs which have weight λ (w.l.g. assume
it is λ) and since both have value λ, the intersection of the planes which we have chosen implies
zij = zi1j1. This means there must be some be some k such that one of zij +zjk = zik, zij +zik = zjk

and zik +zjk = zij is chosen and zjk = zi1j1 or zik = zi1j1 is implied by the rest of the planes chosen.
But in both these cases, one of zik or zjk is zero which is a contradiction.
For the second case, let {i1, j1} and {i2, j2} be two pairs which are in different multi-cliques but
w{i1,j1} = w{i2,j2}. Therefore, zi1j1 = zi2j2 must be implied by the chosen set of hyperplanes. But
from the discussion presented before, such a scenario implies that both i1j1 and i2j2 have to be in
a connected graph which has to be a biclique.

6.2 Positive Semi-Definite Constraint

We now investigate the surface defined by the positive semi-definite constraint 1 − Z � 0. From
Observation 1, the region defined by the this constraint is enclosed inside the region defined by the
triangle inequalities. In this direction we will prove certain interesting results again relating the
graphs which some of these matrices correspond to.
Given a symmetric n × n matrix A with ±1 entries define a new matrix Ã such that Ãij = 1 if

Aij = −1 and Ãij = 0 if Aij = 1. The matrix Ã can be treated as the adjacency matrix of a
graph on vertices {v1, v2, . . . vn}. We now prove the following lemma which will be of interest in
the further discussion.

Lemma 4. Given a symmetric matrix A = [aij ] with ±1 entries, the expression E(x1, x2, . . . , xn) =
n∑

i

aiix
2
i + 2

n∑

i<j

aijxixj is non-negative for all x′
is ∈ R, iff there exist b1, b2, . . . bn ∈ {1,−1} such

that E can be expressed as (b1x1 + b2x2 + . . . + bnxn)2.

Proof. Clearly one way is trivial, i.e. if E is of the above form then it must be non-negative. For
the converse part we have to show that for all expressions E which are not of this form we can find
some values of xi’s i = 1, 2, . . . , n, for which the value of expression these choice of xi’s becomes
negative. We will denote x = (x1, x2, . . . , xn).
Firstly, it is easy to see that any E that is non-negative for all x′

is must have the values of a′iis as



1 because if any aii = −1 then the expression will be negative for the vector x which is a at the
ith position and 0 otherwise where a is a non-zero number. Now we would show that if E is not of
the form (b1x1 + b2x2 + . . . + bnxn)2 then there always exists a triple i, j, k all three distinct such
that among aij , ajk, aik either all are -1 or two are 1 and one is -1. It is easy to see that under
this assumption we will be done as for both these cases we can find an x such that E(x) < 0. If
it is the first case i.e. all are -1’s then take x as the vector with a at the positions i, j, k and 0
otherwise. The value of E at this x will be −3a2 < 0. If it is the other case then w.l.g assume that
aij = ajk = 1 and aik = −1. In this case we can choose x which has a at positions i and k and −a
at position j. Again the value of the expression will be −3a2 < 0.
We now have to prove that our assumption is always true. We will prove this by induction on n
Base: Can easily be verified for n = 4.
Induction: Assuming the above statement holds for k = n, we have to show it for k = n + 1.
The above statement can be interpreted in terms of a graph. Given a matrix A := aij , consider
a weighted clique on n vertices in which weight of an edge is 1 or -1. Therefore every expression
E represents a clique. If it is of the form (b1x1 + b2x2 + . . . + bnxn)2, then we can partition the
vertex set of the corresponding graphs into two sets S+ and S− = V \ S+ such that weights of all
edges in E(S+, S−) will be -1 and all other edges will be 1. Suppose the statement doesn’t hold
for k = n + 1 i.e. there exists an expression which is not of the form (b1x1 + b2x2 + . . . + bnxn)2

but no triplet exists which satisfies our condition, i.e. all triples are either 1 or two are 1 and one
is -1. In such a case, remove one vertex from the set and this property still holds for all triples and
hence by induction we can assume this new graph can be decomposed into two sets S+ and S− as
above. Now, if we put the removed vertex back then it is easy to verify that we cannot preserve
the initial property.

Theorem 5. An n × n symmetric matrix A with ±1 entries is positive semidefinite if and only if
the graph corresponding to Ã is a complete bipartite graph on vertices {v1, v2, . . . vn}.

Proof. If the given matrix A is a positive semi-definite matrix then for all vectors x = (x1, x2, . . . , xn),
xT Ax ≥. Now in general for a symmetric matrix A, xT Ax can be expanded as

xT Ax =
∑

i

aiix
2
i + 2

∑

i<j

aijxixj

In our case, each aij = ±1. Now, we can appeal to Lemma 4 to conclude that the above expression
will be non-negative iff it is of the form (b1x1 +b2x2 + . . .+bnxn)2 for some bi’s ∈ {1,−1}. From the
proof of Lemma 4 the weighted graph can be partitioned into two sets S+ and S− such that edges
of E(S+, S−) are of weight -1 and rest have weight 1. As per the definition of Ã edges with weight
1 are removed and rest have weight 1, which makes the graph corresponding to Ã, a complete
bipartite graph.

Lemma 5. All points Z of the form λA where A := [aij ] corresponds to a bi-clique, are in P for
λ ∈ [0 − 2].



Proof. X := [xij] be the matrix such that Xij = 1 − (λaij)
2. Now λA will be in S iff the matrix

X is positive semi-definite. Since A corresponds to the adjacency matrix of a bi-clique, there will
exists two disjoint non-empty subsets of V = 1, 2, . . . , n, S1 and S2 such that S1 = A \ S2 and for
all i ∈ S1 and j ∈ S2, aij = 1. Also for all i, j ∈ S1, aij = 0. and i, j ∈ S2, aij = 0. Since it is the
adjacency matrix of a graph aii = 0. This implies that xij = 1 − λ for all i ∈ S1 and j ∈ S2 and
xij = 1 for all i, j ∈ S1 and i, j ∈ S2. Also xii = 1. Now we know that the matrix X will be a PSD
matrix iff there exists some n, n-dimensional vectors u1, u2, . . . , un such that xij = 〈ui, uj〉. Since
xii = 1 all of these have to be unit vectors. Since 1 − λ takes values in the range [−1, 1]. There
will always be two vectors n1 and n2 on the unit sphere such that 〈n1, n2〉 = 1 − λ. Therefore, we
can choose the vectors u1, . . . , un as for all i ∈ S1 take ui = n1 and for all i ∈ S2 take ui = n2. It
is easy to verify that for all values of i, j, xij is indeed 〈ui, uj〉.

The following also is provable similar to Lemma 5

Lemma 6. Let B be a partial clique from is obtained by removing k cliques form Kn, then all
vectors corresponding to λB belong to P for λ ∈ [0 − λk] where λk ∈ [0 − 2].

Lemma 7. An edge e of the cube [0 − 2]d is completely contained inside P or completely outside
it.

7 Optimizing Over the Vertices is Easy

In this section we give a characterization of the vertices and arcs of F and show how the objective
function can easily be optimized over the vertices. Let Γ be the the points of the intersection of
the hyperplane supporting H (denoted by H∗) the segments of the form λB where B is a partial
clique. The vertices ∆, of F , can be divided into types,

Type 1: Points formed by the intersection of of H∗ with the edges of P which we call ∆1 and

Type 2: Vertices of the hypercube which satisfy H and P. Let this set be denoted by ∆2.

Notice that ∆1 ⊂ Γ.
We now prove an interesting result showing that we can infact optimize this objective function

very efficiently over the set of vertices. The reason is that once we find out the intersection points
of H∗ with the with the edges of T and subsequently find the points among these which minimizes
the objective function

∑
i,j∈G

√
zij . But things become simpler because there aren’t many edges

which intersect with the levels of the objective function.
More specifically, our result essentially answers the following question: given a connected graph

G = (V,E) is it possible to efficiently find a partial clique G′ on the vertex set V such that if an
edge {i, j} is present in G then it is also present in G′ and if it is not present in G then it is also
not present in G′. The following theorem says given a connected graph G = (V,E) and a subset of



edges E′ one can easily decide whether there exists a partial clique G∗ = (V,E∗) such that E′ ⊆ E∗

and E \ E′ ⊆ Ē∗, where Ē∗ is the set of edges in the complement of G∗. Before that we state the
following observation that directly follows from Theorem 3.

Observation 4. If G = (V,E) is a partial-clique on n vertices that does not contain a fixed set
of edges E′ which forms a connected component then it does not contain the clique defined by the
vertices induced over E′.

Theorem 6. Given a connected graph G = (V,E) and a subset of edges E′ there exists a unique
(if any) partial clique G∗ = (V,E∗) such that E′ ⊆ E∗ and E \ E′ ⊆ Ē∗, where Ē∗ is the set of
edges in the complement of G∗ and that partial-clique can be found efficiently.

Proof. If such a partial-clique exists then it will be of the form KV \ {⋃r
i=0 KSi

} for some subsets
S1, S2, . . . , Sr ⊂ V for some r. Let C1, C2, . . . , Ck be the connected components of G′ = (V,E \E′)
with the corresponding vertex sets as V1, V2, . . . , Vk. Clearly all these vertex sets are pairwise
disjoint. Using Observation 4 we can infer that each KVi

is not present in the graph. Now we have
to show that some other clique or a clique that contains some of these cliques is not missing. The
first possibility is easily ruled out as G is a connected graph and hence any other clique will contain
at least one edge in E which will violate the condition that E′ ⊆ E∗. Similarly, for the other case as
well if some other KV ′ is removed such that Vs ⊂ V ′ for some s, then also the same condition will be
violated. As evident from the proof such a partial-clique (if exists) can be computed efficiently.

8 Conclusion

In this paper, we propose a well-structured family of programs called concave programming and
investigate the combinatorial geometric structure of the feasible set of the program and show how
to possibly use them in the context of graph partitioning problems like c-Balanced Separator.
This is a major paradigmatic shift to attack these problems. It will of immense use to see whether or
not such techniques can give us improved approximation factor for other problems. This also gives
us hope that for many of the problems for which optimal approximation factors are not known one
can possibly rely upon some “nice” programs which are although not convex but can be potential
candidates for polynomial time solvability because of their geometric structure. Since this family
is a new form of mathematical programming that is being used in an approximation algorithm,
progress both in the direction of hardness and algorithms will provide more insights into the nature
of these concave programs and can potentially lead us to optimal inapproximability results for
various graph-partitioning problems Another tempting direction inspired from the recent results on
the Unique Games [?] is to exploit these combinatorial geometric ideas to design sub-exponential
time O(1)-approximation algorithms for the problem.



9 Acknowledgments

The author would like to thank Sanjeev Arora for discussing the prospects of mathematical pro-
gramming paradigms beyond SDPs. Thanks to Purushottam Kar for going through an earlier draft
of the paper and sending his comments.

References

[1] C. Ambuhl, M. Mastrolilli and O. Svensson, Inapproximability Results for Sparsest Cut, Opti-
mal Linear Arrangement, and Precedence Constrained Scheduling FOCS 2007, pp. 329-337.

[2] S. Arora, D. Karger and M. Karpinski, Polynomial Time Approximation Schemes for Dense
Instances of NP-hard Problems, Proceedings of the 27th ACM Symposium on Theory Of Com-
puting , pp. 87-92, 1995.

[3] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani and N. Vishnoi, Unique Games on
Expanding Constraint Graphs are Easy, STOC 2008, pp. 21-28

[4] S. Arora, S. Rao and U. Vazirani, Expander Flows, Geometric Embeddings and Graph Par-
titioning, JACM 56, 2009, pp. 1-37 (Preliminary version appeared in ACM STOC, 2004, pp.
222-231.)

[5] S. Arora, B. Barak and D. Steurer, Subexponential Algorithms for Unique Games and Related
Problems, FOCS, 2010 (to appear).

[6] A. Bhaskara and A. Vijayaraghvan, Approximating Matrix p-norms. To appear in SODA 2011.

[7] K. Ball, An elementary introduction to modern convex geometry, in Flavors of Geometry, S.
Levy (ed.), Cambridge University Press, 1997.

[8] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problem in Analysis,
195-199, Princeton Univ. Press, 1970.

[9] N. R. Devanur, S. Khot, R. Saket and N. K. Vishnoi, Integrality gaps for sparsest cut and
minimum linear arrangement problems, STOC 2006, pp. 537-546

[10] N. Garg, H. Saran, V. V. Vazirani, Finding separator cuts in planar graphs within twice the
optimal, FOCS 1994, pp. 14-23

[11] M.X. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming, JACM, 42(6) 1995, pp. 1115-1145.

[12] S. Chawla, A. Gupta and H. Racke, Approximations for Generalized Sparsest Cut and Embed-
dings of L2 into L1, ACM Transactions on Algorithms, 4(2), 2008



[13] J. Cheeger, B.Kleiner and A. Naor, A log nΩ(1) integrality gap for the Sparsest Cut SDP ,
FOCS, 4(2), 2009.

[14] R. Krauthgamer, M. Mendel, J. Lee and A. Naor, Measured descent: A new embedding method
for finite metrics, Geometric and Functional Analysis (GAFA) 15(4): 839-858, 2005.

[15] S. Arora, J. Lee and A. Naor, Euclidean distortion and the Sparsest Cut , Journal of the
American Mathematical Society, 21(1): 1-21, 2008

[16] J. Lee, Distance scales, embeddings, and metrics of negative type, SODA 2005

[17] P. Enflo, On the non-existence of uniform homeommorphism between Lspaces. Arkiv. Mat.,
8:103105, 1969.

[18] K. L. Hoffman, A Method for globally minimizing concave functions over convex sets , Mathe-
matical Programming (20), 1981, pp. 22-32.

[19] R. Horst, An Algorithm for Non-Convex Programming Problem, Mathematical
Programming(10)-3, 1985, pp. 498-514.

[20] S. Khot, On the power of Unique 2-prover 1-round Games STOC 2002, pp. 767-775.

[21] S. Khot and N. K. Vishnoi, The Unique Games Conjecture, Integrality Gap for Cut Problems
and Embeddability of Negative Type Metrics into l1 , FOCS 2005, pp. 53-62.

[22] T. Leigton and S. Rao Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms, JACM 46 1999, pp. 787-832. Prelim. version in ACM STOC 1988.

[23] N. Linial, E. London and U. Rabinovich, The Geometry of graphs and some of its algorithmic
applications, Combinatoria (15) 2 1995, pp 215-245.

[24] J. Lee and A. Naor, Lp metrics on the Heisenberg Group and the Goemans-Linial conjecture,
FOCS 2008

[25] J. Matousek. Lectures on Discrete Geometry, Springer Verlag, 2002.

[26] H. Tuy, T. V. Theiu, and Ng. Q. Thai A Conical Algorithm for Globally Minimizing a Concave
Function over a Closed Convex Set , Mathematics of Operation Research(10)-3, 1985, pp. 498-
514.

[27] H. Tuy, Concave Programming under Linear Constraints, Dokl. Akad. Nauk (159), 1964, pp.
32-35. Translated Soviet Math. (5), pp. 1437-1440.

[28] H.Tuy and Ng. Q. Thai, Minimizing a Concave Function over a Compact Convex Set, Proc.
Conf. on Optimization Vitte/Hiddensee, May, 1981.



[29] H. Tuy, S. Ghannadan, A. Migdalas and P. Vabrand, A strongly polynomial algorithm for a
concave production-transportation problem with a fixed number of nonlinear variables, Mathe-
matical Programming (72), 1996, pp. 229-258

[30] V. Vazirani, Approximation algorithms, Springer Verlag, 2002.

[31] Concave Programming, http://www.math.psu.edu/vstein/concave.html

A Appendix

A.1 Proof of Theorem 2

Proof. Since zp/2 is concave for p < 2 for z > 0, and the sum of concave functions is also concave,
the objective function is clearly concave. For the constraints defining the feasible set,

∑
i<j zij ≥

c(1− c)n2 and zii = 0 are convex. The constraint 1−Z � 0 can be shown to be convex as follows:
Let Z1 and Z2 be two matrices corresponding to the variables zij ’s which lie in the feasible set.
Therefore, they satisfy 1− Z1 � 0 and 1 − Z2 � 0. Now, consider the line segment for λ ∈ [0 − 1]
λZ1 + (1 − λ)Z2 and the matrix 1 − (λZ1 + (1 − λ)Z2). This is positive semidefinite as it can be
rewritten as λ(1 − Z1) + (1 − λ)(1 − Z2) which is a sum of two PSD matrices.
The only type of constraint left are the triangle inequality constraints. Consider an inequality of this

type say z
p/2
ij +z

p/2
jk ≥ z

p/2
ik . In general, let us look at the region xr+yr ≥ zr for 0 < r < 1. If r = 1/q

for q > 1 then this region is same as
(
x1/q + y1/q

)q ≥ z. Let p1 = (x1, y1, z1) and p2 = (x2, y2, z2)

be two points which lie in this region, i.e.
(
x1

1/q + y1
1/q
)q ≥ z1 and

(
x2

1/q + y2
1/q
)q ≥ z2. To prove

the convexity of the region we need to show that for any λ ∈ [0 − 1], (λx1 + (1 − λ)x2, λy1 + (1 −
λ)y2, λz1 + (1 − λ)z2) also lies inside the region for all such points p1 and p2. Therefore, we have

to show λz1 + (1 − λ)z2 ≤
(
(λx1 + (1 − λ)x2)

1
q + (λy1 + (1 − λ)y2)

1
q

)q
. Thus we will be done if

we show λ(x1
1/q + y1

1/q)q + (1− λ)(x2
1/q + y2

1/q)q ≤
(
(λx1 + (1 − λ)x2)

1
q + (λy1 + (1 − λ)y2)

1
q

)q
.

which is equivalent to proving that the function f(x, y) =
(
x

1
q + y

1
q

)q
is concave. We will prove

this by showing that the Hessian of this function is negative-definite for all x, y. We now compute
the entries of the Hessian matrix. The following calculations are easy to verify,

∂f

∂x
=

(
1 +

y
1
q

x
1
q

)q−1

;
∂f

∂y
=

(
1 +

x
1
q

y
1
q

)q−1

;
∂2f

∂x2
= −

(
q − 1

q

)(
1 +

x
1
q

y
1
q

)q−2
y

1
q

x
q+1

q

;

∂2f

∂y2
= −

(
q − 1

q

)(
1 +

y
1
q

x
1
q

)q−2
x

1
q

y
q+1

q

;
∂2f

∂x∂y
=

(
q − 1

q

)(
1

x
1
q

+
1

y
1
q

)q−2
1

y
1
q x

1
q

=
∂2f

∂y∂x

In order to show that the Hessian is negative-definite we have to show that for any α, β ∈ R,
the following expression is always non-positive for all x, y > 0 (for x, y as 0 the derivatives do not



exist):

α2 ∂2f

∂x2
+ β2 ∂2f

∂y2
+ 2αβ

∂2f

∂x∂y

= −
(

q − 1

q

)
α2

(
1 +

x
1
q

y
1
q

)q−2
y

1
q

x
q+1

q

+ β2

(
1 +

y
1
q

x
1
q

)q−2
x

1
q

y
q+1

q

−
(

1

x
1
q

+
1

y
1
q

)q−2

· 2αβ

y
1
q x

1
q




= −
(

q − 1

q

)(
x

1
q + y

1
q

)q
[

α2y
1
p

x
2q−1

q

+
β2x

1
q

y
2q−1

q

− 2αβ

x
q−1

q y
q−1

q

]

= −
(

q − 1

q

)(
x

1
q + y

1
q

)q
[

α2y2 + β2x2 − 2αβxy

x
2q−1

q y
2q−1

q

]
= −

(
q − 1

q

)(
x

1
q + y

1
q

)q
[

(αy − βx)2

x
2q−1

q y
2q−1

q

]

which is non-positive for all α, β This proves that the region xp/2 + yp/2 ≥ zp/2 is a convex set for
all 0 < p < 2. Hence the intersection of all the triangle inequality constraints is also convex.
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