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Abstract

In this paper we investigate the question whether a perfect matching can be isolated by a
weighting scheme using Chinese Remainder Theorem (short: CRT). We give a systematical
analysis to a method based on CRT suggested by Agrawal in a CCC’03-paper for testing
perfect matchings. We show that this desired test-procedure is based on a deterministic
weighting scheme which can be generalized in a natural way to a scheme for isolating a perfect
matching in the graph. Thereby we give a new insight into the topic about deterministic
isolations of perfect matchings by showing necessary and sufficient conditions for a potential
isolation. Moreover, we show that if the considered weighting scheme by using CRT for
isolating perfect matchings works, then the maximum matching problem can be solved
completely in NC. This is a generalization of the NC-algorithm showed in [Hoa10] for the
maximum matching problem for bipartite planar graphs.

1 Introduction

A matching in a graph is a set of vertex-disjoint edges in the graph. A matching with maximum
cardinality is called maximum, and perfect if it covers all vertices in the graph. One of the
most interesting topics in theoretical computer science consists of research problems concerning
graph matchings (see e.g. [LP86]). For example, Decision-PM is the standard decision version
of the perfect matching problem that can be formulated as follows: given a graph G one has
to decide whether G has some perfect matchings. It is well-known that Decision-PM is effi-
ciently solvable in polynomial time [Edm65]. Regarding parallel computations, Decision-PM
is known to be in randomized NC [KUW86, MVV87, ARZ99]. But the open question whether
Decision-PM is in NC is still a big challenge. Furthermore, in the viewpoint of complex-
ity theory, we know that the problem of computing the number of all perfect matchings in
a bipartite graph is complete for #P [Val79]. Hence under the hypothesis P 6= NP there is
an enormous gap between the upper bounds for the counting and the decision versions of the
perfect matching problem.

The motivation for studying the complexity of the perfect matching problem is manifold.
Decision-PM is known to be a special case of the problem of Symbolic Determinant Identity
Testing (short: SDIT) because by Tutte’s Theorem [Tut47] (see next section for more detail)
one has to verify if the determinant of a symbolic matrix is equal to 0. In general, the problem of
testing if a multivariate polynomial p(x1, x2, . . . , xn) given in an implicit form, like an arithmetic
circuit or a symbolic determinant, over a ring is identically zero or not is called Polynomial
Identity Testing (short: PIT). PIT can be solved efficiently in randomized polynomial time by
using Schwartz-Zippel Lemma [Sch80, Zip79]. But it is open whether the randomized solutions
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for PIT can be derandomized. Actually, this open question is very important due to a result
by Impagliazzo and Kabanets [KI04] which states that the problem of derandomizing PIT is
computationally equivalent to the problem of proving lower bounds for arithmetic circuits.
Therefore, Decision-PM is a special case of PIT and it attracts a great attention. Note that
the decision version of the perfect matching problem is known to be in NC for the following
restricted classes of graphs: planar graphs [Kas67, Vaz89], regular bipartite graphs [LPV81],
strongly chordal graphs [DK86], and dense graphs [DHK93]. Furthermore, the problem of
constructing a perfect matching (short: Search-PM) is known to be in NC only for bipartite
planar graphs [MN95, MV00, DKR08], for graphs with a polynomially bounded number of
perfect matchings [GK87, AHT07], and for graphs with a polynomially bounded number of
nice cycles [Hoa10]. Note that it is open whether Search-PM is in NC under the promise
Decision-PM is in NC.

In this paper we deal with the open question whether the perfect matching problem can be
solved in NC, i.e. whether Decision-PM and (or) Search-PM are in NC.

In 1999, Agrawal and Biswas [AB99] proposed a paradigm for polynomial identity testing:
via Chinese remaindering over polynomials. The idea [AB99] is simple: First, the multivariate
polynomial p(x1, . . . , xn) should be transformed via a deterministic way to a new univariate
polynomial q(y) such that p(x1, . . . , xn) = 0 iff q(y) = 0 holds. Then in the final step, when
the new polynomial q(y) has exponentially high degrees then the polynomial identity testing
q(y) = 0 will be done by using modulo some small degree polynomials which are randomly
chosen from a suitable set.

Due to the celebrated result by Agrawal, Kayal, and Saxena [AKS04] that primality test-
ing is in polynomial time, where the mentioned idea has been used in a very clever way, the
above paradigm by Agrawal and Biswas is also significant for other derandomization-problems.
W.r.t. the perfect matching problem, Agrawal conjectured in [Agr03] that by the mentioned
paradigm (using CRT) one can show that Decision-PM for bipartite graphs is in NC. Note
that regarding this conjecture, the sparse case of the perfect matching problem has been solved
(by using CRT) already in [GK87, AHT07, Hoa10].

In Section 3 we give a systematical study of the above-mentioned paradigm for solving the
perfect matching problem. We show that the conjecture for testing the existence of perfect
matchings, using the method via CRT, can be generalized to a conjecture for deterministically
isolating a perfect matching in the graph. Note that a partial derandomization of the Isolating
Lemma (by Mulmuley, Vazirani, and Vazirani [MVV87]) in a certain manner would lead to a
series of strong consequences, in particular, among small logspace complexity classes. From
this follows for example that if in NC we are able to isolate a perfect matching by small
weights, then both mentioned versions of the perfect matching problem, Decision-PM and
Search-PM, are in NC. Thus, by this example sentence, the problem Search-PM might be
not harder than Decision-PM. A contribution of the paper consists of a deep insight into the
problematic situation concerning the question whether a perfect matching in a graph can be
deterministically isolated via Chinese remaindering. We characterize the graphs for which the
described isolation (via CRT) works.

Moreover, we show that if we have a deterministic way for weighting the edges such that
Decision-PM can be done in NC then we can extend this bound to the problem of computing
the matching number, which is the size of a maximum matching in the graph. Note that the
problem of computing the matching number is a generalization of Decision-PM. Furthermore,
if we have an NC algorithm for isolating some perfect matching in the graph then also in NC we
can compute a maximum matching of the graph. This result is a generalization of the first NC
algorithm for the maximum matching problem, i.e. searching a maximum matching is known
to be in NC for planar bipartite graphs [Hoa10] thereafter a logspace algorithm for isolating a
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perfect matching in a planar bipartite graph has been shown in [DKR08].

2 Preliminaries

We assume that the readers are familiar with basic materials in complexity theory. Basic facts
about the mentioned classes P,NP,NC and #P can be found in the textbook [Pap94]. In this
section we briefly describe some basic definitions and notions we need in the paper. We refer
the readers to [LP86] for more detail on graph matchings, and to other standard textbooks in
linear algebra and number theory.

Let G be an undirected graph with n vertices V = {1, 2, . . . , n}, and m edges E =
{e1, . . . , em} ⊆ V ×V . A matching in G is a edge-set M ⊆ E, such that no two edges in M have
a vertex in common. Matching M is called perfect if M covers all vertices of G, i.e. |M | = 1

2 n,
it is called maximum if its size |M | is maximum. The size of a maximum matching in G is
called the matching number of G which is denoted by µ(G).

Standard problems concerning graph matchings have been defined and studied in the liter-
ature:

• Given a graph G, the decision version Decision-PM is the problem of deciding whether
G has some perfect matching. This is a special case of the problem of determining the
matching number of G.

• We denote the problem of computing a perfect matching (the construction version) by
Search-PM. A generalization of Search-PM is the problem of computing a maximum
matching in G.

• The counting version Counting-PM is defined as the problem of counting the number
of all perfect matchings in a graph.

We describe some algebraic facts related to perfect matchings.
Graph G = (V,E) can be presented by its adjacency matrix: this is an n × n symmetric

matrix A ∈ {0, 1}n×n where Ai,j = 1 iff (i, j) ∈ E, for all 1 ≤ i, j ≤ n. Assigning weights to
the edges we get an edge-weighted graph. In a edge-weighted graph, the weight of a matching
is defined as the sum of all weights of the edges in the matching.

Assign an orientation to the edges of a weighted graph G, i.e. every edge (i, j) gets one of
two orientations, from i to j or from j to i, we obtain respectively an oriented graph ~G for which
there is a so-called Tutte skew-symmetric matrix T as follows:

Ti,j =
{

Ai,j w(i, j) , if an edge of ~G is directed from i to j,
−Ai,j w(i, j) , otherwise.

In the case when all directed edges of ~G are oriented from smaller to larger vertices, the orien-
tation ~G and the matrix T are called canonical. Note that any canonical matrix T is isomorph
to the matrix with the structure in which all negative elements are located under the main
diagonal.

The Pfaffian of a skew-symmetric matrix is defined as the signed sum of all the perfect
matchings in the weighted graph associated to the matrix. For our consideration, the Pfaffian
of T associated to an orientation ~G, denoted by pf(T ) or pf(T (~G, w)), is defined as follows:

pf(T (~G, w)) =
∑

perfect matching M in G

sign(M) · value(M)
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where sign(M) ∈ {−1,+1} is the sign of M that depends on the orientation ~G, and value(M) =∏
(i,j)∈M w(i, j) is the value of M that depends on the weighting scheme w for G.
It is known from linear algebra that for any skew-symmetric matrix S the Pfaffian is strongly

related to the determinant as follows

det(S) =
{

pf2(S) , if S is of even order,
pf(S) = 0, if S is of odd order.

The determinant of integer matrices is known to be computable in NC2 [Ber84]. But note that
from the above relation between the Pfaffian and the determinant one can not imply that the
Pfaffian can be computed also in NC. The latter has been shown in [MSV99] where the Pfaffian
is computationally equivalent to the determinant function.

Assigning indeterminates xi,j to the edges (i, j) of G we get the graph G(X). Now the value
of a perfect matching is a product of pairwise different n/2 indeterminates. Let T (X) be the
canonical Tutte skew-symmetric matrix of G(X). Then it is clear that all the perfect matchings
in G are 1-1 mapped to monomials in the multivariate polynomial pf(T (X)).

Theorem 2.1 (Tutte, [Tut47]) Graph G has no perfect matching iff pf(T (X)) = 0.

By Tutte Theorem we see that the problem of testing the existence of perfect matchings in a
graph is reducible to the problem of testing if a multivariate polynomial vanishes. A randomized
algorithm for the latter can be obtained simply by using the Schwartz-Zippel lemma [Sch80,
Zip79].

We know that the number of all perfect matchings in a bipartite graph is known to be #P-
complete [Val79]. But in some restricted classes of graphs, the number of all perfect matchings
can be computed efficiently by using the Pfaffian. Thereby, one can orient the graph such that
all perfect matchings in the oriented graph get the same sign +1 in the associated Pfaffian,
such an orientation is called a Pfaffian orientation [Kas67], and finally the number of all perfect
matchings is equal to the Pfaffian of the oriented graph. Unfortunately, there are graphs without
any Pfaffian orientation, the complete bipartite graph K3,3 is an example of them. However,
planar graphs [Kas67] and K3,3-free graphs [Vaz89] admit always Pfaffian orientations which
are computable in NC, and thus the number of all perfect matchings in such a graph can be
computed efficiently.

A concept of isolating a perfect matching is provided by Isolating Lemma [MVV87]:

Lemma 2.2 (Mulmuley, Vazirani, Vazirani [MVV87]) Let U be a universe of size m and
S be a considered family of subsets of U . Let w : U → {1, . . . , 2m} be a random weight function.
Then with probability at least 1

2 there exists a unique minimum weight subset in S.

For the perfect matching problem, one can assign xw(e) to the edges e where x is an indetermi-
nate and the ”weights” w(e) are chose randomly from {1, . . . , 2m}. By Lemma 2.2, with high
probability there exists in G a unique minimum weighted perfect matching which will be isolated
in the Pfaffian computation as follows: By T (x) we denote the skew-symmetric canonical Tutte
matrix associated to the labeled graph. Now the Pfaffian pf(T (x)) is defined as the signed sum
of all perfect matchings in G, where the value of a perfect matching M is of the form xW(M) in
which W(M) is the ”weight” of M , i.e. W(M) is the sum of all w(e) for all e ∈ M .

Since with high probability a perfect matching M has a unique minimum weight, the term
with the lowest degree in pf(T (x)) should be corresponded to M . In order to construct M , one
can determine in parallel all the edges having a contribution to the lowest term in the Pfaffian
polynomial (see Theorem 3.2 on page 7 for more detail). Thereby note that the Pfaffian of a
skew-symmetric matrix with univariate polynomials in its elements can be also computed in
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NC. This fact follows from NC-computation of the determinant of a univariate polynomial
matrix [AAM03] and from combinatorial setting for Pfaffians [MSV99]. Therefore, Search-PM
(and as a consequence also Decision-PM) is in random NC. Moreover, we see that if in NC
we are able to assign small weights (with logarithmic number of bits) to the edges such that
a perfect matching gets a unique minimum weight, then we obtain NC-algorithms for both
Search-PM and Decision-PM.

3 Isolating matchings via CRT

Agrawal suggested in [Agr03] a general paradigm for derandomizing polynomial identity testing
p(x1, . . . , xn) = 0 by using CRT as follows:

a) Convert the multivariate polynomial p(x1, . . . , xn) via a deterministic way to a univariate
polynomial q(y) such that p(x1, . . . , xn) = 0 ⇐⇒ q(y) = 0 holds.

b) testing q(y) = 0 will be done by using modulo some small degree polynomials h(y) which
is chosen from a suitable set. Note that q(y) might be of exponentially high degree.

Consider Decision-PM which is the decision version of the perfect matching problem.
Recall Tutte’s Theorem (on page 4) that Decision-PM is equivalent to the problem of testing
if a multivariate polynomial (the Pfaffian) is identically zero.

In the case when graph G is bipartite, we see that pf(T (X)) = 0 is equivalent to det(B(X)) =
0 where T (X) is the canonical Tutte skew-symmetric matrix (see on page 4) and B(X) is called
the bipartite adjacency matrix of G:

T (X) =
(

0 B(X)
−BT (X) 0

)
.

For Decision-PM for bipartite graphs, Agrawal [Agr03] interpreted the paradigm for the de-
randomization as follows. For Step a) in the above paradigm, Agrawal [Agr03] suggested the

mapping y2n3i+j 7→ xi,j that transforms B(X) into matrix B(y) such that

det(B(X)) = 0 ⇐⇒ det(B(y)) = 0.

In the case when G does not have any perfect matching, then it is clear that det(B(X)) =
det(B(y)) = 0. If G has some perfect matching, then we have det(B(y)) 6= 0 because perfect
matchings in G are 1-1 mapped to the terms of the polynomial det(B(y)). For Step b), he
conjectured that:

det(B(y)) 6= 0 iff there is some 1 ≤ r ≤ n6 : det(B(y)) 6= 0 (mod yr − 1).

Obviously, the conjecture by Agrawal can be formulated for Decision-PM for nonbipartite
graphs by using the Pfaffian polynomials as follows.

Let G = (V,E) with n vertices V = {1, 2, . . . , n} and m edges E = {e1, e2, . . . , em} be the
instance of the perfect matching problem we consider.

• By mapping y2l 7→ xi,j , where el = (i, j), for l = 1, 2, . . . ,m, from T (X) we get matrix
T (y) (with indeterminate y) that satisfies pf(T (X)) 6= 0 ⇐⇒ pf(T (y)) 6= 0.

• The conjecture by Agrawal is now:

pf(T (y)) 6= 0 iff there is some 1 ≤ r ≤ n6 : pf(T (y)) 6= 0 (mod yr − 1).
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We further observe that the mapping yal 7→ xi,j , for number a ≥ 2 and for l = 1, 2, . . . ,m,
transforms multivariate matrix T (X) to univariate matrix Ta(y) such that pf(T (X)) 6=
0 ⇐⇒ pf(Ta(y)) 6= 0. Therefore, the conjecture by Agrawal can be generalized as follows:

pf(Ta(y)) 6= 0 iff there is some small number r : pf(Ta(y)) 6= 0 (mod yr − 1).

Let Ta,r(y) be the Tutte skew-symmetric matrix w.r.t. the mapping yal mod r 7→ xi,j . Then we
can write pf(Ta(y)) mod yr−1 = pf(Ta,r(y)) mod yr−1. Note that testing pf(Ta,r(y)) mod yr−
1 6= 0 can be done in NC. Furthermore, w.r.t. our conjectures we focus on the case when G
has some perfect matching because pf(T (y)) = 0 in the case when G has no perfect matching.
Formally, for a pair of numbers a and p, define the weighting schemata

wa,p : wa,p(ei) = ai mod p

for i = 1, 2, . . . ,m. The following conjecture is about testing the existence of perfect matchings:

Conjecture 3.1 Suppose G has some perfect matchings. There exist a positive constant c, and
positive numbers a ≤ p ≤ nc such that pf(Ta,p(y)) mod yp − 1 6= 0 holds.

Now a test procedure due to Conjecture 3.1 can be implemented as follows: assigning the weights
(ai mod p) to edges ei we have to check if the Pfaffian polynomial pf(Ta,p(y)) does not vanish.
Thus, the weighting scheme used for the test plays a central role.

Let w be an arbitrary weighting scheme for the edges of graph G. Assigning yw(ei) to edges
ei, for an indeterminate y, we get T (y) as the canonical Tutte skew-symmetric matrix of G. Note
that only in the case when the weights w(ei) are small, i.e. they are bounded by nε for some
positive constant ε, the Pfaffian polynomial pf(T (y)) can be computed efficiently. Hence we
assume that w maps the edges of G only to small weights. We consider the Pfaffian polynomial:

pf(T (y)) =
∑

M∈PM(G)

sign(M) · value(M)

=
∑

M∈PM(G)

sign(M) ·
∏

ei∈M

yw(ei)

=
∑

M∈PM(G)

sign(M) · yW(M)

=
∑

a

ya ·
∑

M : W(M)=a

sign(M)

where PM(G) is the set of all perfect matchings in G, sign(M) ∈ {−1, 1} is the sign of the
perfect matching M , W(M) =

∑
ei∈M w(ei) is the weight of M , and the number a occurred in

the last sum is taken over all possible weights of perfect matchings.
In the case when PM(G) = ∅ then it is clear that pf(T (y)) = 0 for every weighting scheme.

In the converse when G has some perfect matchings, i.e. |PM(G)| ≥ 1, the Pfaffian polynomial
depends on the weighting scheme w as follows.

For set S ⊆ PM(G), we define its coefficient by

coeff(S) =
∑
M∈S

sign(M)

where the signs of perfect matchings, i.e. sign(M), have been defined w.r.t. the canonical
orientation of G: all edges in G are oriented from smaller to larger vertices.
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Under the weighting scheme w if we haveW(M) 6= W(N) for every pair of perfect matchings
M ∈ S and N ∈ S := PM(G) \ S, then we say that w isolates S. In the case when an isolated
set S satisfies coeff(S) 6= 0 then it is clear that the Pfaffian polynomial pf(T (y)) does not vanish.
Note that pf(T (y)) 6= 0 always holds if additionally w isolates a subset of S, i.e. the perfect
matchings in S can get different weights under w. Moreover, we say that w isolates a perfect
matching if some set S with |S| = 1 being isolated under w.

It is well-known from a number of papers about a parallel construction of perfect matchings,
see e.g. [MVV87, ARZ99, DKR08, AHT07, Hoa10], that a procedure of deterministically iso-
lating a perfect matching is the first step to obtain an efficient NC-algorithm for computing a
perfect matching. For the sake of completeness and of clarity we formulate this fact as follows.

Theorem 3.2 If in NC there is a weighting scheme w that isolates some set S of perfect
matchings with coeff(S) 6= 0, then Decision-PM is in NC. If w isolates a perfect matching,
then the isolated perfect matching can be computed in NC.

Proof . Assigning the polynomials yw(ei) to the edges ei, where y is an indeterminate, we get
T (y) as the canonical Tutte skew-symmetric matrix of G. If G has no perfect matching then
we have pf(T (y)) = 0. In the case when G has some perfect matchings and w isolates a set S
with coeff(S) 6= 0, then it is easy to see that pf(T (y)) 6= 0. Since pf(T (y)) can be computed in
NC, we have Decision-PM is in NC.

In the case when a perfect matching M is isolated under w, then yW(M) (the value of M),
where W(M) is the weight of M , does not vanish in the polynomial pf(T (y)). Note that this
term yW(M) can be identified by a coefficient +1 or −1, which is equal to sign(M). Thus, if
an arbitrary edge e is contained in the isolated perfect matching M then the Pfaffian of the
graph obtained by deleting e from G does not contain the term yW(M). By this observation,
in parallel we can construct a set of edges that correspond to a coefficient +1 or −1 in the
Pfaffian polynomial. Finally, we can check if the constructed edge-sets are perfect matchings.
Therefore, this construction of perfect matchings is in NC. �

Regarding the weighting scheme used in Conjecture 3.1 we see that the polynomial xi as-
signed on ei has been used as the underlying function for the weighting procedure which is
working over some finite field. Of course we can choose other underlying functions for weighting
the edges of the graph, for example we choose fi(x) for the edge ei. Moreover, for a weighting
scheme we define the following function, for a nonempty set S ⊆ PM(G):

FS(x) =
∏
M∈S
N∈S

(
∑

ei∈M

fi(x)−
∑
ei∈N

fi(x)).

In order to define a weighting scheme w we can search a point a such that all the weights
w(ei) = fi(a) are small and we have FS(a) 6= 0 for some S with coeff(S) 6= 0. Thus, such a
point a is a nonzero of FS(x).

In the actual case when fi(x) = xi has been chosen as the underlying function on ei, for
some set S ⊆ PM(G), we have

FS(x) =
∏
M∈S
N∈S

(
∑

ei∈M

xi −
∑
ei∈N

xi).

W.r.t. Conjecture 3.1 we are asking if there is set S with coeff(S) 6= 0 such that FS(x) has
some nonzero modulo a small number. Thus we can reformulate the conjecture as follows:

Conjecture 3.3 Suppose G has some perfect matchings. There exist positive numbers a ≤
p ≤ nc, for a positive constant c, such that FS(a) mod p 6= 0 for some set S ⊆ PM(G) with
coeff(S) 6= 0.
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We suspect that the same weighting scheme isolates also a perfect matching:

Conjecture 3.4 Conjecture 3.3 is true such that some set S with |S| = 1 will be isolated.

We make some observations about these conjectures.
Observe that the polynomials FS(x) have exponentially large degrees, which are not smaller

than the number of all perfect matchings, and we are asking if there is a certain polynomial
having a nonzero from a small finite field. Note that this is not true in general because there
are polynomials which seem to be very similar to diffS(x) but they do not have any nonzero in
any small field. For clarity we can take the following example:

For ∅ 6= I ⊆ [n] = {1, 2, . . . , n}, define gI(x) =
∑

i∈I xi, where x is an indeterminate. Then

f(x) =
∏

I 6=I′⊆[n]

(gI(x)− gI′(x))

is a polynomial without any nonzero in Zp for every small number p, i.e. f(a) mod p = 0 for
all a ∈ Zp. The reason for the latter is from a simple observation of the pigeonhole principle
that it is not possible to separate exponentially many objects by using only polynomially large
weights.

Furthermore, observe that the problem of testing if FS(x) has a nonzero a modulo p ≤ nc is
known to be reducible to the same problem over small prime powers bounded by nc: Suppose
there is a ≤ nc such that FS(a) mod p 6= 0. It is clear that there exists a prime power q which
is a factor of p that satisfies FS(a) mod q 6= 0. Therefore, w.l.o.g. in Conjecture 3.3 p is a
prime power bounded by nc .

For a prime p, we know that the factorization of a polynomial in the ring Zp[x] is unique.
For an arbitrary set S, let

FS(x) = he1
1 (x) · · ·het

t (x)

be the factorization of FS(x) in Zp[x], where h1(x), . . . , ht(x) are monic irreducible polynomials
in Zp[x], and e1, . . . , et are positive integers. Note that these factors may be not irreducible in
the ring Zpk [x], for some k ≥ 2. By weighting the edges of the graph there is an idea that we use
nonlinear irreducible polynomials. This idea has been described in the discussion-section of the
paper [Hoa10] as follows: 1) FS(x) will be mapped to nonzero-elements in the field Zp[x]/(h(x))
where h(x) is a irreducible polynomial with constant-degree ε and p is a prime. 2) There exists
a number a from Zq where q is a prime larger than εpε. Formally, by this idea we consider the
weighting scheme:

w(ei) := (xi mod h(x), p) mod x− a, q, for i = 1, 2, . . . ,m.

The following lemma shows that the last weighting scheme can be reduced to the scheme that
uses only linear factors:

Lemma 3.5 Let h(x) ∈ Zp[x] be a monic and irreducible polynomial with degree ε. Suppose
FS(x) mod h(x), p 6= 0, then there exists a ∈ Zpε such that FS(a) mod pε 6= 0.

Proof . Because FS(x) mod h(x), p 6= 0 we have FS(x) mod h(x), pε 6= 0. It is well-known
that h(x) is reducible in Zpε [x]. In particular, in this ring we have the factorization

h(x) = (x− α)(x− αp) · · · (x− αpε−1
)

where α, αp, . . . , αpε−1
are ε distinct points in the field Zpε . Therefore, there exists 0 ≤ j ≤ ε−1

such that
FS(x) mod x− αpj

, pε 6= 0.
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So we can choose a := αpj
mod pε. �

In the following theorem we show some consequences from the case when the considered
conjectures are not true.

Theorem 3.6 Suppose G has some perfect matchings. Let c be a positive constant. If
pf(Ta,p(y)) = 0 holds for all a ∈ Zp, all prime powers p ≤ nc, where c is a certain constant,
then the following statements hold.

1. G has at least nc/2m perfect matchings.

2. For each set S ⊆ PM(G) with coeff(S) 6= 0, every point in Zp is a root of FS(x) modulo
p, for all prime powers p ≤ nc.

3. For all t ≤ nc/2m, we have

Gt(x) :=
∑

M∈PM(G)

sign(M) · (
∑

ei∈M

xi)t = 0.

Proof . 1) Assume for a moment that G has at most nc/2m perfect matchings. Observe
that the polynomial FS(x) with |S| = 1 has degree at most mnc/2m = nc/2. Furthermore,
FS(a) mod p = 0 holds for all a, p ≤ nc because pf(Ta,p(y)) = 0. Thus FS(2) mod p = 0, for
all primes < nc, is a contradiction because∏

prime p≤nc

p ≥ 2nc/2.

2) Obviously, if the weighting scheme wa,p isolates some set S with coeff(S) 6= 0 then
pf(Ta,p(y)) 6= 0. Hence such a set S can not be isolated under wa,p.

3) The Pfaffian polynomials can be rewritten as follows

pf(Ta,p(y)) =
∑

M∈PM(G)

sign(M) ·
∏

ei∈M

yw(ei)

=
∑

M∈PM(G)

sign(M) · y
P

ei∈M (ai mod p)

=
∑
w

yw ·
∑

M : W(M)=w

sign(M) = 0,

where W(M) =
∑

ei∈M (ai mod p) is the weight. Observe that for every potential weight w the
coefficient of yw should be equal to zero, i.e.∑

M : W(M)=w

sign(M) = 0.

Therefore we get a new identity∑
M∈PM(G)

sign(M) · (
∑

ei∈M

(ai mod p))t = 0,

for every t ≥ 0, for all a ∈ Zp and for all prime powers p ≤ nc. That implies

Gt(x) mod x− a, p = 0.
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For a fixed t, the degree of Gt(x) is bounded by mt. Hence this polynomial has at most mt
roots modulo p if p is a prime power which is not smaller than mt. In the case when Gt(x) has
more than mt roots then we conclude that Gt(x) = 0. Observe that there is a prime p in the
interval (nc/2, nc). Thus we have t ≤ nc/2m < p/m. It follows that Gt(x) = 0 holds for all
t ≤ nc/2m as claimed. �

Note that in the case when G has some perfect matchings it is straightforward to show that
there exists t which is at most the number of all perfect matchings in S such that Gt(x) 6= 0.

Recall the maximum matching problem. Given a graph G, a generalization of Decision-PM
is the problem of computing the matching number µ(G) which is the size of a maximum match-
ing. In the construction version of the maximum matching problem one has to compute a max-
imum matching in G. In the following theorem we make a generalization of the NC-algorithm,
presented in [Hoa10], for the maximum matching problem in bipartite planar graphs. We are
not sure whether this result can be extended to every deterministic weighting scheme w which
can be used for solving Decision-PM.

Theorem 3.7 If Conjecture 3.3 is true then the matching number of a graph can be computed
in NC. Moreover, if Conjecture 3.4 is true then a maximum matching can be computed in NC.

Proof . Suppose Conjecture 3.3 is true, i.e. there is a weighting scheme wa,p which is defined
on page 6 for isolating some perfect matching set S with |S| 6= 0. Note that the latter holds
by promising G has some perfect matchings and note that the Pfaffian polynomial pf(Ta,p(y))
should be nonzero. Consider the case when G has no perfect matching.

Let M be a maximum matching in G. So l = |M | < n/2 is the matching number of G.
Observe that M is perfect in the subgraph GM which is obtained by deleting n − 2l vertices
that are not covered by M . Moreover, if Conjecture 3.3 is true then the same holds for the
graph GM , i.e. there exist ã ∈ Zp̃ and prime power p̃ ≤ nc̃, for some constant c̃, such that the
weighting scheme wã,p̃ isolates some set S̃ of perfect matchings in GM where coeff(S̃) 6= 0. (Note
that all the perfect matchings in GM are maximum in G.) Therefore, the Pfaffian polynomial
associated to subgraph GM does not vanish, i.e. the Pfaffian polynomial of the skew-symmetric
T

(M)
ã,p̃ (y) which is corresponded to GM and it is a submatrix of Tã,p̃(y). Since pf(Tã,p̃(y)) 6= 0 the

rank of matrix T
(M)
ã,p̃ (y) is full and it is equal to 2l. This is also the rank of Tã,p̃(y) because M

is a maximum matching in G. Following these observations we can compute 2µ(G) as follows:
for all pairs of small numbers a and p which are bounded by nc, where c is the constant due
to Conjecture 3.3, we compute the maximum of all the ranks of the matrices Ta,p(y). Since the
rank can be computed in NC, the matching number can be computed also in NC.

In the case when Conjecture 3.4 is true we can compute a maximum matching in G by two
steps: a) compute a subgraph GM where its perfect matchings are maximum in G, b) a perfect
matching in GM will be computed by Theorem 3.2. We know that the construction of GM in
Step b) is reducible to the problem of computing the rank. This has been shown in the proof
of Lemma 4.1 in [Hoa10]. Moreover, all these computations are in NC. �

Conclusion. In this paper we have investigated the conjecture that a deterministic isolations
of graph matchings can be made via CRT. In the fact, the weighting scheme (via CRT) we used
in the procedure of testing if a graph has some perfect matching can be extended to a isolation of
a perfect matching. We have showed that if this isolation works for solving the perfect matching
problem then we can use it for solving the maximum matching problem in NC. Of course the
central question is still open whether the desired isolation of perfect matchings works.
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