
On beating the hybrid argument∗

Bill Fefferman†

California Institute of Technology
Ronen Shaltiel‡

University of Haifa

Christopher Umans§

California Institute of Technology
Emanuele Viola ¶

Northeastern University

Abstract

The hybrid argument allows one to relate the distinguishability of a distribution (from uni-
form) to the predictability of individual bits given a prefix. The argument incurs a loss of a factor
k equal to the bit-length of the distributions: ε-distinguishability implies only ε/k-predictability.
This paper studies the consequences of avoiding this loss – what we call “beating the hybrid argu-
ment” – and develops new proof techniques that circumvent the loss in certain natural settings.
Specifically, we obtain the following results:

1. We give an instantiation of the Nisan-Wigderson generator (JCSS ’94) that can be broken
by quantum computers, and that is o(1)-unpredictable against AC0. This is not enough
to imply indistinguishability via the hybrid argument because of the hybrid-argument
loss; nevertheless, we conjecture that this generator indeed fools AC0, and we prove this
statement for a simplified version of the problem. Our conjecture implies the existence of
an oracle relative to which BQP is not in the PH, a longstanding open problem.

2. We show that the “INW” generator by Impagliazzo, Nisan, and Wigderson (STOC ’94)
with seed length O(log n log log n) produces a distribution that is 1/ log n-unpredictable
against poly-logarithmic width (general) read-once oblivious branching programs. Thus
avoiding the hybrid-argument loss would lead to a breakthrough in generators against
small space.

3. We study pseudorandom generators obtained from a hard function by repeated sampling.
We identify a property of functions, “resamplability,” that allows us to beat the hybrid ar-
gument, leading to new pseudorandom generators for AC0[p] and similar classes. Although
the generators have sub-linear stretch, they represent the best-known generators for these
classes.

Thus we establish that “beating” or bypassing the hybrid argument would have two significant
consequences in complexity, and we take steps toward that goal by developing techniques that
indeed beat the hybrid argument in related (but simpler) settings, leading to best-known PRGs
for certain complexity classes.

∗Parts of this work first appeared in the manuscript [FU10].
†wjf@cs.caltech.edu. Supported by IQI.
‡ronen@cs.haifa.ac.il. Supported by BSF grant 2004329 and ISF grant 686/07.
§umans@cs.caltech.edu. Supported by NSF CCF-0846991.
¶viola@ccs.neu.edu. Supported by NSF grant CCF-0845003.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 186 (2010)

1 Introduction

The hybrid argument [GM84] (see also [Yao82, BM84] and [Gol01] for an exposition) is a
powerful proof technique that has widespread applications in cryptography and complexity
theory. Suppose we have a random variable Z = (Z1, Z2, . . . , Zk) ∈ {0, 1}k that can be
distinguished from the uniform distribution on k bits, U , by a function D, i.e.,

|Pr[D(Z) = 1]− Pr[D(U) = 1]| ≥ ε.

We are interested in predicting Zi from a prefix Z1,...,i−1 with some advantage over random
guessing. The hybrid argument (in its most basic form) reasons about this via hybrid distri-
butions

Hi
def
= (Z1, Z2, . . . , Zi, Ui+1, Ui+2, . . . , Uk).

Since H0 = U and Hk = Z, using the triangle inequality we get

ε ≤ |Pr[D(Z) = 1]− Pr[D(U) = 1]| ≤
k∑
i=1

|Pr[D(Hi−1) = 1]− Pr[D(Hi) = 1|,

which means that D distinguishes two adjacent hybrids, Hi−1 and Hi, with gap at least ε/k.
From here, it is easy to convert D into a closely related function that predicts Zi from the
prefix with advantage ε/k over random guessing. The contrapositive is that unpredictability
implies indistinguishability. The canonical application of this argument is to the construction
of pseudorandom generators, where it is often easier to design an unpredictable Z (e.g., from
a hard or one-way function) than to argue directly about indistinguishability [BM84, Yao82,
GL89, HILL99, Nis91, NW94]. The hybrid argument is also crucially used in the inductive
arguments underlying pseudorandom generators against space-bounded computation [Nis92,
INW94].

The power of the hybrid argument lies in its generality: it is a generic tool, making no
assumptions about the random variable Z or the complexity of D. But this generality comes
with a price: the factor k multiplicative loss in passing from the distinguishability of Z from U ,
to the distinguishability of two adjacent hybrids. This loss is negligible when k � 1/ε, which
is a common setting for constructions of pseudorandom generators under super-polynomial
hardness assumptions. But the loss is a major stumbling block when k is comparable to, or
much larger than, 1/ε. In this case (for example) the loss prevents us from obtaining small-
seed generators against various low-level circuit classes for which known lower bounds are not
strong enough to withstand the loss (see [SV10]).

It is reasonable to guess that if one imposes restrictions on the type of Z’s distribution,
or on the complexity of D, this loss might be lessened or avoided entirely – what we call
“beating the hybrid argument.”1 In this paper we show that two longstanding open problems
in complexity would be resolved by beating the hybrid argument. The first concerns the problem

1Barak, Shaltiel, and Wigderson [BSW03] were the first to show that this is possible, if D is a small
PH-circuit or oblivious bounded-width branching program, and additionally D is a particular strong, “nearly-
one-sided” distinguisher.

1

of constructing an oracle relative to which BQP is not in the Polynomial-time Hierarchy (PH),
and the second concerns the problem of constructing pseudorandom generators for space. In
each setting, the fact that the hybrid argument is the bottleneck is not obvious; to show that
it is a bottleneck, we construct a non-standard instantiation of the Nisan-Wigderson (NW)
generator [NW94] that can be broken by quantum computers in the first setting, and we
modify the standard analysis of the Impagliazzo-Nisan-Wigderson (INW) generator [INW94]
in the second. These two settings are discussed in more detail in §1.1.

We then pursue a program of determining when the hybrid loss can be avoided, by imposing
natural restrictions on the distribution Z, and on the complexity of the distinguisher D.
The complexity classes we consider are certain “low” complexity classes between AC0 and
L. We show that the hybrid loss can indeed be avoided entirely when Z is obtained by
repeated sampling from the distribution (U, f(U)), for hard functions f that enjoy a special
type of random self-reducibility we dub resamplability. We then show that a variety of natural
functions f are resamplable, such as parity and majority, the latter corresponding to a special
case of our central conjecture (Conjecture 2.6) concerning the BQP vs. PH problem.

Even though we are only studying a relatively simple class of distributions Z, our techniques
are already powerful enough to obtain new, best-known pseudorandom generators for AC0[p]
and other classes. Although our generators have sublinear stretch, they improve on the folklore
generators one can obtain by using known hardness results and applying the hybrid argument
– as we later summarize in Table 1. These results demonstrate that the hybrid argument can
be beaten in settings close to what is needed for the two applications, and develop techniques
that may be useful in tackling the distributions that arise in those applications.

1.1 Two consequences of beating the hybrid argument

We now describe two longstanding open problems in complexity that would be resolved by
beating the hybrid argument. We also outline the main ideas in the technical development
needed to establish the hybrid argument as the bottleneck.

1.1.1 An oracle relative to which BQP is not in the PH

The quest for an oracle relative to which BQP is not in the PH dates to the foundational papers
of the field; the question was first asked by Bernstein and Vazirani [BV97] in the early 1990’s.
Currently, oracles are known relative to which BQP is not in MA [Wat00], but no relativized
worlds are known in which BQP is not in AM. Obtaining an oracle relative to which BQP
is not in the PH thus represents a stubborn, longstanding and fundamental problem whose
resolution would help clarify the relationship between BQP and classical complexity classes. In
recent progress, Aaronson [Aar10b] devised a relation oracle problem that lies in the function
version of BQP but not in the function version of the PH, but this still leaves the original
problem open.2

2Aaronson [Aar10b] also proposed the “Generalized Linial-Nisan Conjecture” as a possible route to obtain-
ing the desired oracle; this conjecture turned out to be false in general [Aar10a]. The viability of our approach
is unaffected by this development.

2

In this paper we will speak almost exclusively about the “scaled down” version of the prob-
lem, which is equivalent via the well-known connection between PH and AC0. In it, the goal is
to design a promise problem (rather than an oracle) that lies in (promise)-BQLOGTIME but
not (promise)-AC0. The class BQLOGTIME is the class of languages decidable by quantum
computers that have random access to an N -bit input, and use only O(logN) steps (see §2
for the formal definition). As in [Aar10b], our goal will be to design, for each input length
N , a distribution on N -bit strings that can be distinguished from the uniform distribution
by a BQLOGTIME predicate, but not by a (quasipolynomial-size) AC0 circuit. As described
in Appendix B, such a distribution can be easily converted to a proper oracle O for which
BQPO 6⊆ PHO. To obtain such a distribution, we prove two main statements:

1. we generalize the setting of [Aar10b] to a simple framework in which any efficiently
quantumly computable unitary U gives rise to a distribution that can be distinguished
from uniform by a quantum computer (Aaronson’s setup is recovered by choosing U to
be a DFT matrix), and

2. we give an explicit construction of unitary matrices whose row-supports form a Nisan-
Wigderson design, and we show how to realize these matrices with small quantum circuits
in §2.3. This is the technical core of the quantum section.

In our framework, these unitaries give rise to a distribution that is an instantiation of the
NW PRG, with majority as its hard function, and we conjecture (Conjecture 2.6) that this
distribution is indeed pseudorandom for AC0. The quantitative loss in the hybrid argument
is the only thing standing in the way of proving this conjecture, and thus resolving the oracle
BQP vs. PH problem. In §4 we make a step towards resolving our conjecture, by showing
that it is true for the simpler case in which the sets in the design for the NW generator are
disjoint.

1.1.2 Pseudorandom generators for small-width branching programs

A longstanding open problem is to design log-space pseudorandom generators that stretch
a seed of O(log n) bits into n pseudorandom bits that are indistinguishable from uniform
by polynomial-width (read-once oblivious) branching programs. Such generators would yield
RL = L, settling a major open problem in complexity theory. Existing constructions of
pseudorandom generators [Nis92, INW94] fail to reach this goal because they use seeds of
length O(log2 n). Despite significant effort, no improvement in the seed length has been
achieved even when restricting attention to constant-width branching programs, although a
recent, exciting line of works makes progress if the branching programs are constrained further
[BRRY10, KNP10, BV10].

In this work we show that the INW generator [INW94] can be adapted to use seed length
O(log n·log log n) and produce an n bit distribution in which each position cannot be predicted
with advantage 1/ log n (given the previous positions) by poly-logarithmic width branching
programs. Thus, bypassing the loss of the hybrid argument would yield a breakthrough in
pseudorandom generators for small-width branching programs. In §3 we elaborate on this
approach.

3

1.2 New pseudorandom generators by beating the hybrid argument

Following the seminal work of [Nis91] a long line of research is concerned with pseudorandom
generators against various classes of circuits. We say that a distribution Z on t bits is ε-
pseudorandom for a class of circuits C if for every circuit C in C,

|Pr[C(Z) = 1]− Pr[C(Ut) = 1]| ≤ ε.

A function G : {0, 1}d → {0, 1}t is ε-pseudorandom for C if G(Ud) is ε-pseudorandom.
We will be mostly interested in classes of constant-depth circuits for various choices of

allowed gates. For many of these classes there are known circuit lower bounds which can be
used to construct pseudorandom generators. More precisely, let f : {0, 1}n → {0, 1} be a
function with hardness δ against some class C (meaning that every circuit in the class errs
on at least (1/2 − δ) · 2n inputs). It is immediate that the function Gf (x) = (x, f(x)) is
a δ-pseudorandom generator for C. One way to improve the stretch of this generator is by
repeated sampling, namely:

G⊗kf (x1, . . . , xk) :=
(
(x1, f(x1)), (x2, f(x2)), . . . , (xk, f(xk))

)
.

The pseudorandomness of G⊗kf follows by the hybrid argument as long as k ≤ 1/δ and it
stretches a seed of length nk into nk + k bits.3 The repeated sampling generator can be
viewed as a special case of the NW generator in which the sets of the design are all disjoint.
The NW generator reduces the seed length of the generator from nk to ≈ n2 which is beneficial
whenever k � n. However, for k � n the analysis of the NW generator relies on the hybrid
argument on n bits, which in turn requires hardness δ ≤ 1/n to get a meaningful result.

For some constant-depth circuit classes (that we mention below) the best-known lower
bounds only achieve hardness δ ≥

√
1/n. In such cases repeated sampling produces the best-

known generators and their stretch k is bounded by 1/δ. In §4 we observe that this loss is
inherent in proofs that use the hard function f in a black-box fashion.

Our main technical contribution in this direction is developing new proof techniques that
breaks this barrier and allows us to show that G⊗kf is pseudorandom even for k > 1/δ. As a
consequence we obtain improved pseudorandom generators for several circuit classes. These
are summarized in Table 1 which also includes a comparison to the best previous results.
Let us make a couple of remarks. First, as we mentioned before, the best previous results
are obtained by analyzing the repeated-sampling generator via the hybrid argument. Second,
in our pseudorandom generators we also exploit the fact that the hardness results hold for
circuits of almost exponential size. This allows choosing k to be almost exponential in the
input length of the function, maximizing the stretch obtained by repeated sampling.

The hard functions and circuit classes we consider are:

3Note that not only does the hybrid argument loss overwhelm when k � 1/δ, but a complexity class
powerful enough to compute majority can break the “repeated sampling” generator by aggregating (weak)
predictions of f(xi) from xi over all i. This demonstrates that we must critically use limitations on the power
of the class, which we do.

4

Table 1: Pseudorandom generators fooling circuits of size poly(n) on n bits.

Seed length of generators fooling poly(n)-size circuits on n bits.
Type of circuits Hybrid argument This work

AC0[p], p prime n− n1/3 n− n/poly log n (Cor. 4.6,4.17)

AC0 with no(1) majority gates n− n1/3 n− nβ, ∀β < 1 (Cor. 4.8)
AC0[6] n− poly log n n− nβ, ∀β < 1 (Cor. 4.18)

(under L 6⊆ AC0[6]) (under L 6⊆ AC0[6])

Majority. The n-bit majority function has hardness Õ(1/
√
n) for AC0 [H̊as87] (the notation

Õ hides polylogarithmic factors), and this is tight as shown by the simple circuit that just
outputs a bit of the input. We prove that, in fact, the pseudorandomness of G⊗kmajority does

not decay with k: AC0 circuits cannot distinguish k independent copies of (Un,majority(Un))
from uniform with any constant advantage, for any k = poly(n). This is the special case of
Conjecture 2.6 we mentioned in §1.1.1.

Parity. The n-bit parity function is known to have hardness ≤ Õ(1/
√
n) for the class AC0[p]

for every prime p 6= 2 [Raz87, Smo87, Smo93]. Here AC0[p] stands for AC0 circuits augmented
with mod p gates. Whether this bound can be improved is a major, twenty-year-old open
problem. Using the hybrid argument, one can only stretch

√
n · n bits to

√
n · (n + 1) bits,

corresponding to a seed length n−n1/3 for n output bits. We are not aware of any better results.
Similarly to the case of majority, we prove that G⊗kparity remains Õ(1/

√
n)-pseudorandom for

any k ≤ 2n
o(1)

. This translates into an improved seed length of n− n/poly log n for n output
bits.

We obtain similar result for the class of AC0 circuits with few (a small polynomial number
of) majority gates. Here the hardness of parity is proved in [ABFR94, Bei94], and it is known
to be tight (because of the correlation between the functions majority and parity).

Determinant. We consider the determinant function over GF(2) for a certain distribution
M of input matrices due to Ishai and Kushilevitz [IK00, IK02]. They show this problem to be
hard for L (logarithmic space), and in fact complete for the complexity for the class parity−L.
Using their beautiful machinery we show that the pseudorandomness of k independent copies
of (M, determinant(M)) does not decay with k for the class AC0[2]. We use this to get PRGs
for AC0[2] (which could not be obtained via parity, since parity is in AC0[2]) and also some
conditional results for ACC0 := ∪mAC0[m]. We elaborate on the latter, focusing on AC0[6]
for simplicity. For AC0[6], essentially no lower bounds are known. Using standard techniques,
under the assumption that L 6⊆ AC0[6], one can prove the existence of functions in L that
have hardness Ω(1/poly log n). This leads to PRGs with seed length n − poly log n and n
output bits, and again our PRGs via repeated sampling lead to an improvement.4

4Recently, a breakthrough result by Williams [Wil10b] shows that NEXP is not contained in ACC0. This
result however does not seem to imply efficient generators.

5

Although our generators all have sublinear stretch, they do show that counting approx-
imately the number of satisfying assignments to various types of circuits on n bits can be
solved somewhat more efficiently than was known before, in time 2n−m for various m =
m(n) = ω(log n). A recent, exciting work by [Wil10a] highlights the importance of this type
of savings, by showing that it implies new circuit lower bounds in certain settings. We also
remark that our generators are all seed extending (meaning that the output includes the seed),
and it was shown in [KvMS09] that such generators which stretch n bits into n+ k bits give a
polynomial time deterministic simulation that errs on few inputs when simulating randomized
algorithms that on input length n use only k random bits.

An important open problem is whether our approach can be strengthened to handle the
NW generator with even slightly non-disjoint sets. This would reduce the seed length and
give improved stretch. Also, as mentioned earlier, achieving this goal in the case of majority
and quasipolynomial-size AC0 suffices to obtain an oracle relative to which BQP is not in PH.

The role of resamplability. We are interested in analyzing the pseudorandomness of the
repeated sampling generator while avoiding the loss of the hybrid argument. As mentioned
briefly in §1.2, we cannot hope to beat the hybrid argument unless we use specific (non-black-
box) properties of the function f . In this work we identify one such property, the ability
to resample the function. Informally, we say that a function f is resamplable if there is a
(randomized) procedure R that on input x produces a distribution R(x) that is uniformly
distributed over {x′ : f(x′) = f(x)}. (We stress that we are interested in procedures R that
can be implemented in low circuit classes and in particular cannot compute f .)

Resamplability is thus a special type of random self-reducibility, a well-studied concept
in complexity theory (see, e.g., [FF93] and the references therein). In particular, it is easy
to see that resamplability allows us to relate the average-case hardness of f to its worst-case
hardness.

Our approach using resamplability yields the following : Let f be a function that is
resamplable in a class C and has hardness δ > 0 against C. We show that the repeated sampling
generator G⊗kf remains δ-pseudorandom for C as long as k is smaller than the size bound of
circuits in C. This analysis beats the hybrid argument as it allows choosing k � 1/δ. The
results in §4 are obtained by identifying hard functions that have (known) efficient resamplers,
and then applying arguments that rely on them being resamplable.

Organization of this paper. In §2 we state our conjecture about a certain instantiation
of the Nisan-Wigderson generator fooling quasipolynomial-size AC0, and we prove that this
conjecture would yield an oracle separating BQP from PH. In §3 we discuss our results about
pseudorandom generators for space-bounded computation. In §4 we show how to beat the
hybrid argument for certain repeated sampling generators, proving along the way a special
case of the conjecture mentioned above. The appendix contains some auxiliary results for the
quantum section which are discussed in §2.

6

2 Toward an oracle relative to which BQP is not in the

PH

In this section we discuss our results regarding the BQP vs. PH problem. We start with some
standard preliminaries.

2.1 Preliminaries

A unitary matrix is a square matrix U with complex entries such that UU∗ = I, where U∗

is the conjugate transpose. Equivalently, its rows (and columns) form an orthonormal basis.
We name the standard basis vectors of the N = 2n-dimensional vectorspace underlying an
n-qubit system by |v〉 for v ∈ {0, 1}n. A local unitary is a unitary that operates only on
b = O(1) qubits; i.e. after a suitable renaming of the standard basis by reordering qubits, it is
the matrix U⊗I2n−b , where U is a 2b×2b unitary U . A local unitary can be applied in a single
step of a quantum computer. A local decomposition of a unitary is a factorization into local
unitaries. We say an N × N unitary is efficiently quantumly computable if this factorization
has at most poly(n) factors.

A quantum circuit applies a sequence of local unitaries (“gates”) where each gate is drawn
from a fixed, finite set of gates. There are universal finite gate sets for which any efficiently
quantumly computable unitary can be realized (up to exponentially small error) by a poly(n)-
size quantum circuit [KSV02].

Definition 2.1 (BQLOGTIME). A language L is in BQLOGTIME if it can be decided by a
LOGTIME-uniform family of circuits {Cn}, where each Cn is a quantum circuit on n qubits.
On an (N = 2n)-bit input x, circuit Cn applies O(logN) gates, with each gate being either
a query gate which applies the map |i〉|z〉 7→ |i〉|z ⊕ xi〉, or a standard quantum gate (from
a fixed, finite basis). It is equivalent, by polynomially padding the number of qubits, to allow
poly log(N) gates.

In this paper, the only manner in which our BQLOGTIME algorithm will access the input
string x is the following operation, which “multiplies x into the phases”. There are three
steps: (1) query with the query register clean, which applies the map |i〉|0〉 7→ |i〉|0⊕xi〉 (note
each xi is in {0, 1}); (2) apply to the last qubit the map |0〉 7→ −|0〉, |1〉 7→ |1〉; (3) query
again to uncompute the last qubit. When we speak of “multiplying x into the phase” it will
be linguistically convenient to speak about x as a vector with entries from {+1,−1}, even
though one can see from this procedure that the actual input is a 0/1 vector.

The following lemma will be useful repeatedly. It states (essentially) that a block diagonal
matrix, all of whose blocks are efficiently quantumly computable, is itself efficiently quantumly
computable. This is trivial when all of the blocks are identical, but not entirely obvious in
general.

Lemma 2.2. Fix N = 2n and M = 2m. Let U be an N ×N block diagonal matrix composed
of the blocks U1, U2, . . . , UM , where each Ui is a N/M ×N/M matrix that has a poly(n)-size
quantum circuit, a description of which is generated by a uniform poly(n) time procedure, given

7

input i. Then given three registers of m qubits, n−m qubits, and poly(n) qubits, respectively,
with the third register initialized to |000 · · · 0〉, there is a poly(n) size uniform quantum circuit
that applies U to the first two registers and leaves the third unchanged.

Proof. Fix a finite universal set of quantum gates, of cardinality d, each of which operates on
at most b qubits. A convenient notion will be that of an oblivious circuit, in which we fix an
ordering (say, lexicographic) on [n]b, and the steps of the circuit are identified with poly(n)
cycles through this list: when we are on step (a1, a2, . . . , ab) ∈ [n]b in one of these cycles, we
operate on qubits a1, a2, . . . , ab. Clearly, any (uniform) quantum circuit can be converted to a
(uniform) “oblivious” circuit with at most an nb blowup by inserting dummy identity gates.

Let nk be an upper bound on the size of the oblivious circuits obtained in this way for the
various Ui. The circuit for each Ui is now a sequence

j(i) =
(
j

(i)
1 , j

(i)
2 , j

(i)
3 , . . . , j

(i)

nk

)
,

with each j
(i)
` ∈ [d] specifying which gate to apply at step ` in the oblivious circuit for Ui

(and because the circuit is oblivious, the qubits to which this gate should be applied are easily
determined from `). Let f : [M]→ [d]n

k
be the function that maps i to the vector j(i).

Now we describe the promised efficient quantum procedure:

1. Apply the map derived from f that takes |i〉|z〉 to |i〉|z ⊕ f(i)〉, to the first and third
register. We view the contents of the third register as a vector in [d]n

k
.

2. Repeat for ` = 1, 2, 3, . . . , nk: apply the “controlled unitary” that consults the `-th
component of the third register, and applies the specified gate to qubits (a1, a2, . . . , ab)
of the second register (again, (a1, a2, . . . , ab) are easily determined from ` because the
circuit is oblivious). The important observation is that this “controlled unitary” operates
on only constantly many qubits.

3. Repeat step 1 to uncompute the auxiliary information in the third register.

2.2 The quantum algorithm

We give a general framework allowing one to turn any efficiently quantumly computable uni-
tary into a distribution that can be distinguished from uniform by a BQLOGTIME machine.
Our framework generalizes the setup in [Aar10b].

Let A be any N ×N matrix with entries5 in {0, 1,−1} and pairwise orthogonal rows, and
define S(A, i) to be the support of the i-th row of matrix A. Define A to be the matrix A
with entries in row i scaled by 1/

√
|S(A, i)|, and observe that A is a unitary matrix.

5We could extend this framework to matrices with general entries, but we choose to present this restriction
since it is all we need.

8

Define the random variable DA,M = (x, z) distributed on {+1,−1}2N by picking x ∈
{+1,−1}N uniformly, and setting the next N bits to be z ∈ {+1,−1}N defined by zi =
sgn((Ax)i) = sgn((Ax)i) for i ≤ M and zi independently and uniformly random in {+1,−1}
for i > M .

It will be convenient to think of M = N initially; we analyze the general case because we
will eventually need to handle M = N/2. Below, we use U2N to denote the random variable
uniformly distributed on {+1,−1}2N .

Theorem 2.3. Let N = 2n for an integer n > 0, and let M = Ω(N). For every matrix
A ∈ {0, 1,−1}N×N with pairwise orthogonal rows, there is a BQLOGTIME algorithm QA that
distinguishes DA,M from U2N ; i.e., there is some constant ε > 0 for which

|Pr[QA(DA,M) = 1]− Pr[QA(U2N) = 1]| > ε.

The algorithm is uniform if A comes from a uniform family of matrices.

Proof. The input to the algorithm is a pair of strings x, z ∈ {+1,−1}N .
The algorithm performs the following steps:

1. Enter a uniform superposition 1√
N

∑
i∈{0,1}n |i〉 and multiply x into the phase to obtain

1√
N

∑
i∈{0,1}n xi|i〉.

2. Apply A to obtain 1√
N

∑
i∈{0,1}n(Ax)i|i〉.

3. Multiply z into the phase to obtain 1√
N

∑
i∈{0,1}n zi(Ax)i|i〉.

4. Define vector w by wi = 1√
N
zi(Ax)i. Apply the N × N Hadamard6 H to obtain∑

i∈{0,1}n(Hw)i|i〉, and measure in the computational basis. Accept iff the outcome
is 0n.

We first argue that the acceptance probability is small in case (x, z) is distributed as U2N .
This follows from a symmetry argument: for fixed x, and w as defined in Step 4 above, the
vector Hw above has every entry identically distributed, because z is independently chosen
uniformly from {−1,+1}N and every row of H is a vector in {−1,+1}N . In particular this
implies that the random variable (Hw)2

i is identically distributed for all i. Together with
the fact that

∑
i(Hw)2

i = 1, we conclude that E[(Hw)2
i] = 1/N . Then by Markov, with

probability at least 1 − 1/
√
N we accept with probability at most

√
N/N , for an overall

acceptance probability of at most 2/
√
N .

Next, we argue that the acceptance probability is large in case (x, z) is distributed as DA,M .

Here we observe that for i ≤M , wi = 1√
N
|(Ax)i| and hence E[wi] = 1√

N ·|S(A,i)|
Ω(
√
|S(A, i)|) =

Ω(1/
√
N) (since before scaling, wi is just the distance from the origin of a random walk on

the line, with |S(A, i)| steps). For i > M , we simply have E[wi] = 0. Then E[
∑

iwi] =

6This is the matrix H whose rows and columns are indexed by {0, 1}n, with entry (i, j) equal to −1〈i,j〉/
√
N .

9

M · Ω(1/
√
N) = Ω(

√
N), so E[(Hw)0n] = Ω(1). Since the random variable (Hw)0n is always

bounded above by 1, we can apply Markov to its negation to conclude that with constant
probability, it is at least a constant ε (and in such cases the acceptance probability is at least
ε2). Overall, the acceptance probability is Ω(1).

The BQLOGTIME algorithm for what Aaronson calls fourier checking in [Aar10b] is
recovered from the above framework by taking A to be a DFT matrix (and M = N).

2.3 Unitary matrices with large, nearly-disjoint row supports

In light of Theorem 2.3, our task is now to construct a unitary A for which the associated
distribution fools AC0. A natural source for distributions that fool AC0 is the NW pseu-
dorandom generator. In this section, we show how to “realize” an instantiation of the NW
generator as an efficiently quantumly computable unitary. We need the following standard
definitions:

Definition 2.4 ([NW94]). A set family D = {S1, S2, . . . , Sm} is an (`, p) design if every set
in the family has cardinality `, and for all i 6= j, |Si ∩ Sj| ≤ p.

Definition 2.5 ([NW94]). Given a function f : {0, 1}` → {0, 1} and an (`, p) design D =
{S1, S2, . . . , Sm} in a universe of size t, the function NW f

D : {0, 1}t → {0, 1}m is given by

NW f
D(x) =

(
f1(x|S1), f2(x|S2), f3(x|S3), . . . , fm(x|Sm)

)
,

where each fi is the function f with a fixed set of its inputs negated7, and x|S denotes the
projection of x to the coordinates in the set S.

Generally speaking, the function NW f
D is a PRG against a class of distinguishers as long

as f is hard on average for that class of distinguishers.
Below we construct unitary matrices A with the property that all or “almost all” of the

row supports S(A, i) are large and have bounded intersections. We also show that these
unitaries are efficiently quantumly computable; this is the technical core of this section. The
distribution DA,M (it will turn out that M will be half the underlying dimension) can then
easily be seen to be the distribution (UN , NW

majority
D), and we would like to argue that this

distribution fools quasipolynomial-size AC0. majority is indeed hard for (exponential-size)
AC0, but the quantitative loss in the hybrid argument stands in the way of proving such a
statement by known techniques. This is because majority on ` bits is only Õ(1/

√
`) hard, and

we output many more than
√
` bits.

Nevertheless, we conjecture that the distribution DA,M fools constant-depth circuits. Since
we aim for an oracle separation, and there is a quasi-polynomial relationship between oracle
PH machines and AC0 circuits, we consider AC0 circuits of quasipolynomial size.

7The standard setup has each fi = f ; we need the additional freedom in this paper for technical reasons.
We know of no settings in which this alteration affects the analysis of the NW generator.

10

Conjecture 2.6. Let D = {S1, S2, . . . , Sm} be an (`, O(1))-design in a universe of size
t ≤ poly(`), with m ≤ poly(`). Then for every constant-depth circuit of size at most
exp(poly logm),

|Pr[C(Ut+m) = 1]− Pr[C(Ut, NW
majority
D (Ut)) = 1]| ≤ o(1).

Using the hybrid argument, a distinguishing circuit C with gap ε can be converted to a
predictor with advantage ε/m and then (via the standard arguments in [Nis91, NW94]) into a
slightly larger circuit that computes majority with success rate 1/2 + ε/m. Thus the above
statement is true for m ≤ o(

√
`); if the 1/m loss from the hybrid argument can be avoided

(or reduced), it would be true for m as large as poly(`) (and even larger) as we conjecture is
true.

2.3.1 The paired-lines construction

We describe a collection of q2/2 pairwise-orthogonal rows, each of which is a vector in
{0,+1,−1}q2 . We identify q2 with the affine plane Fq × Fq, where q = 2n for an integer
n > 0. Let B1, B2 be an equipartition of Fq, and let φ : B1 → B2 be an arbitrary bijec-
tion. Our vectors are indexed by a pair (a, b) ∈ Fq × B1, and their coordinates are naturally
identified with Fq × Fq:

va,b[x, y] =

{
−1 y = ax+ b
+1 y = ax+ φ(b)

(1)

Notice that v(a, b) is −1 on exactly the points of Fq × Fq corresponding to the line with
slope a and y-intercept b, and +1 on exactly the points of Fq × Fq corresponding to the line
with slope a and y-intercept φ(b). So each v(a, b) is supported on exactly a pair of parallel
lines. Orthogonality will follow from the fact that every two non-parallel line-pairs intersect
in exactly one point, as argued in the proof of the next lemma.

Lemma 2.7. The vectors defined in Eq. (1) are pairwise orthogonal, and their supports form
a (2q, 4) design.

Proof. Consider (a, b) 6= (a′, b′). If a = a′ then the supports of v(a, b) and v(a, b′) are disjoint.
Otherwise a 6= a′ and there are exactly four intersection points (obtained by solving linear
equations over Fq):

• (x = (b′−b)/(a−a′), y = ax+b) = (x = (b′−b)/(a−a′), y = a′x+b′), which contributes
(−1) · (−1) = 1 to the inner product, and

• (x = (b′ − φ(b))/(a− a′), y = ax+ φ(b)) = (x = (b′ − φ(b))/(a− a′), y = a′x+ b′), which
contributes (+1) · (−1) = −1 to the inner product, and

• (x = (φ(b′)− b)/(a− a′), y = ax+ b) = (x = (φ(b′)− b)/(a− a′), y = a′x+ φ(b′)), which
contributes (−1) · (+1) = −1 to the inner product, and

• (x = (φ(b′)−φ(b))/(a−a′), y = ax+φ(b)) = (x = (φ(b′)−φ(b))/(a−a′), y = a′x+φ(b′)),
which contributes (+1) · (+1) = 1 to the inner product.

11

The sum of the contributions to the inner product from these four points is zero. The com-
putation of the support size is straightforward.

In Appendix A, we give another construction (which is not needed for our main result) in
which the number of vectors is exactly equal to the dimension of the underlying space (giving
rise to a unitary in which “all rows participate” instead of only half of the rows). However,
we leave as an open problem obtaining a local decomposition of the associated unitary.

2.3.2 A local decomposition

We new describe an q2 × q2 unitary matrix that is efficiently quantumly computable and has
the (normalized) vectors v(a, b) from Eq. (1) as q2/2 of its q2 rows. We recall that q = 2n for
an integer n > 0.

Proposition 2.8. The following q× q unitary matrices are efficiently quantumly computable:

1. the DFT matrix F with respect to the additive group of Fq and its inverse, and

2. the q×q unitary matrix B with 1√
2
(Iq/2|−Iq/2) as its first q/2 rows, 1√

4
(Iq/4|−Iq/4|Iq/4|−

Iq/4) as its next q/4 rows, 1√
8
(Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8) as its next

q/8 rows, etc... and whose last row is 1√
N

(1, 1, 1, . . . , 1).

Proof. The DFT matrices are well-known to be efficiently quantumly computable. For the
second one we make use of the Hadamard matrix

H =
1√
2

(
1 −1
1 1

)
.

Let Bi be the q × q identity matrix with its lower right 2i × 2i submatrix replaced by the
matrix H ⊗ I2i−1 . Each Bi is efficiently quantumly computable by Lemma 2.2. It is then easy
to verify that B = B1B2B3 · · ·Bn.

Lemma 2.9. Let α be a generator of the multiplicative group of Fq. For c ∈ Fq, let Dc denote
the q × q diagonal matrix

1
√
q
· diag

(√
q, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
,

and let D′c denote the q × q diagonal matrix

1
√
q
· diag

(
0, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
.

Then the q2 × q2 matrix D whose (i, j) block (with i, j ∈ Fq) equals Dij if i = j and D′ij
otherwise, is efficiently quantumly computable.

12

Proof. Consider the q2×q2 block-diagonal matrix that has as its (k, k) block the matrix whose
(i, j) entry is (−1)Tr (ijαk) for k ∈ {1, 2, . . . , q − 1} and whose (0, 0) block is Iq. Each such block
except the (0, 0) block is the DFT matrix F with its rows (or equivalently, columns) renamed
according to the map j 7→ jαk. The F matrix is efficiently quantumly computable and the
map j 7→ jαk is classically and reversibly (and thus quantumly) efficiently computable. Thus
each q × q block on the diagonal is efficiently quantumly computable. By Lemma 2.2 the
entire matrix is efficiently quantumly computable.

If we index columns by (i, i′) ∈ (Fq)2 and rows by (j, j′) ∈ (Fq)2, then the desired matrix D
is the above block-diagonal matrix with the order of the two indexing coordinates for the rows
transposed, and the order of the two indexing coordinates for the columns transposed.

Our main theorem follows:

Theorem 2.10. The q2 × q2 matrix (Iq ⊗ B) · (Iq ⊗ F) · D · (Iq ⊗ F−1), which is efficiently
quantumly computable, has the vectors v(a, b) from Eq. (1) as q2/2 of its rows8.

Proof. Let Sc be the q × q permutation matrix Sc that (when multiplied on the right) shifts
columns, identified with Fq, by the map x 7→ x + c. Let J be the all-ones matrix. The main
observation is that

FDcF
−1 =

1
√
q
Sc −

√
q − 1

q
J,

and that

FD′cF
−1 =

1
√
q
Sc −

1
√
q
J.

Thus the final matrix has in its (i, j) block (with i, j ∈ Fq) the matrix

B ·
(

1
√
q
Sij −

√
q − 1

q
J

)
if i = j, and

B ·
(

1
√
q
Sij −

1
√
q
J

)
otherwise. Observe that BJ has all zero entries except for the last row, so in particular, the
first q/2 rows of the (i, j) block are (1/

√
2q)(Iq/2| − Iq/2)Sij. Therefore the q/2 rows of the

entire q2×q2 matrix corresponding to the top halves of blocks (i, j) as j varies, give the vectors
v(i, b) for b ∈ B1, if we identify columns with Fq × Fq as follows: columns of the j-th block
are identified with {j} × Fq, and within the j-th block, B1 is the first q/2 columns and B2 is
the next q/2 columns (and the bijection φ maps the element associated with the b-th column
to the element associated with the (b+ q/2)-th column).

Then, as i varies over Fq, we find all of the vectors from Eq. (1) as the “top-halves” of
each successive set of q rows of the large matrix.

8To be precise, these are the v(a, b) with respect to some equipartition B1, B2 and some bijection φ.

13

2.4 Putting it all together

Theorem 2.11. Assuming Conjecture 2.6, for every N there is a distribution DN on N bits
such that:

1. there is a BQLOGTIME algorithm that distinguishes DN from the uniform distribution
on N bits with probability ≥ Ω(1);

2. for every d, any depth-d AC0 circuit of size exp(logdN) has vanishing (o(1)) advantage
in distinguishing DN from uniform.

Proof. We only construct DN for certain lengths – one can extend the construction to work
for every length by padding.

Let A be the matrix of Theorem 2.10, and set N = q2 and M = N/2. By Theorem 2.3,
there is a BQLOGTIME algorithm that distinguishes DA,M from the the uniform distribution
U2N .

By Lemma 2.7, the first M rows of A have supports forming a (2
√
N, 4)-design D. It is also

clear that for i ≤M , the (N + i)-th bit of DA,M computes majority (with a fixed pattern of
inputs negated) on those among the first N bits that lie in S(A, i). Thus DA,M is exactly the
distribution (UN , NW

majority
D (UN)) followed by N/2 additional independent random bits

(which can have no impact on the distinguishability of the distribution from uniform). Thus
by Conjecture 2.6, no constant-depth, quasipolynomial-size circuit can distinguish DA,M from
U2N . This concludes the proof.

The proof of the next corollary is in Appendix B.

Corollary 2.12. Assuming Conjecture 2.6, there is an oracle O such that BQPO 6⊆ PHO.

3 Toward PRGs with seed o(log2 n) for small space

In this section we prove that the pseudorandom generator construction of [INW94] with seed
length O(log n log log n) yields distributions that are unpredictable by poly log n-width branch-
ing programs. We start by reviewing the construction [INW94] as presented in [RR99]. This
requires the standard notions of “width S read-once oblivious branching programs” (abbrevi-
ated ROBPs) and “(k, η)-extractors”. Both these notions are defined next.

Width S read-once oblivious branching programs (ROBPs). These are directed
graphs where the node set V is partitioned into n+ 1 layers V0, . . . , Vn each of size at most S.
Each node v in layer i < n has two outgoing edges (one labelled by “0” and one labelled by
“1”) that go to nodes in layer i + 1. On input x ∈ {0, 1}n, such a graph defines a path from
the first node in the first layer (which we think of as the starting node) to a node in layer
n + 1 by following the edges labelled by x one by one. The output is the number of arrived
node in layer n+ 1.

(k, η)-extractors. These were introduced in [NZ96] and are functions E : {0, 1}r×{0, 1}d →
{0, 1}m with the property that for every distribution X over {0, 1}r that is uniform over a set
of size ≥ 2k, the distribution E(X,Ud) is η-close to uniform.

14

The INW generator. Let S = 2s be the width of the ROBPs that we aim to fool. Let
η > 0 be a parameter that we determine later. Let r0 = C · (s + log(1/η)) where C ≥ 1 is a
constant to be determined later. The construction will rely on (r− s− log(1/η), η)-extractors
E : {0, 1}r × {0, 1}d → {0, 1}r for r ≥ r0 and d = O(s + log(1/η)). We stress that there
are explicit constructions with these parameters for a sufficiently large universal constant C
[GW97], and that the dependence of d on both s and η is optimal up to constant factors.

For 0 ≤ j ≤ log n we define functions Gj : {0, 1}r0+jd → {0, 1}2j iteratively as follows:
G0(x) is defined to be the first bit of x. For j > 0, we think of the input of G as a concatenation
of two strings: x ∈ {0, 1}r0+(j−1)d, y ∈ {0, 1}d and set

Gj(x, y) := Gj−1(x) ◦Gj−1(E(x, y)).

The final generator is given by G := Glogn and has seed length O(log n(s + log(1/η)) and
output length n

The analysis and the log2 n barrier. The analysis of [INW94] shows that for every j, if Gj

is a pseudorandom generator with error εj then Gj+1 is a pseudorandom generator with error
2εj+η. Summing up, this gives that the error of G = Glogn is bounded by O(nη), which forces
setting η < 1/n to get a meaningful result. This setting implies in turn that the seed length
is at least Ω(log2 n) even for constant s. Recent work by [BRRY10, BV10, KNP10] shows
that for restricted classes of small width ROBPs the INW generator described above yields
pseudorandom generators with seed length Õ(log n). The key is that for restricted classes
of branching programs (like regular branching programs) a tighter connection between the
error of Gj and Gj+1 can be made, improving the bound on the distinguishing error of the
final generator. However, [BV10] show that these constructions cannot achieve seed length
o(log2 n) for general branching programs, in the sense that there are choices of extractors E
for which the INW generator cannot be pseudorandom even for constant-width ROBPs if we
set η much larger than 1/n so as to obtain seed length o(log2 n).

The main technical contribution of this section is to show that if the goal is unpredictability
instead of indistinguishability, then INW can be shown to work with seed length Õ(log n).

Shooting for an unpredictable distribution. We now consider the goal of showing that
the output of G is “unpredictable” meaning that no width S = 2s ROBP can predict the i’th
bit with advantage larger than some parameter δ.

Theorem 3.1. Fix η > 0 and let Z = (Z1, . . . , Zn) denote the output distribution of G defined
above on a uniformly chosen seed. Then, for every width S = 2s ROBP P and every 0 ≤ i ≤ n,

Pr[P (Z1, . . . , Zi−1) = Zi] ≤
1

2
+ δ

for δ = O(η log n).

The high level idea of the proof is to show that if Gj is unpredictable with advantage
δ then Gj+1 is unpredictable with advantage δ + O(η). Comparing to the analysis showing

15

pseudorandomness, the advantage is that we don’t double the error when going from level j to
level j+1. Loosely speaking, this is because the analysis showing unpredictability of Gj+1 only
pays for one of the two instantiations of Gj. This allows us to get meaningful results even for
relatively large η � 1/n. For example, let s = O(log log n) (which gives S = (log n)O(1)) and
let η = 1/ log2 n. For these settings, G uses a seed of length O(log n · log log n) and produces
a distribution which is unpredictable for δ = O(1/ log n).

The doubling loss mentioned above arises from a use of the hybrid argument (with k = 2)
in the proof [INW94]. Thus our result can be viewed as avoiding this loss when one imposes
the restriction that the distinguisher branching program is a predictor.

Proof of Theorem 3.1. Let P be a width S = 2s ROBP. We say that P predicts Gj with
advantage δ if there exists an i such that Pr[P (Z1, . . . , Zi−1) = Zi] >

1
2

+ δ where Z1, . . . , Zn
are sampled by applying Gj on a uniformly chosen seed. We show that:

Claim 3.2. For j > 1 if P predicts Gj with advantage δ then there exists a width S ROBP
P ′ that predicts Gj−1 with advantage δ − 2η.

Theorem 3.1 follows from Claim 3.2 by noting that if P predicts G = Glogn with advantage
δ then by iteratively applying Claim 3.2 there exists a branching program P ′ which predicts
G0 with advantage δ − 2η log n. This is a contradiction if the latter quantity is greater than
zero.

We now proceed with the proof of Claim 3.2. We have that P predicts position i in the
output of Gj from the previous i − 1 positions. Recall that the output of Gj is obtained by
setting r = r0 + (j − 1)d, uniformly sampling X ∈ {0, 1}r, Y ∈ {0, 1}d and then

Gj(X, Y) = Gj−1(X) ◦Gj−1(E(X, Y)).

If position i appears in the first half of the output then P also predicts Gj−1 with the same
advantage and we are done.

Otherwise, let i′ = 2j − 1 denote the last position in the first application of Gj−1 and
we have that i > i′. Let W denote the random variable defined by considering the node
that P arrives to after reading bits 1, . . . , i′. We say that a node w at layer i′ + 1 is light if
Pr[W = w] ≤ 2−(s+log(1/η)) = η/S. Note that:

Pr[W is light] =
∑

light w∈Vi′+1

Pr[W = w] ≤
∑

w∈Vi′+1

η/S ≤ η.

It follows by an averaging argument that there exists w′ ∈ Vi′+1 which is not light such that
P predicts Gj(X, Y) with advantage δ − η even conditioned on event {W = w′}. Note that
positions 1, . . . , i′ in the output of Gj(X, Y) depend on X but not on Y . Thus, conditioning
on {W = w′} amounts to conditioning X to be in some subset T . We have that

Pr[W = w′] ≥ 2−(s+log(1/η))

which gives that T ⊆ {0, 1}r is of this weight. Therefore, conditioned on {W = w′}, X is
uniformly distributed in a set of size ≥ 2r−(s−log(1/η)) which by the properties of extractors
gives that E(X, Y) is η-close to uniform conditioned on {W = w′}.

16

Let P ′ denote the graph obtained by taking only layers i′, . . . , i from P . In P ′ we set w′

as the starting node (by renaming the nodes in the relevant layer). Note that P ′ is a width S
ROBP defined for inputs of length i − i′ − 1. Furthermore, P ′ predicts Gj−1(E(X, Y)) with
advantage δ−η when conditioned on {W = w′}. As E(X, Y) is η-close to uniform conditioned
on {W = w′}, we conclude that P ′ predicts Gj−1 with advantage at least δ − 2η when the
input to Gj−1 is chosen at random. This concludes the proof.

Following Theorem 3.1, an alternative route to pseudorandom generators for small width
ROBPs is to convert unpredictability to indistinguishability while avoiding the cost of the
hybrid argument. A concrete question is whether the following construction, which applies
an extractor to the output of the INW construction, is pseudorandom: let G = Glogn be the

generator from Theorem 3.1 instantiated with η = 1/ logΘ(1) n and let

E ′ : {0, 1}n × {0, 1}O(logn) → {0, 1}m

be a (k, 1/n)-extractor for k,m = nΘ(1) [Zuc97, GUV07]; the final construction is G′(x, z) =
E ′(G(x), z), which has seed length O(log n · log log n). The intuition is that an unpredictable
distribution has high entropy from the point of view of small width ROBPs and therefore
applying an extractor may produce a pseudorandom distribution. (See [BSW03] for a study
on using extractors to produce pseudorandom distributions.) This approach is inspired by a
pseudorandom generator construction of [STV01] in the setup of small circuits. More pre-
cisely, [STV01] instantiate the NW generator with a function that is only mildly hard on
average giving a distribution which is unpredictable, but for δ which is too large to apply the
hybrid argument. They are able to show that applying an extractor on their unpredictable
distribution produces a pseudorandom distribution.9

4 Beating the hybrid argument

In this section we show how to beat the hybrid argument for the “repeated sampling generator”
in the context of several low-level circuit classes. First we note that even for this goal, it is
necessary to use non-black-box techniques. For a distribution D, we denote by D⊗k the
concatenation of k independent samples of D.

Fact 4.1 (Hybrid argument loss is inherent in black-box reductions). There is c > 0 such that
for any n and ε ≥ 1/2n/c such that log 1/ε is an integer: there exists a (non-explicit) function
f : {0, 1}n → {0, 1} such that

1. for any circuit C of size s ≤ 2n/c, Prx∈{0,1}n [C(x) 6= f(x)] ≥ 1/2− ε, and

2. there is a poly(n/ε)-size DNF distinguishing (X, f(X))⊗c/ε from uniform with probability
≥ 0.9.

9For context, we remark that this result in [STV01] is not known to hold for restricted circuit classes such as
AC0[p]. The specific proof in [STV01] fails because at its heart lies hardness amplification (specifically the hard-
core set lemma [Imp95]) which in these restricted classes is either not known to hold or false [SV10, LTW07].

17

Proof. Let x = (y, z) where |y| = log(1/ε) + 1, and |z| = n − |y| ≥ n/2 (for c large enough).
Let h : {0, 1}|z| → {0, 1} be a function such that for a universal constant d, any circuit D of
size ≤ 2n/d satisfies Prx∈{0,1}n [D(x) 6= f(x)] ≥ 1/2− 1/2n/d. The existence of such a function
h follows from a counting argument.

Now define f(y, z) as h(z) if y 6= 0, and 0 otherwise.
To see (1), note that for any circuit C of size ≤ 2n/d, if Prx∈{0,1}n [C(x) = f(x)] ≥ 1/2 + ε

then

1/2 + ε ≤ Pr[C(x) = f(x)] ≤ Pr[C(y, z) = f(y, z)|y 6= 0] + Pr[y = 0]

= Pr[C(y, z) = h(z)|y 6= 0] + ε/2,

and so there exists a fixed y so that, denoting by Cy the circuit of size ≤ 2n/d obtained by
hardwiring y into C,

Pr[Cy(z) = h(z)] ≥ 1/2 + ε/2 ≥ 1/2 + 1/2n/c+1.

This contradicts the hardness of h (which is 2n/d) for any c > d and n large enough.
To see (2), consider the distributions

©i≤c/ε(y
i, zi, f(yi, zi)) (?)

and
©i≤c/ε(y

i, zi, bi) (U)

where bi is a uniform random bit, and © denotes concatenation.
In either distribution, we expect c/ε · ε/2 = c/2 values yi to be 0. Increasing c, we can

guarantee that with probability arbitrarily close to 1 we will see an arbitrarily large number
of yi = 0. The CNF T defined as ∀i, yi = 0 ⇒ bi = 0 accepts (?) with probability 1, by
definition. On the other hand, T accepts (U) with probability less than 0.01, for a sufficiently
large c, because every clause where yi = 0 has only probability 1/2 of being true.

We indeed identify a property of functions that allows us to avoid this loss, resamplability.
For exposition, it is convenient to work with problems rather than functions:

Definition 4.2. A problem Π = ΠY

⋃
ΠN is resamplable with resources T (e.g., T = circuits

of size n2) if there are functions Rr(·) such that:

1. for any x ∈ ΠY (resp., x ∈ ΠN), the distribution Rr(x) for uniform r is uniform in ΠY

(resp., ΠN); and

2. for any fixed r, the function Rr(·) is computable with resources T .

The next lemma uses resamplability to prove that the repeated sampling generator suffers
no loss in the distinguishing parameter. Note that resamplability naturally gives rise to a
reduction strategy that would show that distinguishing Π⊗kY from Π⊗kN is as hard as distin-
guishing ΠY from ΠN ; the innovation in the proof below is that it is able to replace Π⊗kN with
Π⊗k.

18

Lemma 4.3. Suppose a problem Π = ΠY

⋃
ΠN (ΠY

⋂
ΠN = ∅) has a resampler Rr(·). If a

function C distinguishes k independent samples of ΠY from k independent samples of Π with
probability ε, i.e. ∣∣Pr[C(Π⊗kY) = 1]− Pr[C(Π⊗k) = 1]

∣∣ ≥ ε,

then there is a function function C ′ of the form C ′(x) := C(R̄1(x), . . . , R̄k(x)) where each R̄i

is either the resampler Rri(x) for a fixed string ri, or is just a constant function πi ∈ ΠY ,
such that C ′ distinguishes ΠY from ΠN with the same probability ε, i.e.

|Pr[C ′(ΠY) = 1]− Pr[C ′(ΠN) = 1]| ≥ ε.

Proof. Let B1, . . . , Bk ∈ {Y,N} be independent bits coming up Y with probability |ΠY |/|Π|.
Note that the distribution Π1,Π2, . . . ,Πk equals the distribution Π1

B1 ,Π2
B2 , . . . ,Πk

Bk
. By aver-

aging, there exists a way to fix each variable Bi to a value bi such that∣∣∣Pr[C
(
Π1
Y ,Π

2
Y , . . . ,Π

k
Y

)
= 1]− Pr[C

(
Π1
b1 ,Π

2
b2 , . . . ,Π

k
bk

)
= 1]

∣∣∣ ≥ ε.

In both distributions in the above equation, the coordinates where bi = Y are the same, and
the others are different. Consider the randomized map F (x) := (R1(x), . . . , Rk(x)) where
Ri(x) is a uniform element of ΠY if bi = Y , and is the resampler Rri(x) for a uniform ri if
bi = N . Then the previous equation implies∣∣∣Pr[C(F (ΠY)) = 1]− Pr[C(F (ΠN)) = 1]

∣∣∣ ≥ ε.

Fixing the internal randomness of F we obtain the desired conclusion for C ′(·) := C(F (·)).

We now discuss cases in which resamplability yields new results. We start with the simplest
setting, that of the parity function, and then we move to majority and determinant.

4.1 A generator based on parity

First we note the efficient resamplability of parity.

Fact 4.4. The problem parity is resamplable in (poly-size) NC0.

Proof. The resampler Rr(x) uses r to select a string of length |x| with parity 0, and then xor’s
it to x. For fixed r, this amounts to complementing some input bits, which can be done in
NC0.

Combining this fact with Lemma 4.3 we obtain new pseudorandom distributions for low-
level circuit classes. We start with the class of AC0 circuits with mod p gates – denoted
AC0[p], for an odd prime p. The strongest known hardness result for this class is the following
well-known, long-standing result by Smolensky [Smo87, Smo93] (cf. [Fil10]).

Lemma 4.5 ([Smo93]). For every d and prime p > 2, there is a constant α > 0 such that the
n-bit parity function is ε-hard, with ε = n−1/2+o(1), for AC0[p] circuits of size ≤ 2n

α
.

19

Equivalently ifX is a random variable uniformly distributed on {0, 1}n, then (X, parity(X))
is ε-pseudorandom for such circuits. (Cf. §1.2 for the definition of hard and pseudorandom.)
The following corollary shows that this pseudorandomness does not decay with the number
of repeated experiments.

Corollary 4.6. Fix a prime p 6= 2 and d ≥ 1. For every k ≤ 2n
o(1)

, every poly(n, k)-size
AC0[p] circuit C of depth d satisfies∣∣Pr

[
C
(
(X, parity(X))⊗k

)
= 1
]
− Pr[C(U) = 1]

∣∣ ≤ o(1),

where X is uniformly distributed on {0, 1}n, and U is the uniform distribution over k · (n+ 1)
bits. Moreover, there is an explicit generator G : {0, 1}n(1−1/poly lgn) → {0, 1}n that is o(1)-

pseudorandom for AC0[p] circuits C of depth d and size 2lgd n.

Proof. This proof follows from the combination of Lemma 4.3 and Smolensky’s Lemma 4.5; for
the second claim define G(x1, . . . , xk) = (x1,¬parity(x1), · · · , xk,¬parity(xk)) (i.e., it outputs
a k-tuple of strings of odd hamming weight) where each |xi| = poly lg n.

For the interesting case of p = 2, this proof does not work. In §4.3 we obtain similar
generators using the machinery of [IK02].

The distribution induced by the generator in Corollary 4.6 has the appealing feature that
it can be equivalently generated by an NC0 circuit such that each output bit depends on just 2
input bits. This can be obtained using the corresponding “trick” for parity which is explained
for example in [Vio10].

We now consider the class AC0 with a limited number of majority gates. When the number
of majority gates is logarithmic in the size of the circuit, strong (approaching 1/2 superpolyno-
mially fast) average-case lower bounds that allow for superpolynomial-stretch generators are
known [Vio07]. But when the number of majority gates is larger, say polynomial in the circuit
size, the best average-case hardness result remains the one proved by Beigel [Bei94, Corollary
4.4] building on the seminal lower bound by Aspnes, Beigel, Furst, and Rudich [ABFR94].

Lemma 4.7 ([ABFR94, Bei94]). For any d there is α > 0 such that for any And-Or-Majority-
Not circuit of depth d, size ≤ 2n

α
, with at most nα majority gates,

Pr
x∈{0,1}n

[C(x) = parity(x)] ≤ 1/2 + o(1).

Actually [Bei94, Corollary 4.4] has 1/4 instead of o(1), but the same techniques give o(1).

Combining Lemmas 4.7, 4.4, and 4.3, and using the fact that the reduction does not
increase the number of majority gates one gets new generators for small-depth circuits with
few majority gates. We only state the particular tradeoff where the number of majority gates
is polynomial.

Corollary 4.8 (Generators against AC0 with few majority gates). For every d ≥ 1, δ ∈ (0, 1)
there is ε > 0 such that for large enough n there are explicit generators G : {0, 1}n(1−1/nδ) →

20

{0, 1}n such that for any And-Or-Majority-Not circuit C of depth d, size ≤ 2n
ε
, with ≤ nε

majority gates, ∣∣∣∣∣ Pr
s∈{0,1}n(1−1/nδ)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣∣ ≤ o(1).

4.2 A generator based on majority

We begin by remarking that we do not know of a resampler for majority, so this setup is a
bit more complicated. We require a generalization of Definition 4.2 and Lemma 4.3, in which
the “resampler” Rr(·) maps a source problem ΠY

⋃
ΠN to a target problem ΓY

⋃
ΓN . Part

(1) of the definition becomes that for any x ∈ ΠY (resp. ΠN), Rr(x) is uniform in ΓY (resp.
ΓN); the lemma then reduces an ε-distinguisher for Γ⊗kY vs. Γ⊗k to an ε-distinguisher for ΠY

vs. ΠN . It should also be clear that replacing Rr(·) with a function whose induced output
distributions are δ-close to the ones in the definition can only alter the distinguishing gap in
the conclusion of the lemma by δk.

Our target problem is A = AY
⋃
AN defined as follows: for odd n, AY is the set of n-bit

strings of hamming weight ≥ n/2, and AN is the set of strings of weight ≤ n/2. The following
is an easy exercise (cf. [Vio10]):

Claim 4.9. Distinguishing A⊗kY from A⊗k AC0 reduces to distinguishing (U,majority(U))⊗k

from uniform, with no loss in the distinguishing parameter.

Our source problem is W = WY

⋃
WN defined as follows: for odd `, WY is the set of `-bit

strings of hamming weight (` + 1)/2 and WN is the set of those strings of weight (` − 1)/2.
Distinguishing WY from WN is hard:

Lemma 4.10 ([H̊as87]). For any constants d ≥ 1, ε > 0, poly(`)-size AC0 circuits of depth d
cannot distinguish WY from WN with gap greater than ε.

Only a worst-case lower bound is stated in [H̊as87], but the stated average-case result
follows using standard techniques [Aar10b, SV10]. Specifically, one can use the fact that the
problem is resamplable (just permute input bits) and the fact that approximate majority is
in AC0 [Ajt83, ABO84] (cf. [Vio09a]) to show that any small AC0 circuit distinguishing WY

from WN with gap ε ≥ Ω(1) can be transformed into a small AC0 circuit solving W in the
worst case.

We now give a resampler from W to A:

Lemma 4.11. There is a function t = poly(`) and a distribution Rr(·) on AC0 circuits of
size poly(`) mapping ` bits to n = ` · t bits, such that

• for any x ∈ WY , Rr(x) has statistical distance exp(−nΩ(1)) from uniform in AY , and

• for any x ∈ WN , Rr(x) has statistical distance exp(−nΩ(1)) from uniform in AN .

21

As a corollary we obtain the following result (which we state for only polynomially many
repetitions k, because this is all that is needed for the special case of Conjecture 2.6).

Corollary 4.12. For any constant d ≥ 1 and any function k = poly(n), every poly(n)-size
AC0 circuit C of depth d satisfies∣∣Pr

[
C
(
(X,majority(X))⊗k

)
= 1
]
− Pr[C(U) = 1]

∣∣ ≤ o(1),

where X is uniformly distributed on {0, 1}n, and U is the uniform distribution over k · (n+ 1)
bits.

The proof of Corollary 4.12 follows by combining Lemma 4.10 with the version of Lemma 4.3
discussed above, and Claim 4.9.

Proof of Lemma 4.11. Let t = t(`) be odd. For i chosen according to a distribution to be
determined later, let Rr(·) be defined as follows: concatenate 2i+1 copies of x with a balanced
string on (t − (2i + 1))` bits, and output a random permutation of this string. Note that if
x ∈ WY , the hamming weight of the resulting string is (n + 1)/2 + i, while if x ∈ WN , the
hamming weight of the resulting string is (n− 1)/2− i.

Now we give the distribution for choosing i. The only constraint on i is that 2i + 1 ≤ t.
We select i with the probability given by AY to the set of strings of weight (n + 1)/2 + i
(which is the same as the probability given by AN to the set of strings of weight (n−1)/2− i),
normalized to give a probability distribution.

On input any string in WY (resp. WN), the weight distribution of the resampler differs
from the weight distribution AY (resp. AN) only by redistributing the probability mass of
hamming weights greater than (n + 1)/2 + Θ(t) (resp. less than (n − 1)/2 − Θ(t)). Since
n = `t, by letting t be a sufficiently large polynomial in ` and using a Chernoff bound, the
statistical distance between the distributions is exp(−nΩ(1)).

4.3 Generators based on L-hardness

We consider the problem, introduced by Ishai and Kushilevitz [IK00, IK02], of distinguishing
certain matrixes with full rank from rank full −1. This problem is used to great effect in
several works, e.g. [AIK06, GGH+07, GGH+08], and we use the name CMD (for connectivity
matrix determinant) from [GGH+07]. For a self-contained exposition of this problem and the
properties we shall need, see [Vio09b, Chapter 4].

Definition 4.13 ([IK00, IK02]). An input to the problem Π = CMD (for connectivity matrix
determinant) is an n × n matrix A that has 0/1 entries on the main diagonal and above it,
1 on the second diagonal (one below the main), and 0 below this diagonal. The matrix A is
represented by the n(n+ 1)/2 0/1 entries on and above the main diagonal. Each such matrix
has rank ≥ n − 1. ΠY are matrixes with full rank n over GF(2), ΠN are matrixes with rank
n− 1.

22

In [IK02] various useful properties are established. First, note CMD is balanced, i.e. |CMDY | =
|CMDN |. To see this, imagine choosing a random matrix in the definition of CMD by first
choosing all rows except the first. This yields an n−1 dimension vector space, and the matrix
will have full rank n if and only if the first row will land outside of this space, which happens
with probability 1/2.

Second, CMD is hard for log-space computation, and in fact is complete for the richer
complexity class ⊕L, under NC0 reductions, i.e. maps such that each output bits depends on
just a constant number of input bits.

Lemma 4.14 ([IK02]). CMD is ⊕L-complete under NC0 reductions.

Finally, the techniques in [IK02] also show that CMD is resamplable in AC0[2].

Lemma 4.15 ([IK02]). CMD is resamplable in poly-size AC0[2].

Proof sketch. There are two distributions A,B over n×n matrixes such that for every M ∈ ΠY

(resp., M ∈ ΠN) the product AMB is uniform over ΠY (resp., ΠN). The resampler is thus
RA,B(M) := AMB. Since the multiplication is over GF(2), this can be computed by a poly-
size AC0[2] circuit.

We use another result by Smolensky, that majority is hard for AC0[2]. See [Fil10] for an
exposition.

Lemma 4.16 ([Smo93]). For any AC0[2] circuit C of size s and depth d we have

Pr
x∈{0,1}n

[C(x) = majority(x)] ≤ 1/2 +O(log(Sn))d/
√
n+ 1/n.

We can now state our generator against AC0[2].

Corollary 4.17 (Generator against AC0 with mod 2 gates). For every d there is c such that
for large enough n there is an explicit generator G : {0, 1}n(1−1/ lgc n) → {0, 1}n such for any

AC0[2] of depth d and size 2lgd n:∣∣∣∣ Pr
s∈{0,1}n(1−1/ lgc n)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣ ≤ o(1).

Proof. By Lemma 4.16, circuits of the given resources satisfy∣∣∣∣ Pr
x∈{0,1}lga n

[C(x) = majority(x)]− 1

2

∣∣∣∣ ≤ o(1),

where the probability is for inputs of length lga n, for a constant a depending only on p, d.
Note that majority is computable in logarithmic space, and recall that CMD is hard for

logarithmic space under NC0 reductions (Lemma 4.14). In addition, CMD is resamplable

23

(Lemma 4.15) and hence randomly self-reducible (see comment after Def. 4.2). The combina-
tion of these facts implies that circuits of the given resources satisfy∣∣∣∣∣ Pr

x∈{0,1}lgb n
[C(x) = CMD(x)]− 1

2

∣∣∣∣∣ ≤ o(1),

where the probability is for inputs of length lgb n, for a constant b depending only on p, d. In
other words, if there is a small AC0[2] circuit computing CMD on a 1/2+α fraction of inputs,
we could compute majority on a 1/2 +α fraction of inputs by first reducing majority to CMD
in NC0 ⊆ AC0[2] and then resampling CMD in AC0[2].

The output of the generator G is a k-tuple of strings representing CMDY instances of CMD.
Recall that CMD is balanced, i.e. |CMDY | = |CMDN |, so the seed length is (lgb n−1)n/ lgb n =
n(1− 1/ lgb n). The correctness follows from Lemma 4.3.

Note that the proof in §4.2 won’t work, because W is solvable just by computing the parity
of the instance. It is open if (x,majorityx)⊗k is pseudorandom for small AC0[2] circuits for
every k = poly(n).

We also get the following conditional result for AC0[m] for every even m. For simplicity
we state it for m = 6.

Corollary 4.18 (Conditional generator against AC0 with mod 6). Suppose that L 6⊆ AC0[6].
Then for every d > 1 and any δ ∈ (0, 1), for large enough n there is an explicit generator
G : {0, 1}n(1−1/nδ) → {0, 1}n such for any AC0[6] circuit of depth d and size nd:∣∣∣∣∣ Pr

s∈{0,1}n(1−1/nδ)

[C(G(s)) = 1]− Pr
x∈{0,1}n

[C(x) = 1]

∣∣∣∣∣ ≤ o(1).

Proof. The assumption implies that depth poly(n)-size AC0[6] circuits fail to compute CMD
with probability 1/2− o(1). For otherwise, we could reduce an instance of any fixed log-space
problem to CMD, then resample CMD and use approximate majority [Ajt83, ABO84] to show
that L ⊆ AC0[6].

This allows to use instances of length nδ for an arbitrarily small δ > 0. Again, the
correctness follows from Lemma 4.3.

4.4 On a possible alternative way to get generators for AC0[p]

In this section we sketch a possible alternative approach to get generators with seed length
n(1 − 1/poly log n) that fool AC0[p] circuits, p prime, on n bits. As stated in Lemma 4.16,
these circuits cannot compute majority on instances of an appropriate length poly log n with
probability ≥ 1/2 − o(1). From this, it follows via techniques by Shaltiel and Viola [SV10]
that there exists some integer c ≤ poly log n so that the circuits cannot distinguish (with any
constant advantage) the uniform distribution from i.i.d. bits coming up 1 with probability
1/2 + 1/c.

24

If we know c, the generator that outputs i.i.d. bits coming up 1 with probability 1/2 + 1/c
has seed length H(1/2 + 1/c)n ≤ n(1− 1/poly log n), where H is the binary entropy function.
Up to the poly log n, this is of the same type we get using resamplers.

However, we have been unable to determine if c is explicitly computable, though it is even
possible that most values for c will do.

Acknowledgments. We thank Scott Aaronson, Yi-Kai Liu, and Mike Saks for helpful dis-
cussions.

References

[Aar10a] S. Aaronson. A counterexample to the Generalized Linial-Nisan Conjecture. In
ECCCTR: Electronic Colloquium on Computational Complexity, technical reports,
number 109, 2010.

[Aar10b] Scott Aaronson. BQP and the polynomial hierarchy. In 42nd Annual Symposium
on Theory of Computing (STOC), pages 141–150. ACM, 2010.

[ABFR94] James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive
power of voting polynomials. Combinatorica, 14(2):135–148, 1994.

[ABO84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth
computation. In 16th ACM Symposium on Theory of Computing (STOC), pages
471–474, 1984.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0.
SIAM J. Comput., 36(4):845–888, 2006.

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48,

1983.

[Bei94] Richard Beigel. When do extra majority gates help? polylog(N) majority gates
are equivalent to one. Comput. Complexity, 4(4):314–324, 1994.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. on Computing, 13(4):850–864, November
1984.

[BRRY10] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom
generators for regular branching programs. In 51st Annual IEEE Symposium on
Foundations of Computer Science, 2010.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of en-
tropy. In 7th International Workshop on Randomization and Computation (RAN-
DOM), pages 200–215, 2003.

25

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM J.
Comput., 26(5):1411–1473, 1997.

[BV10] Joshua Brody and Elad Verbin. The coin problem, and pseudorandomness for
branching programs. In 51st Annual IEEE Symposium on Foundations of Com-
puter Science, 2010.

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets.
SIAM J. on Computing, 22(5):994–1005, October 1993.

[Fil10] Yuval Filmus. Smolensky’s polynomial method, 2010.
http://www.cs.toronto.edu/ yuvalf/Smolensky.pdf.

[FU10] B. Fefferman and C. Umans. Pseudorandom generators and the BQP vs. PH
problem. Available at http://www.cs.caltech.edu/ umans/papers/FU10.pdf,
2010.

[GGH+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N.
Rothblum. Verifying and decoding in constant depth. In 39th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 440–449, 2007.

[GGH+08] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy Roth-
blum. A (de)constructive approach to program checking. In 40th Annual ACM
Symposium on Theory of Computing (STOC), pages 143–152, 2008.

[GL89] Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
In 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32,
1989.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, April 1984.

[Gol01] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, 2001.

[GUV07] Venkat Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from parvaresh-vardy codes. In CCC, pages 96–108,
2007.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random prop-
erties: A quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–
343, 1997.

[H̊as87] Johan H̊astad. Computational limitations of small-depth circuits. MIT Press, 1987.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

26

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 294–304, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Automata, Languages and Programming, 29th
International Colloquium (ICALP), volume 2380 of Lecture Notes in Computer
Science, pages 244–256. Springer, 2002.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th
Annual Symposium on Foundations of Computer Science, pages 538–545. IEEE,
1995.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for net-
work algorithms. In 26th ACM Symposium on the Theory of Computing (STOC),
pages 356–364, 1994.

[KNP10] M. Koucky, P. Nimbhorkar, and P. Pudlak. Pseudorandom generators for group
products. Technical Report TR10-113, ECCC, 2010.

[KSV02] A.Y Kitaev, A.H Shen, and M.N Vyalyi. Classical and Quantum Computation.
AMS, 2002.

[KvMS09] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators
and typically-correct derandomization. In 12th International Workshop on Ap-
proximation, Randomization, and Combinatorial Optimization (RANDOM), vol-
ume 5687 of Lecture Notes in Computer Science, pages 574–587. Springer, 2009.

[LTW07] Chi-Jen Lu, Shi-Chun Tsai, and Hsin-Lung Wu. On the complexity of hard-core
set constructions. In 34th International Colloquium on Automata, Languages and
Programming (ICALP), volume 4596 of Lecture Notes in Computer Science, pages
183–194. Springer, 2007.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
11(1):63–70, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combi-
natorica, 12(4):449–461, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Computer & Systems
Sciences, 49(2):149–167, 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput.
Syst. Sci., 52(1):43–52, 1996.

27

[Raz87] Alexander Razborov. Lower bounds on the dimension of schemes of bounded
depth in a complete basis containing the logical addition function. Mat. Zametki,
41(4):598–607, 1987. English translation in Mathematical Notes of the Academy
of Sci. of the USSR, 41(4):333-338, 1987.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In 31st ACM Symposium on Theory of Computing (STOC),
pages 159–168, 1999.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In 19th Annual Symposium on Theory of Computing (STOC),
pages 77–82. ACM, 1987.

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In 34th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 130–138, 1993.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators with-
out the XOR lemma. J. Comput. System Sci., 62(2):236–266, 2001.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require major-
ity. SIAM Journal on Computing, 39(7):3122–3154, 2010.

[Vio07] Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary
symmetric gates. SIAM Journal on Computing, 36(5):1387–1403, 2007.

[Vio09a] Emanuele Viola. On approximate majority and probabilistic time. Computational
Complexity, 18(3):337–375, 2009.

[Vio09b] Emanuele Viola. On the power of small-depth computation. Foundations and
Trends in Theoretical Computer Science, 5(1):1–72, 2009.

[Vio10] Emanuele Viola. The complexity of distributions. In 51th Symposium on Founda-
tions of Computer Science (FOCS). IEEE, 2010.

[Wat00] John Watrous. Succinct quantum proofs for properties of finite groups. In 41st
IEEE Symposium on Foundations of Computer Science (FOCS), pages 537–546,
2000.

[Wil10a] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In 42nd ACM Symposium on Theory of Computing (STOC), pages 231–
240, 2010.

[Wil10b] Ryan Williams. Non-uniform ACC lower bounds. Manuscript, 2010.

[Yao82] Andrew Yao. Theory and applications of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 80–91. IEEE,
1982.

28

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Al-
gorithms, 11(4):345–367, 1997.

A A unitary in which all rows participate

There is a tension between the triple goals of (1) having many pairwise orthogonal vectors,
(2) maintaining bounded pairwise intersections of the supports, and (3) having the supports
large. It is natural to wonder whether the above construction (in which we found a number
of vectors equal to 1/2 the dimension of the underlying space) is in some sense optimal. For
example, is there some barrier to simultaneously optimizing all three goals?

Here we show that one can indeed optimize all three goals at the same time, by specifying
a construction that builds on the “paired-lines” construction. Our construction will have as
many pairwise orthogonal vectors as the dimension of the underlying space (which is obviously
as many as is possible); it will have intersections sizes bounded above by 2 (the upper bound
cannot be 0 without constraining the product of the number of rows and the support sizes
to be at most the dimension of the underlying space, and no pairwise intersections can have
cardinality one without violating orthogonality); the support sizes will be at least the square
root of the dimension of the underlying space (and one can’t exceed that without having larger
intersection sizes).

This construction is not needed for our main results, but we find it aesthetically pleasing
that one can optimize all three parameters in this way. We don’t know of a local decomposition
for this matrix, and we leave finding one as an intriguing open problem.

While the construction of §2.3.1 needed characteristic two, the present construction needs
odd characteristic. We fix Fq with q an odd prime power, and we choose a subset Q ⊆ F∗q of
size (q− 1)/2 for which Q∩−Q = ∅, where −Q = {−x : x ∈ Q}. Our vectors will have q2− 1
coordinates, identified with the punctured plane P = Fq × Fq \ {(0, 0)}.

We have three types of vectors in {0,−1,+1}P : first, for all a ∈ Fq and b ∈ Q

va,b[x, y] =


+1 x = 0, y = b
+1 x ∈ Q, y = ax+ b
−1 x ∈ Q, y = ax− b
0 otherwise

, (2)

second, for all a ∈ Fq and b ∈ −Q

va,b[x, y] =


+1 x = 0, y = b
+1 x ∈ −Q, y = ax+ b
−1 x ∈ −Q, y = ax− b
0 otherwise

, (3)

and finally, for each c ∈ F∗q

uc[x, y] =

{
+1 x = c, y ∈ Fq
0 otherwise

. (4)

29

Lemma A.1. The vectors defined in Eqs. (2), (3) and (4) are pairwise orthogonal and their
supports form a (q, 2)-design.

Proof. It is an easy computation to see that the support of each of the vectors has cardinality
q. We now argue that they are pairwise orthogonal. There are several cases depending on the
two rows under consideration:

1. va,b and va′,b′ : if one comes from Eq. (2) and the other from Eq. (3) then the supports
are disjoint. So we assume both come from Eq. (2) or both come from Eq. (3).

(a) Both come from Eq. (2) and b = b′: we have one intersection (0, b) (which con-
tributes +1 to the inner product) and exactly one of the following two intersection
points: (x = −2b/(a− a′), ax+ b = a′x− b) or (x = 2b/(a− a′), ax− b = a′x+ b),
which contributes −1 to the inner product. We have exactly one because the two
x-values are negations of each other, and non-zero, so exactly one is in Q.

(b) Both come from Eq. (2) and b 6= b′: we have exactly one of the following two
intersection points: (x = (b′− b)/(a− a′), ax+ b = a′x+ b′) or (x = (−b′ + b)/(a−
a′), ax− b = a′x− b′), which contributes +1 to the inner product, and exactly one
of the following two intersection points: (x = (b′+ b)/(a− a′), ax− b = a′x+ b′) or
(x = (−b′−b)/(a−a′), ax+b = a′x−b′), which contributes −1 to the inner product.
For each pair, there is exactly one of the pair of possible intersection points because
the two x-values are negations of each other, and non-zero, so exactly one is in Q.

(c) Both come from Eq. (3) and b = b′: identical to case (1a) above, with −Q in place
of Q.

(d) Both come from Eq. (3) and b 6= b′: identical to case (1b) above, with −Q in place
of Q.

2. uc and u′c: these have disjoint supports for c 6= c′.

3. va,b and uc: if c ∈ Q, then the support of uc intersects the support of va,b only if va,b
comes from Eq. (2), and then we get one intersection at point (x = c, ax + b) which
contributes a +1 to the inner product, and one intersection at point (x = c, ax − b)
which contributes a −1 to the inner product. If c ∈ Q, then the support of uc intersects
the support of va,b only if va,b comes from Eq. (3), and we have an identical argument,
with −Q in place of Q.

This is a complete enumeration of cases, and in no case did we have more than 2 intersection
points.

We conclude this section with a question: are these matrices related in some way to the
DFT matrix over some family of non-abelian groups (e.g. the affine group F∗q n Fq), or are
they indeed completely different from the unitaries seen before in quantum algorithms?

30

B Converting a distributional oracle problem into a

standard oracle

For completeness in this section we prove Corollary 2.12. A similar proof appears in [Aar10b].

Corollary 2.12. (Restated.) Assuming Conjecture 2.6, there is an oracle O such that BQPO 6⊆
PHO.

Proof. Theorem 2.11 gives us two ensembles of random variables D1 = {D1,n}, D2 = {D2,n}
over (N = 2n)-bit strings for which BQLOGTIME can distinguish the two distributions but
quasi-poynomial-size AC0 cannot. Then whenD1 andD2 are viewed as distributions on (truth-
tables of) oracles, there is a BQP oracle machine that distinguishes the two distributions, but
no PH oracle machine can distinguish them. Specifically, we have that there exists a BQP
oracle machine A for which

Pr[AD1(1n) = 1]− Pr[AD2(1n) = 1] ≥ ε

while for every PH oracle machine M ,

Pr[MD1(1n) = 1]− Pr[MD2(1n) = 1] ≤ δ < ε,

(here we use standard techniques – see, e.g., [H̊as87] – which show that on any fixed input,
the output of the machine as a function of the oracle can be seen as a constant-depth quasi-
polynomial-size AC0 circuit) and we have ε > δ for sufficiently large n ≥ n0.

We now convert the distributions on oracles into a single oracleO for which BQPO 6⊆ PHO.
Let L be a uniformly random unary language in {1}∗. For each n, if 1n ∈ L, sample a 2n-
bit string x from D1 and define oracle O restricted to length n so that x is its truth table;
otherwise sample a 2n-bit string x from D2 and define oracle O restricted to length n so that
x is its truth table.

First, note that

Pr[AO(1n) = L(1n)] = (1/2) · Pr[AD1(1n) = 1] + (1/2) · Pr[AD2(1n) = 0] ≥ 1/2 + ε/2.

Now fix any PH machine M , and note that for sufficiently large n,

Pr[MO(1n) = L(1n)] = (1/2) · Pr[MD1(1n) = 1] + (1/2) · Pr[MD2(1n) = 0] ≤ 1/2 + δ/2.

Consequently, since ε > δ there is a fixed choice for the oracle at length n such that
AO(1n) 6= MO(1n), for sufficiently large n.

Fix such a choice for the oracle, and consider another PH machine M ′. By the same
argument, we can find another sufficiently large input length n′ where AO(1n

′
) 6= MO(1n

′
).10

Continuing in this way, we obtain a single oracle such that for any PH machine M there
exists some n for which AO(1n) 6= MO(1n), concluding the proof.

10We have assumed that our machines, on an input of length n, only query the oracle at inputs of length
n. This can be ensured by working with input lengths that are sufficiently spread out (so that the machine
cannot afford to formulate queries to the next largest length, and so that the oracle at shorter lengths can be
hardcoded.)

31

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

