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Abstract

A long standing open problem in the computational complexity theory is to separate NE from
BPP, which is a subclass of NPT(NP) ∩ P/Poly. In this paper, we show that NE 6⊆ NPT(NP ∩
Nonexponentially-Dense-Class), where Nonexponentially-Dense-Class is the class of languages A without
exponential density (for each constant c > 0, |A≤n| ≤ 2nc

for infinitely many integers n). Our result
implies NE 6⊆ NPT(padding(NP, g(n))) for every time constructible super-polynomial function g(n) such
as g(n) = ndlogdlog nee, where Padding(NP, g(n)) is class of all languages LB = {s10g(|s|)−|s|−1 : s ∈ B}
for B ∈ NP. We also show NE 6⊆ NPT(Ptt(NP) ∩ TALLY).

1. Introduction

Separating the complexity classes has been one of the central problems in complexity theory. Separating
NEXP from P/Poly is a long standing fundamental open problem in the computational complexity theory.
We do not even know how to separate NEXP from BPP, which is a subclass of NPT(NP) ∩ P/Poly proved
by Adleman [1].

Whether sparse sets are hard for complexity classes plays an important role in the computational com-
plexity theory (for examples, [3, 15, 17, 19]). It is well known that P/Poly is the same as the class of languages
that are truth table reducible to tally sets (P/Poly = Ptt(TALLY)). The combination of bounded number
of queries and density provides an approach to characterize the complexity of the nonuniform computa-
tion models. The partial progress for separating exponential time classes from nonuniform polynomial time
classes are shown in [8, 11, 13, 16, 21]. Let Nonexponentially-Dense-Class be the class of languages A with-
out exponential density (for each constant c > 0, |A≤n| ≤ 2nc

for infinitely many integers n). Improving
Hartmanis and Berman’s separation E 6⊆ Pm(Nonexponentially-Dense-Class) [3], Watanabe showed E 6⊆
Pbtt(Nonexponentially-Dense-Class). Watanabe’s result was improved by two research groups independently
with incomparable results that E 6⊆ Pn1−ε−tt(Nonexponentially-Dense-Class) by Lutz and Mayordomo [16],
and EXP 6⊆ Pn1−ε−T(Nonexponentially-Dense-Class) and E 6⊆ P

n
1
2−ε−T

(Nonexponentially-Dense-Class) by
Fu [8]. Fu’s results were improved to E 6⊆ Pn1−ε−T(Nonexponentially-Dense-Class) by Hitchcock [13]. A re-
cent celebrated progress was made by Williams separating NEXP from ACC [22]. It is still an open problem
to separate NEXP from PO(n)−tt(TALLY).

The nondeterministic time hierarchy was separated in the early research of complexity theory by Cook [7],
Serferas, Fischer, Meyer [20], and Zak [23]. A separation with immunity among nondeterministic computa-
tional complexity classes was derived by Allender, Beigel, Hertranpf and Homer [2]. The difference between
NE and NP has not been fully solved. One of the most interesting problems between them is to separate NE
from PT(NP). Fu, Li and Zhong [10] showed NE 6⊆ Pno(1)−T(NP). Their result was later improved by Mocas
[18] to NEXP 6⊆ Pnc−T(NP) for any constant c > 0. Mocas’s result is optimal with respect to relativizable
proofs, as Buhrman and Torenvliet [5] showed an oracle relative to which NEXP = PT(NP). Buhrman,
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Fortnow and Santhanam [4] and Fu, Li and Zhang [9] showed NEXP = Pnc−T(NP)/nc for every constant
c > 0 (two papers appeared in two conferences with a similar time). Fu, Li and Zhang showed that NEXP
is not reducible to tally sets by the polynomial time nondeterministic Turing reductions with the number of
queries bounded by a sub-polynomial function g(n) such as g(n) = n

1
log log n (NE 6⊆ NPg(n)−T(TALLY))[9].

In this paper, we show that NE 6⊆ NPT(NP ∩ Nonexponentially-Dense-Class). Our result implies
NE 6⊆ NPT(padding(NP, g(n))) for every time constructible super-polynomial function g(n) such as
g(n) = ndlogdlog nee, where Padding(NP, g(n)) is the class of all languages LB = {s10g(|s|)−|s|−1 : s ∈ B} for
B ∈ NP. We also show NE 6⊆ NPT(Ptt(NP) ∩ TALLY).

This paper is organized as follows. Some notations are given in section 2. In section 3, we
give a brief description of our method to prove the main result. In section 4, we separate NE from
NPT(NP ∩Nonexponentially-Dense-Class). In section 5, we show how to use the padding method to derive
sub-exponential density problems in the class NP. In section 6, we separate NE from NPT(Ptt(NP)∩TALLY).
The conclusions are given in section 7.

2. Notations

Let N = {0, 1, 2, · · ·} be the set of all natural numbers. Let Σ = {0, 1} be the alphabet for all the languages
in this paper. The length of a string s is denoted by |s|. Let A be a language. A≤n is the subset of strings
of length at most n in A. A=n is the subset of strings of length n in A. For a finite set X, let |X| be the
number of elements in X. For a Turing machine M(.), let L(M) be the language accepted by M . We use a
pairing function (., .) with |(x, y)| = O(|x|+ |y|).

For a function t(n) : N → N , let DTIME(t(n)) be the class of languages accepted by deterministic
Turing machines in O(t(n)) time, and NTIME(t(n)) be the class of languages accepted by nondeterministic
Turing machines in O(t(n)) time. Define the exponential time complexity classes: E = ∪∞c=1DTIME(2cn),
EXP = ∪∞c=1DTIME(2nc

), NE = ∪∞c=1NTIME(2cn) and NEXP = ∪∞c=1NTIME(2nc

).
A language L is sparse if for some constant c > 0, |L≤n| ≤ nc for all large n. Let SPARSE represent all

sparse languages. Let TALLY be the class of languages with alphabet {1}.
Assume that M(.) is an oracle Turing machine. A decision computation MA(x) returns either 0 or 1

when the input is x and oracle is A.
Let ≤P

r be a type of polynomial time reductions, and S be a class of languages. Pr(S) is the class of
languages A that are reducible to some languages to S via ≤P

r reductions. In particular, ≤P
m is the polynomial

time many-one reduction, and ≤P
T is the polynomial time Turing reduction.

For a class C of languages, we use NPT(C) to represent the class of languages that can be reducible to
the languages in C via polynomial time nondeterministic Turing reductions.

For a nondecreasing function d(n) : N → N , define Density(d(n)) to be the class of languages A with
|A≤n| ≤ d(n) for all sufficiently large n.

For a function f(n) : N → N , it is time constructible if given n, f(n) can be computed in O(f(n)) steps
by a deterministic Turing machine.

A function d(n) : N → N is nonexponential if for every constant c > 0, d(n) < 2nc

for infinitely many
integers n. Nonexponentially-Dense-Class is the class of languages A whose density function dA(n) = |A≤n|
is nonexponential.

3. Overview of Our Method

We give a brief description about our method in this section. Our main theorem is proved by contradiction.
Assume that NEXP ⊆ NPT(S), where S is a language in both NP and Nonexponentially-Dense-Class. Since
S is not of exponential density, we can find a function nondecreasing unbounded function e(1n) that is

computable in 2nO(1)
time and satisfies |S≤n| ≤ 2n

1
e(1n)2 for infinitely many integers n. Let h(n) = ne(1n).

Thus, h(n) is super-polynomial function.
Our main technical contribution is a counting method to be combined with the classical translational

method in deriving the separation. Select an arbitrary language L0 in DTIME(2h(n)). We define the
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language L1 = {x10h(|x|)−|x|−1 : x ∈ L0}. This converts L0 into a language in NEXP. Using the assumption
NEXP ⊆ NPT(S), we have a polynomial time oracle Turing machine M1 to accept L1 with oracle S.

Define another language L2 = {1n0m : m ≤ 2n and there are at least m different strings z1, · · · , zm that
are queried by M1 with some input of length h(n)}. We can also show that L2 is also in NEXP. When S
has a subexponential number of elements with length at most h(n)O(1), we show that the largest m with
1n0m ∈ L2 has m < 2n.

In the next, we spend 2nO(1)
time to find the largest m, which will be denoted by mn. This can be easily

done since L2 is in NPT(NP).
For mn with mn < 2n, consider a nondeterministic computation that given an input (x,mn) with n = |x|,

it guesses all the strings z1, · · · , zmn , which are queried by M1 by inputs of length h(n), of S in a path. Thus,
any query like y ∈ S? is identical to check if y is equal to one of elements in z1, · · · , zmn

. This is an
nondeterministic computation of exponential time. It can be converted into a problem in NPT(NP). It can

be simulated in a deterministic 2nO(1)
time. Since there are infinitely many integers n with |S≤n| ≤ 2n

1
e(1n)2 ,

we have infinitely many integers n1, n2, · · · to meet this case with mni < 2ni . This brings a 2nO(1)
time

deterministic Turing machine M∗ that L=ni
0 = L(M∗)=ni for some for infinitely many integers ni. We can

construct L0 in DTIME(2h(n)) to make it impossible using the standard diagonal method. This brings a
contradiction.

4. Main Separation Theorem

In this section, we present our main separation theorem. The theorem is achieved by the translational
method, which is combined with a counting method to count the number of all possible strings queried by
nondeterministic polynomial time oracle Turing machine.

Definition 1.

• Let M be an oracle nondeterministic Turing machine. Let a1 · · · ai−1 be a 0, 1-sequence, and y be an
input for M . Define H(M(y), a1 · · · ai−1) to be the set of all strings z that are queried by M(y) at the
i-th time at some path assuming M receives answers a1, · · · , ai−1 for its first i − 1 queries from the
oracle (the answer for each query is either ‘0’ or ‘1’ from the oracle).

• For a nondeterministic oracle Turing machine M(.) and oracle A, and an integer k, define Q(M, A, k)
to be the set all strings z in A such that z ∈ H(M(y), a1 · · · ai−1) for some string y of length k and
some a1 · · · ai−1 ∈ {0, 1}∗.

Lemma 2. Let Γ be a class of languages and be closed under ≤P
m-reductions. Then NE ⊆ Γ if and only if

NEXP ⊆ Γ.

Proof: Since NE ⊆ NEXP, it is trivial that NEXP ⊆ Γ implies NE ⊆ Γ. We only prove that NE ⊆ Γ
implies NEXP ⊆ Γ. Assume NE ⊆ Γ. Let L be an arbitrary language in NEXP. Assume that L ∈
NTIME(2nc

) for some integer constant c > 1. Let L′ = {x10|x|
c−|x|−1 : x ∈ L}. Since L ∈ NTIME(2nc

)
with the constant c, we have L′ ∈ NE. We have a ≤P

m-reduction f(.) from L to L′ with f(x) = x10|x|
c−|x|−1

(L ≤P
m L′). Since L′ ∈ NE ⊆ Γ and Γ is closed under ≤P

m-reductions, we have L ∈ Γ. Since L is an arbitrary
language in NEXP, we have NEXP ⊆ Γ.

Lemma 3. Let M∗(.) be a nondeterministic polynomial time oracle Turing machine. Let A be a language
in NP and accepted by a polynomial time Turing machine MA(.). Then there is a nondeterministic mnO(1)

time Turing machine N(.) such that given the input (m,M∗,MA, 1n),

• if m ≤ |Q(M∗, A, n)|, it outputs a subset of m different elements of Q(M∗, A, n) in at least one path,
and every path with nonempty output gives a subset of m different elements of Q(M∗, A, n); and

• if m > |Q(M∗, A, n)|, it outputs empty set in every path.
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Proof: Let MA(.) be a polynomial time nondeterministic Turing machine that accepts A, and run in time
ncA for a constant cA > 0. Let M∗(.) have time bound nc∗ . We design a nondeterministic Turing machine
N(.).

Let N(.) do the following with input (m, M∗,MA, 1n):

1. guess strings x1, · · · , xm of length n;

2. guess a path pi and a series of oracle answers ai,1 · · · ai,ji−1 for M∗(xi) for i = 1, · · · ,m;

3. if M∗(xi) makes the ji-th query zi on path pi assuming the first the ji − 1 oracle answers are
ai,1 · · · ai,ji−1;

4. then guess a path qi for MA(zi)

5. if z1, · · · , zm are all different, and each zi is accepted by MA(zi) on path qi

6. then output z1, · · · , zm

7. else output the empty set ∅.
We note that line 3 is to check if zi is in H(M∗(xi), ai,1 · · · ai,ji−1). Since M∗(.) runs in time nc∗ , each zi is
of length at most nc∗ . The Turing machines MA(zi) takes |zi|cA ≤ nc∗cA time to accept zi for i = 1, · · · ,m.
Therefore, the total time of N(.) with input (m,M∗,MA, 1n) is mnO(1).

Lemma 4. Assume that S is in NP and S is nonexponentially dense. Then there is a 2nO(1)
time computable

nondecreasing function e(1n) : N → N such that

1. |S≤n| ≤ 2n
1

e(1n)2 for infinitely many integers n;

2. e(1n2
) ≤ 2e(1n) for all n; and

3. limn→∞ e(1n) = ∞.

Proof: Let e(10) = 1. We construct e(1n) at phase n. Assume that we have constructed e(11), · · · , e(1t−1).
Phase t below is for computing e(1t).

Phase t

1). Let k be the largest number less than t with e(1k−1) < e(1k).

2). If t ≤ k2, then let e(1t) = e(1k), and enter Phase t + 1.

3). If t 6= j(e(1k)+1)2 for any integer j, then let e(1t) = e(1k), and enter Phase t + 1.

4). Compute s = |S≤t|.

5). If s ≤ 2t
1

(e(1k)+1)2 , then let e(1t) = e(1k) + 1.

End of Phase t.

The purpose of line 3 is to let t = j(e(1k)+1)2 for some integer j after this line. This makes t
1

(e(1k)+1)2 be
an integer and makes the computation easy at line 5. Checking the condition of the if statement at line 3
takes tO(1) time via a binary search. Computing s at step 4 in Phase t takes 2tO(1)

steps since S ∈ NP. Thus,
function e(1n) is computable in 2nO(1)

time. Since S is nonexponentially dense, the if condition in step 5
can be eventually satisfied and we have that e(1n) is unbounded.

Step 5 in Phase t makes function e(.) satisfy condition 1 in the lemma. Step 2 and Step 5 in Phase t
makes function e(.) satisfy condition 2 in the lemma. The construction shows that e(1n) is nondecreasing
since e(1t) ≤ e(1t+1) for all integers t.
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Lemma 5. Assume that t(1n) is nondecreasing unbounded function and t(1n) is computable in 2nO(1)
time.

Then there is a language L0 ∈ DTIME(2nt(n)
) such that for every deterministic Turing machine M(.) in

time 2nO(1)
, L(M)=n 6= L=n

0 for all sufficiently large n.

Proof: Let M1, · · · ,Mk, · · · be the list of all deterministic Turing machines that each Mk runs in at
most 2nt(1n)/3

time for all large n. The construction has infinitely phases for n = 1, 2, · · ·. It is easy to
see that for each 2nO(1)

time Turing machine N(.), there is a 2nt(1n)/3
time Turing machine Mi(.) with

L(Mi)=n = L(N)=n for all large n.
Phase n:

Let x1, · · · , xn be the first n 0, 1-strings of length n by the lexicographic order
For i = 1, · · · , n, put xi into L=n

0 if and only if L(Mi)(xi) rejects.
End of Phase n.
According to the construction of phase n. The language L0 can be computed in deterministic time

n · 2n · 2nt(n)/3
< 2nt(n)/2

for all large n. By the construction of L0, for each Turing machine Mi that runs in
time 2nt(1n)/3

, L(Mi)=n 6= L=n
0 for all large n.

Theorem 6 and Theorem 7 are basically equivalent. They are the main separation results achieved in this
paper. We will find more concrete complexity classes inside NP∩Nonexponentially-Dense-Class in section 5.

Theorem 6. NEXP 6⊆ NPT(NP ∩Nonexponentially-Dense-Class).

Proof: Assume NEXP ⊆ NPT(NP ∩Nonexponentially-Dense-Class). We will bring a contradiction from
this assumption. Since NEXP has a complete language K under ≤P

m reductions, if K ∈ NPT(S), then
NEXP ⊆ NPT(S). Let S be a language in NP ∩Nonexponentially-Dense-Class such that

NEXP ⊆ NPT(S). (1)

By Lemma 4, we have a nondecreasing unbounded function e(1n) that satisfies

e(1n2
) ≤ 2e(1n) (2)

and (|S≤n|) ≤ 2n1/e(1n)2

for infinitely many integers n. Furthermore, function e(1n) is computable in 2nO(1)

time. Let

h(n) = ne(1n). (3)

We apply the translational method to it. Let L0 be an arbitrary language in DTIME(2h(n)), and accepted
by a deterministic Turing machine N(.) in DTIME(2h(n)) time. Define L1 = {x10h(|x|)−|x|−1) : x ∈ L0}.

Since function e(1n) is computable in 2nO(1)
time, it is easy to see that L1 is in EXP ⊆ NEXP. By our

assumption (1), there is a nondeterministic polynomial time oracle Turing machine M1(.) for L1 ∈ NPT(S)
(In other words, MS

1 (.) accepts L). Assume that M1(.) runs in time nc1 for all n ≥ 2. Let 2 ≤ u1 < u2 <
· · · < uk < · · · be the infinite list of integers such that

dS(ui) = |S|≤ui ≤ 2u
1/e(1ui )2

i . (4)

Define the language L2 = {1n0m : m ≤ 2n and there are at least m different strings z1, · · · , zm in
Q(M1, S, h(n))}. Let ni be the largest integers at least 2 such that

h(ni)c1 ≤ ui (5)

for all large integers i ≥ i0 (it is easy to see the existence of such an integer i0). Thus, we have

h(ni + 1)c1 > ui. (6)

For all large integers i, we have

e(1ni) ≥ 8c1 (7)
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since e(1n) is nondecreasing and unbounded. Since S is of density bounded by dS(n), the number of strings
in S queried by M1(.)S with inputs of length h(n) is at most dS(h(n)c1). In other words, we have

|Q(M1, S, h(n))| ≤ dS(h(n)c1). (8)

For the case n = ni, we have the inequalities:

dS(h(ni)c1) ≤ dS(ui) (by inequality (5)) (9)

≤ 2u
1/e(1ui )2

i (by inequality (4)) (10)

≤ 2(h(ni+1)c1 )1/e(1ui )2

(by inequality (6)) (11)

≤ 2h(n2
i )c1/e(1ui )2

(by the condition ni ≥ 2) (12)

≤ 2(n
2e(1

n2
i )

i
)c1/e(1ni )2

(by equation (3)) (13)

≤ 2(n
4e(1ni )
i

)c1/e(1ni )2

(by inequality (2)) (14)
< 2ni (by inequality (7)) (15)

By inequalities (9) to (15), and (8), we have the inequality

|Q(M1, S, h(ni))| < 2ni for all large i. (16)

By Lemma 3, L2 is in NEXP. By our assumption (1), L2 ∈ NPT(S) via some nondeterministic polynomial
time oracle Turing machine M2(.). Assume that M2(.) runs in time nc2 for all n ≥ 2, where c2 is a positive
constant.

Define the language L3 = {(x,m) : m ≤ 2|x| and there are at least m different strings z1, · · · , zm in
Q(M1, S, h(n)), and M1(x10h(|x|)−|x|−1)) has an accept path that receives answer 1 for each query (to oracle
S) in {z1, · · · , zm}, and answer 0 for each query (to oracle S) not in {z1, · · · , zm} }.

By Lemma 3, we have L3 ∈ NE. Thus, L3 ∈ NPT(S) via another nondeterministic polynomial time
oracle Turing machine M3(.). Assume that M3(.) runs in time nc3 for all n ≥ 2.

In order to find the largest number m such that 1n0m ∈ L2, m is always at most 2n. Thus, the length of
m is at most n + 1. Using the binary search, we can find the largest mni with 1ni0mni ∈ L2 for i = 1, 2, · · ·.
Let mni be the largest m with 1ni0m ∈ L2 for i = 1, 2, · · ·. Since S ∈ NP, mni can be computed in 2ni

c4

time for some positive constant c4 for all i = 1, 2, · · ·. By inequalityies (16), we have mni < 2ni .

Claim 1. For |x| = ni, we have x10h(ni)−ni−1 ∈ L1 if and only if (x,mni) ∈ L3.

Proof: Assume that z1, · · · , zmni
are different elements in Q(M1, S, h(n)). By the definition of mni

, a
query if y ∈ S made by MS

1 (x10h(ni)−ni−1) to the oracle S is identical to checking if y ∈ {z1, · · · , zmni
}.

This is because all the strings in S that are queried are in the list z1, · · · , zmni
. Thus, x10h(ni)−ni−1 ∈ L1 if

and only if (x,mni) ∈ L3.

Assume that mni is known. We just check if (x,mni) ∈ L3 with |x| = ni. For |x| = ni, we have x ∈ L0 if
and only if x10h(ni)−ni−1 ∈ L1 if and only if (x, mni) ∈ L3 by Claim 1. Since L3 ∈ NPT(S) and S ∈ NP, we
only need 2nc5 time to decide if (x,mn) ∈ L3 for n = n1, n2, · · ·, where c5 is a positive constant. Therefore,
we can decide if x ∈ L0 in 2ni

c5 time for |x| = ni. Therefore, there is a deterministic Turing machine M∗
that runs in 2n

c5
i time and has L(M∗)=ni = L=ni

0 for all i sufficiently large. Since L0 is an arbitrary language
in DTIME(2h(n)). Function h(n) is a super-polynomial function. This brings there is a deterministic Turing
machine M∗ that runs in 2nc5 time and has L(M∗)=ni = L=ni

0 for all sufficiently large i, which contradicts
Lemma 5.

Theorem 7. NE 6⊆ NPT(NP ∩Nonexponentially-Dense-Class).

Proof: It follows from Lemma 2 and Theorem 6.
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Corollary 8. NEXP 6⊆ NPT(NP ∩ SPARSE).

Although it is hard to achieve NEXP 6= PT(NP) or NEXP 6⊆ PT(SPARSE), we still have the following
separation.

Corollary 9. NEXP 6⊆ PT(NP ∩ SPARSE).

5. Hard Low Density Problems in NP

It is natural to ask if there exists any hard low density problem in the class NP. In this section, we show the
existence of low density sets in class NP. They are constructed from all natural NP-hard problems under the
well known exponential time hypothesis that NP 6⊆ DTIME(2no(1)

) [14].

Definition 10.

• A function g(n) : N → N is super-polynomial if for every constant c > 0, g(n) ≥ nc for all large n.

• A function f(n) : N → N is sub-polynomial if for every constant c > 0, f(n) ≤ nc for all large n.

• A function g(n) : N → N is called well-super-polynomial if g(n) is super-polynomial, g(n) is time
constructible, and there is a time constructible sub-polynomial function f(n) such that f(g(n)) ≥ n
for all sufficiently large n.

• A function f(n) : N → N is called well sub-polynomial if f(n) is sup-polynomial, f(n) is time
constructible, and there is another time constructible super-polynomial function h(n) such that for
each positive constant c, f(h(n)c) ≤ n for all sufficient large n.

Define log(1) n = log n = dlog2 ne. For integer k ≥ 1, define log(k+1) n = log(log(k) n).
We provide the following lemma to give some concrete slowly growing well-sub-polynomial and well-

super-polynomial functions.

Lemma 11.

1. For each constant integer k > 1 and constant integer a ≥ 1, the function
⌈
n1/(log(k) n)a

⌉
is time con-

structible function from N → N .

2. For each constant integer k > 1 and constant integer a ≥ 1, the function n(log(k) n)a

is time constructible
function from N → N .

3. Assume k and a are fixed integers with k > 1 and a > 1. Let f(n) =
⌈
n1/(log(k) n)a

⌉
and h(n) =

n(log(k) n)a−1
, then f(h(n)) < no(1) for all large n.

4. Assume k and a are fixed integers with k ≥ 1 and a ≥ 1. Let f(n) =
⌈
n1/(log(k) n)a

⌉
and g(n) =

n(log(k) n)a+1
, then f(g(n)) > n for all large n.

Proof: Statement 1: It takes O(log n) time to compute log(k) n. It takes another O(log n) time to compute
(log(k) n)a since a is a constant. It takes another O(log n) time to compute

⌈
n1/(log(k) n)a

⌉
via binary search.

Since log n = o(
⌈
n1/(log(k) n)a

⌉
), we have that the function

⌈
n1/(log(k) n)a

⌉
is time constructible.

Statement 2: It takes O(log n) time to compute log(k) n. It takes another O(log n) time to compute
m = (log(k) n)a since a is a constant. Using the elementary method for multiplication, we can compute nm

with O(m(log nm)2) = O(m2 log n) = o(n(log(k) n)a

) time. Therefore, n(log(k) n)a

is time constructible.
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Statement 3: We have

f(h(n)) = f(n(log(k) n)a−1
)

= n
O( 1

log(k) n
)

< n for all large n.

Statement 4: We have

f(g(n)) = f(n(log(k) n)a+1
)

= nΩ(log(k) n)

> n for all large n.

Definition 12.

• For a language A, let padding(A, g(n)) is the languages L = {x10g(|x|)−|x|−1 : x ∈ A}.
• For a class Λ of languages, define Padding(Λ, g(n)) to be the class of languages padding(A, g(n)) for

all A ∈ Λ.

For example, let g(n) = n(log log n)k

for a fixed integer k > 1 and let f(n) = n
1

(log log n)k−1 . We have
2f(g(n))) ≥ 2n for all sufficient large n.

Definition 13. A language A is of subexponential density if for each constant c > 0, |A≤n| ≤ 2nc

for all
large n.

Lemma 14. Assume that A is a language and g(n) is a super-polynomial function. Then padding(A, g(n))
is language of subexponential density.

Proof: For each language A, there are at most 2n strings of length n in A. When s is mapped into
s10g(|s|)−|s|−1), its length becomes g(|s|). Let c be an arbitrary positive constant. As g(n) is a super-
polynomial function, there is a constant integer nc ≥ 2 such that for every n > nc,

g(n) > n10/c. (17)

Let mc = n
10
c

c . We have nc = m
c
10
c . Let m be an arbitrary number greater than mc. Let k be the largest

integer with g(k) ≤ m.

Case 1: k ≤ nc. The number of strings of length at most k is at most 2 · 2k ≤ 22k ≤ 22nc < 2n2
c ≤ 2m

c
5
c <

2m
c
5 . Therefore, the number of strings of length at most m in padding(A, g(n)) is at most 2m

c
5 .

Case 2: k > nc. We have m ≥ g(k) > k
10
c by inequality (17). Thus, k < m

c
10 . The number of strings of

length at most k at is no more than 2 · 2k < 22k < 2k2
< 2m

c
5 . Therefore, the number of strings of length at

most m in padding(A, g(n)) is at most 2m
c
5 .

In every case, we have |padding(A, g(n))≤m| ≤ 2m
c
5 . Since c is an arbitrary positive constant,

padding(A, g(n)) is a language of subexponenital density by Definition 13.

Lemma 15. Assume that A is a language and g(n) is a strictly increasing super-polynomial function and
f(n) is a sub-polynomial function with f(g(n)) ≥ n, then padding(A, g(n)) is language of density O(2f(n)).

Proof: For each language A, there are at most 2n strings of length n in A. When s is mapped into
s10g(|s|)−|s|−1), its length becomes g(|s|). Since g(n) is increasing super-polynomial function, g(n) < g(n+1)
for all large n. We have 2n ≤ 2f(g(n)). Thus, padding(A, g(n)) is language of density O(2f(n)).

We have Theorem 16 that shows the existence of subexponential density sets that are still far from
polynomial time computable under the reasonable assumption that NP 6⊆ DTIME(2no(1)

).
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Theorem 16. Assume that g(n) is a strictly increasing well-super-polynomial function, and f(n) is a sub-
polynomial function with f(g(n)) ≥ n. If NP 6⊆ DTIME(2no(1)

), then for every NP-complete language A,
padding(A, g(n)) is a language of density of Density(2f(n)), and not in DTIME(T (n)), where T (n) is an
arbitrary function with T (g(n)) = 2no(1)

.

Proof: Let A be a NP-complete language. The density of padding(C, g(n)) follows from Lemma 15. If
padding(C, g(n)) is computable in time T (n), we have that A is computable in time T (g(n)) = 2no(1)

. Thus,
NP ⊆ DTIME(2no(1)

). This contradicts the condition NP 6⊆ DTIME(2no(1)
).

The following corollary gives concrete result by assigning concrete functions for f(n), g(n) and T (n).

Corollary 17. Let g(n) = n(log(k))a

, f(n) =
⌈
n

1
(log(k) n)a−1

⌉
, and T (n) = 2

⌈
n1/(log(k) n)a+1

⌉
with fixed integers

a > 1 and k > 1. If NP 6⊆ DTIME(2no(1)
), then for every NP-complete language A, padding(A, g(n)) is a

language of density of Density(2f(n)), and not in DTIME(T (n)).

Proof: For g(n) = n(log(k) n)a

and f(n) = n
1

(log(k) n)a−1 . By statement 4 of Lemma 11, we have f(g(n)) ≥ n.

For T (n) = 2

⌈
n1/(log(k) n)a+1

⌉
for an arbitrary constant c > 0. By statement 3 of Lemma 11, we have

T (g(n)) = 2no(1)
. The three functions satisfy the conditions in Theorem 16. The corollary follows from

Theorem 16.

We separate both NEXP and NE from NPT(padding(NP, g(n))) for any super-polynomial time con-
structible function g(n) from N to N in Theorems 18 and 19. For a given g(n) : N → N ,
NPT(padding(NP, g(n))) is a concrete computational complexity class.

Theorem 18. Assume that g(n) is a super-polynomial time constructible function from N to N . Then
NEXP 6⊆ NPT(padding(NP, g(n))).

Proof: It follows from Lemma 14 and Theorem 6.

Theorem 19. Assume that g(n) is a super-polynomial time constructible function from N to N . Then
NE 6⊆ NPT(padding(NP, g(n))).

Proof: It follows from Lemma 2 and Theorem 18.

6. Separating NEXP from NPT(Ptt(NP) ∩ TALLY)

In this section, we separate NEXP from NPT(Ptt(NP) ∩ TALLY). A more generalized theorem is given by
Theorem 24. We are more carefully to combine the counting method with the translational method to prove
it.

Definition 20.

• Let M1 be a nondeterministic oracle Turing machine and M2 be a deterministic oracle Turing machine.
Define MM2

1 be a nondeterministic Turing machine such that M1(x) takes an input x, each query y
produced by M1 is answered by M2(y), which will access an oracle during the computation.

• Let M1 be a nondeterministic oracle Turing machine and M2 be a deterministic oracle Turing machine.
Let A be an oracle for M2. Define (MM2

1 )A be a nondeterministic Turing machine MM2
1 with oracle A

such that M1(x) takes an input x, each query y produced by M1 is answered by MA
2 (y).

Definition 21.
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• For an oracle Turing machine M and an integer k, define PQ(M, y, k) to be the union of all
H(M(y), a1 · · · ai−1) (see Definition 1) with i ≤ k and a1 · · · ai−1 ∈ {0, 1}≤k.

• Assume that M1 is a nondeterministic Turing machine and M2 is a deterministic adaptive oracle Turing
machine M(.). Let A be an oracle set, and k is an integer. Define

Q1(MM2
1 , A, B, k1, k2,m) =

⋃

z∈
(⋃

y∈B=m PQ(M1,y,k1)
)(A ∩ PQ(M2, z, k2)). (18)

The purpose of Lemma 22 for the proof of Theorem 24 is similar to Lemma 3 for Theorem 6.

Lemma 22. Assume that A ∈ NP, B ∈ NP and M1(.) and M2() are polynomial time nondeter-
ministic Turing machines. Then there is a nondeterministic machine N(.) such that given the input
(MM2

1 ,MA,MB , k1, k2, 1n), if m ≤ |Q1(MM2
1 , A,B, k1, k2, n)|, it outputs a subset of m different elements

of Q1(MM2
1 , A, B, k1, k2, n) in time mnO(1) in at least one path; and otherwise, it outputs empty set in every

path, where MA is an polynomial time nondeterministic Turing machine to accept A, and MB is a polynomial
time nondeterministic Turing machine to accept B.

Proof: We design a nondeterministic Turing machine N(.). Let N(.) do the following with input
(M∗, MA,MB , k1, k2, 1n):

1. guess strings x1, · · · , xm of length n,

2. guess a path hi of MB(xi) for each xi,

3. guess a path pi and a query yi for each M1(xi),

4. guess a path wi and a query zi for each M2(yi), and

5. guess a path qi for MA(zi) for i = 1, · · · ,m.

6. If MB(xi) accepts in path hi, M1(xi) queries yi in path pi for i = 1, · · · ,m, M2(yi) queries zi in path wi for
i = 1, · · · ,m, and MA(zi) accepts in path qi for i = 1, · · · ,m, then N outputs all z1, · · · , zm. Otherwise,
N outputs ∅.

Note that for a path pi and a query yi for M1(xi), a part of path pi is a1 · · · aj−1, j with j ≤ k1 such that
M1(xi) follows path pi and its j-th query is yi assuming it receives the j − 1 answers are a1 · · · aj−1.

Note that for a path wi and a query zi for M2(yi), a part of path wi is b1 · · · bj−1, j with j ≤ k2 such
that M2(yi) follows a path wi and its j-th query is zi assuming it receives the j − 1 answers are b1 · · · bj−1.

Since M1(.),M2(.),MA(.) and MB(.) all run in polynomial time, we have that the time for N(.) is bounded
by mnO(1).

Definition 23. For a set B, define ℘(B) to be the power set of B (the class of all subsets of B).

Theorem 24 gives another separation for NEXP from the polynomial time hierarchy. It is incomparable
with Theorem 6.

Theorem 24. Assume that B is an language in (NP ∩ co-NP) ∩ Nonexponentially-Dense-Class. Then for
any well sub-polynomial function g(n), NEXP 6⊆ NPT(Pg(n)−T(NP) ∩ ℘(B)).

Proof: We use a combination of counting method and translational method to prove this theorem. Let
MB be a polynomial time nondeterministic Turing machine to accept B, and MB be a polynomial time
nondeterministic Turing machine to accept B. Let SAT be the well known NP-complete problem.

Assume NEXP ⊆ NPT(Pg(n)−T(NP)∩℘(B)). Since NEXP has a complete language under≤P
m-reductions,

we assume NEXP ⊆ NPT(K) for some K ⊆ B and also K ∈ Pg(n)−T(NP). Let K ∈ Pg(n)−T(SAT) via oracle
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Turing machine Mq(.). Let ncq be the running time of Mq. Since B ∈ NP∩ co-NP and is of nonexponential
density, by Lemma 4, we have e(1n) to be a nondecreasing function with limn→∞ e(1n) = ∞,

e(1n2
) ≤ 2e(1n), (19)

and (|B≤n|) ≤ 2n1/e(1n)2

for infinitely many integers n. Furthermore, function e(1n) is computable in 2nO(1)

time.
Since g(n) is a well sub-polynomial function, let hg(n) be a well super-polynomial function (see Defini-

tion 10) such that for each positive constant c,

g(hg(n)c) ≤ n for all large integers n. (20)

Let

h(n) = min(ne(1n), hg(n), 2n). (21)

We apply the translational method to it. Let L be an arbitrary language in DTIME(2h(n)). Define
L1 = {x10h(n) : x ∈ L}.

Since e(1n) is computable in 2nO(1)
time and hg(n) is time constructible, we have that L1 is in NEXP.

Let L1 ∈ NPT(K) via an nondeterministic oracle Turing machine M1(.) with oracle K. Assume that M1(.)
runs in time nc1 for all n ≥ 2. Let u1 < u2 < · · · < uk < · · · be the infinite list of integers at least 2 such
that

dB(ui) = (|B|≤ui) ≤ 2u
1/e(1ui )2

i . (22)

Let ni be the largest integers at least 2 such that

h(ni)c1 ≤ ui (23)

for all sufficiently large integers i. Thus, we have

h(ni + 1)c1 > ui. (24)

Define L2 = {1n0m : m ≤ 22n there are m different elements in Q1(M
Mq

1 , SAT, B, h(n)c1 , g(h(n)c1), h(n))
}.

The number of strings z ∈ B queried by M1(.) with inputs of length h(n) is at most dB(h(n)c1) since the
length of z is at most h(n)c1 . In other words,

∣∣∣∣∣∣
⋃

y∈Σ=h(n)

PQ(M1, y, h(n)c1)

∣∣∣∣∣∣
≤ dB(h(n)c1). (25)

As Mq is a deterministic oracle Turing machine with the number of queries bounded by function g(.), we
have

|PQ(Mq, z, g(h(n)c1)| ≤ 2g(h(n)c1 ) for each z of length at most h(n)c1 . (26)

By equations (18), (25), and (26), we have the inequality

|Q1(M
Mq

1 , SAT, B, h(n)c1 , g(h(n)c1), h(n))| ≤ dB(h(n)c1)2g(h(n)c1 ) for all large n. (27)

We will show this number is less than 22ni if n = ni for all large i. For all large i, we have

e(1ni) ≥ 8c1 (28)
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since e(1n) is nondecreasing and unbounded. Since B is of density bounded by dB(n), we have the inequalities

dB(h(ni)c1) ≤ dB(ui) (by inequality (23)) (29)

≤ 2u
1/e(1ui )2

i (by inequality (22)) (30)

≤ 2(h(ni+1)c1 )1/e(1ui )2

(by inequality (24)) (31)

≤ 2h(n2
i )c1/e(1ui )2

(by the condition ni ≥ 2) (32)

≤ 2(n
2e(1

n2
i )

i
)c1/e(1ni )2

(by equation (21)) (33)

≤ 2(n
4e(1ni )
i

)c1/e(1ni )2

(by equation (19)) (34)
< 2ni . (by inequality (28)) (35)

Therefore,

dB(h(ni)c1)2g(h(ni)
c1 ) ≤ dB(h(ni)c1) · 2ni (by inequality (20) and equation (21)) (36)

< 22ni . (by inequality (35) ) (37)

By inequalities (27), and (37)

|Q1(M
Mq

1 , SAT, B, h(ni)c1 , g(h(ni)c1), h(ni))| < 22ni for all large i. (38)

We can assume that m ≤ 22n (otherwise, 1n0m 6∈ L2). Since M1(.) and Mq(.) run in nc1 and ncq time,
respectively, we have that M

Mq

1 (.) runs in nc1cq time. By Lemma 22, the decision if 1n0m ∈ L2 can be made
by a nondeterministic Turing machine in mh(n)O(1) = 2O(n) time for all large n. We have L2 ∈ NEXP.
Thus, L2 ∈ NPT(K) via a nondeterministic Turing machine M2(.). Since K ∈ PNP

T , there is a constant c2

such that we can find the largest mn in time 2nc2 such that 1n0m ∈ L2.
Define the language L3 = {(x,m) : there are at least m different strings z1, · · · , zm in

Q1(M
Mq

1 , SAT, B, h(n)c1 , g(h(n)c1), h(n)), and (MMq

1 )SAT(x10h(|x|)−|x|−1)) has an accept path that receives
answer 1 for each query (to SAT), which is generated by some y ∈ B, in {z1, · · · , zm}, and answer 0 for each
query (to SAT), which is generated by some y ∈ B, not in {z1, · · · , zm} }.

By Lemma 3, we have L3 ∈ NE. Thus, L3 ∈ NPT(K) via another polynomial time nondeterministic
Turing machine M3(.). Assume that M3(.) runs in time nc3 for all n ≥ 2.

Assume ni = |x|. In order to find the largest number m such that 1ni0m ∈ L2, m is always at most 22ni .
Thus, the length of m is at most 2n. Using the binary search, we can find the largest m with 1ni0m ∈ L2.
Let mni be the largest m with 1ni0m ∈ L2. Since SAT ∈ NP, mni can be computed in 2n

c4
i deterministic

time for some positive constant c4.
Assume that mni is known. We just check if (x,mni) ∈ L3, where ni = |x|. It is easy to see x ∈ L if and

only if x10h(ni)−ni−1 ∈ L1 if and only if (x,mni) ∈ L3. Since L3 ∈ NPT(K) and K ∈ PNP
T , we only need

2n
c5
i time to decide if (x, mni) ∈ L3, where c5 is a positive constant. Therefore, we can decide if x ∈ L in

2n
c5
i time.
Therefore, there is a deterministic Turing machine M∗(.) that runs in 2n

c5
i time and accepts Lni for all

i sufficiently large. Note that L is an arbitrary language in DTIME(2h(n)), and function h(n) is a super-
polynomial function. This brings there is a deterministic Turing machine M∗(.) that runs in 2nc5 time and
accepts Lni for all sufficiently large integers i. This contradicts Lemma 5.

It is easy to see that {1}∗ is a sparse language in P ⊆ NP∩ co-NP, and TALLY is the power set of {1}∗.
We have the following corollary.

Corollary 25. NEXP 6⊆ NPT(Pg(n)−T(NP) ∩ TALLY) for any well sub-polynomial function g(n).

It is well known that Ptt(NP) = PO(log n)−T(NP) (see [6]), we have corollary 26.

Corollary 26. NEXP 6⊆ NPT(Ptt(NP) ∩ TALLY).
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7. Conclusions

We show that NEXP 6⊆ NPT(NP ∩Nonexponentially-Dense-Class). This result has almost reached the limit
of relativizable technology. A fundamental open problem is to separate NEXP from BPP. We would like
to see the further step toward this target. Our method is a relativizable. Since there exists an oracle to
collapse NEXP to BPP by Heller [12], separating NEXP from BPP requires a new way to go through the
barrier of relativization. We feel that it is easy to extend results to super polynomial time classes such as
NE 6⊆ NTIME(nO(log n))T(NTIME(nO(log n))∩SPARSE). We will present this kind of results in the extended
version of this paper.
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