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Abstract

We consider the randomized decision tree complexity of the recursive 3-majority function.
For evaluating height h formulae, we prove a lower bound for the δ-two-sided-error randomized
decision tree complexity of (1/2 − δ) · 2.57143h, improving the lower bound of (1 − 2δ)(7/3)h

given by Jayram, Kumar, and Sivakumar (STOC’03), and the one of (1 − 2δ) · 2.55h given
by Leonardos (ICALP’13). Second, we improve the upper bound by giving a new zero-error
randomized decision tree algorithm that has complexity at most (1.007) ·2.64944h. The previous
best known algorithm achieved complexity (1.004) ·2.65622h. The new lower bound follows from
a better analysis of the base case of the recursion of Jayram et al. The new algorithm uses a
novel “interleaving” of two recursive algorithms.

1 Introduction

Decision trees form a simple model for computing boolean functions by successively reading the
input bits until the value of the function can be determined. In this model, the only cost is the
number of input bits queried. Formally, a deterministic decision tree algorithm A on n variables
is a binary tree in which each internal node is labeled with an input variable xi, and the leaves of
the tree are labeled by either 0 or 1. Each internal node has two outgoing edges, one labelled with
0, the other with 1. Every input x = x1 . . . xn determines a unique path in the tree leading from
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the root to a leaf: if an internal node is labeled by xi, we follow either the 0 or the 1 outgoing
edge according to the value of xi. The value of the algorithm A on input x, denoted by A(x),
is the label of the leaf on this unique path. Thus, the algorithm A computes a boolean function
A : {0, 1}n → {0, 1}.

We define the cost C(A, x) of a deterministic decision tree algorithm A on input x as the number
of input bits queried by A on x. Let Pf be the set of all deterministic decision tree algorithms
which compute f . The deterministic complexity of f is D(f) = minA∈Pf maxx∈{0,1}n C(A, x). Since
every function can be evaluated after reading all the input variables, D(f) ≤ n.

In an extension of the deterministic model, we can also permit randomization in the computa-
tion. A randomized decision tree algorithm A on n variables is a distribution over all deterministic
decision tree algorithms on n variables. Given an input x, the algorithm first samples a deter-
ministic tree B ∈R A, then evaluates B(x). The error probability of A in computing f is given
by maxx∈{0,1}n PrB∈RA[B(x) 6= f(x)]. The cost of a randomized algorithm A on input x, denoted

also by C(A, x), is the expected number of input bits queried by A on x. Let Pδf be the set of
randomized decision tree algorithms computing f with error at most δ. The two-sided bounded
error randomized complexity of f with error δ ∈ [0, 1/2) is Rδ(f) = minA∈Pδf

maxx∈{0,1}n C(A, x).

We write R(f) for R0(f). By definition, for all 0 ≤ δ < 1/2, it holds that Rδ(f) ≤ R(f) ≤ D(f),
and it is also known [BI87, HH87, Tar90] that D(f) ≤ R(f)2, and that for all constant δ ∈ (0, 1/2),
D(f) ∈ O(Rδ(f)3) [Nis89].

Considerable attention in the literature has been given to the randomized complexity of func-
tions computable by read-once formulae, which are boolean formulae in which every input vari-
able appears only once. For a large class of well balanced formulae with NAND gates the exact
randomized complexity is known. In particular, let NANDh denote the complete binary tree of
height h with NAND gates, where the inputs are at the n = 2h leaves. Snir [Sni95] has shown

that R(NANDh) ∈ O(nc) where c = log2

(
1+
√
33

4

)
≈ 0.753. A matching Ω(nc) lower bound

was obtained by Saks and Wigderson [SW86], and extended to Monte Carlo algorithms (i.e.,
with constant error δ < 1/2) by Santha [San95]. Since D(NANDh) = 2h = n this implies that
R(NANDh) ∈ Θ(D(NANDh)c). Saks and Wigderson conjectured that for every boolean function f
and constant δ ∈ [0, 1/2), Rδ(f) ∈ Ω(D(f)c).

After further progress due to Heiman, Newman, and Wigderson [HNW90] and Heiman and
Wigderson [HW91], one would have hoped that the simple model of decision tree algorithms might
shed more light on the power of randomness. But surprisingly, we know the exact randomized
complexity of very few boolean functions. In particular, the randomized complexity of the recursive
3-majority function (3-MAJh) is still open. This function, proposed by Boppana, was one of the
earliest examples where randomized algorithms were found to be more powerful than deterministic
decision trees [SW86]. It is a read-once formula on 3h variables given by the complete ternary tree
of height h whose internal vertices are majority gates. It is easy to check that D(3-MAJh) = 3h, but
there is a naive randomized recursive algorithm for 3-MAJh that performs better: pick two random
children of the root and recursively evaluate them, then evaluate the third child if the value is
not yet determined. This has zero-error randomized complexity (8/3)h. However, it was already
observed by Saks and Wigderson [SW86] that one can do even better than this naive algorithm. As
for lower bounds, that reading 2h variables is necessary for zero-error algorithms is easy to show.
In spite of some similarities with the NANDh function, no progress was reported on the randomized
complexity of 3-MAJh for 17 years. In 2003, Jayram, Kumar, and Sivakumar [JKS03] proposed
an explicit randomized algorithm that achieves complexity (1.004) · 2.65622h, and beats the naive
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recursion. (Note, however, that the recurrence they derive in [JKS03, Appendix B] is incorrect.)
They also prove a (1− 2δ)(7/3)h lower bound for the δ-error randomized decision tree complexity
of 3-MAJh. In doing so, they introduce a powerful combinatorial technique for proving decision
tree lower bounds.

In this paper, we considerably improve the lower bound obtained in [JKS03], first by proving
that Rδ(3-MAJh) ≥ (1 − 2δ)(5/2)h, then further improving the base 5/2. We also improve the
upper bound by giving a new zero-error randomized decision tree algorithm.

Theorem 1.1. For all δ ∈ [0, 1/2], we have (1/2−δ) ·2.57143h ≤ Rδ(3-MAJh) ≤ (1.007) ·2.64944h.

In contrast to the randomized case, the bounded-error quantum query complexity of 3-MAJh is
known more precisely; it is in Θ(2h) [RS08].

New lower bound. For the lower bound Jayram et al. consider a complexity measure related
to the distributional complexity of 3-MAJh with respect to a specific hard distribution (cf. Sec-
tion 2.3). The focus of the proof is a relationship between the complexity of evaluating formulae
of height h to that of evaluating formulae of height h− 1. They derive a sophisticated recurrence
relation between these two quantities, that finally implies that Rδ(3-MAJh) ≥ α(2 + q)h, where αqh

is a lower bound on the probability pδh that a randomized algorithm with error at most δ queries a
special variable, called the “absolute minority”, on inputs drawn from the hard distribution. They
observe that any randomized decision tree with error at most δ must query at least one variable
with probability 1−2δ. This variable has probability 3−h of being the absolute minority, so q = 1/3
and α = 1− 2δ satisfies the conditions and their lower bound follows.

We obtain new lower bounds by improving the lower bound pδh. We start by proving that pδh ≥
(1 − 2δ)2−h, i.e., increasing q to 1/2, which immediately implies an improved lower bound for
Rδ(3-MAJh). We examine the relationship between pδh and pδh−1, by encoding a height h − 1
instance into a height h instance, and using an algorithm for the latter. Analyzing our encoding
requires understanding the behavior of all decision trees on 3 variables, and this can be done by
exhaustively considering all such trees.

We then improve this lower bound by encoding height h− 2 instances into height h instances,
and prove pδh ≥ αqh for q =

√
7/24 > 0.54006. For technical reasons we set α = 1/2 − δ (half

the value considered by Jayram et al.) in their bound). For encoding respectively heights h − 3
and h − 4 instances into height h instances, we use a computer to get the same estimate with
q = (2203/12231)1/3 > 0.56474 and q = (216164/2027349)1/4 > 0.57143.

Independently Leonardos [Leo13] improved the (1 − 2δ)(5/2)h lower bound we got in the pre-
liminary version of this work [MNSX11] by giving a lower bound of Rδ(3-MAJh) ≥ (1− 2δ) · 2.55h.
His approach is different than ours and it is based on the method of generalized costs of Saks and
Wigderson [SW86]. Nonetheless, the last lower bound we obtain improves the bound of Leonardos.

New algorithm. The naive algorithm and the algorithm of Jayram et al. are examples of
depth-k recursive algorithms for 3-MAJh, for k = 1, 2, respectively. A depth-k recursive algorithm
is a collection of subroutines, where each subroutine evaluates a node (possibly using information
about other previously evaluated nodes), satisfying the following constraint: when a subroutine
evaluates a node v, it is only allowed to call other subroutines to evaluate children of v at depth
at most k, but is not allowed to call subroutines or otherwise evaluate children that are deeper
than k. (Our notion of depth-one is identical to the terminology “directional” that appears in the
literature. In particular, the naive recursive algorithm is a directional algorithm.)

We present an improved depth-two recursive algorithm. To evaluate the root of the majority
formula, we recursively evaluate one grandchild from each of two distinct children of the root.
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The grandchildren “give an opinion” about the values of their parents. The opinion guides the
remaining computation in a natural manner: if the opinion indicates that the children are likely to
agree, we evaluate the two children in sequence to confirm the opinion, otherwise we evaluate the
third child. If at any point the opinion of the nodes evaluated so far changes, we modify our future
computations accordingly. A key innovation is the use of an algorithm optimized to compute the
value of a partially evaluated formula. In our analysis, we recognize when incorrect opinions are
formed, and take advantage of the fact that this happens with smaller probability.

We do not believe that the algorithm we present here is optimal. Indeed, we conjecture that
even better algorithms exist that follow the same high level intuition applied for depth-k recursion
for k > 2. However, it seems new insights are required to analyze the performance of deeper
recursions, as the formulas describing their complexity become unmanageable for k > 2.

Organization. We prepare the background for our main results Section 2. In Section 3.1
we prove our new lower bounds for 3-MAJh. The new algorithm for the problem is described and
analyzed in Section 4.

2 Preliminaries

We write u ∈R D to state that u is sampled from the distribution D. If X is a finite set, we identify
X with the uniform distribution over X, and so, for instance, u ∈R X denotes a uniform element
of X.

2.1 Distributional Complexity

A variant of the randomized complexity we use is distributional complexity. Let Dn be the set
of distributions over {0, 1}n. The cost C(A,D) of a randomized decision tree algorithm A on n
variables with respect to a distribution D ∈ Dn is the expected number of bits queried by A when x
is sampled from D and over the random coins of A. The distributional complexity of a function f on
n variables for δ two-sided error is ∆δ(f) = maxD∈Dn minA∈Pδf

C(A,D). The following observation

is a well established route to proving lower bounds on worst case complexity.

Proposition 2.1. Rδ(f) ≥ ∆δ(f).

2.2 The 3-MAJh Function and the Hard Distribution

Let MAJ(x) denote the boolean majority function of its input bits. The ternary majority function
3-MAJh is defined recursively on n = 3h variables, for every h ≥ 0. We omit the height h when it is
obvious from context. For h = 0 it is the identity function. For h > 0, let x be an input of length
n and let x(1), x(2), x(3) be the first, second, and third n/3 variables of x. Then

3-MAJh(x) = MAJ(3-MAJh−1(x
(1)), 3-MAJh−1(x

(2)), 3-MAJh−1(x
(3))).

In other terms, 3-MAJh is defined by the read-once formula on the complete ternary tree Th of
height h in which every internal node is a majority gate. We identify the leaves of Th from left
to right with the integers 1, . . . , 3h. For an input x ∈ {0, 1}h, the bit xi defines the value of the
leaf i, and then the values of the internal nodes are evaluated recursively. The value of the root is
3-MAJh(x). For every node v in Th different from the root, let P (v) denote the parent of v. We
say that v and w are siblings if P (v) = P (w). For any node v in Th, let Z(v) denote the set of
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variables associated with the leaves in the subtree rooted at v. We say that a node v is at depth d
in Th if the distance between v and the root is d. The root is therefore at depth 0, and the leaves
are at depth h.

We now define recursively, for every h ≥ 0, the set Hh of hard inputs of height h. In the base
case H0 = {0, 1}. For h > 0, let

Hh = {(x, y, z) ∈ Hh−1 ×Hh−1 ×Hh−1 : 3-MAJh−1(x), 3-MAJh−1(y), and 3-MAJh−1(z)

are not all identical}.

The hard inputs consist of instances for which at each node v in the ternary tree, one child of v
has value different from the value of v. The hard distribution on inputs of height h is defined to be
the uniform distribution over Hh. We call a hard input x 0-hard or 1-hard depending on whether
3-MAJh(x) = 0 or 1. We write H0

h for the set of 0-hard inputs and H1
h for the set of 1-hard inputs.

For an x ∈ Hh, the minority path M(x) is the path, starting at the root, obtained by following
the child whose value disagrees with its parent. For 0 ≤ d ≤ h, the node of M(x) at depth d is
called the depth d minority node, and is denoted by M(x)d. We call the leaf M(x)h of the minority
path the absolute minority of x, and denote it by m(x).

2.3 The Jayram-Kumar-Sivakumar Lower Bound

For a deterministic decision tree algorithm B computing 3-MAJh, let LB(x) denote the set of
variables queried by B on input x. Recall that Pδ3-MAJh

is the set of all randomized decision tree
algorithms that compute 3-MAJh with two-sided error at most δ. Jayram et al. define the function
Iδ(h, d), for d ≤ h:

Iδ(h, d) = min
A∈Pδ3-MAJh

Ex∈RHh,B∈RA[|Z(M(x)d) ∩ LB(x)|].

In words, it is the minimum over algorithms computing 3-MAJh, of the expected number of queries
below the dth level minority node, over inputs from the hard distribution. Note that Iδ(h, 0) =
minA∈Pδ3-MAJh

C(A,Hh), and therefore by Proposition 2.1, Rδ(3-MAJh) ≥ Iδ(h, 0).

We define pδh = Iδ(h, h), which is the minimal probability that a δ-error algorithm A queries
the absolute minority of a random hard x of height h.

Jayram et al. prove a recursive lower bound for Iδ(h, d) using information theoretic arguments.
A more elementary proof can be found in [LNPV06].

Theorem 2.2 (Jayram, Kumar, Sivakumar [JKS03]). For all 0 ≤ d < h:

Iδ(h, d) ≥ Iδ(h, d+ 1) + 2Iδ(h− 1, d).

A simple computation gives then the following lower bound on Iδ(h, d), for all 0 ≤ d ≤ h,
expressed as a function of the pδi ’s:

Iδ(h, d) ≥
h∑
i=d

(
h− d
i− d

)
2h−ipδi .

When d = 0, this gives Iδ(h, 0) ≥
∑h

i=0

(
h
i

)
2h−ipδi . Putting this together with the fact that

Rδ(3-MAJh) ≥ Iδ(h, 0), we get the following corollary:
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Corollary 2.3. Let q, a > 0 such that pδi ≥ a · qi for all i ∈ {0, 1, 2, . . . , h}. Then Rδ(3-MAJh) ≥
a(2 + q)h.

As mentioned in Section 1, Jayram et al. obtain the (1 − 2δ)(7/3)h lower bound from this
corollary by observing that pδh ≥ (1− 2δ)(1/3)h.

3 Improved Lower Bounds

3.1 First Improvement

Theorem 3.1. For every error δ > 0 and height h ≥ 0, we have pδh ≥ (1− 2δ)2−h.

Proof. We prove this theorem by induction. Clearly, pδ0 ≥ 1 − 2δ. It then suffices to show that
2pδh ≥ pδh−1 for h ≥ 1. We do so by reduction as follows: let A be a randomized algorithm that

achieves the minimal probability pδh for height h formulae. We construct a randomized algorithm
A′ for height h− 1 formulae such that the probability that A′ errs is at most δ, and A′ queries the
absolute minority with probability at most 2pδh. Since pδh−1 is the minimum probability of querying
the absolute minority in the hard distribution, computed over all randomized algorithms on inputs
of height h− 1 with error at most δ, this implies that 2pδh ≥ pδh−1.

We now specify the reduction. For the sake of simplicity, we omit the error δ in the notation.
We use the following definition:

Definition 3.2 (One level encoding scheme). A one level encoding scheme is a bijection ψ :

Hh−1×{1, 2, 3}3
h−1 → Hh, such that for all (y, r) in the domain, 3-MAJh−1(y) = 3-MAJh(ψ(y, r)).

Let c : {0, 1} × {1, 2, 3} → H1 satisfying b = MAJ(c(b, s)) for all inputs (b, s). Define the one
level encoding scheme ψ induced by c as follows: ψ(y, r) = x ∈ Hh such that for all 1 ≤ i ≤ 3h−1,
(x3i−2, x3i−1, x3i) = c(yi, ri).

To define A′, we use the one level encoding scheme ψ induced by the following function: c(y, 1) =
y01, c(y, 2) = 1y0, and c(y, 3) = 01y.

On input y, algorithm A′ picks a uniformly random string r ∈ {1, 2, 3}3h−1
, and runs A on

x = ψ(y,r) and computes the same output. Notice that each bit of xi of x is either determined
by r alone or else it is ydi/3e. When A asks for a bit of x that is determined by r, then this value
is “hard wired” in A′ and A′ makes no query. When A asks for a bit of x that is not determined
by r, then and A′ queries the corresponding bit of y. Observe that A′ has error at most δ as
3-MAJh−1(y) = 3-MAJh(ψ(y, r)) for all r, and A has error at most δ. We claim now:

2 Pr
B∈RA, x∈RHh

[B(x) queries xm(x)] ≥ Pr
B∈RA, (y,r)∈RH′h

[B′(y, r) queries ym(y)] (1)

whereH′h is the uniform distribution overHh−1×{1, 2, 3}3
h−1

and B′ is the algorithm that computes
x = ψ(y, r) and then evaluates B(x). We prove this inequality by taking an appropriate partition of
the probabilistic space of hard inputs Hh, and prove Eq. 1 separately, on each set in the partition.
For h = 1, the two classes of the partition are H0

1 and H1
1 . For h > 1, the partition consists of the

equivalence classes of the relation ∼ defined by x ∼ x′ if xi = x′i for all i such P (i) 6= P (m(x)) in
the tree T .

Because ψ is a bijection, observe that this also induces a partition of (y, r), where (y, r) ∼ (y′, r′)
if and only if ψ(y, r) ∼ ψ(y′, r′). Also observe that every equivalence class contains three elements.
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Then Eq. 1 follows from the following stronger statement: for every equivalence class S, and for all
B in the support of A, it holds that

2 Pr
x∈RHh

[B(x) queries xm(x) | x ∈ S]

≥ Pr
(y,r)∈RH′h

[B′(y, r) queries ym(y) | ψ(y, r) ∈ S] .
(2)

The same proof applies to all sets S, but to simplify the notation, we consider a set S that
satisfies the following: for x ∈ S, we have m(x) ∈ {1, 2, 3} and xm(x) = 1. Observe that for each
j > 3, the jth bits of all three elements in S coincide. Therefore, the restriction of B to the
variables (x1, x2, x3), when looking only at the three inputs in S, is a well-defined decision tree on
three variables. We call this restriction C, and formally it is defined as follows: for each query xj
made by B for j > 3, C simply uses the value of xj that is shared by all x ∈ S and that we hard-wire
into C; for each query xj made by B where j ∈ {1, 2, 3}, C actually queries xj . Note that the
restriction C does not necessarily compute 3-MAJ1(x1x2x3), for two reasons. Firstly, C is derived
from B, which may err on particular inputs. But even if B(x) correctly computes 3-MAJh(x), it
might happen that B never queries any of x1, x2, x3, or it might query one and never query a second
one, etc.

For any x ∈ S, recall that we write (y, r) the unique solution of ψ(y, r) = x. It holds for our
choice of S that m(y) = 1 because we assumed m(x) ∈ {1, 2, 3} and also y1 = ym(y) = 0 because
we assumed xm(x) = 1.

Observe that, for inputs x ∈ S, B queries xm(x) if and only if C queries the minority among
x1, x2, x3. Also, B′(y, r) queries ym(y) if and only if C(ψ(0, r1)) queries xr1 (cf. definition of c).
Furthermore, the distribution of x1x2x3 when x ∈R S is uniform overH0

1. Similarly, the distribution
of r1 over uniform (y, r) conditioned on ψ(y, r) ∈ S is identical to that of (0, r1) = ψ−1(x1x2x3) for
x1x2x3 ∈R H0

1. Thus Eq. 2 is equivalent to:

Pr
x∈RH0

1

[C(x) queries xr1 where ψ(0, r1) = x] ≤ 2 Pr
x∈RH0

1

[C(x) queries xm(x)] . (3)

In principle, one can prove this inequality by considering all the (finitely many) decision trees
C on three variables. We present here a somewhat more compact argument.

If C queries no bit, both sides of Eq. 3 are zero, so the inequality holds. We can therefore
assume that C makes at least one query and, without loss of generality, we may also assume that
the first query is x1. We distinguish two cases.

If C makes a second query when the first query is evaluated to 0 then the right hand side of
Eq. 3 is at least 4/3 = 2 · (1/3 + 1/3) because there is a 1/3 chance that the first query is m(x)
and 1/3 chance that the second is m(x). But the left hand side is at most 1, and therefore the
inequality holds.

If C does not make a second query when the first query is evaluated to 0 then the left hand side
is at most 2/3 since for x = 010, we have r1 = 3, but x3 is not queried. With probability 1/3 we
have m(x) = 1, so the right hand side is at least 2/3. We conclude that Eq. 3 holds for every C.

We remark that the decision tree algorithm making no queries is not the only one that makes
Eq. 3 hold with equality. Another such algorithm is the following: first query x1, if x1 = 0, stop,
else if x1 = 1, query x2 and stop.

To handle a general S, we replace {1, 2, 3} with m(x) and its two siblings. For S such that
x ∈ S satisfies xm(x) = 0, the optimal algorithm C ′ is the same as the one described above, except
that each 0 is changed to 1 and vice versa.
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Therefore Eq. 3 holds for every C, which implies the theorem.

Combining Corollary 2.3 and Theorem 3.1, we obtain the following.

Corollary 3.3. Rδ(3-MAJh) ≥ (1− 2δ)(5/2)h.

3.2 Further Improvements

Our proof from the previous section proceeds by proving a recurrence, using a one level encoding
scheme, for the minimal probability that an algorithm queries the absolute minority bit. One can
ask whether this is the best possible recurrence, and the following theorem states that it is possible
to improve it by using higher level encoding schemes.

In the following, we omit δ from the notation when convenient.

Definition 3.4 (Uniform k-level encoding scheme). Let R = ({0, 1} × {1, 2, 3}) and define c :
{0, 1}×R → H1 by setting c(y, (b, 1)) = yb(1−b), c(y, (b, 2)) = (1−b)yb, and c(y, (b, 3)) = b(1−b)y.
The uniform k-level encoding scheme ψ(k) is defined by the following recursion:

1. For h ≥ 1, y ∈ Hh−1 and r ∈ R(1)
h := R3h−1

we set ψ(1)(y, r) = x ∈ Hh such that
(x3i−2, x3i−1, x3i) = c(yi, ri), for all 1 ≤ i ≤ 3h−1;

2. for h ≥ k > 1, y ∈ Hh−k and (R, r) ∈ R(k)
h := R(k−1)

h × R3h−k we set ψ(k)(y, (R, r)) =
ψ(k−1)(ψ(1)(y, r), R).

We note that this encoding ψ is no longer a bijection. However, one can make essentially the
same argument as Theorem 3.1. The advantage of this scheme over the one used in that theorem
is the higher symmetry: while in the previous scheme a cyclic symmetry worked over any set of
three siblings now the entire symmetric group acts on them. Because of this higher symmetry if
one of three siblings has been queried, the remaining two are still playing symmetric roles.

We will need the following easy to prove observations that hold for all h ≥ k ≥ 1:

1. For all y ∈ Hh−k and r ∈ R(k)
h we have 3-MAJh−k(y) = 3-MAJh(ψ(k)(y, r)).

2. For (y, r) ∈R Hh−k ×R
(k)
h the value ψ(y, r) is distributed uniformly in Hh.

3. For each r ∈ R(k)
h and index i in the range 1 ≤ i ≤ 3h−k there is a unique index qi(r) in

the range (i − 1)3k + 1 ≤ qi(r) ≤ i3k such that for all y ∈ Hh−k we have xqi(r) = yi for

x = ψ
(k)
h (y, r). If 1 ≤ j ≤ 3h but j is not of the form qi(r) for any i, then xj is independent

of the choice of y. We call these bits of x the fixed bits.

We use the uniform k-level encoding schemes to obtain better bounds on pδh. The argument is
very similar to the argument in Theorem 3.1. We start with proving a lower bound on pδh based on
a parameter computable by considering all the (finitely many) decision trees acting on inputs from
H0
k. Then we proceed to actually compute this parameter. The high symmetry helps reducing the

cases to be considered, but as k grows the length of the calculation increases rather rapidly. We
explain the basic structure of the calculation and also include a short Python code implementing it
in Appendix A. For k = 2 we do the calculation without the use of a computer as an illustration,
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for k = 3, 4 we include the results of running the code. A much more efficient method would be
needed to make the calculation for k = 5 feasible.

Let us fix k ≥ 1 and let C be a deterministic decision tree algorithm acting on inputs of length
3k that queries at least one variable. We define

αC =
Prx∈RH0

k,(y,r)∈Rψ−1(x)[C(x) queries xq1(r)]

Prx∈RH0
k
[C(x) queries xm(x)]

,

where ψ = ψ
(k)
k . Note that C queries at least one bits, and thus neither the numerator nor the

denominator can be zero. This makes αC is well defined and positive. Notice that αC does not
depend on the output of C, it depends only on what input bits C queries. We further define

αk = max
C

αC ,

where the maximum extends over all deterministic decision trees on 3k variables that query at least
a single variable.

Theorem 3.5. For every k ≥ 1, h ≥ 0 integers and δ ≥ 0 real, we have

pδh ≥ (1− 2δ)(αk/2
k)α
−h/k
k .

As a corollary we also have

Rδ(3-MAJh) ≥ (1− 2δ)(αk/2
k)(2 + α

−1/k
k )h.

Proof. We concentrate on the proof of the first statement, then the second follows from Corol-
lary 2.3.

The proof follows the same structure as that of Theorem 3.1 but using a depth-k recursion: we
show that

αkp
δ
h ≥ pδh−k (4)

if h ≥ k. To bound pδh in the base cases h < k we use Theorem 3.1 stating pδh ≥ (1 − 2δ)/2h, and
the fact that αk ≤ 2k.

It remains to prove the Eq. 4. We proceed as in Theorem 3.1: we consider a randomized δ-
error algorithm A for 3-MAJh that achieves the minimum defining pδh and construct a randomized
algorithm A′ for 3-MAJh−k with the same error that queries the absolute minority of a uniform
random element of Hh−k with probability at most αkp

δ
h

To define A′, we use the uniform k-level encoding scheme ψ = ψ(k) (see Figure 1 for an illus-
tration of the k = 2 case). On input y ∈ Hh−k the algorithm A′ picks a uniform random element

r of R(k)
h and applies the decision algorithm A to x = ψ(y, r) with the convention that whenever a

fixed bit of x is queried by A, then A′ makes no query, and when a bit xqi(r) is queried by A, then

A′ queries yi. Define H′h = Hh−k ×R
(k)
h . Then (y, r) ∈ H′h encodes ψ(y, r) ∈ Hh.

We partition Hh again, this time into sets of size 3l with l =
∑k−1

i=0 3i. For h = k, the two
classes are H0

k and H1
k. For h > k, the partition consists of the equivalence classes of the relation

defined by x ∼ x′ if xi = x′i for all i such P (k)(i) 6= P (k)(m(x))) in the tree T . Here P (k)(x) denotes
the ancestor of the vertex x k levels above x (the k times iterated parent function). Namely,
an equivalence class consists of inputs that are identical everywhere except the k-level subtree
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y1

x1x2x3 x4x5x6 x7x8x9

b y1 r = 2

y1

r1 = 3 r2 = 1 r3 = 3

1-b

y1b2(1-b2)b1(1-b1)b b3(1-b3)(1-b)

Absolute minority
if y1 = 0, b = 0 and b3 = 0

y1

x1x2x3 x4x5x6 x7x8x9

by1

r = 2

y1

r1 = 3 r2 = 1 r3 = 3

1-b

y1b2(1-b2)b3(1-b3)bb1(1-b1)(1-b)

Figure 1: In a uniform 2-level encoding y1 is encoded using 9 bits x1x2 . . . x9. On the right hand
side, an example with specific choices of r, r1, r2, r3 for each level. In this example, when y1 = 0,
then b3 encodes the minority bit if b = b3 = 0.

containing their absolute minority. First observe that the uniformity of the encoding implies that
for every equivalence class S, and all B in the support of A:

Pr
x∈RHh

[B(x) queries xm(x) | x ∈ S] = Pr
(y,r)∈RH′h,x=ψ(y,r)

[B(x) queries xm(x) | x ∈ S] ,

Pr
(y,r)∈RH′h

[B′(y, r) queries ym(y)|ψ(y, r) ∈ S] = Pr
x∈RHh,(y,r)∈Rψ−1(x)

[B′(y, r) queries ym(y)|x ∈ S] .

We then prove that for every equivalence class S, and all B in the support of A, it holds that:

αk Pr
x∈RHh

[B(x) queries xm(x) | x ∈ S] ≥ Pr
(y,r)∈RH′h

[B′(y, r) queries ym(y) | ψ(y, r) ∈ S], (5)

where we recall that B′ is the algorithm that first computes x = ψ(y, r) and then evaluates B(x).
Proving Eq. 5 for all B and S finishes the proof of the theorem.

Let us fix S and let z be the variable part of the input: the 3k variables in the k-level subtree of
the absolute minority. Note that the set of possible values of z is either H0

k or H1
k, depending on S.

Now a deterministic decision tree B on inputs from S can be considered a deterministic decision
tree C for z. Indeed, the queries B asks outside z have a deterministic answer in S that can be
hard wired in C. In case C asks no queries at all, then Eq. 5 is satisfied with zero on both sides
of the inequality. Otherwise, if the possible values of z are coming from H0

k Eq. 5 follows from
αC ≤ αk (which, in turn, comes from the definition of αk as a maximum). Finally if the possible
values of z are the 1-hard inputs, then Eq. 5 is satisfied by symmetry.

To apply Theorem 3.5 we need to compute (or estimate) αk. For any fixed k this is a finite
computation, but even to do it for small values of k one needs to do better than going through all
the deterministic decision trees C on 3k variables. For a fixed k, a decision tree C and α ≥ 0 we
introduce

ρα(C) = Pr
x∈RH0

k,(y,r)∈Rψ−1(x)
[C(x) queries xq1(r)]− α Pr

x∈RH0
k

[C(x) queries xm(x)] . (6)

For the decision tree C0 not querying any variables we have ρα(C) = 0, for other decision trees C
we have ρα(C) > 0 if and only if αC > α. Thus, we have αk > α if and only if there exists C with
ρα(C) > 0. Finding the maximum maxC ρα(C) therefore answers the question whether αk > α.
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The advantage of this approach lies in the linearity of ρα, it makes it easier to maximize ρα(C)
than αC itself.

Let us call a bit of the hard input x ∈ Hk absolute majority if the flipping of this input flips
the value of 3-MAJk(x). Note that there are exactly 2k such bits for all hard inputs, these are the
ones where all vertices on the root to leaf path of the ternary tree evaluate to the same value.

Notice that for a fixed x ∈ H0
k and (y, r) ∈R ψ−1(x) the position q1(r) (where the k-level

encoding ψ = ψ(k) “hides” the input variable y) is uniformly distributed over the 2k absolute
majority positions. Thus, we can simplify Eq. 6 defining ρα as follows:

ρα(C) = 2−kpq − αpm, (7)

where pq is the expected number of absolute majority bits queried by C(x) for x ∈R H0
k and pm is

the probability that the absolute minority bit is queried by C for x ∈R H0
k.

We call a configuration a situation during the execution of a decision tree when some of the
variables are already queried and we know their values, while the others are not known. The next
action of the decision tree is either to stop (and produce an output that is irrelevant for us now)
or to pick a variable not queried yet and query it. In the latter case the next configuration is
determined by the value of the chosen variable.

A decision tree is determined by the actions it takes in the possible configurations. Given
configuration γ, the optimal decision tree takes the action that maximizes the linear combination
in Eq. 7 conditioned on reaching this configuration. Namely it maximizes:

ρα(C, γ) = 2−kPq(γ)− αPm(γ), (8)

where Pq(γ) is the expected number of absolute majority bits queried by C(x), when x is a uniform
random 0-hard x consistent with γ, while Pm(γ) is the probability that C(x) queries the absolute
minority bit for a uniform random 0-hard x consistent with γ. The point is that the optimal action
in a configuration γ can be found independently of the actions taken at configurations inconsistent
with γ. (A similar statement is false for the maximization of αC .)

Note that ρα(C, γ) is easy to compute if C stops at γ, while if C queries a new bit at γ,
then ρα(C, γ) can be easily computed from ρα(C, γ′) and ρα(C, γ′′), where γ′ and γ′′ are the two
configurations the new query may bring γ.

This leads to the following dynamic programming algorithm: consider all configurations in
the order where evaluating further variables yields configurations considered earlier. For each
configuration γ we find the optimal action and store the value of ρα(C, γ) for the optimal C.
Clearly, ρα(C) = ρ(α(C, γ0), where γ0 is the initial configuration (no variable is asked yet).

The number of configurations is 33
k
. This makes the above algorithm infeasible even for k = 3.

We make the number of configurations considered shrink considerably by the following simple tricks.

1. We use the symmetries. All the configurations that can be transformed into each other
using the automorphisms of the ternary tree are equivalent. We consider only one in each
equivalence class.

2. We identify two types of configurations when the optimal action is clear without any compu-
tation. First, if the root is evaluated, then we have necessarily queried all absolute majority
bits, so the optimal strategy is to stop. Second, if an unqueried variable cannot be the ab-
solute minority variable, we may as well query it right away. We know that the vertices of
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the path to the absolute minority evaluate alternatively to 0 and 1. If a vertex in odd depth
evaluates to 0 or in even depth evaluates to 1, then it is not on the absolute minority path
and all variables under it can be queried. But if a vertex in odd depth evaluates to 1, or in
even depth evaluates to 0, then its siblings are not on the absolute minority path and the
variables under the siblings should be queried.

We call a configuration stable if neither rule in point 2 applies. It is enough to store ρα(C, γ) for
stable γ. If ρα(C, γ) is needed for some unstable configuration γ we apply the above rules (possible
repeatedly) to find what stable configurations they lead to and use the corresponding stored values
to compute ρα(C, γ).

Note that if Nk denotes the number of equivalence classes of stable configurations in depth k,
then we have the recursion N0 = 1, Nk =

(Nk−1+1
2

)
+
(Nk−1+2

3

)
. Indeed, the stable configuration

for depth 0 is the one in which the only variable is not known. The recursion comes from noticing
that the children of the root in a stable configuration of depth k are duals of stable configurations
of depth k − 1 or are fully evaluated. But no child of the root can be evaluated to 1 in a stable
configuration and at most one of them can be evaluated to 0, so the stable configuration of depth
k is determined by an unordered pair or triple of stable configurations of depth k − 1. (Note that
to avoid dealing with duals the code Python code in the appendix considers recursive NOT-3-MAJ
functions to avoid dealing with dulas. This is the function computed by the a negated majority
gate in every node of a ternary tree.) The recursion gives the following values.

N1 = 2

N2 = 7

N3 = 112

N4 = 246, 792

N5 = 2, 505, 258, 478, 767, 772

This makes the computation feasible for k ≤ 4. We can even go through the seven stable con-
figurations in depth 2 without the use of a machine. We do just that in the next section as an
illustration.

As explained earlier, having an algorithm to maximize ρα(C) we can answer questions whether
αk > α. Instead of a binary search we find the exact value of αk as follows. With little modification
our algorithm gives not just the maximum of ρα(C) but also αC for the decision tree C maximizing
ρα(C). We can start with an arbitrary α ≤ αk and until we find that maxCρα(C) = 0 we can
repeatedly increase α to this value αC . Clearly, this finds the maximum αk in a finite number of
iterations. Instead of bounding the number of iterations in general we mention that starting from
the initial value α = 0 we arrived to αk in at most four iterations in the k = 2, 3, 4 cases. Our
computations show:

α1 = 2

α2 =
24

7

α3 =
12231

2203

α4 =
2027349

216164

Using the value of α4 Theorem 3.5 yields the following bound.
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Corollary 3.6.

Rδ(3-MAJh) ≥ (1/2− δ)

(
2 +

(
216164

2027349

)1/4
)h

> (1/2− δ)2.57143h.

We also state the consequence of the value α2. This bound is somewhat weaker, but is obtained
without the help of a computer.

Corollary 3.7. Rδ(3-MAJh) ≥ (1/2− δ)(2 +
√

7/24)h > (1/2− δ)2.54006h.

3.3 Computing α2 = 24/7

Here we fix k = 2 and consider the deterministic decision trees C on 9 variables. We run these
decision trees on inputs from H0

2.
Observe that we already know that αC ≤ 4 for all C from the proof of Theorem 3.1. It is easy

to check that αC0 = 3 for the decision tree C0 with the following strategy: first query x1, if x1 = 1,
stop, else if x1 = 0, query x2 and x3; then if MAJ(x1x2x3) = 0, stop, else query all remaining bits
and stop.These bounds show that 3 ≤ α2 ≤ 4, so it is enough to consider ρα for the values of α in
the range [3, 4].

It turns out that for these values the same decision tree maximizes ρα(C) among the determin-
istic decision trees querying at least one variable. It is the decision tree C ′ given in Figure 2. In the
figure, “Stop” means stop and “All” means to completely evaluate all variables, except in the case
when not asking a variable is explicitly indicated. We state the optimality of C ′ in the following
lemma.

Lemma 3.8. Let C be any deterministic decision tree on 9-bit inputs asking at least a single query
and let C ′ be the decision tree depicted in Figure 2. Then for all α ∈ [3, 4], ρα(C) ≤ ρα(C ′).

Proof. Recall that the action in a configuration γ of the decision tree C that maximizes ρα(C) is
the one that maximizes ρα(C, γ) = 2−2Pq(γ) − αPm(γ). To simplify notation, we simply write ρ,
Pq and Pm for these values if the configuration γ considered is clear from the context.

We call any set of 3 sibling nodes a clause, that is {1, 2, 3}, {4, 5, 6} and {7, 8, 9} are clauses.
We say a clause is evaluated if its majority is known.

We will argue what an algorithm maximizing ρα(C) should do. We begin with three simple
rules that are the special cases of the general rules we used to reduce the number of configurations
considered.

1. If a bit 0 is evaluated, then evaluate all remaining bits in its clause.

2. If two bits in a clause are evaluated to 1 (this is the minority clause), evaluate all remaining
bits in other clauses.

3. if two clauses have been evaluated to 0, then stop.

In what follows we systematically consider all configurations, where the three rules above do
not apply (the stable configurations) and decide what an optimal decision should do next in those
situations to maximize ρα.
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4. A single majority (0) clause is evaluated and either no variables are evaluated in either of
the other clauses or a single 1 is evaluated in both the other clauses. In this case, stopping is
the best strategy. Indeed, m(x) has not been queried yet. Therefore if we stop, then Pm = 0
and Pq = 2. This gives ρ = 1/2. But if C continues by querying at least one more bit, then
Pm ≥ 1/6 or Pm ≥ 1/4 (since there are either 6 or 4 remaining unqueried variables, and they
are symmetric) and Pq ≤ 4. Therefore, ρ = 2−2Pq − αPm ≤ 1− α/6 ≤ 1/2 since α ≥ 3.

5. A single majority clause is evaluated and one more bit is evaluated to 1, but nothing more.
We argue that stopping is best in this case just as in the previous case. The argument is more
involved because there is no symmetry between all unqueried variables, we have to compare
stopping separately to querying a variable inside or outside the untouched clause. There are
9 inputs consistent with this partial evaluation. If we stop, then Pq = 2 and Pm = 0, so we
have ρ = 1/2.

If we query a variable in the clause containing the single 1 bit, then there are 3 consistent
input in which the next queried bit is m(x), so we have Pm ≥ 1/3 and Pq ≤ 4, thus ρ ≤ 0
since α ≥ 3.

If we query a variable in the untouched clause, then there is 1 out of the 9 consistent inputs
for which this next queried variable is m(x), making Pm ≥ 1/9. There are 4 more consistent
inputs for which this variable evaluates to 1. In this case we arrive in the configuration covered
by item 4 above, and using that rule we should stop, leaving 2 out the 4 absolute majority
bits unqueried. Thus, we have Pq ≤ 4 − 4/9 · 2 = 28/9 and ρ ≤ 4/9, which is still less than
the 1/2 obtained if we stop.

6. A single 1 has been evaluated in each of the three clauses and no other bit has been queried.
In this case reading another bit is the best strategy (the choice of which bit is unimportant
because of symmetry). Observe that no bit 0 has been evaluated yet. Therefore if C stops,
we have ρ = Pq = Pm = 0. If C continues to query another bit, then which bit to query does
not matter by symmetry and rest of the algorithm is determined by the earlier rules yielding
Pq = 8/3, Pm = 1/6, and ρ = 2/3− α/6 ≥ 0.

7. A single bit 1 has been evaluated in each of two different clauses and the third clause is
untouched. Then the best is to evaluate a bit of the third clause. Again, if C stops we have
ρ = Pm = Pq = 0 and ρα are 0.

If C reads another bit in one of the clauses containing a single 1 bit, then the rest of the
decision tree algorithm is determined by the earlier rules and we get Pq = 14/5 and Pm = 1/5
with ρ = 7/10 − α/5. Note that whether this option is better or stopping depends on the
value of α.

If C reads a bit in the untouched clause, then by using the rules already presented in the
previous cases, we calculate Pq = 12/5 and Pm = 2/15 yielding ρ = 3/5 − 2α/15. This
happens to be more than either 0 or 7/10− α/5 in the entire range of α considered.

8. A single bit 1 has been evaluated in one clause and no other clauses are touched. Then the
best is to evaluate a bit of another clause. Again, if C stops, then we have ρ = Pm = Pq = 0.

If C evaluates another bit in the clause containing 1, then the rest of C is determined by
earlier rules and we have Pq = 3, Pm = 1/4 and ρ = 3/4− α/4 ≤ 0.
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Figure 2: Picture of C ′ with the contribution to ρC′ (in boxes) for each branch of C ′

But if C queries a bit in an untouched clause, then similar calculations yield Pq = 7/3,
Pm = 5/36 and ρ = 7/12− 5α/36 > 0, making this the best choice.

Following all the above rules (and always choosing the smallest index where symmetry allows
us to choose) we arrive to a well defined decision tree, namely to C ′. This finishes the proof of the
lemma.

Theorem 3.9. α2 = 24/7

Proof. As observed in the paragraph before Lemma 3.8 we have 3 ≤ α2 ≤ 4. By the lemma we
know that ρα(C) in this range is maximized by either C ′ or the decision tree not querying any
variable (the latter giving ρα = 0). We have α ≥ α2 if and only if this maximum is 0, so we
are done if we calculate ρα(C ′). The contribution of each branch of the algorithm is calculated on
Figure 2 summing to (48−14α)/81. This is positive for α < 24/7, so we have α2 = αC′ = 24/7.

4 Improved Depth-Two Algorithm

In this section, we present a new zero-error algorithm for computing 3-MAJh. For the key ideas
behind it, we refer the reader to Section 1.

As before, we identify the formula 3-MAJh with a complete ternary tree of height h. In the
description of the algorithm we adopt the following convention. Once the algorithm has determined
the value b of the subformula rooted at a node v of the formula 3-MAJh, we also use v to denote
this bit value b.

The algorithm is a combination of two depth-2 recursive algorithms. The first one, Evaluate
(see Algorithm 1), takes a node v of height h(v), and evaluates the subformula rooted at v. The
interesting case, when h(v) > 1, is depicted in Figure 3. The first step, permuting the input, means
applying a random permutation to the children y1, y2, y3 of v and independent random permutations
to each of the three sets of grandchildren.

The second algorithm, Complete (see Algorithm 2), is depicted in Figure 4. It takes two
arguments v, y1, and completes the evaluation of the subformula 3-MAJh rooted at node v,
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Algorithm 1 Evaluate(v): evaluate a node v.

Input: Node v with subtree of height h(v).
Output: the bit value 3-MAJh(Z(v)) of the subformula rooted at v

Let h = h(v)

if h = 0 then . First base case: h = 0 (v is a leaf)
Query Z(v) to get its value a return a

end if

Let y1, y2, y3 be a uniformly random permutation of the children of v

if h = 1 then . Second base case: h = 1
Evaluate(y1) and Evaluate(y2)
if y1 = y2 then return y1
elsereturn Evaluate(y3)
end if

end if

Let x1 and x2 be chosen uniformly at random from the children of y1 and y2, resp. . Recursive case
. use the attached figure as a guide

x1 x2

y2y1 y3

x2

y2y1 y3

v vEvaluate(x1) and Evaluate(x2)

if x1 6= x2 then
Evaluate(y3)
Let b ∈ {1, 2} be such that xb = y3
Complete(yb, xb)
if yb = y3 then return yb
elsereturn Complete(y3−b, x3−b)
end if

else[x1 = x2]
Complete(y1, x1)
if y1 = x1 then

Complete(y2, x2)
if [ theny2 = y1]y2 = x2 return y1
else[y2 6= y1] return Evaluate(y3)
end if

else[y1 6= x1]
Evaluate(y3)
if y3 = y1 then return y1
elsereturn Complete(y2, x2)
end if

end if
end if
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x1 = x2
E(x1), E(x2)

E(y3)

C(y1, x1) C(y2, x2) Output y1

Output y3

Output y3

Output y2

Output y3

Output MAJ(y1, y2, y3)

C(yb, xb)

C(y3-b, x3-b)

Set b ! {1, 2} 
such that y3 = yb

E(y3)

E(y3)

C(y2, x2)

y1 = x2 y1 = y2

y1 ! x2

y1 ! y2

y1 = y3

y1 ! y3

x1 ! x2

y3 = yb

y3 ! yb

Permute input

x1 x2

y2y1 y3

x2

y2y1 y3

v v

Figure 3: Pictorial representation of algorithm Evaluate on a subformula of height h(v) ≥ 2
rooted at v. It is abbreviated by the letter ‘E’ when called recursively on descendants of v. The
letter ‘C’ abbreviates the second algorithm Complete.

where h(v) ≥ 1, and y1 is a child of v whose value has already been evaluated. The first step,
permuting the input, means applying a random permutation to the children y2, y3 of v and inde-
pendent random permutations to each of the two sets of grandchildren of y2, y3. Note that this is
similar in form to the depth 2 algorithm of [JKS03].

To evaluate an input of height h, we invoke Evaluate(r), where r is the root. The correctness
of the two algorithms follows by inspection—they determine the values of as many children of the
node v as is required to compute the value of v.

For the complexity analysis, we study the expected number of queries they make for a worst-
case input of fixed height h. (A priori , we do not know if such an input is a hard input as defined
in Section 2.2.) Let T (h) be the worst-case complexity of Evaluate(v) for v of height h. For
Complete(v, y1), we distinguish between two cases. Let y1 be the child of node v that has already
been evaluated. The complexity given that y1 is the minority child of v is denoted by Sm, and the
complexity given that it is a majority child is denoted by SM.

The heart of our analysis is the following set of recurrences that relate T, SM and Sm to each
other.

Lemma 4.1. It holds that Sm(1) = 2, SM(1) = 3
2 , T (0) = 1, and T (1) = 8

3 .
For all h ≥ 1, it holds that

SM(h) ≤ Sm(h) and SM(h) ≤ T (h) . (9)
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Algorithm 2 Complete(v, y1): finish the evaluation of the subformula rooted at node v

Input: Node v of height h(v); child y1 of v which has already been evaluated
Output: the bit value 3-MAJh(Z(v))

Let h = h(v)

Let y2, y3 be a uniformly random permutation of the two children of v other than y1

if h = 1 then . Base case
Evaluate(y2)
if y2 = y1 then return y1
elsereturn Evaluate(y3)
end if

end if

Let x2 be chosen uniformly at random from the children of y2 . Recursive case
. use the attached figure as a guide

x1 x2

y2y1 y3

x2

y2y1 y3

v vEvaluate(x2)

if y1 6= x2 then
Evaluate(y3)
if y1 = y3 then return y1
elsereturn Complete(y2, x2)
end if

else[y1 = x2]
Evaluate(y2, x2)
if y1 = y2 then return y1
elsereturn Evaluate(y3)
end if

end if

Output y3

E(x2) C(y2, x2)

E(y3)

C(y2, x2) Output y2

Output y3E(y3)

Output y1

y1 = x2 y1 = y2

y1 ! y2y1 ! x2

y3 = y1

y3 ! y1

Permute input

x1 x2

y2y1 y3

x2

y2y1 y3

v v

Figure 4: Pictorial representation of algorithm Complete on a subformula of height h ≥ 1 rooted
at v one child y1 of which has already been evaluated. It is abbreviated by the letter ‘C’ when
called recursively on descendants of v. Calls to Evaluate are denoted ‘E’.
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Finally, for all h ≥ 2, it holds that

Sm(h) = T (h− 2) + T (h− 1) +
2

3
SM(h− 1) +

1

3
Sm(h− 1) , (10)

SM(h) = T (h− 2) +
2

3
T (h− 1) +

1

3
SM(h− 1) +

1

3
Sm(h− 1) , and (11)

T (h) = 2T (h− 2) +
23

27
T (h− 1) +

26

27
SM(h− 1) +

18

27
Sm(h− 1) . (12)

Proof. We prove these relations by induction. The bounds for h ∈ {0, 1} follow immediately by
inspection of the algorithms. To prove the statement for h ≥ 2, we assume the recurrences hold for
all l < h. Observe that it suffices to prove Equations (10), (11), (12) for height h, since the values
of the coefficients immediately imply that Inequalities (9) holds for h as well.

Equation (10). Since Complete(v, y1) always starts by computing the value of a grand-
child x2 of v, we get the first term T (h − 2) in Eq. (10). It remains to show that the worst-case
complexity of the remaining queries is T (h− 1) + (2/3)SM(h− 1) + (1/3)Sm(h− 1).

Since y1 is the minority child of v, we have that y1 6= y2 = y3. The complexity of the remaining
steps is summarized in the next table in the case that the three children of node y2 are not all
equal. In each line of the table, the worst case complexity is computed given the event in the first
cell of the line. The second cell in the line is the probability of the event in the first cell over the
random permutation of the children of y2. This gives a contribution of T (h − 1) + (2/3)SM(h −
1) + (1/3)Sm(h− 1).

Sm(h) (we have y1 6= y2 = y3)

event probability complexity

y2 = x2 2/3 T (h− 1) + SM(h− 1)

y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

This table corresponds to the worst case, as the only other case is when all children of y2 are
equal, in which the cost is T (h−1) +SM(h−1). Applying Inequality (9) for h−1, this is a smaller
contribution than the case where the children are not all equal.

Therefore the worst case complexity for Sm is given by Eq. (10). We follow the same convention
and appeal to this kind of argument also while deriving the other two recurrence relations.

Equation (11). Since Complete(v, y1) always starts by computing the value of a grand-
child x2 of v, we get the first term T (h − 2) in Eq. (11). There are then two possible patterns,
depending on whether the three children y1, y2, y3 of v are all equal. If y1 = y2 = y3, we have in
the case that all children of y2 are not equal that:

SM(h) if y1 = y2 = y3
event probability complexity

y2 = x2 2/3 SM(h− 1)

y2 6= x2 1/3 T (h− 1)

As in the above analysis of Eq. (10), applying Inequalities (9) for height h − 1 implies that the
complexity in the case when all children of y2 are equal can only be smaller, therefore the above
table describes the worst-case complexity for the case when y1 = y2 = y3.

If y1, y2, y3 are not all equal, we have two events y1 = y2 6= y3 or y1 = y3 6= y2 of equal
probability as y1 is a majority child of v. This leads to the following tables for the case where the

19



children of y2 are not all equal

SM(h) given y1 = y2 6= y3
event prob. complexity

y2 = x2 2/3 SM(h− 1)

y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

SM(h) given y1 = y3 6= y2
event prob. complexity

y2 = x2 2/3 T (h− 1)

y2 6= x2 1/3 T (h− 1) + Sm(h− 1)

As before, one can apply Inequalities (9) for height h − 1 to see that the worst case occurs when
the children of y2 are not all equal.

From the above tables, we deduce that the worst-case complexity occurs on inputs where
y1, y2, y3 are not all equal. This is because one can apply Inequalities (9) for height h − 1 to
see that, line by line, the complexities in the table for the case y1 = y2 = y3 are upper bounded by
the corresponding entries in each of the latter two tables. To conclude Eq. (11), recall that the two
events y1 = y2 6= y3 and y1 = y3 6= y2 occur with probability 1/2 each:

SM(h) = T (h− 2) +
1

2

[
2

3
SM(h− 1) +

1

3
(T (h− 1) + Sm(h− 1))

]
+

1

2

[
2

3
T (h− 1) +

1

3
(T (h− 1) + Sm(h− 1))

]
.

Equation (12). Since Evaluate(v) starts with two calls to itself to compute x1, x2, we get
the first term 2T (h − 2) on the right hand side. For the remaining complexity, we consider two
possible cases, depending on whether the three children y1, y2, y3 of v are equal. If y1 = y2 = y3,
assuming that the children of y1 are not all equal, and the same for the children of y2, we have

T (h) given y1 = y2 = y3
event probability complexity

y1 = x1, y2 = x2 4/9 2SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + SM(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + Sm(h− 1)

As before, the complexities are in non-decreasing order, and we observe that Inequalities (9) for
height h − 1 implies that in a worst case input the children of y1 are not all equal, and the same
for the children of y2.

If y1, y2, y3 are not all equal, we have three events y1 = y2 6= y3, y1 6= y2 = y3 and y3 = y1 6= y2
each of which occurs with probability 1/3. This leads to the following analyses

T (h) given y1 = y2 6= y3
event probability complexity

y1 = x1, y2 = x2 4/9 2SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + 2Sm(h− 1)
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T (h) given y1 6= y2 = y3
event probability complexity

y1 = x1, y2 = x2 4/9 T (h− 1) + SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + 2Sm(h− 1)

T (h) given y3 = y1 6= y2
event probability complexity

y1 = x1, y2 = x2 4/9 T (h− 1) + SM(h− 1)

y1 = x1, y2 6= x2 2/9 T (h− 1) + SM(h− 1) + Sm(h− 1)

y1 6= x1, y2 = x2 2/9 T (h− 1) + Sm(h− 1)

y1 6= x1, y2 6= x2 1/9 T (h− 1) + 2Sm(h− 1)

In all three events, we observe that Inequalities (9) for height h − 1 implies that in a worst case
input, the children of y1 are not all equal, and the same for the children of y2.

Applying Inequalities (9) for height h − 1, it follows that line by line the complexities in the
last three tables are at least the complexities in the table for the case y1 = y2 = y3. Therefore the
worst case also corresponds to an input in which y1, y2, y3 are not all equal. We conclude Eq. (12)
as before, by taking the expectation of the complexities in the last three tables.

Theorem 4.2. T (h), SM(h), and Sm(h) are all in O(αh), where α ≤ 2.64944.

Proof. We make an ansatz T (h) ≤ aαh, SM(h) ≤ b αh, and Sm(h) ≤ c αh, and find con-
stants a, b, c, α for which we may prove these inequalities by induction.

The base cases tell us that 2 ≤ cα, 3
2 ≤ bα, 1 ≤ a, and 8

3 ≤ aα.
Assuming we have constants that satisfy these conditions, and that the inequalities hold for

all appropriate l < h, for some h ≥ 2, we derive sufficient conditions for the inductive step to go
through.

By the induction hypothesis, Lemma 4.1, and our ansatz, it suffices to show

a+ 3a+2b+c
3 α ≤ c α2 a+ 2a+b+c

3 α ≤ b α2 2a+ 23a+26b+18c
27 α ≤ aα2 (13)

The choice α = 2.64944, a = 1.02, b = 0.559576× a, and c = 0.755791× a satisfies the base case as
well as all the Inequalities (13), so the induction holds.
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A Python code

def prep ( dep ) :
global depth , g , d
# depth = depth o f r e c u r s i v e NOT−3−MAJ c i r c u i t s cons idered
# g [ i ] = l i s t o f depth i s t a b l e c o n f i g u r a t i o n s f o r 0 <= i <= depth
# f o r a record r r e p r e s e n t i n g a c o n f i g u r a t i o n o f depth i
# r [ 0 ] = # of e v a l u a t i o n s g i v i n g 0
# r [ 1 ] = # of e v a l u a t i o n s g i v i n g 1
# r [ 2 ] = # of q u e r i e d a b s o l u t e major i ty b i t s in a l l e v a l u a t i o n s wi th c o r r e c t

output
# r [ 3 : 6 ] = i n d i c e s o f the t h r e e c h i l d r e n , s o r t e d ( where a p p l i c a b l e )
# d [ i ] = d i c t i o n a r y t h a t t e l l s the index o f a s t a b l e c o n f i g u r a t i o n o f depth

i from the i n d i c e s o f i t s 3 depth i−1 c h i l d r e n
# prep s e t s the v a l u e s o f t h e s e g l o b a l v a r i a b l e s ( w i l l not be changed )
depth=dep
g = [ [ [ 0 , 1 , depth % 2 ] , [ 1 , 1 , 0 ] ] ]
# two s t a b l e c o n f i g u r a t i o n s in g [ 0 ] : a v a r i a b l e s e t to 1 and a not q u e r i e d

v a r i a b l e
d=[{} ]
# empty d i c t i o n a r y in d [ 0 ]
for i in range (1 , depth+1) :

# b u i l d i n g g [ i ] and d [ i ] under the names gg and dd
g l=g [−1]
gg = [ [ 0 , 1 , ( ( depth−i )%2)∗2∗∗ i ] ]
# the f i r s t record r e p r e s e n t s a f u l l y q u e r i e d s u b t r e e o f depth i

e v a l u a t i n g to 1
dd={}
for a in range ( l en ( g l ) ) :

for b in range (max(a , 1 ) , l en ( g l ) ) :
for c in range (b , l en ( g l ) ) :

# e n f o r c i n g a <= b <= c and no two f u l l y e v a l u a t e d s i b l i n g s in a
s t a b l e c o n f i g u r a t i o n

dd [ ( a , b , c ) ]= l en ( gg )
A,B,C=g l [ a ] , g l [ b ] , g l [ c ]
gg . append ( [A[ 0 ] ∗B[ 1 ] ∗C[1]+A[ 1 ] ∗B[ 0 ] ∗C[1]+A[ 1 ] ∗B[ 1 ] ∗C[ 0 ] ,A[ 1 ] ∗B[ 0 ] ∗C

[0]+A[ 0 ] ∗B[ 1 ] ∗C[0]+A[ 0 ] ∗B[ 0 ] ∗C[ 1 ] ,A[ 0 ] ∗B[ 1 ] ∗C[2]+A[ 0 ] ∗B[ 2 ] ∗C[1]+
A[ 1 ] ∗B[ 0 ] ∗C[2]+A[ 1 ] ∗B[ 2 ] ∗C[0]+A[ 2 ] ∗B[ 0 ] ∗C[1]+A[ 2 ] ∗B[ 1 ] ∗C[ 0 ] , a , b ,
c ] )

# i n s e r t i n g the curren t record in gg and dd − formula i s long but
s imple

g . append ( gg )
d . append (dd)
# i n s e r t i n g the f i n a l gg and dd as g [ i ] and d [ i ]

def check ( a0 , a1 ) :
global alpha , ot , opt
# alpha i s cons idered as the r a t i o n a l a0/a1 but the i n t e g e r s are s t o r e d
# ot i s a t a b l e d i n a m i c a l l y b u i l t f o r the s t r a t e g y C maximizing r h o a l p h a (C)
# ot [ a ] [ 0 ] = # of i n p u t s in which the opt imal s t r a t e g y C a p p l i e d a f t e r

c o n f i g u r a t i o n g [ depth ] [ a ] q u e r i e s abs . minor i ty
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# ot [ a ] [ 1 ] = # t o t a l # of a b s o l u t e major i ty b i t s r e v e a l e d f o r C a p p l i e d
a f t e r g [ depth ] [ a ]

alpha =[a0 , a1 ]
ot = [ [ 0 , 0 ] ]
# g [ depth ] [ 0 ] i s i m p o s s i b l e
for a in range (1 , l en ( g [−1]) ) :

opt =[0 , g [ −1 ] [ a ] [ 2 ] ]
# opt i s the b e s t curren t guess f o r ot [ a ]
# here i t i s s e t to v a l u e corresponding to s t o p p i n g at the c o n f i g u r a t i o n g

[ depth ] [ a ]
# opt [ 0 ] = 0 as the a b s o l u t e minor i ty i s not q u e r i e d in any s t a b l e

c o n f i g u r a t i o n
adj ( depth , a , [ ] , 0 )
# here adj i s a p p l i e d to the roo t o f the current c o n f i g u r a t i o n g [ depth ] [ a ]
# i t craws through the e n t i r e t r e e and updates opt i f query ing a v a r i a b l e

i s b e t t e r than the curren t optimum
ot . append ( opt )
# opt i s now the c o r r e c t optimum − i t i s i n s e r t e d in the l i s t

return ot [−1]
# here max C r h o a l p h a (C) = ot [ −1 ] [1 ]/(2∗∗ depth ∗N)−a lpha ∗ ot [−1]/N, where N

i s the t o t a l # o f 0−hard i n p u t s
# a l s o : a lpha (C) = ot [ −1 ] [ 1 ] / ( ot [ −1] [0 ]∗2∗∗ depth ) ( u n l e s s ot [−1]=[0 ,0] and C

q u e r i e s no input b i t )

def adj ( i , a , s , t ) :
global ot , opt
# here we c o n s i d e r what happens i f a v e r t e x W in a s t a b l e c o n f i g u r a t i o n i s

e v a l u a t e d to 0 or 1
# g [ i ] [ a ] = the c o n f i g u r a t i o n below W
# s i s a l i s t o f depth−i p a i r s o f s i b l i n g s to add to g [ i ] [ a ] to a r r i v e to

the s t a b l e depth d c o n f i g u r a t i o n cons idered
# f i r s t g o a l compute t t as f o l l o w s
# t t [ 0 ] # of i n p u t s in which the opt imal s t r a t e g y C a p p l i e d a f t e r W i s s e t

to 0 ( i n s t a b l e ) q u e r i e s abs . minor i ty
# t t [ 1 ] t o t a l # of a b s o l u t e major i t b i t s r e v e a l e d in same s i t u a t i o n
# t t [ 2 ] # of c o n s i s t e n t i n p u t s wi th W on the roo t to a b s o l u t e minor i ty path
# t = ( same as t t but f o r the parent o f W)
i f s ==[] :

t t =[0 ,2∗∗ i , 1 , 0 , 0 ]
# no input cons idered g i v e s 0 at the roo t

else :
s1 , s2=g [ i ] [ s [ 0 ] [ 0 ] ] , g [ i ] [ s [ 0 ] [ 1 ] ]
# the s i b l i n g s o f W
nn , ne=s1 [ 1 ] ∗ s2 [ 1 ] , s1 [ 0 ] ∗ s2 [1 ]+ s2 [ 0 ] ∗ s1 [ 1 ]
t t =[nn∗ t [0 ]+ ne∗ t [ 3 ] , nn∗ t [1 ]+ ne∗ t [ 4 ] , nn∗ t [ 2 ] ]
# based on the r u l e to e v a l u a t e the s i b l i n g s o f W i f W e v a l u a t e s to 0
i f s [ 0 ] [ 0 ] = = 0 :

t t . extend ( [ s2 [ 0 ] ∗ t [ 0 ] , s2 [ 0 ] ∗ t [ 1 ] ] )
# based on the f a c t t h a t i f W e v a l u a t e s to 1 and a so does a s i b l i n g ,

then the parent e v a l u a t e s to 0
else :
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# we have a s t a b l e c o n f i g u r a t i o n a and use d to f i n d i t s index in g [ depth
]

w, j =0, i
for s i in s :

j=j+1
i f w<=s i [ 0 ] :

t r i p l e =(w, s i [ 0 ] , s i [ 1 ] )
e l i f w<=s i [ 1 ] :

t r i p l e =( s i [ 0 ] ,w, s i [ 1 ] )
else :

t r i p l e =( s i [ 0 ] , s i [ 1 ] ,w)
# here we s o r t e d the t h r e e s i b l i n g s w, s i [ 0 ] and s i [ 1 ]
w=d [ j ] [ t r i p l e ]

# by now w i s index o f the f u l l s t a b l e c o n f i g u r a t i o n and ot [w] c ont a ins
the numbers we seek

t t . extend ( ot [w] )
i f i >0:

# i f W i s not a v a r i a b l e we r e c u r s i v e l y c a l l ad j on i t s non−e v a l u a t e d
c h i l d r e n

A=g [ i ] [ a ]
i f A[3 ] >0 :

adj ( i −1,A[ 3 ] , [A[ 4 : 6 ] ] + s , t t )
adj ( i −1,A [ 4 ] , [ [ A[ 3 ] ,A[ 5 ] ] ] + s , t t )
adj ( i −1,A[ 5 ] , [A[ 3 : 5 ] ] + s , t t )

else :
# i f W i s a v a r i a b l e we compute the e f f e c t s o f query ing i t , compare to opt

and update opt i f needed
pa i r =[ t t [0 ]+ t t [2 ]+ t t [ 3 ] , t t [1 ]+ t t [ 4 ] ]
i f ( pa i r [0]− opt [ 0 ] ) ∗ alpha [ 0 ]∗2∗∗ depth<( pa i r [1]− opt [ 1 ] ) ∗ alpha [ 1 ] :

opt=pa i r

import f r a c t i o n s
def alpha ( dep ) :

# f i n d s minimal a lpha wi th r h o a l p h a (C) <= 0 f o r a l l C = max alpha (C) f o r
non−empty C

# by r e c u r s i v e l y a p p l y i n g check ( a lpha ) t h a t e i t h e r g i v e s a h i g h e r a lpha or
conf irms t h a t a lpha i s opt imal

prep ( dep )
p=0
q=1
x=check (p , q )
while ( x != [ 0 , 0 ] ) :

f=f r a c t i o n s . Fract ion ( x [ 1 ] , x [ 0 ] ∗ ( 2 ∗ ∗ dep ) )
p=f . numerator
q=f . denominator
x=check (p , q )

print ( ”For depth ” , dep , ” , opt imal alpha i s ” , f )
print ( ” l e ad ing to a lower bound o f ( ” ,2+(p/q ) ∗∗(−1/dep ) , ” ) ˆh” )
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