
Improved bounds for the randomized decision tree complexity

of recursive majority∗

Frédéric Magniez† Ashwin Nayak‡ Miklos Santha§ David Xiao¶

Abstract

We consider the randomized decision tree complexity of the recursive 3-majority function. For evaluating
a height h formulae, we prove a lower bound for the δ-two-sided-error randomized decision tree complexity
of (1 − 2δ)(5/2)h, improving the lower bound of (1 − 2δ)(7/3)h given by Jayram et al. (STOC ’03). We
also state a conjecture which would further improve the lower bound to (1− 2δ)2.54355h.

Second, we improve the upper bound by giving a new zero-error randomized decision tree algorithm
that has complexity at most (1.007) · 2.64946h, improving on the previous best known algorithm, which
achieved (1.004) · 2.65622h.

Our lower bound follows from a better analysis of the base case of the recursion of Jayram et al.. Our
algorithm uses a novel “interleaving” of two recursive algorithms.

∗Partially supported by the French ANR Defis program under contract ANR-08-EMER-012 (QRAC project) and the European
Commission IST STREP Project Quantum Computer Science (QSC) 25596.
†LIAFA, Univ. Paris 7, CNRS; F-75205 Paris, France. magniez@liafa.jussieu.fr
‡Department of Combinatorics and Optimization, and Institute for Quantum Computing, University of Waterloo; and

Perimeter Institute for Theoretical Physics. Address: 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada. Email:
ashwin.nayak@uwaterloo.ca. Research supported in part by NSERC Canada. Research at Perimeter Institute for Theoretical
Physics is supported in part by the Government of Canada through Industry Canada and by the Province of Ontario through
MRI. Work done in part while visiting LRI—CNRS, Univ Paris-Sud, Orsay, France, and Centre for Quantum Technologies,
National University of Singapore, Singapore.
§LIAFA, Univ. Paris 7, CNRS; F-75205 Paris, France; and Centre for Quantum Technologies, National University of Singapore,

Singapore 117543; santha@lri.fr. Research at the Centre for Quantum Technologies is funded by the Singapore Ministry of
Education and the National Research Foundation.
¶LIAFA, Univ. Paris 7, CNRS; F-75205 Paris, France; and Univ. Paris-Sud, F-91405 Orsay, France. dxiao@lri.fr

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 192 (2010)

1 Introduction

Decision trees form a simple model for computing boolean functions by successively reading the input bits
until the value of the function can be determined with certainty. The cost associated with this computation
is the number of input bits queried, all other computations are free. Formally, a deterministic decision tree
algorithm A on n variables is a binary tree in which each internal node is labeled with an input variable xi,
for some 1 ≤ i ≤ n. The leaves of the tree are labeled by one of the output values 0 or 1, and for every
internal node, one of the outgoing edges is labeled by 0 and the other by the 1. For every input x = x1 . . . xn,
there is a unique path in the tree leading from the root to one of the leaves, which follows, at every node, the
outgoing edge whose label coincides with the value of the input bit corresponding to the label of the node.
The value of the algorithm A on input x, denoted by A(x), is the label of the leaf on this unique path. The
algorithm A computes a boolean function f : {0, 1}n → {0, 1} if for every input x, we have A(x) = f(x).

We define the cost C(A, x) of a deterministic decision tree algorithm A on input x as the number of input
bits queried by A on x. Let Pf be the set of all deterministic decision tree algorithms which compute f . The
deterministic complexity of f is

D(f) = min
A∈Pf

max
x∈{0,1}n

C(A, x).

Since every function can be evaluated after reading all the input variables, D(f) ≤ n. In an extension of the
deterministic model, we can also permit randomization in the computation.

A randomized decision tree algorithm A on n variables is a distribution over all deterministic decision tree
algorithms on n variables. Given an input x, the algorithm first samples a deterministic tree B ∈R A, then
evaluates B(x). The error probability of A in computing f is given by maxx∈{0,1}n PrB∈RA[B(x) 6= f(x)].
The cost of a randomized algorithm A on input x, denoted also by C(A, x), is the expected number of input
bits queried by A on x. Let Pδf be the set of randomized decision tree algorithms computing f with error
at most δ. The two-sided bounded error randomized complexity of f with error δ ∈ [0, 1/2) is

Rδ(f) = min
A∈Pδf

max
x∈{0,1}n

C(A, x).

We write R(f) for R0(f). By definition, for all 0 ≤ δ ≤ 1/2, it holds that Rδ(f) ≤ R(f) ≤ D(f), and it is
also known [1, 2, 10] that D(f) ≤ R(f)2, and that for all constant δ ∈ (0, 1/2), D(f) < O(Rδ(f)3) [7].

Considerable attention in the literature has been given to the randomized complexity of functions com-
putable by read-once formulae, that is by boolean formulae in which every input variable appears only once.
For a large class of well balanced formulae with NAND gates the exact randomized complexity is known. In
particular, let NANDh denote the complete binary tree of height h with NAND gates, where the inputs are at

the n = 2h leaves. Snir [9] has shown that R(NANDh) = O(nc) where c = log2

(
1+
√

33
4

)
≈ 0.753. A matching

Ω(nc) lower bound was obtained by Saks and Wigderson [8]. Since D(NANDh) = 2h = n this implies that
R(NANDh) = Θ(D(NANDh)c), and Saks and Wigderson have also conjectured that this is the largest gap
between deterministic and randomized complexity.

Conjecture 1.1 (Saks and Wigderson [8]). For every boolean function f and constant δ ∈ [0, 1/2), Rδ(f) =
Ω(D(f)c).

For the randomized complexity of read-once threshold formula of depth d, Heiman, Newman, and Wigder-
son [4] proved a lower bound of Ω(n/2d). Heiman and Wigderson [3] proved that the randomized complexity
of every read-once formula f is at least Ω(D(f)0.51).

After these initial successes one would have hoped that the simple model of decision tree algorithms migh
shed more light on the power of randomness. But surprisingly, we know the exact randomized complexity
of very few boolean functions. In particular, the randomized complexity of the recursive 3-majority function
(3-MAJh) is still open. This function, proposed by Boppana, was one of the earliest example where randomized
algorithms were found to be more powerful than deterministic decision trees [8]. It is a read-once formula

1

on 3h variable given by the complete ternary tree of height h whose internal vertices are majority gates.
The deterministic decision tree complexity of 3-MAJh is easily seen to be 3h. There is a naive randomized
recursive algorithm for 3-MAJh that picks two random children of the root and recursively evaluates them,
then evaluates the third child iff the value is not determined by the previously evaluated two children. It is
easy to check that this has randomized complexity (8/3)h. It was already observed by Saks and Wigderson [8]
that this algorithm is not optimal. In spite of some similarities with the NANDh function, no progress was
reported on the randomized complexity of 3-MAJ for 17 years, beyond the bounds derived for arbitrary
boolean functions [4, 3]. In 2003, Jayram, Kumar, and Sivakumar [5] proposed an explicit randomized
algorithm that achieves complexity (1.004) · 2.65622h, and beats the naive recursion. (Note, however, that
the analysis in [5, Appendix B] is incorrect.) More importantly, they also prove a (1 − 2δ)(7/3)h lower
bound for the δ-error randomized decision tree complexity of 3-MAJh. In doing so, they introduce a powerful
combinatorial technique for proving decision tree lower bounds.

In this paper, we considerably improve the lower bound obtained in [5], by proving that Rδ(3-MAJh) ≥
(1 − 2δ)(5/2)h. In the appendix we also state a conjecture which would further raise the lower bound to
(1 − 2δ)2.54355h. We also improve the upper bound by giving a new zero-error randomized decision tree
algorithm that has complexity at most (1.007)2.64946h.

Theorem 1.2. For all δ ∈ [0, 1/2], we have (1− 2δ)(5/2)h ≤ Rδ(3-MAJh) ≤ (1.007)2.64946h.

New lower bound. For the lower bound they give, Jayram et al. consider a complexity measure related
to the distributional complexity of 3-MAJh with respect to a specific hard distribution (cf. Section 2.3).
The focus of the proof is a relationship between the complexity of evaluating formulae of height h to that
of evaluating formulae of height h − 1. They derive a sophisticated recurrence relation between these two
quantities, that finally implies that Rδ(3-MAJh) ≥ (1− 2δ)(2 + q)h, where (1− 2δ)qh is a lower bound on the
probability pδh that a randomized algorithm with error at most δ queries the “absolute minority” on inputs
drawn from the hard distribution. (The absolute minority is the unique leaf in the recursive majority tree over
a hard instance such that the path leading from this leaf to the root has alternating values.) Jayram et al.
observe that any randomized decision tree with error at most δ queries at least one variable with probability
at least 1− 2δ. This variable has probability 3−h of being the absolute minority, so q ≥ 1/3, and the above
lower bound follows.

We obtain the new lower bound by proving that pδh ≥ (1 − 2δ)2−h, i.e., q ≥ 1/2, which immediately
implies the improved lower bound for Rδ(3-MAJh). The obvious method for deriving a such a lower bound
is to consider the queries that an algorithm makes beyond the first. This approach quickly runs aground, as
it requires an analysis of the hard distribution conditioned upon values of a subset of the variables, which
seems intractable. Instead, we examine the relationship between pδh and pδh−1, by embedding a height h− 1
instance into one with height h and using an algorithm for the latter. Unlike the embedding used by Jayram
et al. (which runs into the same difficulty as the obvious approach), the new embedding reduces the analysis
to understanding the behavior of decision trees on 3 variables, which can be done by hand. In the appendix,
we give a conjecture that would further improve the lower bound by relating pδh to pδh−2, although a complete
analysis seems out of reach as it involves examining all possible decision trees on 9 variables.

New algorithm. The new algorithm we design arises from a more nuanced application of the intuition
behind the two known algorithms. One way of viewing the naive recursive algorithm is that it strives to avoid
evaluating the minority child of a node. A more fruitful view is that it attempts to make an informed opinion
on the value of a node by computing the value of a random child. The algorithm described in the appendix
of [5] can also be viewed in this light, and performs notably better, achieving complexity (1.004) · 2.65622h.

The algorithms mentioned above are examples of depth-k recursive algorithms for 3-MAJh, for k = 1, 2,
respectively. A depth-k recursive algorithm is a collection of subroutines, where each subroutine evaluates a
node (possibly using information about other previously evaluated nodes), satisfying the following constraint:
when a subroutine evaluates a node v, it is only allowed to call other subroutines to evaluate children of v at
depth at most k, but is not allowed to call subroutines or otherwise evaluate children that are deeper than

2

k. (Our notion of depth-1 is identical to the terminology “directional” that appears in the literature. In
particular, the naive recursive algorithm is a directional algorithm.)

The algorithm we present is an improved depth-two recursive algorithm. It recursively computes the
values of two grandchildren from distinct children, to form an opinion on the values of the corresponding
children. The opinion guides the remaining computation in a natural manner, i.e., if the opinion indicates
that the two children are likely to be majority children, we evaluate the children in sequence to confirm
the opinion. At any point, if the value of a child refutes it, we update our opinion, and modify our future
computations accordingly. A key innovation is the use of an algorithm optimized to compute the value of
a partially evaluated formula. In our analysis, we recognize when incorrect opinions are formed, and take
advantage of the fact that this happens with smaller probability.

We do not believe that the algorithm we present here is optimal. Indeed, we conjecture that even better
algorithms exist that follow the same high level intuition applied for depth-k recursion for k > 2. However, it
seems new insights are required to analyze the performance of deeper recursions, as the formulas describing
their complexity become unmanageable for k > 2.

Organization. The rest of the article is organized as follows. We prepare the background for our main
results in Section 2. In Section 3 we prove the new lower bound for 3-MAJ. We conjecture a better lower
bound in Section A in the appendix. The new algorithm for the problem is described and analyzed in
Section 4. A formal description of the algorithm occurs in Section B in the appendix.

2 Preliminaries

We write u ∈R D to state that u is sampled from the distribution D. If X is a finite set, we identify X
with the uniform distribution over X, and so, for instance, u ∈R X denotes a uniform element of X.

2.1 Distributional complexity

A variant of the randomized complexity we use is distributional complexity. Let Dn be the set of distri-
butions over {0, 1}n. The cost C(A,D) of a randomized decision tree algorithm A on n variables with respect
to a distribution D ∈ Dn is the expected number of bits queried by A when x is sampled from D and over
the random coins of A. The distributional complexity of a function f on n variables for δ two-sided error is

∆δ(f) = max
D∈Dn

min
A∈Pδf

C(A,D).

The following observation is a well established route to proving lower bounds on worst case complexity.

Fact 2.1. Rδ(f) ≥ ∆δ(f).

2.2 The 3-MAJh function and the hard distribution

Let MAJ(x) denote the boolean majority function of its input bits. The ternary majority function 3-MAJh
is defined recursively on n = 3h variables, for every h ≥ 0. For h = 0 it is the identity function. For h > 0,

3-MAJh(x1 . . . x3h)

= MAJ(3-MAJh−1(x1 . . . x3h−1), 3-MAJh−1(x3h−1+1 . . . x2·3h−1), 3-MAJh−1(x2·3h−1+1 . . . x3h)).

If the height h of the formula is clear from the context, we drop the subscript from 3-MAJh.
For every node v in Th different from the root, let P (v) denote the parent of v. We say that v and w are

siblings if P (v) = P (w). For any node v in Th, let Z(v) denote the set of variables associated with the leaves
in the subtree rooted at v. We say that a node v is at depth d in Th if the distance between v and the root
is d. The root is therefore at depth 0, and the leaves are at depth h.

We now define recursively, for every h ≥ 0, the set Hh of hard inputs of height h, (or equivalently, of
length 3h). The hard inputs consist of instances for which at each node v in the ternary tree, one child of

3

v has value different from the value of v. For b ∈ {0, 1}, let Hbh = {x ∈ Hh : 3-MAJh(x) = b}. The hard
distribution on inputs of height h is defined to be the uniform distribution over Hh.

For an x ∈ Hh, the minority path M(x) is the path, starting at the root, obtained by following the child
whose value disagrees with its parent. For 0 ≤ d ≤ h, the node of M(x) at depth d is called the depth d
minority node, and is denoted by M(x)d. We call the leaf M(x)h of the minority path the absolute minority
of x, and denote it by m(x).

2.3 The Jayram-Kumar-Sivakumar lower bound

For a deterministic decision tree algorithm B computing 3-MAJh, let LB(x) denote the set of variables
queried by B on input x. Recall that Pδ3-MAJh

is the set of all randomized decision tree algorithms that

compute 3-MAJh with two-sided error at most δ. Jayram et al. define the function Iδ(h, d), for d ≤ h, as
follows:

Iδ(h, d) = min
A∈Pδ3-MAJh

Ex∈RHh,B∈RA[|Z(M(x)d) ∩ LB(x)|].

The expectation is taken over the choice of B ∈R A and the choice of input x. In words, it is the minimum
over algorithms computing 3-MAJh, of the expected number of queries below the dth level minority node, over
inputs from the hard distribution. Note that Iδ(h, 0) = minA∈Pδ3-MAJh

C(A,Hh), and therefore by Fact 2.1:

Rδ(3-MAJh) ≥ Iδ(h, 0). (1)

Observe also that Iδ(h, h) is the minimal probability that a δ-error algorithm A queries the absolute minority
of a random hard x of height h. We denote Iδ(h, h) by pδh.

Jayram et al. prove a recursive lower bound for Iδ(h, d) using information theoretic arguments. A more
elementary proof can be found in Ref. [6].

Theorem 2.2 (Jayram, Kumar, Sivakumar [5]). For all 0 ≤ d < h, it holds that

Iδ(h, d) ≥ Iδ(h, d+ 1) + 2Iδ(h− 1, d).

A simple computation using their recursion gives I(h, 0) ≥
∑h

i=0

(
h
i

)
2h−ipδi . Putting this together with

Equation 1 we get the following corollary:

Corollary 2.3. Let q, a > 0 such that pδi ≥ a · qi for all i ∈ {0, 1, 2, . . . , h}. Then Rδ(3-MAJh) ≥ a(2 + q)h.

As mentioned in Section 1, Jayram et al. obtain the (1−2δ)(7/3)h lower bound this corollary by observing
that pδh ≥ (1− 2δ)(1/3)h.

3 Improved Lower Bound

Theorem 3.1. For every error δ > 0 and height h ≥ 0, we have pδh ≥ (1− 2δ)2−h.

Proof. We prove this theorem by induction. Clearly, pδ0 ≥ 1−2δ, therefore, it suffices to show that 2pδh ≥ pδh−1

for h ≥ 1. We do so by reduction as follows: let A be a randomized algorithm that achieves the minimal
probability pδh for height h formulae. We construct a randomized algorithm A′ for height h− 1 formulae such
that the probability that A′ errs is at most δ, and A′ queries the absolute minority with probability at most
2pδh. Since pδh−1 is the minimum probability of querying the absolute minority over all randomized algorithms

on inputs of height h− 1 with error at most δ, this implies that 2pδh ≥ pδh−1.
We now specify the reduction. For the sake of simplicity, we will omit the error δ in the notation. We

use the following definition:

Definition 3.2 (One level encoding scheme). A one level encoding scheme is a map ψ which is a bijection

for every h ≥ 1, mapping Hh−1 × {1, 2, 3}3
h−1

to Hh, such that for every (y, r) in its domain with y ∈ Hh−1,
3-MAJh−1(y) = 3-MAJh(ψ(y, r)).

4

Let c : {0, 1} × {1, 2, 3} → H1 be a function which for every (b, s) ∈ {0, 1} × {1, 2, 3} satisfies b =
MAJ(c(b, s)). The one level encoding scheme ψ induced by c is defined for each h ≥ 1 as follows: ψ(y, r) =
x ∈ Hh such that for all 1 ≤ i ≤ 3h−1

(x3i−2, x3i−1, x3i) = c(yi, ri).

To define A′, we use the one level encoding scheme ψ induced by the function c : {0, 1} × {1, 2, 3} → H1

defined as

c(y, r) =


y01 if r = 1,

1y0 if r = 2, and

01y if r = 3.

(2)

On input y, by definition A′ picks a uniformly random string r = r1 . . . r3h−1 from {1, 2, 3}3h−1
, and runs A

on x = ψ(y,r). Observe that A′ has error at most δ since 3-MAJh−1(y) = 3-MAJh(ψ(y, r)) for all r, and A
has error at most δ. We claim now:

2 Pr
A, x∈RHh

[A(x) queries xm(x)] ≥ Pr
A′, (y,r)∈RH′h

[A′(y, r) queries ym(y)], (3)

where H′h is the uniform distribution over Hh−1 × {1, 2, 3}3
h−1

.
We prove this inequality by taking an appropriate partition of the probabilistic space of hard inputs Hh,

and prove Equation 3 separately, on each set in the partition. For h = 1, the two classes of the partition are
H0

1 and H1
1 . For h > 1, the partition consists of the equivalence classes of the relation ∼ defined by x ∼ x′

if xi = x′i for all i such P (i) 6= P (m(x)) in the tree T .
Because ψ is a bijection, observe that this also induces a partition of (y, r), where (y, r) ∼ (y′, r′) iff

ψ(y, r) ∼ ψ(y′, r′). Also observe that every equivalence class contains three elements. Let S be an equivalence
class of ∼. Then Equation 3 follows from the following stronger statement: for every S, and for all B in the
support of A, it holds that

2 Pr
x∈RHh

[B(x) queries xm(x) | x ∈ S] ≥ Pr
(y,r)∈RH′h

[B′(y, r) queries ym(y) | ψ(y, r) ∈ S]. (4)

where B′ is the algorithm that computes x = ψ(y, r) and then evaluates B(x).
The same proof applies to all sets S, but to simplify the notation, we consider a set S that satisfies the

following: for x ∈ S, we have m(x) ∈ {1, 2, 3} and that xm(x) = 1. Observe that for each j > 3, the jth bits
of all three elements in S coincide. Therefore, the restriction of B to the variables (x1, x2, x3), when looking
only at the three inputs in S, is a well-defined decision tree on three variables. We call this restriction B1,
and formally it is defined as follows: for each query xj made by B for j > 3, B1 simply uses the value of xj
that is shared by all x ∈ S and that we hard-wire into B1; for each query xj made by B where j ∈ {1, 2, 3},
B1 actually queries xj . Note that the restriction B1 does not necessarily compute 3-MAJ1(x1x2x3), for two
reasons. Firstly, B1 is derived from B, which may err on particular inputs. But even if B(x) correctly
computes 3-MAJh(x), it might happen that B never queries any of x1, x2, x3, or it might query one and never
query a second one, etc.

For any x ∈ S, recall that we write (y, r) = ψ−1(x). It holds for our choice of S that m(y) = 1 because
we assumed m(x) ∈ {1, 2, 3} and also y1 = ym(y) = 0 because we assumed xm(x) = 1.

Observe that, for inputs x ∈ S, B queries xm(x) iff B1 queries the minority among x1, x2, x3. Also, B′(y, r)
queries ym(y) iff B1(ψ(0, r1)) queries xr1 (cf. Equation 2). Furthermore, the distribution of x1x2x3 when
x ∈R S is uniform over H0

1. Similarly, the distribution of r1 over uniform (y, r) conditioned on ψ(y, r) ∈ S is
identical to that of (0, r1) = ψ−1(x1x2x3) for x1x2x3 ∈R H0

1. Thus Equation 4 is equivalent to:

2 Pr
x∈RH0

1

[B1(x) queries xm(x)] ≥ Pr
x∈RH0

1

[B1(x) queries xr1 where (0, r1) = ψ−1(x)]. (5)

5

Observe that Equation 5 holds trivially if B1 makes no queries, since then both sides equal 0. Therefore
it is enough to consider only the case where B1 makes at least one query. For any decision tree algorithm Q
on three bits, which makes at least one query, we define the number ρQ as:

ρQ =
Prx∈RH0

1
[Q(x) queries xm(x)]

Prx∈RH0
1
[Q(x) queries xr1 where (0, r1) = ψ−1(x)]

.

Note that the denominator is at least 1/3, since Q queries xr1 when x is such that r1 is the index of the first
query. We prove that ρQ is always at least 1/2, by describing a decision tree algorithm Q′ which minimizes
ρQ. The algorithm Q′ is defined as follows:

• Query x1

• If x1 = 0, stop

• If x1 = 1, query x2 and stop.

Claim 3.3. The algorithm Q′ gives ρQ′ = 1/2, and this is the minimal possible ρQ among all deterministic
decision tree algorithms making at least one query.

To prove the claim we first we evaluate ρQ′ . The numerator equals 1/3 since the minority is queried only
when x = 100, while the denominator equals 2/3 since xr1 is queried when x is 001 or 100.

Let now be Q any algorithm which makes at least one query, we prove that ρQ ≥ 1/2. Without loss of
generality, we may suppose that the first query is x1. We distinguish two cases.

If Q makes a second query when the first query is evaluated to 0 then the numerator is at least 2/3 since
for the second query there is also an x for which m(x) is the index of this query. But the denominator is
at most 1, and therefore in that case ρQ ≥ 2/3. If Q does not make a second query when the first query is
evaluated to 0 then the denominator is at most 2/3 since for x = 010, we have r1 = 3, but x3 is not queried.
Since the numerator is at least 1/3, we have in that case ρQ ≥ 1/2.

To handle a general S, replace {1, 2, 3} with m(x) and its two siblings. For S such that x ∈ S satisfies
xm(x) = 0, the optimal algorithm Q′ is the same as the one described above, except with each 0 changed to
1 and vice versa.

Therefore Equation 5 holds for every B1, which implies the theorem.

Combining Corollary 2.3 and Theorem 3.1, we obtain the following.

Corollary 3.4. Rδ(3-MAJh) ≥ (1− 2δ)(5/2)h.

We conjecture that this can be improved to Rδ(3-MAJh) ≥ (1− 2δ)2.54355h. See Section A for details.

4 Improved depth-two algorithm

In this section, we present a new zero-error algorithm for computing 3-MAJh. For the key ideas behind
it, we refer the reader to Section 1.

As before, we identify the formula 3-MAJh with a complete ternary tree of height h. In the description
of the algorithm we adopt the following convention. Once the algorithm has determined the value b of the
subformula rooted at a node v of the formula 3-MAJh, we also use v to denote this bit value b.

The algorithm is a combination of two depth-2 recursive algorithms. The first one, Evaluate, takes
a node v of height h(v), and evaluates the subformula rooted at v. The interesting case, when h(v) > 1,
is depicted in Figure 1; a formal description is given as Algorithm 2 in the appendix (Section B). The
first step, permuting the input, means applying a random permutation to the children y1, y2, y3 of v and
independent random permutations to each of the three sets of grandchildren.

The second algorithm, Complete, is depicted in Figure 2 and is described more formally as Algo-
rithm 3 in the appendix (Section B). It takes two arguments v, y1, and completes the evaluation of the

6

x1 = x2
E(x1), E(x2)

E(y3)

C(y1, x1) C(y2, x2) Output y1

Output y3

Output y3

Output y2

Output y3

Output MAJ(y1, y2, y3)

C(yb, xb)

C(y3-b, x3-b)

Set b ! {1, 2}
such that y3 = yb

E(y3)

E(y3)

C(y2, x2)

y1 = x2 y1 = y2

y1 ! x2

y1 ! y2

y1 = y3

y1 ! y3

x1 ! x2

y3 = yb

y3 ! yb

Permute input

x1 x2

y2y1 y3

x2

y2y1 y3

v v

Figure 1: Pictorial representation of algorithm Evaluate on a subformula of height h(v) ≥ 2 rooted at v.
It is abbreviated by the letter ‘E’ when called recursively on descendants of v. The letter ‘C’ abbreviates the
second algorithm Complete.

subformula 3-MAJh rooted at node v, where h(v) ≥ 1, and y1 is a child of v whose value has already been
evaluated. The first step, permuting the input, means applying a random permutation to the children y2, y3

of v and independent random permutations to each of the two sets of grandchildren of y2, y3. Note that this
is similar in form to the depth 2 algorithm of [5].

Output y3

E(x2) C(y2, x2)

E(y3)

C(y2, x2) Output y2

Output y3E(y3)

Output y1
y1 = x2 y1 = y2

y1 ! y2y1 ! x2

y3 = y1

y3 ! y1

Permute input

x1 x2

y2y1 y3

x2

y2y1 y3

v v

Figure 2: Pictorial representation of algorithm Complete on a subformula of height h ≥ 1 rooted at v one
child y1 of which has already been evaluated. It is abbreviated by the letter ‘C’ when called recursively on
descendants of v. Calls to Evaluate are denoted ‘E’.

To evaluate an input of height h, we invoke Evaluate(r), where r is the root. The correctness of the two
algorithms follows by inspection—they determine the values of as many children of the node v as is required
to compute the value of v.

For the complexity analysis, we study the expected number of queries they make for a worst-case input of
fixed height h. Let T (h) be the worst-case complexity of Evaluate(v) for v of height h. For Complete(v, y1),
we distinguish between two cases. Let y1 be the child of node v that has already been evaluated. The
complexity given that y1 is the minority child of v is denoted by Sm, and the complexity given that it is a
majority child is denoted by SM.

7

The heart of our analysis is the following set of recurrences that relate T, SM and Sm to each other.

Lemma 4.1. We have

Sm(1) = 2, SM(1) =
3

2
, T (0) = 1, and T (1) =

8

3
.

For all h ≥ 1, we have
SM(h) ≤ Sm(h) and SM(h) ≤ T (h). (6)

Finally, for all h ≥ 2, we have

Sm(h) = T (h− 2) + T (h− 1) +
2

3
SM(h− 1) +

1

3
Sm(h− 1), (7)

SM(h) = T (h− 2) +
2

3
T (h− 1) +

1

3
SM(h− 1) +

1

3
Sm(h− 1), and (8)

T (h) = 2T (h− 2) +
23

27
T (h− 1) +

26

27
SM(h− 1) +

18

27
Sm(h− 1). (9)

Proof. We prove these relations by induction. The bounds for h ∈ {0, 1} follow immediately by inspection of
the algorithms. To prove the statement for h ≥ 2, we assume the recurrences hold for all l < h. Observe that
it suffices to prove that Equations (7), (8), (9) for height h, since the values of the coefficients immediately
imply that Inequalities (6) holds for h as well.

Equation (7). Since Complete(v, y1) always starts by computing the value of a grandchild x2 of v, we
get the first term T (h − 2) in Eq. (7). It remains to show that the worst-case complexity of the remaining
queries is T (h− 1) + (2/3)SM(h− 1) + (1/3)Sm(h− 1).

Since y1 is the minority child of v, we have that y1 6= y2 = y3. The complexity of the remaining steps is
summarized in the next table in the case that the three children of node y2 are not all equal. In each line of
the table, the worst case complexity is computed given the event in the first cell of the line. The second cell
in the line is the probability of the event in the first cell over the random permutation of the children of y2.
This gives a contribution of T (h− 1) + (2/3)SM(h− 1) + (1/3)Sm(h− 1).

Sm(h) (we have y1 6= y2 = y3)

event probability complexity

y2 = x2 2/3 T (h− 1) + SM(h− 1)

y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

This table corresponds to the worst case, as the only other case is when all children of y2 are equal, in
which the cost is T (h− 1) +SM(h− 1). Applying Inequality (6) for h− 1, this is a smaller contribution than
the case where the children are not all equal.

Therefore the worst case complexity for Sm is given by Eq. (7). We follow the same convention and appeal
to this kind of argument also while deriving the other two recurrence relations.

Equation (8). Since Complete(v, y1) always starts by computing the value of a grandchild x2 of v, we
get the first term T (h− 2) in Eq. (8). There are then two possible patterns, depending on whether the three
children y1, y2, y3 of v are all equal. If y1 = y2 = y3, we have in the case that all children of y2 are not equal
that:

SM(h) if y1 = y2 = y3

event probability complexity

y2 = x2 2/3 SM(h− 1)

y2 6= x2 1/3 T (h− 1)

As in the above analysis of Eq. (7), applying Inequalities (6) for height h − 1 implies that the complexity
in the case when all children of y2 are equal can only be smaller, therefore the above table describes the
worst-case complexity for the case when y1 = y2 = y3.

8

If y1, y2, y3 are not all equal, we have two events y1 = y2 6= y3 or y1 = y3 6= y2 of equal probability as y1 is
a majority child of v. This leads to the following tables for the case where the children of y2 are not all equal

SM(h) given y1 = y2 6= y3

event probability complexity

y2 = x2 2/3 SM(h− 1)

y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

SM(h) given y1 = y3 6= y2

event probability complexity

y2 = x2 2/3 T (h− 1)

y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

As before, one can apply Inequalities (6) for height h− 1 to see that the worst case occurs when the children
of y2 are not all equal.

From the above tables, we deduce that the worst-case complexity occurs on inputs where y1, y2, y3 are
not all equal. This is because one can apply Inequalities (6) for height h − 1 to see that, line by line, the
complexities in the table for the case y1 = y2 = y3 are upper bounded by the corresponding entries in each
of the latter two tables. To conclude Eq. (8), recall that the two events y1 = y2 6= y3 and y1 = y3 6= y2 occur
with probability 1/2 each:

SM(h) = T (h− 2) +
1

2

[
2

3
SM(h− 1) +

1

3
(T (h− 1) + Sm(h− 1))

]
+

1

2

[
2

3
T (h− 1) +

1

3
(T (h− 1) + Sm(h− 1))

]
.

Equation (9). Since Evaluate(v) starts with two calls to itself to compute x1, x2, we get the first
term 2T (h− 2) on the right hand side.

For the remaining complexity, we consider two possible cases, depending on whether the three chil-
dren y1, y2, y3 of v are equal. If y1 = y2 = y3, assuming that the children of y1 are not all equal, and the same
for the children of y2, we have

T (h) given y1 = y2 = y3

event probability complexity

y1 = x1, y2 = x2 4/9 2SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + SM(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + Sm(h− 1)

As before, the complexities are in non-decreasing order, and we observe that Inequalities (6) for height h− 1
implies that in a worst case input the children of y1 are not all equal, and the same for the children of y2.

If y1, y2, y3 are not all equal, we have three events y1 = y2 6= y3, y1 6= y2 = y3 and y3 = y1 6= y2 each of
which occurs with probability 1/3. This leads to the following analyses

T (h) given y1 = y2 6= y3

event probability complexity

y1 = x1, y2 = x2 4/9 2SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + 2Sm(h− 1)

T (h) given y1 6= y2 = y3

event probability complexity

y1 = x1, y2 = x2 4/9 T (h− 1) + SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + 2Sm(h− 1)

9

T (h) given y3 = y1 6= y2

event probability complexity

y1 = x1, y2 = x2 4/9 T (h− 1) + SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + Sm(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + 2Sm(h− 1)

In all three events, we observe that Inequalities (6) for height h − 1 implies that in a worst case input, the
children of y1 are not all equal, and the same for the children of y2.

Applying Inequalities (6) for height h − 1, it follows that line by line the complexities in the last three
tables are at least the complexities in the table for the case y1 = y2 = y3. Therefore the worst case also
corresponds to an input in which y1, y2, y3 are not all equal. We conclude Eq. (9) as before, by taking the
expectation of the complexities in the last three tables.

Theorem 4.2. T (h), SM(h), and Sm(h) are all in O(αh), where α ≤ 2.64946.

Proof. We make an ansatz that T (h) ≤ aαh, SM(h) ≤ b αh, and Sm(h) ≤ c αh, and find constants a, b, c, α
for which we may prove these inequalities by induction.

The base cases tell us that

2 ≤ cα, 3

2
≤ bα, 1 ≤ a, and

8

3
≤ aα. (10)

Assuming we have constants that satisfy these conditions, and that the inequalities hold for all appropriate l <
h, for some h ≥ 2, we derive sufficient conditions for the inductive step to go through.

By the induction hypothesis and Lemma 4.1, we have

Sm(h) ≤ aαh−2 + aαh−1 +
2b

3
αh−1 +

c

3
αh−1,

SM(h) ≤ aαh−2 +
2a

3
αh−1 +

b

3
αh−1 +

c

3
αh−1, and

T (h) ≤ 2aαh−2 +
23a

27
αh−1 +

26

27
αh−1 +

18

27
αh−1.

These would imply the required bounds on Sm(h), SM(h), T (h) if

a+
3a+ 2b+ c

3
α ≤ c α2,

a+
2a+ b+ c

3
α ≤ b α2, and (11)

2a+
23a+ 26b+ 18c

27
α ≤ aα2.

The choice α = 2.64946, a = 1.007, b = 0.55958 a, and c = 0.75582 a satisfies all the inequalities (10, 11), so
that the proof by induction holds.

References

[1] M. Blum and R. Impagliazzo. General oracle and oracle classes. In Proc. FOCS ’87, pages 118–126,
1987.

[2] J. Hartmanis and L. Hemachandra. One-way functions, robustness, and non-isomorphism of NP-complete
sets. In Proc. Structure in Complexity Theory ’87, pages 160–173, 1987.

10

[3] R. Heiman and A. Wigderson. Randomized versus deterministic decision tree complexity for read-once
boolean functions. In Proc. Structure in Complexity Theory ’91, pages 172–179, 1991.

[4] R. Heiman, I. Newman, and A. Wigderson. On read-once threshold formulae and their randomized
decision tree complexity. In Proc. Structure in Complexity Theory ’90, pages 78–87, 1990.

[5] T. Jayram, R. Kumar, and D. Sivakumar. Two applications of information complexity. In Proc. STOC
’03, pages 673–682, 2003.

[6] I. Landau, A. Nachmias, Y. Peres, and S. Vanniasegaram. The lower bound for evaluating a recursive
ternary majority function: an entropy-free proof. Technical report, Department of Statistics, University
of California, Berkeley, CA, USA, http://www.stat.berkeley.edu/110, 2006. Undergraduate Research
Report.

[7] N. Nisan. CREW PRAMs and decision trees. In Proc. STOC ’89, pages 327–335, New York, NY, USA,
1989. ACM. ISBN 0-89791-307-8.

[8] M. Saks and A. Wigderson. Probabilistic boolean decision trees and the complexity of evaluating game
trees. In Proc. FOCS ’86, pages 29–38, 1986.

[9] M. Snir. Lower bounds for probabilistic linear decision trees. Combinatorica, 9:385–392, 1990.

[10] G. Tardos. Query complexity or why is it difficult to separate NPA ∩ coNPA from PA by a random
oracle. Combinatorica, 9:385–392, 1990.

A A conjectured better lower bound

Our proof from the previous section proceeds by proving a recurrence, using a one level encoding scheme,
for the minimal probability that an algorithm queries the absolute minority bit. One can ask whether this is
the best possible recurrence, and the following theorem hints that it may be possible to improve it by using
higher level encoding schemes. Unfortunately we are unable to prove a claim analogous to Claim 3.3 in the
case of such a recurrence, as the number of possible decision trees to minimize over is too large to handle by
enumeration by hand. We nevertheless have a candidate for the minimal decision tree algorithm, which is
the natural extension of the algorithm given in Theorem 3.1 for the one level recursion, and we leave as an
open question whether or not our candidate indeed achieves the minimum.

As before, the base case satisfies pδ0 ≥ 1 − 2δ. In the following, we omit δ from the notation when
convenient.

Definition A.1. A two-level encoding scheme is a map ψ for every h ≥ 2, from Hh−2 × Ω to Hh (Ω is a
space of random coins for the encoding), satisfying for every (y, ω):

3-MAJh−1(y) = 3-MAJh(ψ(y, ω)).

Theorem A.2. Assuming Conjecture A.3, for every h ≥ 0, we have

pδh ≥ (1− 2δ)(
√

13/47)h > (1− 2δ)0.5259h.

Proof. The proof follows the same structure as that of Theorem 3.1 but using two levels recursion: we show
that (47/13)ph ≥ ph−2. To prove this, for every deterministic algorithm A for height h formulae, we construct
a randomized algorithm A′ for height h − 2 formulae such that the probability that A′ queries the absolute
minority is at most 47/13-times the probability that A queries the absolute minority.

11

To define A′, we will use the two levels encoding scheme ψ : Hh−2 × {1, 2, 3}4·3
h−2 → Hh, induced by the

same function c : {0, 1}× {1, 2, 3} → H1 we have used for the one level encoding scheme in Theorem 3.1. We
recall that

c(y, r) =


y01 if r = 1,

1y0 if r = 2,

01y if r = 3.

and we define the induced encoding ψ as follows: for every 1 ≤ i ≤ 3h−2,

ψ(y,R, r1, r2, r3)9i−8 . . . ψ(y,R, r1, r2, r3)9i =


c(yi, r1i), c(0, r2i), c(1, r3i) if Ri = 1,

c(1, r1i), c(yi, r2i), c(0, r3i) if Ri = 2,

c(0, r1i), c(1, r2i), c(yi, r3i) if Ri = 3.

Let Ω = {1, 2, 3}4·3h−2
, and we write ω ∈ Ω as ω = (R, r1, r2, r3). On input y, by definition A′ samples

uniform ω ∈ Ω runs A on x = ψ(y, ω). As before, it suffices to prove that

(47/13) Pr
A,x∈Hh

[A(x) queries xm(x)] ≥ Pr
A′,y∈Hh−2,ω∈Ω

[A′(y, ω) queries ym(y)] (12)

We partition again Hh, this time into sets of size 81. For h = 2, the two classes are H0
2 and H1

2. For
h > 2, the partition consists of the equivalence classes of the relation defined by x ∼ x′ if xi = x′i for
all i such P (P (i)) 6= P (P (m(x))) in the tree T . Namely, an equivalence class consists of inputs that are
identical everywhere except the 2-level subtree containing their absolute minority. We then prove that for
every equivalence class S, and all B in the support of A, it holds that:

(47/13) Pr
x∈S

[B(x) queries xm(x)] ≥ Pr
y,ω

[B′(y, ω) queries ym(y) | ψ(y, ω) ∈ S]. (13)

where B′ is the algorithm that first computes x = ψ(y, ω) and then evaluates B(x).
To prove this, suppose for simplicity of notation m = m(x) ∈ {1, . . . , 9} and xm(x) = 0 for every x ∈ S.

This implies that for all x ∈ S, if we set (y, ω) = ψ−1(x), then m(y) = 1 and y1 = 0. Let B2 be the restriction
of B to the first 9 bits, where for every query xj , for j > 9, algorithm B2 follows the outgoing edge of B
according the common value of the jth bit of the elements in S, and for each query xj where j ∈ {1, . . . , 9},
B2 also queries xj .

Observe that B(x) querying xm(x) corresponds to B2(x) querying xm(x), while B′(y, ω) querying ym(y)

corresponds to B2(x) querying xq(x), where q(x) = 3(R1−1)+rR11 and where (0, (R1, r11, r21, r31)) = ψ−1(x).
Namely, if x = ψ(y, (R1, r11, r21, r31)), then q(x) ∈ {1, . . . , 9} is the location where the encoding inserted y1.

Therefore Equation 13 is equivalent to the following:

(47/13) Pr
x∈H0

2

[B2(x) queries xm(x)] ≥ Pr
x∈H0

2

[B2(x) queries xq(x)] (14)

For algorithms B2 that query no nodes, Equation 14 is trivially satisfied as both sides equal 0. Therefore,
we define for every decision tree algorithm Q on 9 bits which makes at least one query, ρQ as

ρQ =
Prx∈H0

2
[Q(x) queries xm(x)]

Prx∈H0
2
[Q(x) queries xq(x)]

. (15)

Consider Algorithm 1 on 9 variables. (See also Figure 3 for a pictorial representation of the algorithm. In
the figure, the symbol “⊥” means stop, and “ALL”’ means to completely evaluate all variables, except the
ones that cannot influence the output.)

We conjecture that the partial DT given in Algorithm 1 is the tree that minimizes the LHS of this
inequality. (See also Figure 3 for a pictorial representation of the algorithm. In the figure, the symbol “⊥”
means stop, and “ALL”’ means to completely evaluate all variables, except ones that cannot influence the
output.)

12

x1

x2

x3

x4

x5

x6

x7

x8

x9

1

1

0

0 1

1

0

0

1

0

0

1

⊥

⊥
10

⊥

10

⊥

10
⊥

⊥

⊥

ALL

ALL

ALL

Figure 3: Picture of Algorithm 1

Conjecture A.3. The algorithm given in Algorithm 1 (see also Figure 3) minimizes ρB2.

Assuming this conjecture, we now prove that Algorithm 1 achieves ρB2 = (13/47). We refer to Figure 4,
where we annotate the decision tree of Figure 3 with two numbers (inside the boxes). For each node v,
right-side number is the number of choices of ω such that the query at v is xq(x). The left-side count is the
number of choices of x1, . . . , x9 such that the query at v is the absolute minority among x1, . . . , x9.

We give a brief explanation of the counts, and leave the complete verification to the reader. First we
consider the left-side counts: we assumed that the input evaluates to 0, so since the tree has height 2, the
absolute minority has value 0. Therefore, we see that the only queries that might query the absolute minority
are x1, x4, x7 (since for all other queries, either we are not in the minority subtree, or if we are in the minority
subtree then we have already queried the sole 0 in that subtree). We can verify for example that there are
9 hard inputs on which x1 is the absolute minority: (x1, . . . , x9) = 011 001 001 and the eight other inputs
obtained by permuting x4, x5, x6 and permuting x7, x8, x9.

For the right-side counts, we observe that in general they are significantly larger because xq(x) is a majority
node. For instance, for the right-side count on the node marked x3, there are 9 inputs on which x1 = 0 and
x2 = 1, and q(x) = 3. Namely, when R1 = 1, r11 = 3, and r21, r31 are free (there are 9 possibilities).

The sum of the left-hand counts is 13 and the sum of the right-hand counts is 47. This gives a ratio of
13/47. To lift our assumptions on S, it suffices to look at the set of all grandchildren of M(S)h−2 rather than
leaves {1, . . . , 9}, and if the value of m(x) = 1 for x ∈ S, then it suffices to use Algorithm 1 except flipping
all the 0’s to 1’s and vice versa.

Theorem A.4. Assuming Conjecture A.5, for every h ≥ 0, we have

pδh ≥ (1− 2δ)(
√

13/44)h > (1− 2δ)0.54355h.

Proof. This theorem uses a two-level encoding that is more symmetric than that of Theorem A.2. Let c be as in
the proof of Theorem A.2. We build the following encoding, where (b, R, r1, r2, r3) ∈ {0, 1}3h−2×{1, 2, 3}4·3h−2

:

ψ(y, b, R, r1, r2, r3)9i−8 . . . ψ(y,R, r1, r2, r3)9i =


c(yi, r1i), c(b, r2i), c(1− b, r3i) if Ri = 1,

c(1− b, r1i), c(yi, r2i), c(b, r3i) if Ri = 2,

c(b, r1i), c(1− b, r2i), c(yi, r3i) if Ri = 3.

13

9 / 9

3 / 6

1 / 2

x1

x2

x3

x4

x5

x6

x7

x8

x9

1

1

0

0 1

1

0

0

1

0

0

1

⊥

⊥
10

⊥

10

⊥

10

⊥
⊥

⊥

ALL

ALL

ALL

0 / 0

0 / 9

0 / 9

0 / 0

0 / 6

0 / 3

0 / 0

0 / 2

0 / 1

Figure 4: Algorithm 1, annotated for Theorem A.2

18 / 18

6 / 9

2 / 4

x1

x2

x3

x4

x5

x6

x7

x8

x9

1

1

0

0 1

1

0

0

1

0

0

1

⊥

⊥
10

⊥

10

⊥

10

⊥
⊥

⊥

ALL

ALL

ALL

0 / 9

0 / 9

0 / 18

0 / 0

0 / 9

0 / 6

0 / 2

0 / 2

0 / 2

Figure 5: Algorithm 1, annotated for Theorem A.4

14

We note that this encoding ψ is no longer a bijection. However, one can make essentially the same argument
as Theorem A.2 to show that it suffices to prove that the following ratio is at least 13/44 for all decision trees
Q on 9 variables:

ρQ =
Prx∈H0

2
[Q(x) queries xm(x)]

Prx∈H0
2,q(x)[Q(x) queries xq(x)]

. (16)

where q(x) = 3(R1 − 1) + rR11 and where (0, (b1, R1, r11, r21, r31)) is uniformly sampled among the set of
preimages ψ−1(x).

Conjecture A.5. The algorithm of Figure 3 (see also Figure 3) minimizes ρQ, with value equal to 13/44.

Our candidate algorithm minimizing Eq. (16) is also the same, and the counts (analogous to those given in
Figure 4 for the the proof of Theorem A.2) are given in Figure 5. (To make the left and right-hand quantities
comparable, we multiplied left-hand counts by 2. This is because the probability space of x is half the size
of the probability space of x, q(x)). This leads to a ratio of 13/44.

A.1 Intuition behind the conjecture

We believe the conjectures Conjecture A.3 and Conjecture A.5 because they represent a natural strategy
for minimizing the ratio ρQ. Namely, the algorithm in Figure 3 encodes the strategy that we query the nodes
in order, but we skip nodes that have increased probability of being the absolute minority. This occurs for
instance with the first query x1: if x1 = 0 then we know that the next query cannot be the absolute minority
(since the absolute minority has value 0 and it is the unique leaf in its subtree with value 0), so we are
comfortable querying x2. If x1 = 1, then there is an increased probability that x2 is the absolute minority,
so we skip it and move to x4, which is in the next subtree. This strategy also occurs at depth 1 from the
root: if we evaluate y1 = 1 then we know that the absolute minority must be a child of y1, so we can safely
evaluate all the children of y2, y3. On the other hand, if y1 = 0, then there is the absolute minority must be
a child of y2 or y3, and we stop evaluating in order to avoid evaluating the absolute minority.

B Formal description of the algorithms

In this section we present a formal description of the depth-two recursive algorithms for 3-MAJh studied
in Section 4. Pieces corresponding to h ≥ 2 are depicted in Figures 1 and 2.

15

Algorithm 1 Conjectured optimal partial DT for Equation 15, see Figure 3
evaluate x1
if x1 = 0 then

evaluate x2
if x2 = 0 then

stop
else

evalute x3
if x3 = 0 then

stop
else

exhaustively evaluate remaining variables
end if

end if
else

evaluate x4
if x4 = 0 then

evaluate x5
if x5 = 0 then

stop
else

evaluate x6
if x6 = 0 then

stop
else

exhaustively evaluate remaining variables
end if

end if
else

evaluate x7
if x7 = 0 then

evaluate x8
if x8 = 0 then

stop
else

evaluate x9
if x9 = 0 then

stop
else

exhaustively evaluate remaining variables
end if

end if
end if

end if
end if

16

Algorithm 2 Evaluate(v): evaluate a node v.

Input: Node v with subtree of height h(v).
Output: the bit value 3-MAJh(Z(v)) of the subformula rooted at v

Let h = h(v)

{First base case: h = 0 (v is a leaf)}
if h = 0 then

Query Z(v) to get its value a
return a

end if

Let y1, y2, y3 be a uniformly random permutation of the children of v

{Second base case: h = 1}
if h = 1 then

Evaluate(y1) and Evaluate(y2)
if y1 = y2 then

return y1
else

return Evaluate(y3)
end if

end if

{Recursive case}
Let x1 and x2 be chosen uniformly at random from the children of y1 and y2, respectively
{use the attached figure as a guide}

x1 x2

y2y1 y3

x2

y2y1 y3

v vEvaluate(x1) and Evaluate(x2)

if x1 6= x2 then
Evaluate(y3)
Let b ∈ {1, 2} be such that xb = y3
Complete(yb, xb)
if yb = y3 then

return yb
else

return Complete(y3−b, x3−b)
end if

else {x1 = x2}
Complete(y1, x1)
if y1 = x1 then

Complete(y2, x2)
if y2 = x2 then {y2 = y1}

return y1
else {y2 6= y1}

return Evaluate(y3)
end if

else {y1 6= x1}
Evaluate(y3)
if y3 = y1 then

return y1
else

return Complete(y2, x2)
end if

end if
end if

17

Algorithm 3 Complete(v, y1): finish the evaluation of the subformula rooted at node v

Input: Node v of height h(v); child y1 of v which has already been evaluated
Output: the bit value 3-MAJh(Z(v))

Let h = h(v)

Let y2, y3 be a uniformly random permutation of the two children of v other than y1

{Base case}
if h = 1 then

Evaluate(y2)
if y2 = y1 then

return y1
else

return Evaluate(y3)
end if

end if

{Recursive case}
Let x2 be chosen uniformly at random from the children of y2
{use the attached figure as a guide}

x1 x2

y2y1 y3

x2

y2y1 y3

v vEvaluate(x2)

if y1 6= x2 then
Evaluate(y3)
if y1 = y3 then

return y1
else

return Complete(y2, x2)
end if

else {y1 = x2}
Evaluate(y2, x2)
if y1 = y2 then

return y1
else

return Evaluate(y3)
end if

end if

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

