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Abstract

The sum of square roots problem over integers is the task of deciding the sign of a nonzero
sum, S =

∑n
i=1 δi ·

√
ai, where δi ∈ {+1,−1} and ai’s are positive integers that are upper

bounded by N (say). A fundamental open question in numerical analysis and computational
geometry is whether |S| ≥ 1/2(n·log N)O(1)

. We study a formulation of this problem over polyno-
mials: Given an expression S =

∑n
i=1 ci ·

√
fi(x), where ci’s belong to a field of characteristic

0 and fi’s are univariate polynomials with degree bounded by d and fi(0) 6= 0 for all i, is it
true that the minimum exponent of x which has a nonzero coefficient in the power series S
is upper bounded by (n · d)O(1), unless S = 0? We answer this question affirmatively. Fur-
ther, we show that this result over polynomials can be used to settle (positively) the sum of
square roots problem for a special class of integers: Suppose each integer ai is of the form,
ai = Xdi + bi1X

di−1 + . . . + bidi
, di > 0, where X is a positive real number and bij ’s are

integers. Let B = maxi,j{|bij |} and d = maxi{di}. If X > (B + 1)(n·d)O(1)
then a nonzero

S =
∑n

i=1 δi ·
√
ai is lower bounded as |S| ≥ 1/X(n·d)O(1)

.

We then consider the following more general problem: given an arithmetic circuit computing
a multivariate polynomial f(X) and integer d, is the degree of f(X) less than or equal to d? We
give a coRPPP-algorithm for this problem, improving previous results of [ABKPM09] and [KP07].
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1 Introduction

The sum of square roots is the following well-known problem: given a set {a1, a2, . . . , an} of positive
integers and {δ1, δ2, . . . , δn} ∈ {−1,+1}n, determine the sign of the sum

n∑
i=1

δi ·
√
ai (1)

It was posed as an open problem by Garey, Graham and Johnson [GGJ76] in connection with
the Euclidean travelling salesman problem. Euclidean TSP is not known to be in NP but is
easily seen to be in NP relative to the sum of square roots problem. More generally, the sum of
square roots problem is of importance for many problems in computational geometry (cf. [MR08]),
since the computation of the Euclidean distance between two points in general case involves the
computation of a square root. The sum of square roots problem also arises in the algorithmic
solution of semidefinite progamming which in turn is used for designing approximation algorithms
(cf. the survey by Goemans [Goe98]). Although it has been conjectured [Mal96] that the problem
lies in P, the best known result so far [ABKPM09] is containment in the counting hierarchy CH,
which is a subclass of PSPACE that contains the polynomial hierarchy PH. For the related but
easier problem of determining whether the sum (1) is zero or not, a deterministic polynomial-time
algorithm is known [Blö91] 1. A possible approach towards answering this question is to solve the
following number-theoretic problem whose current status is still a conjecture.

Problem 1.1 (Lower bounding a nonzero ‘signed’ sum of square root of integers). Given a sum
S =

∑n
i=1 δi ·

√
ai, where δi ∈ {+1,−1} and ai’s are positive integers upper bounded by N , find

a tight lower bound on |S| in terms of n and N when S 6= 0. Is it true that for a nonzero S,
|S| ≥ 1/2poly(n,logN) for some fixed polynomial poly(·)?

If the answer to the above question is yes then computing the square roots up to poly(n, logN)
precision suffices to determine the sign of the sum of square roots. Reducing the immense gap
between the known upper and lower bounds for Problem 1.1 is a challenging number-theoretic
problem.

Now, there is a well known analogy between integers and polynomials (cf. [EHM05]). We refer
the reader to a survey by Landau and Immerman [IL93] for some algorithmic aspects of this analogy.
The investigation of the complexity of polynomial analogs of integer problems has occassionally
given important insight into the integer problem itself. Indeed, Allender et al. [ABKPM09] proved
a hardness result of a closely related problem, which they call BitSLP, by first observing that the
corresponding problem for polynomials is #P-hard. This motivates us to examine the polynomial
analogue of the sum of square roots problem as an interesting problem in its own right.

Here we study the natural analogue of Problem 1.1 in the world of polynomials, the precise
statement of which is given below.

Problem 1.2 (Sum of square root of polynomials). Given an expression S =
∑n

i=1 ci
√
fi(x), where

ci ∈ F (a field of characteristic 0) and fi(x) are univariate polynomials with degree bounded by d
and fi(0) 6= 0 (for all i), 2 can we show that unless S = 0, the minimum exponent of x which has
a nonzero coefficient in the power series S is bounded by a fixed polynomial in n and d.

1The conference version of Blömer’s paper [Blö91] contains a randomized polynomial time algorithm, which was
later derandomized in [Blö93]

2The condition fi(0) 6= 0 is simply to ensure that
p
f(x) has a well defined power series expansion around x = 0.
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This problem being a close cousin of Problem 1.1, it seems reasonable to hope that solving it
might shed some light on the latter problem. At the least, one might expect to solve Problem 1.1
for a nontrivial class of integers starting from a solution to Problem 1.2. We are not aware of any
prior research work along this line. In this work, we answer the question posed in Problem 1.2 in
the affirmative. Using this result we show that it is indeed sufficient to keep polynomial amount of
precision in computing the sign of S in Problem 1.1 if the input integers belong to a special class
that we call (by abusing terminology) the polynomial integers.

We have mentioned earlier that the sum of square roots problem lies in the counting hierarchy
CH. This result is due to Allender, Bürgisser, Kjeldgaard-Pedersen and Miltersen [ABKPM09].
In fact, they showed that the more general problem PosSLP, which is the task of checking if the
integer produced by a given division-free straight-line program is greater than zero, belongs to the

complexity class PPPPPPP

that is contained in the fourth level of CH. The polynomial analog of
the PosSLP problem is the task of comparing the degree of the polynomial computed by a given
arithmetic circuit with a given integer. More precisely:

Problem 1.3 (Degree Computation). Let F be a field (say the rational numbers Q). Given an
arithmetic circuit computing a multivariate polynomial f(X) over F and an integer d, is the degree
of f(X) at most d?

This problem, which Allender et al. [ABKPM09] refer to as DegSLP, was also studied by Koiran
and Perifel [KP07] and they put it in the second level of the counting hierarchy. Here we give a
(slight) improvement to the complexity theoretic upper bound for DegSLP. We show its containment
in the class coRPPP.

1.1 Previous work

The work of Burnikel, Fleischer, Mehlhorn and Schirra [BFMS00] considered the problem of finding
the sign of an arithmetic expression E involving the operations additions, subtractions, multiplica-
tions and square root (in fact, division as well), and with integer operands. They showed that if u
is the bound on the value of E when all the subtraction operations in E are replaced by additions
and k is the number of distinct square root operations in E then |E| ≥ 1/u2k−1 unless E = 0. This
result immediately gives an exponential bound on the bit size of S in Problem 1.1: if S 6= 0 then
|S| ≥ 1/22n·log(nN). (In this regard, the work of Mehlhorn and Schirra [MS00] is also relevant). It is
also noted in [BFMS00] that the bound obtained for E is nearly optimal in general. For instance,
if E = (22k

+ 1)1/2
k − 2 then u = (22k

+ 1)1/2
k

+ 2 ≤ 5 and hence by the result in [BFMS00],
|E| ≥ 1/52k−1. On the other hand, it was also shown that |E| ≤ 1/22k

. However, Problem 1.1 is
just a special case of the problem studied in [BFMS00] where there is no occurrence of nested square
roots. So, it remains a conceivable possibility that there is a better lower bound for |S|. Indeed,
for a certain choice of parameters a better result is known due to the work of Cheng, Meng, Sun
and Chen [CMSC10] (see also [Che06]). By connecting Problem 1.1 to the shortest vector problem
over a certain integer lattice, they showed that |S| ≥ 1/N2O(N/ log N)

, which is an improvement over
earlier results when N ≤ c · n · log n for some constant c. However, a less desirable aspect of this
result is the doubly exponential dependency of the bit complexity of S on logN .

On the other side, one seeks to construct/prove the existence of sets of integers {a1, a2, . . . , an}
for which the sum S of Problem 1.1 is as small as possible in absolute value. In other words, what
could be a good upper bound on |S|. Qian and Wang [QW06] gave an explicit construction that
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gives |S| = O(N−2n+3/2). The integers they construct are closely related to the special class of
integers that we look at (see Section 1.2). For Qian and Wang, every integer ai is essentially of the
form (X + i) (suitably scaled).

1.2 Our contribution

Our first contribution is an affirmative answer to Problem 1.2. Using this, we prove the following
theorem.

Theorem 1.4 (Sum of square root of ‘polynomial integers’). Suppose S =
∑n

i=1 δi
√
ai (δi ∈

{+1,−1}) such that every positive integer ai is of the form ai = Xdi + bi1 · Xdi−1 + . . . + bidi

(di > 0), where X is a positive real number and bij are integers. Let B = maxi,j{|bij |} and
d = maxi{di}. If X > (B + 1)p1(n,d), where p1(n, d) is a fixed polynomial in n and d, then a
nonzero S is lower bounded as, |S| ≥ 1/Xp2(n,d), where p2(n, d) is another fixed polynomial in n
and d.

The polynomials p1(n, d) and p2(n, d) can be taken to be 12 · dn2 log 2d and 8 · dn2, respectively.
Note that the integers bij need not be positive.

Expressing each ai as Xdi + bi1 ·Xdi−1 + . . .+ bidi
is nothing very unusual - it is like a base-X

representation of ai when X is a positive integer. What makes the ‘polynomial integers’ special is
the condition that X is exponentially large compared to the bij ’s; or in other words, all the digits
are small in X-ary representation. Indeed, if one can prove Theorem 1.4 without this condition
then Problem 1.1 would stand solved in its full generality by taking X = 2.

Finally, we would like to note that we have not made an attempt to find the best possible
expressions for p1(·) and p2(·), our primary intention being to just show that the functions p1, p2

are some fixed polynomials in n and d.
For the more general DegSLP problem, we show containment in the first level of the counting

hierarchy (modulo the use of randomization), thereby improving the previous best result [KP07]
for this problem which was the second level of the counting hierarchy. More precisely, we show

Theorem 1.5. DegSLP is in coRPPP.

Organization - The rest of this paper is organized as follows. In Section 2 we give a solution to
Problem 1.2 and in Section 3 we prove Theorem 1.4. The result on the complexity upper bound of
DegSLP is presented in Section 4.

2 Sum of square roots of polynomials

In this section, we prove the following theorem.

Theorem 2.1. Given a sum S =
∑n

i=1 ci · gi(x) ·
√
fi(x) where ci ∈ F (a field of characteristic 0),

fi and gi are univariate polynomials of degree at most d and fi(0) 6= 0 for all 1 ≤ i ≤ n, either
S = 0 or the minimum exponent of x which has a nonzero coefficient in the power series S is
bounded by dn2 + n.

The solution to Problem 1.2 follows immediately if we take gi(x) to be 1 in the above theorem.
But, we will need the slightly general form, that is, when the gi’s are not assumed to be 1, to prove
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Theorem 1.4. We will see that the proof of Theorem 2.1 is not difficult in hindsight - it uses a
mathematical object called the Wronskian, which is used to study linear dependence of functions.
Let us spend some time to briefly discuss this concept.

2.1 The Wronskian and linear independence

A set of functions n functions {h1, h2, . . . , hn} over a field F is said to be linearly dependent if there
exist elements c1, c2, . . . , cn ∈ F such that the function (c1h1 + c2h2 + . . .+ cnhn) is identically zero.
If each of the hi’s is n times differentiable, then the Wronskian of this set, denoted W(h1, . . . , hn)
(or, W(h) for short) is defined as the following determinant.

W(h1, . . . , hn) def= det


h1 h2 . . . hn

h
(1)
1 h

(1)
2 . . . h

(1)
n

...
...

...
...

h
(n−1)
1 h

(n−1)
2 . . . h

(n−1)
n

 ,

where h(j)
i is the jth derivative of hi. It is a well known function used in the study of differential

equations. It is easy to observe that if the functions h1, . . . , hn are F-linearly dependent then their
Wronskian is identically zero. But, the converse need not be true in general. Bôcher [B0̂0] showed
that there are families of infinitely differentiable functions which are linearly independent and yet
their Wronskian vanishes identically. However, for analytic functions this is not the case: a finite
family of linearly independent (real or complex valued) analytic functions has a nonzero Wronskian.
More generally, this property is true for any family of formal power series over any characteristic
zero field.

Theorem 2.2 (Wronskian of a family of power series). Let F be a field of characteristic zero. A
finite family of power series in F[[x]] has a zero Wronskian if and only if it is F-linearly dependent.

A short and simple proof of the above fact appears in [BD10]. Let us now see how to use this result
to prove Theorem 2.1.

2.2 Proof of Theorem 2.1

Let S =
∑n

i=1 ci · gi(x) ·
√
fi(x) be a given nonzero sum. Assume without loss of generality that

fi(0) = 1, for all i. If this is not the case then take out
√
fi(0) common from the term

√
fi(x) and

work with an appropriate extension of F that contains
√
fi(0). This is simply to ensure that

√
fi

can be expressed as a formal power series in x over F. Denote gi
√
fi by hi. We can also assume

that h1, . . . , hn are F-linearly independent - if not, simply work with an F-basis of h1, . . . , hn. (Note
that, we are not finding a basis, we are only using it for the sake of argument.)

Suppose, xt divides the power series S, where t is the maximum possible. Pretend that,
n∑
i=1

cihi = S (2)

is a linear equation in the ‘variables’ c1, . . . , cn. By taking derivatives of both sides of Equation 2
with respect to x, we have the following system of linear equations in c1, . . . , cn, for 0 ≤ j ≤ n− 1,

n∑
i=1

cih
(j)
i = S(j), (3)
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where h(j)
i and S(j) are the jth derivatives of hi and S, respectively. Let C be the coefficient matrix

of the above system of linear equations. That is,

C =


h1 h2 . . . hn

h
(1)
1 h

(1)
2 . . . h

(1)
n

...
...

...
...

h
(n−1)
1 h

(n−1)
2 . . . h

(n−1)
n

 .

Observe that det(C) is the Wronskian W(h). The following simple claim about W(h) is crucial to
the proof.

Claim 2.3. The Wronskian W(h) =
∏n
i=1 f

− 2n−3
2

i · det(M), where M is an n × n matrix whose
every entry is a polynomial in x of degree at most n · d.

Proof. Expanding h(j) we get the following. (Superscripts indicate the order of the derivatives.)

h
(j)
i =

j∑
k=0

g
(j−k)
i (

√
fi)(k) ⇒ f

2j−1
2

i · h(j)
i =

j∑
k=0

g
(j−k)
i · f

2j−1
2

i · (
√
fi)(k),

multiplying both sides by f2j−1/2
i . Now notice that, f2j−1/2

i · (
√
fi)(k) is a polynomial of degree at

most j ·d. Hence, f2j−1/2
i ·h(j)

i is also a polynomial of degree at most (j+1)·d, although individually
they are power series in x. Since j is at max n− 1, the statement of the claim follows.

Since S 6= 0, there must be one ci which is nonzero. Let it be c1. Then, by applying Cramer’s rule,

c1 =
det(M1)

W(h)
=

n∏
i=1

f
2n−3

2
i · det(M1)

det(M)
(by Claim 2.3),

where M1 is the following matrix,

M1 =


S h2 . . . hn

S(1) h
(1)
2 . . . h

(1)
n

...
...

...
...

S(n−1) h
(n−1)
2 . . . h

(n−1)
n

 .

Note that, Cramer’s rule applies here because W(h) 6= 0, as h1, . . . , hn are assumed to be linearly
independent, which in turn implies that det(M) 6= 0 (by Claim 2.3). Since xt divides S, xt−n+1

must divide S(j) for every 0 ≤ j ≤ n− 1 and hence xt−n+1 divides det(M1).

Claim 2.4. The maximum power of x dividing det(M1) and det(M) must be the same.

Proof. This is because c1 is an element of the field F and
∏n
i=1 fi(0)

2n−3
2 6= 0 by assumption.

Therefore, t − n must be less than the degree of det(M), which is at most d · n2 (again by Claim
2.3), and hence t ≤ d · n2 + n. This proves Theorem 2.1.
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With the polynomial version of the sum of square roots problem at hand, one wonders as to
what can be inferred about the corresponding problem over integers. In turns out that indeed
something nontrivial can be shown about a special class of integers that we have called before as
the ‘polynomial integers’ (see Theorem 1.4). This constitutes the content of the following section.

3 Sum of square roots of ‘polynomial integers’

This section is devoted to the proof of Theorem 1.4. Let S =
∑n

i=1 δi
√
ai; δi ∈ {+1,−1}, be a

given nonzero sum, where each positive integer ai is of the following form.

ai = Xdi + bi1X
di−1 + . . .+ bidi

(4)

where X is a positive real number and bij ’s are integers (not necessarily positive).
Overview. The overall idea of the proof is to do a Taylor series expansion for each

√
ai so that

we get a Taylor expansion for the sum S overall. Using Theorem 2.1 and the nonzeroness of S,
we deduce that we must get a nonzero term ‘very early’ in the Taylor expansion. That is, there
must be some nonzero S` for ` ‘relatively small’. We use the fact that ` is small to deduce that
such an S` is ‘fairly large’ in absolute value. We then use the fact that each bij is much smaller
than X to upper bound each of the remaining terms and thereby deduce that the sum of the
remaining terms cannot almost cancel out S`. More specifically, the sum of the remaining terms
is at most 1

2 |S`| in absolute value. This helps us deduce that S itself is fairly large in absolute value.

Doing the Taylor expansion. From (4) we have

√
ai = (

√
X)di ·

√
1 +

bi1
X

+ . . .+
bidi

Xdi
.

Adding these expressions together with the appropriate sign, we get an expression for S.

S =
n∑
i=1

δi ·Xdi/2 ·
√

1 +
bi1
X

+ . . .+
bidi

Xdi
.

Let y = 1/X and d = maxi{di}. Then,

S · yd/2 =
n∑
i=1

δi · y(d−di)/2 ·
√

1 + (bi1 · y) + . . .+ (bidi
· ydi).

Now notice that, by pretending that fi(y) = 1 + bi1y + . . .+ bidi
ydi is a polynomial in the ‘formal

variable’ y, the sum S·yd/2 is of the form
∑n

i=1 δi · gi(y) ·
√
fi(y), where gi(y) = y(d−di)/2. Therefore,

S · yd/2 =
n∑
i=1

δi ·
∑
j≥0

cij · yj =
∑
j≥0

yj ·
n∑
i=1

δi · cij (by exchanging the summations),

where cij is the coefficient of yj coming from the ith power series gi(y) ·
√
fi(y). This is the Taylor

series expansion of S that we will work with. We give the name Sj to each summand in the
expression above, namely Sj = yj ·

∑n
i=1 δi · cij . Thus

S · yd/2 =
∑
j≥0

Sj . (5)
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The Proof Strategy ahead. Applying Theorem 2.1, the minimum exponent ` of y with
∑n

i=1 δi · ci` 6=
0 is such that ` ≤ dn2 + n. Suppose we could show that

|S`+t|
|S`|

≤ 1
2t+1

, (6)

for every t ≥ 1, then from (5) it would follow that

|S| ·
∣∣∣yd/2∣∣∣ ≥ ||S`| − |S`+1| − . . .| ≥

∣∣∣∣|S`| − 1
2
|S`|
∣∣∣∣ =

1
2
· |S`|

⇒ |S| ≥
∣∣∣Xd/2

∣∣∣ · 1
2
· |S`| . (7)

This (potentially) gives us a lower bound on |S| via a lower bound of |S`|. But, to satisfy the
condition given by equation (6), we also need an upper bound on |S`+t| for every t.

Upper bound on |Sj|:

|Sj | = yj ·

∣∣∣∣∣
n∑
i=1

δicij

∣∣∣∣∣ ≤ n · yj ·max
i
{|cij |}

Let us upper bound the quantity |cij |. Fix any index i. For the ease of presentation, we will avoid
writing the index i whenever it is clear from the context that we have a specific i in mind. For
example, we write cj as the coefficient of yj coming from the power series,

y
d−di

2 ·
√

1 + b1y + . . .+ bdi
ydi = y

d−di
2 ·

∞∑
k=0

uk · (b1y + . . .+ bdi
ydi)k,

where uk =
1
2
·( 1

2
−1)...( 1

2
−(k−1))

k! = (−1)k · 1·3·5...(2(k−1)−1)
2k·k! . Expressed differently,

uk = (−1)k+1 · (2k)!
(2k − 1) · (k!)2 · 22k

⇒ |uk| =
(
2k
k

)
(2k − 1) · 22k

Now, notice that
(
2k
k

)
/(2k − 1) = 2 · Ck−1, where Ck is the kth Catalan number 1/(k + 1) ·

(
2k
k

)
.

Hence,

|uk| =
2 · Ck−1

22k
, and also |uk| ≤ 1. (8)

For any j, the coefficient cj is contributed to by those terms of
∑∞

k=0 uk · (b1y + . . .+ bdi
ydi)k for

which k is in the range [(j− (d−di)/2)/di, j− (d−di)/2]. For any fixed k ∈ [j/di, j], the coefficient
of yj in (b1y + . . .+ bdi

ydi)k is exactly,

vkj =
∑

k1+2k2+...+dikdi
=j,

k1+...+kdi
=k

(
k

k1, . . . , kdi

)
· bk11 · b

k2
2 . . . b

kdi
di
.

where k1, . . . , kd are positive integers. Then, assuming B = maxij{|bij |},

|vkj | ≤
∑

k1+...+kdi
=k

(
k

k1, . . . , kdi

)
· |b1|k1 · |b2|k2 . . . |bdi

|kdi ≤ (B · di)k.
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Since cj+(d−di)/2 =
∑

k∈[j/di,j]
uk · vkj ,

|cj | ≤
∑
k∈[0,j]

(B · di)k ≤ (B · d)j+1 (using Equation 8)

⇒ |Sj | ≤ n · yj · (B · d)j+1 (9)

Lower bound on |Sj|:

|Sj | = yj ·

∣∣∣∣∣
n∑
i=1

δicij

∣∣∣∣∣
Let us lower bound the sum |

∑n
i=1 δicij |. Notice that, in the previous discussion on upper bounding

|Sj |, the integer vkj depends on the index i whereas uk solely depends on k. So, to make the following
discussion more precise, we switch to the notation vikj . Moreover, for simplicity the range of k is
not specified in the following equations - the appropriate range should be clear from the context.

n∑
i=1

δicij =
n∑
i=1

δi
∑
k

uk · vikj =
∑
k

uk ·
n∑
i=1

δivikj .

Now notice that, the sum
∑n

i=1 δivikj is an integer. Hence, if
∑n

i=1 δicij 6= 0 then |
∑n

i=1 δicij | ≥
1/22j+1 (by Equation 8). Therefore,

|Sj | ≥
yj

22j+1
if Sj 6= 0. (10)

Putting everything together. With the upper and the lower bounds on |Sj | at hand, we
are now ready to pinpoint the requirement that ensures that condition (6) is satisfied. We want
|S`+t| / |S`| ≤ 1/2t+1, for all t ≥ 1. Hence, by combining equations (9) and (10), it is sufficient if,

n · y`+t · (B · d)`+t+1

y`/22`+1
≤ 1

2t+1

⇒ Xt ≥ n · 22`+t+2 · (B · d)`+t+1

Therefore, it suffices if X ≥ (B + 1)12·dn2 log 2d (taking into consideration that ` ≤ dn2 + n). And if
this happens then condition (6) is satisfied and by equation (7),

|S| ≥
∣∣∣Xd/2

∣∣∣ · 1
2
· |S`| ≥

1
22`+2 ·X`−d/2 (by Equation 10)

This implies that |S| ≥ 1/X8·dn2
, which proves Theorem 1.4.

4 The complexity of DegSLP

In this section we consider the algorithmic complexity of the following problem: given a polynomial
f(X) as an arithmetic circuit, and an integer d in binary determine if deg(f) ≤ d. Towards this
end, we need to define another natural computational problem.
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CoeffSLP : Given an arithmetic circuit computing a polynomial f(X) over integers, a
monomial Xα and a prime p, determine the coefficient of Xα in f(X) modulo p. (The
additional input p is to ensure that the output is not too large). 3

We will need the following theorem from [KP07]. A simpler, self-contained proof is given in the
appendix.

Theorem 4.1. [KP07] CoeffSLP is #P-complete.

Theorem 4.2.
DegSLP ≤coRP

T CoeffSLP.

Here we prove the theorem assuming over the field of rational numbers. A similar proof will go
through over other fields of zero characteristic. The theorem is valid even if the underlying field
has small characteristic. We relegate the proof of the general case to the appendix.

Proof. We first reduce the multivariate to the univariate problem by making a random substitution
of the form g(z) = f(a1 · z, a2 · z, . . . , an · z).

Claim 4.3. With high probability over a random choice of the vector a = (a1, . . . , an) we have:
deg(g(z)) = deg(f(X)).

Proof of Claim 4.3: Let f have degree d. We can write the polynomial f(X) as
∑d

i=0 fi(X),
where each fi(X) is a homogeneous polynomial of degree i. Applying the substitution xi := ai · z,
we get that

g(z) = f0 + z · f1(a) + z2 · f2(a) + . . .+ zd · fd(a).

By the Schwartz-Zippel lemma, fd(a) is nonzero with high probability so that deg(g(z)) = deg(f(X))
also with high probability. 2

Our problem thus is the following: given an arithmetic circuit computing a univariate polynomial
g(z) and an integer d in binary, we want to determine if deg(g(z)) ≥ d. The most natural thing to
do is to use the CoeffSLP oracle to determine whether the coefficient of zd in g(z) is nonzero. 4 If
this happens to be nonzero we have a certificate that the degree of g is at least d. The converse is
easily seen to be false: the coefficient of zd in g can be zero and yet the degree of g can be larger
than d. To fix this, we take a ‘random shift’ of g and compute its degree instead. Specifically, we
look at the polynomial g(z+β), where β is chosen uniformly at random from a large enough subset
of F. Clearly, deg(g(z)) = deg(g(z + β)). It suffices then to prove the following claim:

Claim 4.4. With high probability over a random choice of β ∈ F, we have: coefficient of zd in
g(z + β) is nonzero if and only if deg(g(z)) ≥ d.

Proof of Claim 4.4: We first observe that the coefficient of zd in g(z + β) is 1
d!g

(d)(β), where
g(d)(z) denotes as usual the d-th order derivative of g. (To see this, first use linearity of derivatives
to reduce the problem to the case where g(z) is a single monomial, say g(z) = a · ze and then use
binomial expansion to compute the coefficient of zd in a · (z + β)e). Since the characteristic of the

3Our definition is slightly different from that of [ABKPM09,KP07] and more tailored towards our needs.
4For the oracle call to CoeffSLP, we choose the prime p at random. This ensures that with high probability, the

coefficient α of zd in g(z) is zero as a rational number if and only if α is zero modulo p.
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field is zero, g(d)(z) has degree precisely deg(g)− d. In particular, g(d)(z) is identically zero if and
only if deg(g) < d. Now the claim follows from an application of the Schwarz-Zippel lemma. 2

This completes the proof of the theorem.

Combining Theorems 4.1 and 4.2, we immediately get:

Theorem 4.5. DegSLP is in coRPPP.

5 Discussion

We have seen that for the class of ‘polynomial integers’ it is possible to compare two sums of square
roots by keeping precision of up to polynomially many bits (during square root computations).
Although, ‘polynomial integers’ form a nontrivial class, the condition that X is sufficiently large
also makes them very restrictive at the same time. The hope is that it may be possible to exploit
results similar to that of Theorem 2.1 to show something stronger for the case of integers. As a
next step, we would be interested in a similar result where X is constrained as X ≥ poly(n, d) ·Bc

(c is a constant), instead of X ≥ (B + 1)poly(n,d) as is the case in our analysis. Could encoding the
integers as multivariate polynomials be useful in this regard?

Nonetheless, ‘polynomial integers’ are perhaps interesting from one perspective. A plausible way
to make the sum S very small is to assume that the number of + and − signs in S =

∑n
i=1 δi

√
ai

are equal and all the integers ai’s are somewhat very close to each other. Notice that, because of
the assumption that X is large, all integers of the form Xd + b1X

d−1 + . . .+ bd are reasonably close
to Xd. Our analysis shows that at least for this case any nonzero sum S is still sufficiently large.
As a final remark on the sum of square roots problem, we would like to note that the proofs and
the results presented here generalize in a straightforward manner to general sums of radicals - like
sums of cube roots or fourth roots of integers.

We feel that the complexity of the problem DegSLP is not understood well enough. In particular
no hardness results are known for it. We conclude by posing the following problem:

Problem 5.1. (Hardness of DegSLP ): Does there exist an efficient randomized algorithm for
DegSLP ? ... or, will the existence of such an algorithm for DegSLP lead to a collapse of the
polynomial hierarchy?
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Appendix

A The complexity of CoeffSLP

The aim of this section of the appendix is to give a simpler, self-contained proof of the following
theorem.

Theorem 4.1. CoeffSLP is #P-complete.

We first give some warm-up lemmas.

Lemma A.1. For any m ≥ 7, the lcm of the first m numbers is at least 2m.

Lemma A.2. For any integer t ∈ Z≥1 and prime p, there is a prime r = O(t2 · log p) such that the
ring

R
def= Fp[z]/〈

zr − 1
z − 1

〉

is the direct sum of finite fields of size q > pt.

Proof. Consider the integer

M := (p− 1) · (p2 − 1) · . . . · (pt − 1).

Then M < pt
2
. By lemma A.1, there exists a prime r < logM such that r does not divide M . This

is the prime r that we seek. Let m denote the order of p modulo r , i.e. m is the smallest positive
integer such that pm = 1 (mod r). Since r does not divide M =

∏
i∈[t](p

i − 1), therefore r does
not divide any (pi − 1) for 1 ≤ i ≤ t and therefore m > t. Let φr(z) denote the r-th cyclotomic
polynomial, that is

φr(z)
def=

zr − 1
z − 1

.

It is known that over Fp, φr(z) factors into r−1
m irreducible polynomials each of degree m. Thus,

R
def= Fp[z]/〈φr(z)〉 is the direct sum of finite fields of size pm > pt.

Proof of Theorem 4.1: The #P-hardness of this problem is well-known and a proof can be found
for example in [ABKPM09]. It is sufficient to show this for univariate polynomials (by replacing
each indeterminate xi by an exponentially increasing sequence of monomials, if necessary). That is,
our problem now becomes the following: given a circuit of size s computing a univariate polynomial
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f(x) and an α ∈ Z≥0 given in binary, compute the coefficient of xα in f(x). Notice that D def= 2s

is an upper bound on deg(f(x)). Using lemma A.2, we obtain an extension ring R of the form
R = Fp[z]/〈 z

r−1
z−1 〉 such that r ≤ (logD)2 · (log p) and

R ∼= Fq ⊕ . . .⊕ Fq,

with q − 1 > D. We now observe that the coefficient of xα in f(x) is given by

Coeff(xα, f(x)) = −
∑
β∈R∗

βα · f(β−1).

The number of terms in the above summation is exponentially large but notice that each summand
in the above expression, (β · f(β−1)), is polynomial-time computable so that overall this sum is
computable in P#P.

2

B DegSLP over fields of small characteristic

In this section of the appendix, we give the proof of Theorem 4.2 in the general case, i.e even when
the underlying field has small characteristic. We first record a lemma that was implcit stated and
used in Section 4 earlier.

Lemma B.1. Over a field of characteristic larger than d, the coefficient of xd in f(x + β) is
precisely 1

d!fd(β).

Proof. By the linearity of derivatives, it is sufficient to show this for monomials. So let f(x) =
a · xe. If e < d then fd(x) is the zero polynomial and we are done. So let e ≤ d. Expanding
(x + β)e using binomial theorem we get that coefficient of xd is a ·

(
e
d

)
· βe−d. On the other hand

fd(x) = a · e · (e − 1) · . . . · (e − d + 1)xe−d. It is now easily verified that the coefficient of xd in
f(x+ β) is 1

d!fd(β) .

We will also need a lemma originally due to Edouard Lucas.

Lemma B.2. [vL99, p.55] Let n,m be positive inte gers whose p-ary representation is the following:

m = m0 +m1p+ . . .+mdp
d, ∀i : 0 ≤ mi ≤ p− 1

n = n0 + n1p+ . . .+ ndp
d ∀i : 0 ≤ ni ≤ p− 1.

Then (
n

m

)
=
(
n0

m0

)
·
(
n1

m1

)
· . . . ·

(
nd
md

)
(mod p)

In particular, for any intger n ≥ 1, the binomial coefficient
(
n
pi

)
is divisible by p if and only if the

ni, the i-th digit in the p-ary representation of n is zero.
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Proof of Theorem 4.2: Proceeding as before, we can assume without loss of generality that the
given circuit computes a univariate polynomial g(z). Our problem then is the following: given an
arithmetic circuit computing a univariate polynomial g(z) and an integer d in binary, we want to
determine if deg(g(z)) ≥ d. Recall that in the large characteristic situation, our strategy was to
choose a random β ∈ F and look at the coefficient of zd in g(z + β). To get the reduction over
fields of small characteristic, we need to examine the polynomial g(z + y). Specifically, we need to
determine as to when does it happen that the coefficient of zd as a polynomial in y is the identically
zero polynomial. We sketch the proof below. Let the size of the circuit computing f be s. Then
the formal degree of f is bounded by 2s. First observe that multiplying g(z) with a suitable power
of z, we may assume without loss of generality that d is a power of p, say d = pt. Notice that
deg(g(z)) ≥ pt if and only if g(z) contains a monomial zm where the p-ary (base-p) representation
of the positive integer m contains a non-zero digit at the i-th position, for some t ≤ i ≤ s. Thus, to
achieve our objective, it is sufficient to devise a randomized procedure that given an integer i ∈ [s],
tests whether g(z) contains any non-zero monomial zm such that in the p-ary representation of the
integer m, the i-th digit is non-zero. This procedure works as before: choose a random β (in a
suitably large field extension of Fp) and accept if and only if the the coefficient of zp

i
(computed

via an oracle call to CoeffSLP ) is nonzero. We next describe why the test gives the correct answer
with high probability.

Suppose that
g(z) =

∑
0≤m≤2s

am · zm.

Then the coefficient of zp
i

in g(z + β) is given by

h(β) =
∑

pi≤m≤2s

am ·
(
m

pi

)
· βm−pi

.

Our test accepts with high probability if and only if h(β) is not the identically zero polynomial
with respect to β. Use Lucas’s lemma B.2 to observe that

(
m
pi

)
is zero modulo p if and only if the

i-th digit in the p-ary representation of m is zero. Thus h(β) is a nonzero polynomial if and only if
there exists an pi ≤ m ≤ 2s, such that am is nonzero and in the p-ary representation of the integer
m, the i-th digit is nonzero. Thus h(β) is nonzero if and only if g(z) contains a non-zero monomial
zm such that in the p-ary of the integer m, the i-th digit is non-zero. This completes the proof of
the theorem.

2

Combining Theorems 4.1 and 4.2, we immediately get:

Theorem B.3. DegSLP is in coRPPP.

15

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


