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Abstract

We associate a CNF-formula to every instance of the mean-payoff game problem in such a way
that if the value of the game is non-negative the formula is satisfiable, and if the value of the game
is negative the formula has a polynomial-size refutation in Σ2-Frege (i.e. DNF-resolution). This
reduces mean-payoff games to the weak automatizability of Σ2-Frege, and to the interpolation
problem for Σ2,2-Frege. Since the interpolation problem for Σ1-Frege (i.e. resolution) is solvable
in polynomial time, our result is close to optimal up to the computational complexity of solving
mean-payoff games. The proof of the main result requires building low-depth formulas that
compute the bits of the sum of a constant number of integers in binary notation, and low-
complexity proofs of the required arithmetic properties.

1 Introduction

A mean-payoff game is played on a weighted directed graph G = (V,E) with an integer weight w(e)
on every arc e ∈ E. Starting at an arbitrary vertex u0, players 0 and 1 alternate in rounds, each
extending the path u0, u1, . . . , un built up to that point, by adding one more arc (un, un+1) ∈ E
that leaves the current vertex un. The goal of player 0 is to maximize the long-run smallest average
weight ν0 = lim infn→∞

1
n

∑n
i=1 w(ui−1, ui), while the goal of player 1 is to minimize the long-run

largest average weight ν1 = lim supn→∞
1
n

∑n
i=1 w(ui−1, ui).

These games were studied by Ehrenfeucht and Mycielsky [13] who showed that every such game
G has a value ν = νG such that player 0 has a positional strategy that secures ν0 ≥ ν, and player
1 has a positional strategy that secures ν1 ≤ ν. Here, a positional strategy is one whose moves
depend only on the current vertex and not on the history of the play. We say that the game satisfies
positional determinacy.

Positional determinacy is a property of interest in complexity theory. On one hand it implies
that the problem of deciding if a given game has non-negative value (MPG) belongs to NP ∩ co-NP.
This follows from the fact that every positional strategy has a short description, and that given
a positional strategy for one player, it is possible to determine the best response strategy for the
other in polynomial time. The latter was observed by Zwick and Paterson [29] as an application of
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Karp’s algorithm for finding the minimum cycle mean in a digraph [17]. See [29] also for a direct
link with Shapley’s simple stochastic games. On the other hand, at the time of writing there is
no known polynomial-time algorithm for solving mean-payoff games, not even for a special case
called parity games that is of prime importance in applications of automata theory, and the body
of literature on the topic keeps growing [16, 15, 9].

For a problem in NP ∩ co-NP for which a polynomial-time algorithm is not known or obvious,
it is compulsory to ask for the nature of the certificates (short proofs of membership) and of the
disqualifications (short proofs of non-membership). Celebrated examples where this was insightful
are too many to be cited here (see [20, 22]). In the case that concerns us, that of mean-payoff games,
a new and useful understanding of its membership in NP ∩ co-NP emerges from the combination
of two recent results.

The starting point is the observation that the problem MPG reduces to the satisfiability problem
for sets of max-atoms. A max-atom is an inequality of the form x0 ≤ max {x1 + a1, . . . , xr + ar}
where x0, . . . , xr are integer variables, and a1, . . . , ar are integer constants. This was first seen in [21]
in the special context of scheduling and precedence constraints (with slightly different notation and
definitions). The second result is from [8], where the satisfiability problem for max-atoms was
re-discovered and given its name, and the problem was studied from the perspective of logic. The
authors of [8] introduced an inference system, called chaining, that derives new max-atoms that
follow from previous ones by simple rules. They showed that this system is both complete and,
interestingly, polynomially bounded: if the collection of max-atom inequalities is unsatisfiable, then
it has a refutation whose total size is polynomial in the size of the input.

Given these two results, the situation is that for a given mean-payoff game G, a satisfying
assignment to the corresponding instance of the max-atom problem is a certificate that νG ≥ 0,
and a refutation of this instance in the chaining inference system is a certificate that νG < 0.
Therefore MPG reduces to the proof-search problem for this inference system. We address the
question whether it also reduces to the proof-search problem for some standard proof-system for
propositional logic. In brief, our main result is that a Boolean encoding of the instance expressing
νG ≥ 0 is either satisfiable, or has polynomial-size refutations in Σ2-Frege, the standard inference
system for propositional logic restricted to manipulating DNF-formulas. To be placed in context,
in our terminology Σ1-Frege manipulates clauses and is thus equivalent to propositional resolution.

Related work and consequences. The proof-search problem for a proof system P asks, for a
given unsatisfiable Boolean formula A, to find a P -refutation of A. We say that P is automatizable
if the proof-search problem for P is solvable in time polynomial in the size of the smallest P -proof
of A. The weak automatizability problem for P asks, for a given formula A and an integer r given
in unary, to distinguish the case when A is satisfiable from the case when A has a P -refutation of
size at most r. It is known that this problem is solvable in polynomial time if and only if there is
an automatizable proof system that simulates P .

The question whether some standard proof system is automatizable was introduced in [12], fol-
lowing the work in [19]. These works showed that extended-Frege and its weaker version TC0-Frege
are not automatizable unless there is a polynomial-time algorithm for factoring. Extended-Frege
and TC0-Frege are the standard inference systems for propositional logic restricted to manipulat-
ing Boolean circuits and threshold formulas of bounded depth, respectively. Indeed, their result
is stronger since in both cases it shows that there is a reduction from factoring to the weak au-
tomatizability problem. To date, the weakest proof system that seems not weakly automatizable is
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AC0-Frege, the standard system restricted to Boolean formulas of bounded alternation-depth. But
here the hardness result is much weaker since the reduction from factoring is only subexponential
and degrades with the target depth of the AC0-formulas [10].

All these hardness results proceed by exhibiting short refutations of an unsatisfiable Boolean
formula that comes from a cryptography-inspired problem based on the hardness of factoring.
Since the usual cryptographic primitives require either complex computations or complex proofs of
correctness, going below polynomial-size TC0-Frege or subexponential-size AC0-Frege is difficult.
In particular, there is no clear evidence in favour or against whether Σd-Frege, for fixed d ≥ 1,
is weakly automatizable, where Σd-formulas are AC0-formulas of alternation-depth d − 1 and a
disjunction at the root. Not even for Σ1-Frege (i.e. resolution) there is clear consensus in favour
or against it, despite the partial positive results in [7, 5] and the partial negative results in [1].

The first consequence of our result is that the problem of solving mean-payoff games re-
duces to the weak-automatizability of Σ2-Frege. Our initial goal was to reduce it to the weak-
automatizability of resolution, or cutting planes, but these remain open. Note that cutting planes
is a natural candidate in the context of max-atoms as it works with linear inequalities over the
integers. The difficulty seems to be in simulating disjunctions of inequalities.

A second consequence of our result concerns the problem of interpolation for a proof system
P . This is the problem that asks, for a given P -refutation of an unsatisfiable formula of the form
A0(x, y0)∧A1(x, y1) and a given truth assignment a for x, to return an i ∈ {0, 1} such that Ai(a, yi)
is itself unsatisfiable. If the feasible interpolation problem for P is solvable in polynomial time we
say that P enjoys feasible interpolation. It is known that feasible interpolation is closely related to
weak automatizability in the sense that if a system is weakly automatizable, then it enjoys feasible
interpolation [12, 27]. Proof systems enjoying feasible interpolation include resolution [18], cutting
planes [24, 11], Lovász-Schrijver [26], and Hilbert’s nullstellensatz [28]. On the negative side, it
turns out that all known negative results for weak automatizability mentioned above were shown by
reducing factoring to the interpolation problem. Thus, extended-Frege, TC0-Frege and AC0-Frege
probably do not enjoy feasible interpolation. For Σd-Frege for fixed d ≥ 2 there is no evidence in
favour or against.

In this front our result implies that the problem of solving mean-payoff games reduces to the
interpolation problem for Σ2,2-Frege, where Σ2,2-formulas are Σ3-formulas of bottom fan-in two.
Note that Σ1-Frege does enjoy feasible interpolation since it is equivalent to resolution. Thus our
result is close to optimal up to the computational complexity of solving mean-payoff games.

Overview of the proof. Given a mean-payoff game G, we want to find an efficient translation
of its associated instance of the max-atom problem into a collection of Boolean clauses. Once this
is done, and assuming νG < 0, we provide a polynomial-size Σ2-Frege refutation that simulates the
polynomial-size chaining-refutation guaranteed to exist by the results in [8].

Executing this plan requires technical work and is the main contribution of this paper. As part
of its solution we need efficient depth-two formulas that compute the bits of the sum of a constant
number of non-negative integers represented in binary. This was long known for two summands but
the extension to more than two summands is not obvious and appears to be new. This turned out to
be specially delicate because we need formulas explicit enough to allow polynomial-size depth-two
Frege proofs of their basic properties. For example:

x ≤ y + a y ≤ z + b

x ≤ z + a + b
.
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We hope these will be useful in independent contexts. One key fact in our argument is that we use
the above with constants a and b, which makes the bottom formula equivalent to x ≤ z + (a + b).
The point is that if a and b were not constants, the number of summands would grow unbounded,
and such sums are known to be not definable by polynomial-size formulas of constant depth [14].

Structure of the paper. In Section 2 we discuss the transformation from mean-payoff games
to the max-atom problem, and the chaining inference system. In Section 3 we introduce the
notation about Boolean formulas and the definition of Σd-Frege. In Section 4 we define the formula
CARRY(x1, . . . , xr) that computes the carry-bit of the sum of r integers given in binary. In Section 6
we simulate the rules of chaining using formal proofs for the arithmetic properties of CARRY. In
Section 7 we put everything together and get consequences for proof complexity.

2 Max-atom refutations

In this section we discuss the translation from mean-payoff games to the satisfiability problem for
max-atom inequalities. We also define the chaining inference system and state its main property.

2.1 From mean-payoff games to max-atom inequalities

Let G = (V,E, V0, V1, w) be a mean-payoff game, which means that (V,E) is a directed graph with
out-degree at least one, V = V0 ∪V1 is a partition of the vertices into 0-vertices and 1-vertices, and
w : E → {−W, . . . , 0, . . . ,W} is an integer weight-assignment to the arcs of the graph. This specifies
an instance of the mean-payoff game problem which asks whether ν ≥ 0. Here, ν = minu∈V ν(u)
and ν(u) is the value of the game started at u. This is defined as ν(u) = sups0

infs1
ν(u, s0, s1),

where s0 and s1 are strategies for player 0 and player 1, and

ν(u, s0, s1) = lim inf
n→∞

1

n

n
∑

i=1

w(ui−1, ui)

where u0 = u and ui+1 = sj(u0, . . . , ui) if ui ∈ Vj for j ∈ {0, 1}.
To every mean-payoff game G we associate a collection of max-atom inequalities I(G) that is

satisfiable if and only if ν ≥ 0. This was done for the first time in [21, Lemma 7.5]. Here we give a
similar construction discussed in [4].

For every u ∈ V , we introduce one integer variable xu. For every u ∈ V0, we add

xu ≤ max {xv + w(u, v) : v ∈ N(u)},

where N(u) is the set of out-neighbors of u in G. For every u ∈ V1, we want to impose the constraint

xu ≤ min {xv + w(u, v) : v ∈ N(u)}.

If N(u) = {v1, . . . , vh} this is simply

xu ≤ max {xv1
+ w(u, v1)}

...
xu ≤ max {xvh

+ w(u, vh)}.
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Note that I(G) consists of at most |E| max-atoms involving |V | variables and integer constants in
the range [−W,W ]. Its size is thus polynomial in the size of G. At this point we transformed the
question whether ν ≥ 0 to the satisfiability of a system of max-atom inequalities. The correctness
of the transformation is stated in Lemma 1 below.

2.2 Chaining refutations

An offset is a term of the form x + c, where x is an integer variable and c is an integer constant.
In the following, the letters R and S refer to collections of offsets. Also, if a is an integer constant,
S + a refers to the collection of offsets of the form x + (c + a) as x + c ranges over all offsets in S.
The inference system introduced in [8] called chaining works with max-atom inequalities and has
three rules. The first rule is called chaining:

x ≤ max(R, y + a) y ≤ max(S)

x ≤ max(R,S + a)
.

The second rule is called simplification:

x ≤ max(R,x + a)

x ≤ max(R)
if a < 0.

The third rule is called contraction:

x ≤ max(R, y + a, y + b)

x ≤ max(R, y + c)
if a ≤ c and b ≤ c.

A chaining refutation is a proof of x ≤ max(), which is clearly unsatisfiable.
This inference system is sound and complete for refuting unsatisfiable collections of max-atom

inequalities [8, Theorem 2]. Even more, it is polynomially bounded, which means that if I is an
unsatisfiable collection of max-atoms, then there is a chaining refutation of length polynomial in
the size of I, and with numbers of bit-length polynomial in the size of I. This follows from two
facts: that if I is unsatisfiable then it contains an unsatisfiable subcollection where every variable
appears at most once on the left-hand side (Lemma 5 in [8]), and that for such subcollections the
refutation produced by the completeness proof is polynomial (see the proof of Theorem 4 in [8]).

The following lemma states the correctness of the translation I(G) and puts it together with
what we need about max-atoms and chaining refutations:

Lemma 1. Let G = (V,E, V0, V1, w) be a mean-payoff game and let I = I(G) be its transformation
to a system of max-atom inequalities. Let n = |V | and m = |E|, and W = max{|w(e)| : e ∈ E}.
The following are equivalent:

1. νG < 0,

2. I is unsatisfiable,

3. I is not satisfied by any assignment with values in the range [0,mW ],

4. I has a chaining refutation,

5. I has a chaining refutation of length at most n2 with constants in the range [−mW,mW ].
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Proof. The equivalence between 1 and 2 follows (essentially) from Lemma 7.5 in [21] (see also [4]
for a proof of the exact statement). The equivalence between 2 and 3 follows from Lemma 2 in [8].
The one between 3 and 4 follows from Theorem 2 in [8]. And the one between 4 and 5 follows from
the remarks preceeding the statement of the lemma.

3 Preliminaries in propositional logic

We introduce the notation and conventions related to Boolean formulas. We also define proposi-
tional proofs and discuss complexity measures. Besides these definitions, we also establish a few
schema that will help us abbreviate the construction of proofs in later sections. Most of the concepts
and notations in this section are standard in propositional proof complexity (see [25] or [6]).

3.1 Boolean formulas

Let x1, x2, . . . be a supply of Boolean variables. A literal is either a variable xi, or the negation of
a variable which we denote by xi, or the constant 1, or the negation of 1 which we denote by 0. We
use literals to build Boolean formulas with the usual connectives: conjunctions ∧ and disjunctions
∨. We think of conjunctions and disjunctions as associative, commutative and idempotent and
therefore as symmetric connectives of unbounded arity.

If A is a set of formulas, we write ∧A for the formula that joins all formulas in A by a conjunction
of arity |A| at the root. Similarly, ∨A denotes the formula that joins all formulas in A by a
disjunction of arity |A| at the root. It will be convenient to allow negations on variables only.
Thus, we think of ¬ ∧A and ¬ ∨A as the same formulas as ∨¬A and ∧¬A, where ¬A denotes the
set of negations of formulas in A. When we reach the literals at the leaves, ¬xi denotes xi and ¬xi

denotes xi. If F is a literal xi or xi, its size s(F ) is 1. If F is a conjunction ∧A or a disjunction
∨A, its size s(F ) is 1 +

∑

G∈A s(G).
When writing formulas in text we use parenthesis to disambiguate different possible parse-trees.

For example F ∨G∧H has two possible parse-trees: F ∨(G∧H) and (F ∨G)∧H. If F (1), . . . , F (r)
denote formulas, when it is convenient we use the notation

(∀i : 1 ≤ i ≤ r)(F (i)) ≡ F (1) ∧ · · · ∧ F (r),
(∃i : 1 ≤ i ≤ r)(F (i)) ≡ F (1) ∨ · · · ∨ F (r).

A clause is a disjunction of literals "1 ∨ · · · ∨ "r. A term is a conjunction of literals "1 ∧ · · ·∧ "r.
A formula in CNF is a conjunction of clauses C1 ∧ · · · ∧ Cm. A formula in DNF is a disjunction
of terms T1 ∨ · · · ∨ Tm. We define a hierarchy of formulas as follows: let Σ0 = Π0 be the set of all
literals, and for d ≥ 1, let Σd be the collection of all formulas of the form ∨A, where A is a set of
Πd−1-formulas, and let Πd-formula be the collection of all formulas of the form ∧A, where A is a
set of Σd−1-formulas. We write Σd,k and Πd,k for the collection of all Σd+1- and Πd+1-formulas with
bottom fan-in at most k. For example, Σ1,k are k-DNF-formulas, that is, DNF-formulas composed
of terms with at most k literals. We use the notation Σd,c to denote Σd,k for some unspecified
constant k ≥ 1.
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3.2 Propositional proofs

We define four rules of inference. The four rules are axiom (AXM), weakening (WKG), introduction
of conjunction (IOC), and cut (CUT):

F ∨ ¬F

∆

∆ ∨ G

∆ ∨ F ∆′ ∨ G

∆ ∨ ∆′ ∨ (F ∧ G)

∆ ∨ F ∆′ ∨ ¬F

∆ ∨ ∆′
,

where F and G denote formulas, and ∆ and ∆′ denote either formulas or the special empty formula
which we denote by !. If ∆ is the special empty formula, then ∆ ∨ ∆′ is simply ∆′. Note that
when ∆ and ∆′ are clauses and F is a variable, the CUT-rule is also known as the resolution rule.

Let F1, . . . , Fr and G be formulas. The assertion that given F1, . . . , Fr we can conclude G is
denoted by F1, . . . , Fr . G. A proof of this assertion is a finite sequence of formulas H1,H2, . . . ,Hm

such that Hm = G and for every i ∈ [m], either Hi = Fj for some j ∈ [r], or Hi is the conclusion
of an inference rule with hypothesis Hj and Hk for some j and k such that 1 ≤ j ≤ k ≤ i− 1. The
length of the proof is m. The size of the proof is the sum of the sizes of all involved formulas. A
refutation of F1, . . . , Fr is a proof of the assertion F1, . . . , Fr . !. If C is a collection of formulas, a
C-Frege proof is one where all formulas belong to C.

Whenever we use the expression “the assertion F1, . . . , Fr . G has a polynomial-size C-Frege
proof”, what we mean is that there exists some universal but unspecified polynomial p(n) such that
F1, . . . , Fr . G has a C-Frege proof of size at most p(s(F1) + · · · + s(Fr) + s(G)). Similarly, we use
poly(n) to denote some universal but unspecified polynomial function of n, and c to denote some
universal but unspecified constant.

A resolution proof is one where all formulas are clauses and the only allowed rule is CUT. Note
that if the only allowed formulas are clauses then IOC is automatically forbidden. Also it is not
hard to see that using the rules AXM and WKG makes no difference when only clauses are used:
if there is a Σ1-Frege refutation of F1, . . . , Fr of length m, then there is a resolution refutation of
F1, . . . , Fr of length at most m as well. Therefore resolution and Σ1-Frege are essentially the same
thing. Let us mention that Σ1,k-Frege is also known as Res(k), or as k-DNF-resolution. Along
these lines, Σ2-Frege could be called DNF-resolution.

3.3 Proof schema

A proof scheme is a statement saying that a formal proof of a certain assertion α1, . . . ,αr . β can
be converted to a proof of a related assertion α′

1, . . . ,α
′
s . β′. In this section we provide three proof

schema for later use.

Proof-scheme of weakening The first proof-scheme states that if there exists a small proof of
an assertion with two hypothesis, then there exists a small proof of the same assertion where one
of its hypothesis and the conclusion have been weakened by the addition of a disjunct. For later
applications, we need to be particularly careful with the size and the length of the resulting proof.

Lemma 2. Let W be a Σd,k-formula of size at most t. If

F G

H

has a proof of length " with Σd,k-formulas of size at most s, then

F G ∨ W

H ∨ W
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has a proof of length at most " + 1 with Σd,k-formulas of size at most s + t + 1.

Proof. Replace the hypothesis G by G ∨ W and apply the same rules as in the given proof. The
side formula W accumulates along the proof to produce the conclusion H ∨ W , or H if the right
hypothesis is really not used. In the second case just add W by weakening. The length of the new
proof is at most " + 1. For the size, in the worst case W appears as a side formula of each line
of the new proof. Therefore each line increases its size by at most t + 1 (the +1 takes care of the
potentially new disjunction-node at the root).

Proof-scheme of pairwise case-analysis We continue with a proof-scheme showing that in
order to have a small proof of H from the two hypothesis (∃i)(F (i)) and (∃j)(G(j)), it is enough
to have small proofs of H from each particular pair of hypothesis F (a) and G(b), for all possible
values of a and b.

Lemma 3. If for every a ∈ [r] and every b ∈ [s] the assertion

F (a) G(b)

H

has a proof of length at most " with Σd,k-formulas of size at most t, then

(∃i : 1 ≤ i ≤ r)(F (i)) (∃j : 1 ≤ j ≤ s)(G(j))

H

has a proof of length at most poly(r, s, ") with Σd,k-formulas of size at most poly(r, s, t).

Proof. For a ∈ [r] and b ∈ [s], let (H.a.b) denote the assertion in the hypothesis. We start giving a
proof of the assertion

(∃i : 1 ≤ i ≤ a)(F (i)) G(b)

H
(1)

for every fixed a ∈ [r] and b ∈ [s]. To achieve this we fix b ∈ [s] and proceed inductively on
a ∈ [r]. The base case is a = 1 in which case (1.a.b) is given by hypothesis since the formula
(∃i : 1 ≤ i ≤ 1)(F (i)) is a different way of writing F (1). Assuming a ∈ {2, . . . , r} and that we have
a proof of (1.a − 1.b), we give a proof of (1.a.b). First apply the proof-scheme of weakening on the
proof of (H.a.b) by adding (∃i : 1 ≤ i ≤ a − 1)(F (i)) to its left hypothesis and to the conclusion.
This gives a proof of

(∃i : 1 ≤ i ≤ a)(F (i)) G(b)

(∃i : 1 ≤ i ≤ a − 1)(F (i)) ∨ H
. (2)

Then apply the proof-scheme of weakening on the proof of (1.a − 1.b) by adding H to its left
hypothesis and to the conclusion. This gives a proof of

(∃i : 1 ≤ i ≤ a − 1)(F (i)) ∨ H G(b)

H
. (3)

Concatenating the proof of (2.a.b) with that of (3.a.b) we get a proof of (1.a.b).
Before we continue, let us analyze the length and size of this proof. Let L(a, b) be the length

of the proof, and let S(a, b) be the maximum size of the formulas in the proof. For a = 1, we have
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L(1, b) ≤ " and S(1, b) ≤ t by hypothesis. For a > 1, from the estimates in the proof-scheme of
weakening we get the following recurrences:

L(a, b) ≤ " + 1 + L(a − 1, b) + 1

S(a, b) ≤ t + (a − 1)t + 1 + 1 + S(a − 1, b) + t + 1.

Expanding we get L(r, b) ≤ p(r, ") and S(r, b) ≤ q(r, t) for certain polynomials p and q.
We continue giving a proof of

(∃i : 1 ≤ i ≤ r)(F (i)) (∃j : 1 ≤ j ≤ b)(G(j))

H
(4)

for every b ∈ [s]. To achieve this we proceed inductively on b ∈ [s]. The base case is b = 1 in which
case (4.b) is precisely (1.r.1) because the formula (∃j : 1 ≤ j ≤ 1)(G(j)) is a different way of writing
G(1). Assuming b ∈ {2, . . . , s} and that we have a proof of (4.b− 1), we give a proof of (4.b). First
apply the proof-scheme of weakening on the proof of (1.r.b) by adding (∃j : 1 ≤ j ≤ b − 1)(G(j))
to its right hypothesis and to the conclusion. This gives a proof of

(∃i : 1 ≤ i ≤ r)(F (i)) (∃j : 1 ≤ j ≤ b)(G(j))

(∃j : 1 ≤ j ≤ b − 1)(G(j)) ∨ H
. (5)

Then apply the proof-scheme of weakening on the proof of (4.b − 1) by adding H to its right
hypothesis and to the conclusion. This gives a proof of

(∃i : 1 ≤ i ≤ r)(F (i)) (∃j : 1 ≤ j ≤ b − 1)(G(j)) ∨ H

H
. (6)

Concatenating the proof of (5.b) with that of (6.b) we get a proof of (4.b).
We conclude with the analysis of the length and the size of this proof. Let L(b) be the length

of the proof and let S(b) be the maximum size of the formulas in the proof. For b = 1, we have
L(1) ≤ p(r, ") and S(1) ≤ q(r, t) from the analysis of the proof of (1.a.b). For b > 1, from the
estimates in the proof-scheme of weakening we get the following recurrences:

L(b) ≤ p(r, ") + 1 + L(b − 1) + 1

S(b) ≤ q(r, t) + (b − 1)q(r, t) + 1 + 1 + S(b − 1) + q(r, t) + 1.

Expanding we get L(r, s) ≤ p′(r, s, ") and S(r, s) ≤ q′(r, s, t) for certain polynomials p′ and q′.

Proof-scheme of case-analysis The next proof-scheme is a particular case of the previous one.
For later reference we state it as a lemma.

Lemma 4. If for every a ∈ [r] the assertion

F (a)

H

has a proof of length at most " with Σd,k-formulas of size at most t, then

(∃i : 1 ≤ i ≤ r)(F (i))

H

has a proof of length poly(r, ") with Σd,k-formulas of size poly(r, t).

Proof. This is a very special case of the proof-scheme of pairwise case-analysis where r = s and
F (i) = G(i) for every i ∈ {1, . . . , r}.
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Scheme of implication The following lemma says that there is a small proof of an existential-
universal formula of the form (∃i)(∀j)(G(i, j)) starting from the hypothesis (∃i)(∀j)(F (i, j)) and
all the implications F (a, b) → G(a, b).

Lemma 5. For every i ∈ [r] and j ∈ [s], let F (i, j) be a Π1,k-formula and let G(i, j) be a Σ1,k-
formula. The following assertion has a polynomial-size Σ2,k-Frege proof:
Given

1. ¬F (a, b) ∨ G(a, b) for every a ∈ [r] and b ∈ [s],

2. (∃i : 1 ≤ i ≤ r)(∀j : 1 ≤ j ≤ s)(F (i, j)),

conclude

(∃i : 1 ≤ i ≤ r)(∀j : 1 ≤ j ≤ s)(G(i, j)).

Proof. For every a ∈ [r] and b ∈ [s], let (H.a, b) denote the hypothesis numbered 1. for the indicated
values of a and b. Let (H) denote the hypothesis numbered 2. For every fixed a ∈ [r], apply IOC
on (H.a.1), . . . , (H.a.s) to get

¬F (a, 1) ∨ · · · ∨ ¬F (a, s) ∨ (∀j : 1 ≤ j ≤ s)(G(a, j)). (7)

Note that ¬F (a, 1)∨ . . .∨¬F (a, s) is the negation of (∀j : 1 ≤ j ≤ s)(F (a, j)). Apply CUT between
(H) and (7.1) on this formula for a = 1, followed by CUT between the result and (7.2) on the same
formula for a = 2, and so on until a = r. This gives

(∀j : 1 ≤ j ≤ s)(G(1, j)) ∨ · · · ∨ (∀j : 1 ≤ j ≤ s)(G(r, j)) (8)

which is exactly the goal.

4 Bitwise linear arithmetic

The basic Σ2,c-formula with which we work expresses an inequality. More specifically, it asserts
that an addition results in “overflow”, or equivalently that there is a carry-bit generated at the
left most position. As a simple example, suppose we want to express that the sum of two B-bit
numbers x = x1 . . . xB and y = y1 . . . yB is at least 2B . It is not hard to see that the following
formula is equivalent to the desired inequality:

(∃p : 1 ≤ p ≤ B)(xp = 1 ∧ yp = 1 ∧ (∀q : 1 ≤ q ≤ p − 1)(xq + yq = 1)).

By writing xq + yq = 1 in conjunctive normal form, note that this is a Σ2,2-formula. In this section
we generalize this formula to an arbitrary number of B-bit numbers.

4.1 Automaton and formula

Let r, k, " and B be positive integers such that r ≤ k ≤ 2! − 1 < 2B . Let x = (x1, . . . , xr), where
each xi is a string xi,1 . . . xi,B of B Boolean variables. We think of x as a matrix with r rows and
B columns arranged as follows:

x =











x1,1 x1,2 · · · x1,B

x2,1 x2,2 · · · x2,B
...

...
. . .

...
xr,1 xr,2 · · · xr,B










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Figure 1: A state machine that decides if there is overflow in the addition of 5 Boolean strings.

For each column p ∈ {1, . . . , B}, let xp = x1,p + · · · + xr,p. We interpret xp as a symbol in an
alphabet of r + 1 symbols {0, . . . , r} ⊆ {0, . . . , k}, and thus x as a word in {0, . . . , k}B .

We describe an automaton M that decides whether there is overflow in the addition of r B-bit
numbers. It is defined to work on the alphabet {0, 1, . . . , k}, i.e. its input is x1,x2, . . . ,xB . In
general, M has k+1 states each indicating a range for the value of the number read so far, which at
step p we will denote by x[p] = x12p−1 +x22p−2 + · · ·+xp−121 +xp20. The k + 1 states correspond
to the ranges [0, 2p − k], the following k − 1 single integer intervals 2p − (k − 1), . . . , 2p − 1, and
[2p, k(2p − 1)]. We denote these states by −k, −(k − 1), . . . ,−1, and 0, respectively. The two
extreme states are absorbing, and correspond respectively to the absence and presence of overflow:
if x[p] ≥ 2p then x ≥ 2p2B−p = 2B , hence there is overflow; on the other hand, if x[p] ≤ 2p − k

then x ≤ (2p − k)2B−p + k(2B−p − 1) = 2B − 1, and there is no overflow. The starting state is −1,
because x[0] = 0 = 20 − 1. The state machine for k = 5 is given in Figure 1.

The key fact that allows us to design the propositional formula is that if at some stage the
machine has not yet reached one of the absorbing states, then we can identify in which intermediate
state it is only based on the last " values read, because it suffices to know x[p] modulo 2! > k − 1.

We define notation for the number in the last " positions, and the state it corresponds to:

• A!(x; p) = x12p−1 + x22p−2 + · · · + xp−121 + xp20 if 0 ≤ p ≤ "− 1,

• A!(x; p) = xp−!+12!−1 + xp−!+22!−2 + · · · + xp−121 + xp20 if " ≤ p ≤ B,

• S!(x; p) = (A!(x; p) mod 2p) − 2p if 0 ≤ p ≤ "− 1,

• S!(x; p) = (A!(x; p) mod 2!) − 2! if " ≤ p ≤ B,

• N!(x; p) = 2S!(x; p − 1) + xp if 1 ≤ p ≤ B.

Intuitively, S!(x; p) denotes the state of the computation of M at time p as long as it did not reach
an absorbing state before, and N!(x; p) stands for “next state” when position p is read even though
it is not always in the range {−k, . . . , 0}.

For every p ∈ {1, . . . , B}, we define the predicates

F+(x; p) ≡ F+
k,!(x; p) ≡ N!(x; p) ≥ 0,

F−(x; p) ≡ F−
k,!(x; p) ≡ −k < N!(x; p) < 0.

When the parameters k and " are clear from the context we use the lighter notation on the left.
Assuming that S!(x; p − 1) is the correct state of M at time p − 1, the predicate F+(x; p) asserts

11



that at time p the automaton accepts, and F−(x; p) asserts that at time p the automaton is not at
an absorbing state.

Since F+(x; p) and F−(x; p) depend on no more than k" variables of x, those appearing in the
definitions of xp−!+1, . . . ,xp, both F+(x; p) and F−(x; p) are expressible as Σ1,k!-formulas and as
Π1,k!-formulas of size at most k" · 2k!. Using these we define the following formula:

CARRYk,!(x) ≡ (∃p : 1 ≤ p ≤ B)(F+(x; p) ∧ (∀q : 1 ≤ q ≤ p − 1)(F−(x; q)))

Intuitively, this formula reads “M eventually accepts”. Note that this is a Σ2,k!-formula of size
proportional to B2 · k" · 2k!.

4.2 A technical lemma

The following key lemma states that if the predicted next state N! is not absorbing, then it is
correct. This will be used intensively in the next section.

Lemma 6. Let 1 ≤ p ≤ B. If −k < N!(z; p) < 0, then S!(z; p) = N!(z; p).

Proof. Let "′ = min{p, "} and "′′ = min{p − 1, "}.

N!(z; p) ≡ 2S!(z; p − 1) + zp mod 2!′

≡ 2((A!(z; p − 1) mod 2!′′) − 2!′′) + zp mod 2!′

≡ 2(A!(z; p − 1) + m2!′′ − 2!′′) + zp mod 2!′

for some integer m. Since 2!′′+1 is a multiple of 2!′ , we infer

N!(z; p) ≡ 2A!(z; p − 1) + zp mod 2!′ .

Now note that

2A!(z; p − 1) + zp = A!(z; p) if p ≤ ",

2A!(z; p − 1) + zp = A!(z; p) + 2!zp−! if p > ".

Since 2! is a multiple of 2!′ , in both cases we get

N!(z; p) ≡ A!(z; p) mod 2!′

≡ (A!(z; p) mod 2!′) − 2!′ mod 2!′

≡ S!(z; p) mod 2!′ .

This means that the residue classes of S!(z; p) and N!(z; p) are the same. At this point we need to
distinguish the cases p > " and p ≤ ".

In case p > " we have "′ = ". Notice that −2!′ ≤ S!(z; p) ≤ −1 and

−2!′ ≤ −k + 1 ≤ N!(z; p) ≤ −1

by the assumption. Therefore, the congruence S!(z; p) ≡ N!(z; p) is actually an equality S!(z; p) =
N!(z; p).

In case p ≤ " we have "′ = p. Here we have −2p−1 ≤ S!(z; p − 1) ≤ −1. Therefore

−2!′ ≤ 2S!(z; p − 1) ≤ 2S!(z; p − 1) + zp = N!(z; p) ≤ −1

where the first inequality follows from the above, the second inequality follows from zp ≥ 0, and
the third inequality follows from the assumption. As in the previous case also −2!′ ≤ S!(z; p) ≤ −1
and therefore the congruence S!(z; p) ≡ N!(z; p) is actually an equality S!(z; p) = N!(z; p).

12



5 Proofs of arithmetic facts

In this section k, " and B are integers such that k ≤ 2! − 1 < 2B . We think of k and " as small and
bounded by some universal constant, and of B as unbounded. For concreteness, the uncomfortable
reader should fix k = 11 and " = 4 as we will do in later applications. In particular CARRYk,! is
a Σ2,c-formula, for some unspecified universal bottom fan-in, and the expression “polynomial-size
Σ2,c-Frege proof” refers to a proof of size poly(B), for some unspecified universal polynomial.

The letters a, b and c denote B-bit strings a1 . . . aB , b1 . . . bB and c1 . . . cB , respectively. Abusing
a bit the notation, sometimes we identify the string a with the number in [0, 2B) that it represents
in binary. Similarly, we identify 0 and 1 with the strings 0B and 0B−11, respectively.

We distinguish two types of elementary facts: bookkeeping facts, where not much arithmetic is
happening, and arithmetic facts, where the meat is.

5.1 Bookkeeping facts

In this subsection the letter x denotes a non-empty sequence (x1, . . . , xr), where each xi is a string
xi,1 . . . xi,B of B Boolean variables. The letters u, v, w and y denote sequences of Boolean variables
such that |u| = |w|, |v| = |y|, and |u| + |v| = B − 1.

Lemma 7. The following assertions have polynomial-size Σ2,c-Frege proofs:

1. given CARRYk,!(x, 0) conclude CARRYk,!(x), if r + 1 ≤ k,

2. given CARRYk,!(x) conclude CARRYk,!(x, 0), if r + 1 ≤ k,

3. given CARRYr,!(x) conclude CARRYk,!(x), if r ≤ k,

4. given CARRYk,!(x) conclude CARRYr,!(x), if r ≤ k,

5. given CARRYk,!(x, u0v,w1y) conclude CARRYk,!(x, u1v,w0y), if r + 2 ≤ k.

Proof of Lemma 7.1 and 7.2 For every p ∈ {1, . . . , B}, define formulas

F+(p) ≡ N!(x, 0; p) ≥ 0,
G+(p) ≡ N!(x; p) ≥ 0,
F−(p) ≡ −k < N!(x, 0; p) < 0,
G−(p) ≡ −k < N!(x; p) < 0.

Clearly F+(p) and G+(p) are equivalent. Similarly F−(p) and G−(p) are equivalent. This means
that the following formulas are tautologies:

¬F+(p) ∨ G+(p)

¬F−(p) ∨ G−(p)

¬G+(p) ∨ F+(p)

¬G−(p) ∨ G−(p).

Since these are constant-size Σ1,c-formulas, by completeness they have Σ1,c-Frege proofs of constant
size. The proof now follows from two applications of the scheme of implication Lemma 5.
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Proof of Lemma 7.3 and 7.4 For every s ∈ {1, . . . , B} define formulas

F+(s) ≡ H+(s) ≡ N!(x; s) ≥ 0,

and
F−(s) ≡ −k < N!(x; s) < 0,
H−(s) ≡ −r < N!(x; s) < 0,
R(s) ≡ N!(x; s) > −r.

For every s ∈ {1, . . . , B} define formulas

F ∗(s) ≡ (∀q : 1 ≤ q ≤ s − 1)(F−(q)),
H∗(s) ≡ (∀q : 1 ≤ q ≤ s − 1)(H−(q)).

We start with the proof of
CARRYk,!(x)

CARRYr,!(x)
. (9)

From the definitions of the formulas and the fact that r ≤ k, the following are tautologies for every
fixed p ∈ {1, . . . , B}:

¬H−(p) ∨ F−(p),

¬H+(p) ∨ F+(p).

These are constant-size Σ1,c-formulas and therefore, by completeness, they have Σ1,c-Frege proofs
of constant size. The scheme of implication Lemma 5 gives then (9). Next we give the proof of

CARRYr,!(x)

CARRYk,!(x)
. (10)

From the definitions of the formulas, the following are tautologies for every fixed p ∈ {1, . . . , B}:

¬F−(p) ∨ ¬R(p) ∨ H−(p), (11)

¬F+(p) ∨ H+(p). (12)

Additionally we argue the validity of the following for every fixed p ∈ {2, . . . , B}:

¬F−(p − 1) ∨ ¬F+(p) ∨ R(p), (13)

¬F−(p − 1) ∨ ¬R(p) ∨ R(p − 1). (14)

The validity of (13.p) follows again directly from the definitions of the formulas. The validity of
(14.p) follows from the next Claim.

Claim 1. Let 2 ≤ p ≤ B.

either N!(x; p − 1) ≤ −k, or N!(x; p) ≤ −r, or N!(x; p − 1) > −r.

Proof. Assume N!(x; p − 1) ≤ −r and N!(x; p − 1) > −k. In particular −k < N!(x; p − 1) < 0 and
by Lemma 6 we have

S!(x; p − 1) = N!(x; p − 1). (15)

Therefore

N!(x; p) = 2S!(x; p − 1) + xp ≤ −2r + xp ≤ −r,

where the first inequality follows from (15) and the assumption that N!(x; p − 1) ≤ −r, and the
second inequality follows from the fact that xp ≤ r.
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We continue with the proof of (10). All of (11.p), (12.p), (13.p), and (14.p) are constant-size
Σ1,c-formulas and therefore, by completeness, they have Σ1,c-Frege proofs of constant size. With
these in hand we will derive a proof of the following assertion, for every fixed p ∈ {1, . . . , B}:

F ∗(p) ∧ F+(p)

CARRYk,!(x)
. (16)

The proof-scheme of case-analysis Lemma 4 will do the rest to complete the proof.
The case p = 1 is obtained directly by a CUT between (12.p) and the hypothesis followed by

weakening. For p ∈ {2, . . . , B} we start applying CUT between (13.p) and (14.p) to get ¬F−(p −
1)∨¬F+(p)∨R(p−1). Then apply CUT between this and (14.p−1) to get ¬F−(p−2)∨¬F−(p−
1) ∨ ¬F+(p) ∨ R(p − 2). Continuing like this until we use (14.1) we get

¬F−(q) ∨ ¬F−(q + 1) ∨ . . . ∨ ¬F−(p − 1) ∨ ¬F+(p) ∨ R(q) (17)

for every q ∈ {1, . . . , p − 1}. Then CUT between (17.q) and (11.q) gives

¬F−(q) ∨ ¬F−(q + 1) ∨ . . . ∨ ¬F−(p − 1) ∨ ¬F+(p) ∨ H−(q). (18)

At this point, IOC on (18.1), . . . , (18.p − 1) and (12.p), followed by CUT with the hypothesis and
weakening, gives the goal in (16.p).

Proof of Lemma 7.5 For every p ∈ {1, . . . , B}, define formulas

F+(p) ≡ N!(x, u0v,w1y; p) ≥ 0,
G+(p) ≡ N!(x;u1v,w0y; p) ≥ 0,
F−(p) ≡ −k < N!(x, u0v,w1y; p) < 0,
G−(p) ≡ −k < N!(x, u1v,w0y; p) < 0.

The formulas F+(p) and G+(p) are equivalent. Similarly F−(p) and G−(p) are equivalent. This
means that the following formulas are tautologies:

¬F+(p) ∨ G+(p)

¬F−(p) ∨ G−(p).

Since these are constant-size Σ1,c-formulas, by completeness they have Σ1,c-Frege proofs of constant
size. The proof now follows from an application of the scheme of implication Lemma 5.

5.2 Arithmetic facts

In this subsection the letter z denotes a string of B Boolean variables z1 . . . zB . We write z for
the string of complementary literals: z1 . . . zB . The letters x and y denote non-empty sequences
(x1, . . . , xrx) and (y1, . . . , yry), where each xi is a string of B Boolean variables xi,1 . . . xi,B and each
yi is a string of B Boolean variables yi,1 . . . yi,B.

Lemma 8. The following assertions have polynomial-size Σ2,c-Frege proofs:

1. given CARRYk,!(x, z, 1) and CARRYk,!(y, z, 1) conclude CARRYk,!(x,y, 1), if rx+ry+1 ≤ k,

2. given CARRYk,!(x, a, b) conclude CARRYk,!(x, c), if c = a + b and rx + 3 ≤ k,

3. given CARRYk,!(x, a) conclude CARRYk,!(x, b), if a ≤ b and rx + 2 ≤ k,

4. given CARRYk,!(z, z) conclude !.
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Proof of Lemma 8.1 Let r = rx +2 and s = ry +2. Applying Lemma 7.4 on the two hypothesis
CARRYk,!(x, z, 1) and CARRYk,!(x, z, 1) we obtain

CARRYr,!(x, z, 1) CARRYs,!(x, z, 1). (19)

For every p ∈ {0, . . . , B} define formulas

R(p) ≡ S!(x,y, 1; p) = S!(x, z, 1; p) + S!(y, z, 1; p) + 1,
S(p) ≡ S!(x,y, 1; p) ≥ S!(y, z, 1; p) + 1.
T (p) ≡ S!(x,y, 1; p) ≥ S!(x, z, 1; p) + 1.

For the sake of argument, let M1 refer to the automaton on input x, z, 1, let M2 refer to the
automaton on input y, z, 1, and let M3 refer to the automaton on input x,y, 1. Intuitively, what
we want to show is that, for every p ∈ {1, . . . , B}, if neither M1 nor M2 have accepted yet by time
p, then the states of M1, M2 and M3 at time p stay related as in R(p). On the other hand, if M1

has already accepted by time p but M2 has not, then the states of M1, M2 and M3 at time p stay
related as in S(p). Similarly, if M1 has not yet accepted by time p but M1 has, then the states of
M1, M2 and M3 at time p stay related as in T (p). This will guarantee that by the time both M1

and M2 have accepted, M3 will have accepted as well since its state is always ahead.
We will prove these facts by induction on p. For later reference we state the base case and the

inductive cases of induction as claims. The first claim states that all three automata start at the
initial state.

Claim 2. S!(x,y, 1; 0) = S!(x, z, 1; 0) + S!(y, z, 1; 0) + 1.

Proof. This is immediate from the fact that S(x,y, 1; 0) = S(x, z, 1; 0) = S(y, z, 1; 0) = −1.

The second claim states that if neither M1 nor M2 have accepted by time p and the relationship
R(p − 1) holds, then either M3 accepts by time p or the relationship R(p) still holds.

Claim 3. Let 1 ≤ p ≤ B − 1.
If both

1. −r < N!(x, z, 1; p) < 0 ∧ −s < N!(y, z, 1; p) < 0, and

2. S!(x,y, 1; p − 1) = S!(x, z, 1; p − 1) + S!(y, z, 1; p − 1) + 1,

then either

1. N!(x,y, 1; p) ≥ 0, or

2. −k < N!(x,y, 1; p) < 0 ∧ S!(x,y, 1; p) = S!(x, z, 1; p) + S!(y, z, 1; p) + 1.

Proof. If N!(x,y, 1; p) ≥ 0 there is nothing to prove. Assume then N!(x,y, 1; p) < 0. The as-
sumptions −r < N!(x, z, 1; p) < 0 and −s < N!(y, z, 1; p) < 0 together with Lemma 6 give
S!(x, z, 1; p) = N!(x, z, 1; p) and S!(y, z, 1; p) = N!(y, z, 1; p). Since p ≤ B − 1 we have

N!(x,y, 1; p) = 2S!(x,y, 1; p − 1) + (xr + yr)

= 2(S!(x, z, 1; p − 1) + S!(y, z, 1; p − 1) + 1) + (xp + yp)

= 2S!(x, z, 1; p − 1) + (xp + zp) + 2S!(y, z, 1; p − 1) + (yp + 1 − zp) + 1

= N!(x, z, 1; p) + N!(y, z, 1; p) + 1,
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where the second equality follows from the assumption S!(x,y, 1; p − 1) = S!(x, z, 1; p − 1) +
S!(y, z, 1; p−1)+1. From the assumptions that −r < N!(x, z, 1; p) < 0 and −s < N!(y, z, 1; p) < 0
we conclude that

N!(x,y, 1; p) ≥ (1 − r) + (1 − s) + 1 > −k.

At this point we have −k < N!(x,y, 1; p) < 0 and we can apply Lemma 6 to obtain S!(x,y, 1; p) =
N!(x,y, 1; p). Putting all these together we get S!(x,y, 1; p) = S!(x, z, 1; p) + S!(y, z, 1; p) + 1.

The third claim states that if M1 accepts at time p but M2 has not accepted yet by time p and
moreover the relationship R(p−1) holds, then either M3 accepts by time p or the relationship S(p)
starts to hold.

Claim 4. Let 1 ≤ p ≤ B − 1.
If both

1. N!(x, z, 1; p) ≥ 0 ∧ −s < N!(y, z, 1; p) < 0, and

2. S!(x,y, 1; p − 1) = S!(x, z, 1; p − 1) + S!(y, z, 1; p − 1) + 1,

then either

1. N!(x,y, 1; p) ≥ 0, or

2. −k < N!(x,y, 1; p) < 0 ∧ S!(x,y, 1; p) ≥ S!(y, z, 1; p) + 1.

Proof. If N!(x,y, 1; p) ≥ 0 there is nothing to prove. Assume then N!(x,y, 1; p) < 0. The as-
sumption −s < N!(y, z, 1; p) < 0 together with Lemma 6 gives S!(y, z, 1; p) = N!(y, z, 1; p). Since
p ≤ B − 1 we have

N!(x,y, 1; p) = 2S!(x,y, 1; p − 1) + (xp + yp)

= 2(S!(x, z, 1; p − 1) + S!(y, z, 1; p − 1) + 1) + (xp + yp)

= 2S!(x, z, 1; p − 1) + (xp + zp) + 2S!(y, z, 1; p − 1) + (yp + 1 − zp) + 1

= N!(x, z, 1; p) + N!(y, z, 1; p) + 1

≥ N!(y, z, 1; p) + 1,

where the second equality follows from the assumption S!(x,y, 1; p − 1) = S!(x, z, 1; p − 1) +
S!(y, z, 1; p − 1) + 1, and the inequality follows from the assumption N!(x, z, 1; p) ≥ 0. From the
assumption −s < N!(y, z, 1; p) < 0 we conclude that

N!(x,y, 1; p) ≥ 1 − s + 1 > −k.

At this point we have −k < N!(x,y, 1; p) < 0 and we can apply Lemma 6 to obtain S!(x,y, 1; p) =
N!(x,y, 1; p). Putting all these together we get S!(x,y, 1; p) ≥ S!(y, z, 1; p) + 1.

A claim symmetric to the above would state the symmetric property that when M1 has not
accepted yet by time p and M2 accepts at time p and moreover the relationship R(p − 1) holds,
then the relationshop T (p) starts to hold.

The forth claim states that if M2 has not accepted yet by time p and the relationship S(p − 1)
holds, then either M3 accepts at time p or the relationship S(p) still holds.
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Claim 5. Let 1 ≤ p ≤ B − 1.
If both

1. −s < N!(y, z, 1; p) < 0, and

2. S!(x,y, 1; p − 1) ≥ S!(y, z, 1; p − 1) + 1,

then either

1. N!(x,y, 1; p) ≥ 0, or

2. −k < N!(x,y, 1; p) < 0 ∧ S!(x,y, 1; p) ≥ S!(y, z, 1; p) + 1.

Proof of Lemma 5. If N!(x,y, 1; p) ≥ 0 there is nothing to prove. Assume then N!(x,y, 1; p) < 0.
The assumption −s < N!(y, z, 1; p) < 0 together with Lemma 6 gives S!(y, z, 1; p) = N!(y, z, 1; p).
Since p ≤ B − 1 we have

N!(x,y, 1; p) = 2S!(x,y, 1; p − 1) + (xp + yp)

≥ 2(S!(y, z, 1; p − 1) + 1) + (xp + yp)

= 2S!(y, z, 1; p − 1) + (yp + 1 − zp) + (xp + zp) + 1

= N!(y, z, 1; p) + (xp + zp) + 1

≥ N!(y, z, 1; p) + 1,

where the first inequality follows from the assumption S!(x,y, 1; p − 1) ≥ S!(y, z, 1; p − 1) + 1,
and the second inequality follows from the fact that xp + zp ≥ 0. From the assumption −s <
N!(y, z, 1; p) < 0 we conclude that

N!(x,y, 1; p) ≥ 1 − s + 1 > −k.

At this point we have −k < N!(x,y, 1; p) < 0 and we can apply Lemma 6 to obtain S!(x,y, 1; p) =
N!(x,y, 1; p). Putting all these together we get S!(x,y, 1; p) ≥ S!(y, z, 1; p) + 1.

A claim symmetric to the above would state the symmetric property that if M1 has not accepted
yet and the relationship T (p − 1) holds, then the relationship T (p) still holds.

The fifth claim states that if both M1 and M2 accept at time p and the relationship R(p − 1)
holds, then M3 also accepts at time p.

Claim 6. Let 1 ≤ p ≤ B.
If both

1. N!(x, z, 1; p) ≥ 0 ∧ N!(y, z, 1; p) ≥ 0, and

2. S!(x,y, 1; p − 1) = S!(x, z, 1; p − 1) + S!(y, z, 1; p − 1) + 1,

then

N!(x,y, 1; p) ≥ 0.
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Proof. We distinguish the cases p ≤ B − 1 and p = B. In case p ≤ B − 1 we have

N!(x,y, 1; p) = 2S!(x,y, 1; p − 1) + (xp + yp)

= 2(S!(x, z, 1; p − 1) + S!(y, z, 1; p − 1) + 1) + (xp + yp)

= 2S!(x, z, 1; p − 1) + (xp + zp) + 2S!(y, z, 1; p − 1) + (yp + 1 − zp) + 1

= N!(x, z, 1; p) + N!(y, z, 1; p) + 1,

where the second equality follows from the assumption S!(x,y, 1; p − 1) = S!(x, z, 1; p − 1) +
S!(y, z, 1; p − 1) + 1. From the assumptions N!(x, z, 1; p) ≥ 0 and N!(y, z, 1; p) ≥ 0 we conclude
that N!(x,y, 1; p) ≥ 1 ≥ 0. The case p = B is similar: we have

N!(x,y, 1;B) = 2S!(x,y, 1;B − 1) + (xB + yB + 1)

= 2(S!(x, z, 1;B − 1) + S!(y, z, 1;B − 1) + 1) + (xB + yB + 1)

= 2S!(x, z, 1;B − 1) + (xB + zB + 1) + 2S!(y, z, 1;B − 1) + (yB + 1 − zB + 1)

= N!(x, z, 1;B) + N!(y, z, 1;B)

where the second equality follows from the assumption S!(x,y, 1;B − 1) = S!(x, z, 1;B − 1) +
S!(y, z, 1;B − 1) + 1. From the assumptions N!(x, z, 1;B) ≥ 0 and N!(y, z, 1;B) ≥ 0 we conclude
that N!(x,y, 1;B) ≥ 0.

The sixth claim states that if M2 accepts at time p and the relationship S(p − 1) holds, then
M3 also accepts at time p.

Claim 7. Let 1 ≤ p ≤ B.
If both

1. N!(y, z, 1; p) ≥ 0, and

2. S!(x,y, 1; p − 1) ≥ S!(y, z, 1; p − 1) + 1,

then

N!(x,y, 1; p) ≥ 0.

Proof. We distinguish the cases p ≤ B − 1 and p = B. In case p ≤ B − 1 we have

N!(x,y, 1; p) = 2S!(x,y, 1; p − 1) + (xp + yp)

≥ 2(S!(y, z, 1; p − 1) + 1) + (xp + yp)

= 2S!(y, z, 1; p − 1) + (yp + 1 − zp) + (xp + zp) + 1

= N!(y, z, 1; p) + (xr + zr) + 1

≥ N!(y, z, 1; p) + 1,

where the first inequality follows from the assumption S!(x,y, 1; p − 1) ≥ S!(y, z, 1; p− 1) + 1, and
the second inequality follows from the fact that xp +zp ≥ 0. From the assumption N!(y, z, 1; p) ≥ 0
we conclude that N!(x,y, 1; p) ≥ 1 ≥ 0. The case p = B is similar: we have

N!(x,y, 1;B) = 2S!(x,y, 1;B − 1) + (xB + yB + 1)

≥ 2(S!(y, z, 1;B − 1) + 1) + (xB + yB + 1)

= 2S!(y, z, 1;B − 1) + (yB + 1 − zB + 1) + (xB + zB)

= N!(y, z, 1;B) + (xB + zB)

≥ N!(y, z, 1;B),
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where the first inequality follows from the assumption S!(x,y, 1;B −1) ≥ S!(y, z, 1;B−1)+1, and
the second inequality follows from the fact that xB+zB ≥ 0. From the assumption N!(y, z, 1;B) ≥ 0
we conclude that N!(x,y, 1;B) ≥ 0.

A claim symmetric to the above would state the symmetric property that if M1 accepts at time
p and the relationship T (p − 1) holds, then M3 also accepts at time p.

Next we turn to the formal proof. For every p ∈ {1, . . . , B} define formulas

F+(p) ≡ N!(x, z, 1; p) ≥ 0,
G+(p) ≡ N!(y, z, 1; p) ≥ 0,
H+(p) ≡ N!(x,y, 1; p) ≥ 0,
F−(p) ≡ −r < N!(x, z, 1; p) < 0,
G−(p) ≡ −s < N!(y, z, 1; p) < 0,
H−(p) ≡ −k < N!(x,y, 1; p) < 0.

Claims 2, 3, 4, 5, 6 and 7 state that all the base-case, inductive-case and terminating-case formulas
in the scheme of induction Lemma 9 below are tautologies. Since these are constant-size Σ1,c-
formulas, by completeness they have Σ1,c-Frege proofs of constant size. Lemma 8.1 now follow
from this scheme applied to these formulas and the hypothesis formulas in (19).

Lemma 9. The following assertion has polynomial-size Σ2,c-Frege proofs:
Given the base-case:

R(0),

the inductive-case for every p ∈ {1, . . . , B}:

1. ¬F−(p) ∨ ¬G−(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ H−(p),

2. ¬F−(p) ∨ ¬G−(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ R(p),

3. ¬F+(p) ∨ ¬G−(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ H−(p),

4. ¬F+(p) ∨ ¬G−(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ S(p),

5. ¬F−(p) ∨ ¬G+(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ H−(p),

6. ¬F−(p) ∨ ¬G+(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ T (p),

7. ¬G−(p) ∨ ¬S(p − 1) ∨ H+(p) ∨ H−(p),

8. ¬G−(p) ∨ ¬S(p − 1) ∨ H+(p) ∨ S(p),

9. ¬F−(p) ∨ ¬T (p − 1) ∨ H+(p) ∨ H−(p),

10. ¬F−(p) ∨ ¬T (p − 1) ∨ H+(p) ∨ T (p),

the terminating-case for every p ∈ {1, . . . , B}:

1. ¬F+(p) ∨ ¬G+(p) ∨ ¬R(p − 1) ∨ H+(p),

2. ¬G+(p) ∨ ¬S(p − 1) ∨ H+(p),

3. ¬F+(p) ∨ ¬T (p − 1) ∨ H+(p),

and the hypothesis:
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1. (∃p : 1 ≤ p ≤ B)(F+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(F−(q))),

2. (∃p : 1 ≤ p ≤ B)(G+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(G−(q))),

conclude:

(∃p : 1 ≤ p ≤ B)(H+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(H−(q))).

Proof. We start fixing some notation. For i ∈ {1, . . . , 10} and p ∈ {1, . . . , B}, let (I.i.p) denote
the inductive-case formula numbered i in the list, for the indicated value of p. Similarly, for
i ∈ {1, . . . , 3} and p ∈ {1, . . . , B}, let (T.i.p) denote the terminating-case formula numbered i in
the list, for the indicated value of p. Let F ∗(p) denote the formula

(∀q : 1 ≤ q < p)(F−(q)),

and similarly for G∗(p) and H∗(p).
For every pair a, b ∈ {1, . . . , B} we will give a proof of the following assertion:

F+(a) ∧ F ∗(a) G+(b) ∧ G∗(b)

(∃p : 1 ≤ p ≤ B)(H+(p) ∧ H∗(p))
. (20)

The result will follow from the proof-scheme of pairwise case-analysis Lemma 3.
The proof splits into several cases, many of which are symmetric versions of some other: case

a = b = 1, case a > b = 1, case b > a = 1, case a = b > 1, case a > b > 1, and case b > a > 1.
Since all proofs follow a common pattern we give the details for the last case only. Assume from
now on that b > a > 1. We start showing how to get, for every q ∈ {1, . . . , a − 1}, the formulas

¬F ∗(q + 1) ∨ ¬G∗(q + 1) ∨ (∃p : 1 ≤ p ≤ q)(H+(p) ∧ H∗(p)) ∨ H−(q) (21)

¬F ∗(q + 1) ∨ ¬G∗(q + 1) ∨ (∃p : 1 ≤ p ≤ q)(H+(p) ∧ H∗(p)) ∨ R(q). (22)

For q = 1 we apply CUT between the base-case formula R(0) and (I.1.1) to get (21.1). Similarly,
apply CUT between the base-case formula R(0) and (I.2.1) to get (22.1). For 2 ≤ q ≤ a − 1,
and assuming we have (21.r) and (22.r) for every r ∈ {1, . . . , q − 1}, first we apply CUT between
(22.q − 1) and (I.1.q), and between (22.q − 1) and (I.2.q). These give

¬F ∗(q) ∨ ¬G∗(q) ∨ ¬F−(q) ∨ ¬G−(q) ∨ (∃p : 1 ≤ p < q)(H+(p) ∧ H∗(p)) ∨ H+(q) ∨ H−(q) (23)

¬F ∗(q) ∨ ¬G∗(q) ∨ ¬F−(q) ∨ ¬G−(q) ∨ (∃p : 1 ≤ p < q)(H+(p) ∧ H∗(p)) ∨ H+(q) ∨ R(q). (24)

Then we apply IOC on (21.1), . . . , (21.q − 1) and (23.q) to get (21.q). Similarly, we apply IOC
on (21.1), . . . , (21.q − 1) and (24.q) gives (22.q). We continue with CUTs between (22.a − 1) and
(I.3.a), and between (22.a − 1) and (I.4.a), to get

¬F ∗(a) ∨ ¬G∗(a) ∨ ¬F+(a) ∨ ¬G−(a) ∨ (∃p : 1 ≤ p < a)(H+(p) ∧ H∗(p)) ∨ H+(a) ∨ H−(a) (25)

¬F ∗(a) ∨ ¬G∗(a) ∨ ¬F+(a) ∨ ¬G−(a) ∨ (∃p : 1 ≤ p < a)(H+(p) ∧ H∗(p)) ∨ H+(a) ∨ S(a). (26)

Then IOC on (21.1), . . . , (21.a − 1) and (25/26.a) gives

¬F+(a) ∨ ¬F ∗(a) ∨ ¬G∗(a + 1) ∨ (∃p : 1 ≤ p ≤ a)(H+(p) ∧ H∗(p)) ∨ H−(a) (27)

¬F+(a) ∨ ¬F ∗(a) ∨ ¬G∗(a + 1) ∨ (∃p : 1 ≤ p ≤ a)(H+(p) ∧ H∗(p)) ∨ S(a). (28)
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Next we get, for every q ∈ {a + 1, . . . , b − 1}, the formulas

¬F+(a) ∨ ¬F ∗(a) ∨ ¬G∗(q + 1) ∨ (∃p : 1 ≤ p ≤ q)(H+(p) ∧ H∗(p)) ∨ H−(q) (29)

¬F+(a) ∨ ¬F ∗(a) ∨ ¬G∗(q + 1) ∨ (∃p : 1 ≤ p ≤ q)(H+(p) ∧ H∗(p)) ∨ S(q). (30)

To achieve this we use (I.7.q) and (I.8.q) for q ∈ {a + 1, . . . , b− 1} in a similar fashion as above. At
this point we are almost ready to conclude. Apply CUT on (30.b − 1) and (T.2.b) to get

¬F+(a) ∨ ¬F ∗(a) ∨ ¬G∗(b) ∨ ¬G+(b) ∨ (∃p : 1 ≤ p < b)(H+(p) ∧ H∗(p)) ∨ H+(b). (31)

Now we apply IOC on (21.1), . . . , (21.a − 1), (27.a), (29.a + 1), . . . , (29.b − 1) and (31) to get

¬F+(a) ∨ ¬F ∗(a) ∨ ¬G+(b) ∨ ¬G∗(b) ∨ (∃p : 1 ≤ p ≤ B)(H+(p) ∧ H∗(p)).

Finally apply CUT between this an the first hypothesis in (20), and CUT between the result and
the second hypothesis in (20). This completes the proof.

Proof of Lemma 8.2 For every p ∈ {0, . . . , B}, let dp ∈ {0, 1} be the bit of carry at position p
while adding the numbers represented by a1 . . . aB and b1 . . . bB in binary notation. It will be useful
to keep in mind that dB = 0 and

dp−1 = (ap ∧ bp) ∨ (ap ∧ dp) ∨ (bp ∧ dp)
cp = ap ⊕ bp ⊕ dp

for every p ∈ {1, . . . , B}.
For every p ∈ {0, . . . , B} we define three bit-strings

αp = a1 . . . ap−1 ap cp+1 . . . cB ,
βp = b1 . . . bp−1 bp 0 . . . 0,
δp = 0 . . . 0 dp 0 . . . 0.

Note that δ0, δB and β0 are all three the all-zero string. Note also that αB = a, βB = b, and α0 = c.
Hence the following assertions are valid:

CARRYk,!(x, a, b)

CARRYk,!(x,αB ,βB , δB)

CARRYk,!(x,α0,β0, δ0)

CARRYk,!(x, c)
. (32)

Therefore it will suffice to give small Σ2-proofs of these and, for every p ∈ {1, . . . , B}, of

CARRYk,!(x,αp,βp, δp)

CARRYk,!(x,αp−1,βp−1, δp−1)
. (33)

The result will follow by chaining all of them together.
The small Σ2-proofs of (32) are direct instances of Lemma 7.2. Let us focus on (33.p) for a

fixed p ∈ {1, . . . , B}. Reserve notation:

z = (x,αp,βp, δp),
z′ = (x,αp−1,βp−1, δp−1).
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Define formulas
F+(r) ≡ N!(z; r) ≥ 0,
G+(r) ≡ N!(z′; r) ≥ 0,
F−(r) ≡ −k < N!(z; r) < 0,
G−(r) ≡ −k < N!(z′; r) < 0,

for every r ∈ {1, . . . , B}, and formulas

F ∗(q) ≡ (∀r : 0 < r < q)(F−(r)),
G∗(q) ≡ (∀r : 0 < r < q)(G−(r)),

for every q ∈ {1, . . . , B}. The goal (33.p) will follow from the proof-scheme of case analysis Lemma 4
if we succeed in proving

F+(q) ∧ F ∗(q)

CARRYk,!(z′)
(34)

for every q ∈ {1, . . . , B}. In order to prove (34.q) for a fixed q ∈ {1, . . . , B} we distinguish by cases
according to the value of dp−1.

Case dp−1 = 0: In case dp−1 = 0 at most one among ap, bp and dp is 1. Since cp = ap ⊕ bp ⊕ dp,
this means that the following identity holds:

cp = ap + bp + dp. (35)

The fact that z and z′ differ only in positions p and p − 1, together with identity (35) and the
assumption dp−1 = 0, shows that for every r ∈ {1, . . . , B} we have

A!(z
′; r) = A!(z; r), (36)

S!(z
′; r) = S!(z; r). (37)

We use these facts to argue that for every r ∈ {1, . . . , B} also

N!(z
′; r) = N!(z; r). (38)

The case r = p follows from the following derivation:

N!(z
′; p) = 2S!(z

′; p − 1) + cp

= 2S!(z; p − 1) + cp

= 2S!(z; p − 1) + ap + bp + dp

= N!(z; p),

where the second equality follows from (37), and the third equality follows from (35). The case
r 1= p follows again from (37) and the assumption dp−1 = 0 in the special case r = p − 1.

The validity of equation (38) implies that, for every r ∈ {1, . . . , B}, the following are tautologies

¬F+(r) ∨ G+(r), (39)

¬F−(r) ∨ G−(r). (40)

These are constant-size Σ1,c-formulas and therefore, by completeness, they have Σ1,c-Frege proofs
of constant size. From these, the goal in (34.q) is obtained by applying IOC on (40.1), . . . , (40.q−1)
and (39.q), and then applying CUT with hypothesis.
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Case dp−1 = 1: In case dp−1 = 1 at least two among ap, bp and dp are 1. Since cp = ap⊕ bp⊕dp,
this means that the following identity holds:

cp = ap + bp + dp − 2. (41)

In this case equation (36) is no longer guaranteed for every r ∈ {1, . . . , B}. However, we can argue
that for every r ∈ {1, . . . , B} we have the following:

A!(z
′; r) = A!(z; r) if r 1= p − 1 and r 1= p + ",

A!(z
′; r) = A!(z; r) + 1 if r = p − 1,

A!(z
′; r) = A!(z; r) − 2 · 2!−1 if r = p + ".

The case r = p − 1 follows directly from the assumption dp−1 = 1. The case r = p + " follows
from (41). The case p − 1 < r < p + " uses both the assumption dp−1 = 1 and identity (41). All
remaining cases where either r < p− 1 or r > p + " are trivial since z and z′ differ only in positions
p and p − 1.

Let "′ = min{", p− 1}. Taking mod 2!′ the above implies that for every r ∈ {1, . . . , B} we have
the following:

S!(z
′; r) = S!(z; r) if r 1= p − 1, (42)

S!(z
′; r) = S!(z; r) + 1 if r = p − 1 and A!(z; p − 1) 1≡ −1 mod 2!′ , (43)

S!(z
′; r) = −2!′ and S!(z; r) = −1 if r = p − 1 and A!(z; p − 1) ≡ −1 mod 2!′ . (44)

Next we argue that

N!(z
′; r) = N!(z; r) if r 1= p − 1 and r 1= p, (45)

N!(z
′; r) = N!(z; r) + 1 if r = p − 1, (46)

N!(z
′; r) = N!(z; r) if r = p and A!(z; p − 1) 1≡ −1 mod 2!′ . (47)

The case where r 1= p − 1 and r 1= p follows from (42) and the fact that z and z′ differ only in
positions p and p − 1. The case r = p − 1 follows from the following derivation:

N!(z
′; p − 1) = 2S!(z

′; p − 2) + xp−1 + ap−1 + bp−1 + dp−1

= 2S!(z; p − 2) + (xp−1 + ap−1 + bp−1) + 1

= N!(z; p − 1) + 1.

The case where r = p and A!(z; p − 1) 1≡ −1 mod 2!′ follows from the following derivation:

N!(z
′; p) = 2S!(z

′; p − 1) + xp + cp (48)

= 2S!(z; p − 1) + xp + cp + 2 (49)

= 2S!(z; p − 1) + xp + ap + bp + dp (50)

= N!(z; p), (51)

where (49) follows from (43), and (50) follows from identity (41).
At this point we are ready to complete the proof. We start defining one more formula:

C ≡ (A!(z; p − 1) ≡ −1 mod 2!′).
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Assuming −k < N!(z; p−1) < 0 we have N!(z; p−1) = S!(z; p−1) by Lemma 6. Under the further
assumption that C holds we get S!(z; p − 1) = −1 from (44). Under these conditions (46) gives

N!(z
′; p − 1) = N!(z; p − 1) + 1

= S!(z; p − 1) + 1

= 0.

On the other hand, under the assumption that C does not hold, equation (47) gives

N!(z
′; p) = N!(z; p).

Together with equations (45) and (46), this reasoning establishes that the following are tautologies
for every r ∈ {1, . . . , B}:

¬F+(r) ∨ G+(r) if r 1= p − 1 and r 1= p, (52)

¬F−(r) ∨ G−(r) if r 1= p − 1 and r 1= p, (53)

¬F+(r) ∨ G+(r) if r = p − 1, (54)

¬F−(r) ∨ G+(r) ∨ G−(r) if r = p − 1, (55)

¬F−(r) ∨ ¬C ∨ G+(r) if r = p − 1, (56)

¬F+(r) ∨ C ∨ G+(r) if r = p, (57)

¬F−(r) ∨ C ∨ G−(r) if r = p. (58)

All these are constant-size Σ1,c-formulas and hence, by completeness, they have Σ1,c-Frege proofs
of constant size. If q ≤ p−2 we can put together the goal in (34.q) using only (53.1), . . . , (53.q−1),
and (52.q). If q = p − 1 we can put together the goal (34.q) using only (53.1), . . . , (53.q − 1), and
(54). If q = p we apply CUT between (56) and (57) to get

¬F+(p) ∨ ¬F−(p − 1) ∨ G+(p − 1) ∨ G+(p),

and then use this together with (53.1), . . . , (53.p − 2), and (55) to work-out the goal in (34.q).
Finally, if q ≥ p + 1 we apply CUT between (56) and (58) to get

¬F−(p) ∨ ¬F−(p − 1) ∨ G+(p − 1) ∨ G−(p),

and then use this together with (53.1), . . . , (53.p − 2), (55), (53.p + 1), . . . , (53.q − 1) to work-out
the goal in (34.q).

Proof of Lemma 8.3 Let c be the string in {0, 1}B such that b = a + c. We aim for a proof of

CARRYk,!(x, a)

CARRYk,!(x, a, c)
(59)

and then apply Lemma 8.2 on the result to get

CARRYk,!(x, b).

Let us prove (59). For the sake of argument, let M1 denote the automaton with input x, a
and let M2 denote the automaton with input x, a, c. Intuitively, what we want to prove that
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for every p ∈ {1, . . . , B} either N!(x, a, c; p) ≥ 0, which means that M2 accepts at time p, or
−k < N!(x, a, c; p) < 0 and S!(x, a, c; p) ≥ S!(x, a; p), which means M2 at time p is still at an
intermediate state but not falling behind the state of M1 at time p. If we succeed in proving this,
then the assumption that M1 eventually accepts will imply that M2 eventually accepts as well. We
proceed by induction on p. For later reference we state the base cases and inductive cases as claims:

Claim 8. S!(x, a, c; 0) ≥ S!(x, a; 0).

Proof. This is immediate from the fact that S(x, a, c; 0) = S(x, a; 0) = −1 by definition.

Claim 9. Let 1 ≤ p ≤ B.
If both

1. −k < N!(x, a; p) < 0, and

2. S!(x, a, c; p − 1) ≥ S!(x, a; p − 1),

then either

1. N!(x, a, c; p) ≥ 0, or

2. −k < N!(x, a, c; p) < 0 ∧ S!(x, a, c; p) ≥ S!(x, a; p).

Proof. If N!(x, a, c; p) ≥ 0 there is nothing to prove. Assume then N!(x, a, c; p) < 0. The assump-
tion −k < N!(x, a; p) < 0 together with Lemma 6 gives S!(x, a; p) = N!(x, a; p). On the other
hand,

N!(x, a, c; p) = 2S!(x, a, c; p − 1) + (xp + ap + cp)

≥ 2S!(x, a; p − 1) + (xp + ap) + cp

= N!(x, a; p) + cp

≥ N!(x, a; p),

where the first inequality follows from the assumption S!(x, a, c; p − 1) ≥ S!(x, a; p − 1), and the
second inequality follows from the fact that cp ≥ 0. From the assumption −k < N!(x, a; p) < 0
we conclude that N!(x, a, c; p) > −k. At this point we have −k < N!(x, a, c; p) < 0 and we
can apply Lemma 6 to obtain S!(x, a, c; p) = N!(x, a, c; p). Putting all these together we get
S!(x, a, c; p) ≥ S!(x, a; p).

Claim 10. Let 1 ≤ p ≤ B.
If both

1. N!(x, a; p) ≥ 0, and

2. S!(x, a, c; p − 1) ≥ S!(x, a; p − 1),

then

N!(x, a, c; p) ≥ 0.
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Proof. We have

N!(x, a, c; p) = 2S!(x, a, c; p − 1) + (xp + ap + cp)

≥ 2S!(x, a; p − 1) + (xp + ap) + cp

= N!(x, a; p) + cp

≥ N!(x, a; p),

where the first inequality follows from the assumption S!(x, a, c; p − 1) ≥ S!(x, a; p − 1), and the
second inequality follows from the fact that cp ≥ 0. From the assumption N!(x, a; p) ≥ 0 we
conclude that N!(x, a, c; p) ≥ 0.

Turning this meta-level argument into a formal proof is a matter of choosing the right notation.
For every p ∈ {0, . . . , B} define a formula:

R(p) ≡ S!(x, a, c; p) ≥ S!(x, a; p).

For every p ∈ {1, . . . , B} define formulas:

F+(p) ≡ N!(x, a; p) ≥ 0
G+(p) ≡ N!(x, a, c; p) ≥ 0
F−(p) ≡ −k < N!(x, a; p) < 0
G−(p) ≡ −k < N!(x, a, c; p) < 0.

Note that the formulas CARRYk,!(x, a) and CARRYk,!(x, a, c) are precisely

(∃p : 1 ≤ p ≤ B)(F+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(F−(q))) (60)

(∃p : 1 ≤ p ≤ B)(H+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(H−(q))) (61)

Claims 8, 9 and 10 state that all the base-case, inductive-case and terminating-case formulas
in the scheme of induction Lemma 10 below are tautologies. Since these are constant-size Σ1,c-
formulas, by completeness they have Σ1,c-Frege proofs of constant size. The proof of (59) follows
from this scheme applied to these formulas and to the hypothesis formula (60).

Lemma 10. The following assertion has polynomial-size Σ2,c-Frege proofs:
Given the base-case:

R(0),

and, for every p ∈ {1, . . . , B}, the inductive-case and terminating-case:

¬F−(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ H−(p),

¬F−(p) ∨ ¬R(p − 1) ∨ H+(p) ∨ R(p),

¬F+(p) ∨ ¬R(p − 1) ∨ H+(p),

and given the hypothesis:

(∃p : 1 ≤ p ≤ B)(F+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(F−(q))),

conclude:

(∃p : 1 ≤ p ≤ B)(H+(p) ∧ (∀q : 1 ≤ q ≤ p − 1)(H−(q))).

Proof. This is a very special case of the previous scheme of induction where S(p) = R(p) = T (p)
for every p ∈ {0, 1, . . . , B}, and G−(p) = F−(p) and G+(p) = F+(p) for every p ∈ {1, . . . , B}.
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Proof of Lemma 8.4 Intuitively we want to prove that N!(z, z; p) ≤ −1 for every p ∈ {1, . . . , B}.
This will be in contradiction with the hypothesis CARRYk,!(z, z), which states that there exists
some p ∈ {1, . . . , B} such that N!(z, z; p) ≥ 0, and this is what we want. The proof that N!(z, z; p) ≤
−1 is essentially direct from the definitions:

Claim 11. Let p ∈ {1, . . . , B}. Then N!(z, z; p) ≤ −1.

Proof. Since S!(z, z; p − 1) = (A!(z, z; p − 1) mod 2p′) − 2p′ for p′ = min{p − 1, "}, automatically
S!(z, z; p − 1) ≤ −1. Therefore

N!(z, z; p) = 2S!(z, z; p − 1) + zp + 1 − zp ≤ −2 + 1 = −1.

Using the notation F+(p) = F+(z, z; p), this claim shows that ¬F+(p) is a tautology for every
p ∈ {1, . . . , B}. Since this is a constant-size Σ1,c-formula, by completeness it must have a Σ1,c-Frege
proof of constant size. Weakening on it gives

¬F+(p) ∨ (∃q : 1 ≤ q ≤ p − 1)(¬F−(q)). (62)

The proof of Lemma 84 is completed by a sequence of CUTs, starting with a CUT between the
hypothesis CARRYk,!(z, z) and (62.1), then a CUT between the result and (62.2), and so on until
we use (62.B). At that point we will have derived the empty clause !.

6 Simulating chaining refutations

In this section we use the CARRY formula with parameters k = 11, " = 4 and B = M +2, where M
is a large integer, that we think of as unbounded. As k and " stay fixed everywhere in the section,
for convenience we write CARRY instead of CARRY11,4. Note that CARRY is a Σ2,44-formula.

The letters x, y and z denote integer variables ranging over [0, 2M ), and X, Y and Z denote
strings of M Boolean variables for the binary representations of x, y and z. The letters a, b and c
denote integer constants in the range (−2M , 2M ), and A, B and C denote bit-strings of length M
for the binary representations of their absolute values |a|, |b| and |c|. For an integer d in [0, 2M ),
we use the notation d = dM to the denote the integer 2M − 1− d. Note that d is also an integer in
[0, 2M ). Moreover the binary representation of d with M bits is precisely the bit-wise complement
of the binary representation of d with M bits. This justifies the notation d.

6.1 Representing atoms and max-atoms

An atom is an expression of the form x ≤ y+a. We distinguish positive atoms of the type x ≤ y+a
with a ≥ 0 from negative atoms of the type x ≤ y − a with a ≥ 0.

Positive atoms First note that x ≤ y+a is equivalent to 2M ≤ x+y+a+1 since x+x = 2M −1.
For later use we add 3 · 2M to both sides of this inequality to get:

2M+2 ≤ x + y + a + 3 · 2M + 1.

Interpreting bit-strings as the non-negative integers in binary this is represented by

CARRY(00X, 00Y, 00A, 010M , 010M , 010M , 0M01).

Note how we padded the strings so that each has length M + 2.
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Negative atoms Note that x ≤ y−a is equivalent to 2M+1 ≤ x+y+a+1+1 since x+x = 2M −1
and a + a = 2M − 1. For later use we add 2 · 2M to both sides of this inequality to get:

2M+2 ≤ x + y + a + 2 · 2M + 1 + 1.

Interpreting bit-strings as non-negative integers in binary this is represented by

CARRY(00X, 00Y, 00A, 010M , 010M , 0M01, 0M01).

Note how we padded the strings so that each has length M + 2.

Intermediate atoms For technical reason in the proofs we need to view expressions of the form
x ≤ y + a + b as different from x ≤ y + c where c = a + b. We distinguish the four cases:

1. x ≤ y + a + b,

2. x ≤ y + a − b,

3. x ≤ y − a + b,

4. x ≤ y − a − b,

where in such cases both a and b are non-negative integers. By the same reasoning as before the
four expressions are represented by:

1. CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 010M , 0M01),

2. CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 0M01, 0M 01),

3. CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 0M01, 0M 01),

4. CARRY(00X, 00Y, 00A, 00B, 010M , 0M01, 0M01, 0M 01).

Max-atoms Let I be the max-atom x ≤ max{x1 + a1, . . . , xr + ar}, where all constants are in
the range (−2M , 2M ). We represent I by the formula

(∃i : 1 ≤ i ≤ r)(x ≤ xi + ai).

Note that this is again a Σ2,44-formula. We write F (I) = FM (I) for this formula, for the indicated
value of the parameter M . If I is a collection of max-atoms, we write F (I) = FM (I) for the
collection of all F (I) as I ranges over I.

6.2 Inferences with atoms

We start giving proofs of some basic assertions for atoms. These will serve as base for max-atoms.

Lemma 11. The following assertions have polynomial-size Σ2,c-Frege proofs:

1. given x ≤ z + a and z ≤ y + b conclude x ≤ y + a + b,

2. given x ≤ y + a + b conclude x ≤ y + c, if c = a + b,

3. given x ≤ y + a conclude x ≤ y + b, if a ≤ b.
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Proof of Lemma 11.1 We need to distinguish three cases according to the signs of a and b (and
by the symmetry between a and b). Let A and B be the bit-strings of length M that represent |a|
and |b| in binary notation.

Consider first the case a ≥ 0, b < 0. The two hypothesis x ≤ z+a and z ≤ y+b are represented
by:

CARRY(00X, 00Z, 00A, 010M , 010M , 010M , 0M01),

CARRY(00Z, 00Y, 00B, 010M , 010M , 0M01, 0M 01).

Applying first Lemma 8.2 to the first, then Lemma 7.5 to both, and simplifying with Lemma 7.1,
we get:

CARRY(00X, 10Z, 00A, 010M , 0M01),

CARRY(01Z, 00Y, 00B, 010M , 0M01, 0M 01).

Now note that 10Z and 01Z are complementary strings so we can apply Lemma 8.1 to get

CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 0M01, 0M 01).

This is eactly the representation of x ≤ y + a + b, for the case a ≥ 0, b < 0.
Next, consider the case a, b ≥ 0. The two hypothesis x ≤ z + a and z ≤ y + b are represented

by:

CARRY(00X, 00Z, 00A, 010M , 010M , 010M , 0M01),

CARRY(00Z, 00Y, 00B, 010M , 010M , 010M , 0M01).

Applying to the first hypothesis Lemma 8.2 twice, then Lemma 7.5, and simplifying with Lemma
7.1, we get:

CARRY(00X, 11Z, 00A, 0M 01),

CARRY(00Z, 00Y, 00B, 010M , 010M , 010M , 0M01).

Since 11Z and 00Z are complementary strings we can apply Lemma 8.1 to get

CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 010M , 0M01).

This is eactly the representation of x ≤ y + a + b, for the case a, b ≥ 0.
Finally, consider the case a, b < 0. The two hypothesis x ≤ z + a and z ≤ y + b are represented

by:

CARRY(00X, 00Z, 00A, 010M , 010M , 0M01, 0M 01),

CARRY(00Z, 00Y, 00B, 010M , 010M , 0M01, 0M 01).

Applying to the first hypothesis Lemma 8.2, then applying to both Lemma 7.5 and simplifying
with Lemma 7.1, we get:

CARRY(00X, 10Z, 00A, 0M01, 0M 01),

CARRY(01Z, 00Y, 00B, 010M , 0M01, 0M 01).

Since 10Z and 01Z are complementary strings we can apply Lemma 8.1 to get

CARRY(00X, 00Y, 00A, 00B, 010M , 0M01, 0M 01, 0M 01).

This is eactly the representation of x ≤ y + a + b, for the case a, b < 0.
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Proof of Lemma 11.2 We need to distinguish four cases according to the signs of a, b, and c.
Let A, B, and C be the bit-strings of length M that represent |a|, |b|, and |c| in binary, respectively.

Consider first the case a < 0, b ≥ 0 and c < 0, which implies C = A − B. The hypothesis
x ≤ y + a + b is represented by

CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 0M01, 0M 01).

Applying Lemma 8.2 to the numbers 00A and 00B, since we have 00A+00B = 001M −00A+00B =
001M − 00C = 00C, we get

CARRY(00X, 00Y, 00C, 010M , 010M , 0M01, 0M 01).

This is exactly the representation of x ≤ y + c, when c < 0.
Second, we consider the case a < 0, b ≥ 0 and c ≥ 0, which implies C = B − A. The

hypothesis is the same as in the previous case. Applying Lemma 8.2 first to the numbers 00A
and 00B, then to the resulting string together with 0M01, and noting that 00A + 00B + 0M01 =
(001M − 00A) + 00B + 0M01 = 010M + 00C = 01C, we get

CARRY(00X, 00Y, 01C, 010M , 010M , 0M01).

By applying Lemma 7.2 and Lemma 7.5 to the above we get

CARRY(00X, 00Y, 00C, 010M , 010M , 010M , 0M01).

This is exactly the representation of x ≤ y + c, when c ≥ 0.
Third, we consider the case a, b, c < 0, which implies C = A + B. The hypothesis x ≤ y + a + b

is represented by

CARRY(00X, 00Y, 00A, 00B, 010M , 0M01, 0M 01, 0M 01).

Applying Lemma 8.2 first to the numbers 00A and 00B, then to the resulting string together with
0M01, and noting that 00A+00B+0M01 = (001M −00A)+(001M −00B)+0M 01 = 010M +00C =
01C, we get

CARRY(00X, 00Y, 01C, 010M , 0M01, 0M 01).

By applying Lemma 7.2 and Lemma 7.5 we get

CARRY(00X, 00Y, 00C, 010M , 010M , 0M01, 0M 01).

This is exactly the representation of x ≤ y + c, when c < 0.
Finally, we consider the case a, b, c ≥ 0, which implies C = A+B. The hypothesis x ≤ y +a+ b

is represented by

CARRY(00X, 00Y, 00A, 00B, 010M , 010M , 010M , 0M01).

Applying Lemma 8.2 to 00A and 00B, we get

CARRY(00X, 00Y, 00C, 010M , 010M , 010M , 0M01).

This is exactly the representation of x ≤ y + c, when c ≥ 0.
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Proof of Lemma 11.3 We may assume a < b. We need to distinguish three cases according
to the signs of a and b. Let A and B be the bit-strings of length M that represent |a| and |b|
respectively.

Consider first the case a, b ≥ 0 which implies A < B. The hypothesis x ≤ y + a is represented
by

CARRY(00X, 00Y, 00A, 010M , 010M , 010M , 0M01).

Applying Lemma 8.3 for 00A < 00B we get

CARRY(00X, 00Y, 00B, 010M , 010M , 010M , 0M01).

This is exactly the representation of x ≤ y + b, when b ≥ 0.
Next, consider the case a < 0, b ≤ 0 which implies B < A. The hypothesis x ≤ y + a is

represented by
CARRY(00X, 00Y, 00A, 010M , 010M , 0M01, 0M01).

Applying Lemma 8.3 for 00A < 00B we get

CARRY(00X, 00Y, 00B, 010M , 010M , 0M01, 0M 01).

This is exactly the representation of x ≤ y + b, when b < 0. In the special case of b = 0, we apply
Lemma 7.2 to introduce the term 00B = 000M and then Lemma 8.2 to the strings 00B = 001M

and 0M01 to get:
CARRY(00X, 00Y, 00B, 010M , 010M , 010M , 0M01).

which is the representation of x ≤ y + b for b = 0.
Finally, the third case a < 0, b > 0 follows from the two assertions: given x ≤ y + a conclude

x ≤ y + 0, and given x ≤ y + 0 conclude x ≤ y + b.

6.3 Inferences with max-atoms

We are ready to simulate the rules of the chaining inference system. In the following, the letters
R, S and T denote sets of offsets of the form x + c for a variable x and a constant c. The notation
S + a refers to the collection of offsets of the form x + (c + a) as x + c ranges over all offsets in S.
The three assertions in the following lemma correspond to the three rules of chaining:

Lemma 12. The following assertions have polynomial-size Σ2,c-Frege proofs:

1. given x ≤ max(R, y + a) and y ≤ max(S) conclude x ≤ max(R,T ), if T = S + a,

2. given x ≤ max(R,x + a) conclude x ≤ max(R), if a < 0,

3. given x ≤ max(R, y + a, y + b) conclude x ≤ max(R, y + c), if a ≤ c and b ≤ c.

For the coming proofs, let R be {zi + ai : i ∈ I} and S be {zj + bj : j ∈ J}.
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Proof of Lemma 12.1 Recall that x ≤ max(R, y + a) and y ≤ max(S) are abbreviations for
disjunctions of atoms. If we show that for every atom A in x ≤ max(R, y + a) and every atom B
in y ≤ max(S) we have a proof of

A B

x ≤ max(R,S + a)
, (63)

the rest will follow from the proof-scheme of pairwise case analysis Lemma 3. If the atom A is an
atom of the form x ≤ zi +ai for some i ∈ I, then A is also in the conclusion of (63). In this case the
proof is a single application of weakening on A. Let us assume then that A is the atom x ≤ y + a.
Let B the the atom y ≤ zj + bj for some j ∈ J . Lemma 11.1 on A and B gives x ≤ zj + bj + a, and
Lemma 11.2 on it gives the atom x ≤ zj + (bj + a). This atom is in the conclusion of (63) and an
application of weakening on it gives the proof of (63).

Proof of Lemma 12.2 Recall that x ≤ max(R,x + a) is an abbreviation for a disjunction of
atoms. If we show that for every atom A in x ≤ max(R,x + a) we have a proof of

A

x ≤ max(R)
, (64)

the rest will follow from the proof-scheme of case analysis Lemma 4. If the atom A is an atom of
the form x ≤ zi + ai for some i ∈ I, then A is also in the conclusion of (64). In this case the proof
is a single application of weakening on A. Let us assume then that A is the atom x ≤ x + a. If
a ≤ −1, Lemma 11.3 on A gives x ≤ x − 1. This atom is represented by

CARRY(00X, 00X, 001M−10, 010M , 010M , 0M01, 0M 01).

Note that 001M−10+010M +010M +0M01+0M01 = 110M . Therefore, four applications of Lemma
8.2 give

CARRY(00X, 00X, 110M ).

Two applications of Lemma 7.5, one application of Lemma 7.2, and one application of Lemma 8.4
give !. Weakening on it gives the conclusion in (64).

Proof of Lemma 12.3 Recall that x ≤ max(R, y + a, y + b) is an abbreviation for a disjunction
of atoms. If we show that for every atom A in x ≤ max(R, y + a, y + b) we have a small proof of

A

x ≤ max(R, y + c)
, (65)

the rest will follow from the proof-scheme of case analysis Lemma 4. If the atom A is an atom of
the form x ≤ zi + ai for some i ∈ I, then A is also in the conclusion of (64). In this case the proof
is a single application of weakening on A. Let us assume then that A is the atom x ≤ y + a; the
case x ≤ y + b is analogous. If a ≤ c, Lemma 11.3 gives x ≤ y + c, which is actually an atom in the
conclusion of (65). Weakening on x ≤ y + c gives the proof.

7 Main result and consequences

In this section we state the main result and its consequences for propositional proof-complexity.
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7.1 Main result

Before we state it we need to recall two standard tricks in proof-complexity.

Converting to 3-CNF formulas For a Boolean formula F = F (x) with variables x = x1 · · · xn,
let T = T (x, y) = T3(F ) denote the standard translation of F into a 3-CNF-formula with the same
variables x and possibly additional variables y = y1 · · · ym. This formula has the property that for
every a ∈ {0, 1}n the following equivalence holds:

F (a) = 1 if and only if there exists b ∈ {0, 1}m such that T (a, b) = 1.

If the size of F is at most s, then the number of additional variables y is at most 2s, and the
number of clauses in T is at most 4s. Also, if F is a Σd,k-formula, then the assertion T . F has a
polynomial-size Σd,k-Frege proof.

Effectively simulating bottom fan-in The second trick concerns the relationship between
Σd,k-Frege and Σd-Frege. This trick was used in [2] for d = 1 and is called effective simulation in
[23].

In general, it is not true that Σd-Frege polynomially simulates Σd,k-Frege. For example, it is
known that Σ1-Frege does not polynomially simulate Σ1,2-Frege [3]. However, it effectively simulates
it. The idea is that if C is a set of clauses on the variables x1, . . . , xn, we can add additional variables
zT and zC for every possible term T and clause C of at most k literals on the variables x1, . . . , xn,
and axioms that fix the truth value of the new variables accordingly:

(1) zC1∨C2
↔ zC1

∨ zC2
(3) zxi

↔ xi

(2) zT1∧T2
↔ zT1

∧ zT2
(4) zxi ↔ xi

Let Ek(C) be the extension of C with these axioms converted to clauses. Note that if C is satisfiable,
then Ek(C) stays satisfiable: set zC and zT to the truth-value of C and T under the truth-assignment
satisfying C. On the other hand, if C is unsatisfiable, the size of the smallest refutation of C in Σd,k-
Frege is polynomially related to the size of the smallest refutation of Ek(C) in Σd-Frege. Moreover,
there are efficient conversions from one to the other. In particular, all this implies that the weak
automatizability problem for Σd,k-Frege reduces to the one for Σd-Frege.

With this notation we can state the main result of the paper. In the statement of this result,
the unspecified universal constant in Ec is the one from Lemma 12.

Theorem 1. Let G be a mean-payoff game with v vertices and weights in the range [−W,W ]. Let
M be an integer such that 2M > Wv2. Let C = Ec(T3(FM (I(G)))). The following hold:

1. if νG ≥ 0, then C is satisfiable,

2. if νG < 0, then C has polynomial-size Σ2-Frege refutations.

Proof. This is a direct consequence of Lemma 1, Lemma 12, and the tricks above.

It is perhaps worth noting that the Σ2-refutation in this theorem is actually a Res(B)-refutation,
where B = M + 2 and M = 32 log2(v) + log2(W )4. The reason is that each max-atom is a
disjunction of CARRY-formulas with parameter B, and each CARRY-formula with parameter B
is a disjunction of conjunctions of fan-in B, with constant fan-in disjunctions at the bottom that
end-up wiped away by the Ec-trick. Since the size of C is polynomial in v2 log2(W ), this is slightly
better than a plain polynomial-size Σ2-refutation as stated in the theorem.
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7.2 Consequences for automatizability and interpolation

In this section, let G, v, W , M and C be as in the statement of Theorem 1.
One immediate consequence of Theorem 1 is that if Σ2-Frege were weakly automatizable, there

would be a polynomial-time algorithm for solving mean-payoff games. Indeed, the statement itself
of Theorem 1 is a reduction from MPG to the weak automatizability problem for Σ2-Frege. Clearly
this reduction is computable in polynomial time.

On the other hand, there is a tight connection between weak automatizability, interpolation,
and the provability of the reflection principle (see [27]). We discuss this briefly. Let SATn,m(x, y)
be a CNF-formula that expresses that y is an assignment satisfying the CNF-formula encoded by
x. Here n and m are the number of variables and the number of clauses of the formula encoded by
x. Let REFn,m,r,d(x, z) be a CNF formula that expresses that z is the encoding of a Σd-refutation
of the CNF-formula encoded by x. Here n and m are as in SATn,m, and r is the size of the proof
encoded by z. Formalizing this requires some standard encoding of CNF-formulas, Σd-formulas,
and Σd-Frege proofs. Obviously, the formula

SATn,m(x, y) ∧ REFn,m,r,d(x, z) (66)

is unsatisfiable. This is called the reflection principle for Σd-Frege. It turns out that (66) has a
polynomial-size refutation in Σd,2-Frege. This was observed in [2] for d = 1 and the proof can be
extended to bigger d in a natural way.

It follows that if Σ2,2-Frege enjoyed feasible interpolation, there would be an algorithm for solv-
ing mean-payoff games in polynomial time. Indeed, the reduction from MPG to the interpolation
problem for Σ2,2 goes as follows: given a game G, it suffices to run the interpolation algorithm fed
with a refutation of (66) and the setting of x to the encoding of the CNF-formula C. Of course
we choose n and m to be the number of variables and clauses of C, and r and d to be the size of
the Σ2-Frege proof of C and 2. By Theorem 1 exactly one of SAT(C, y) or REF(C, z) is satisfiable,
which means that the interpolation algorithm will return the other. This will tell us whether νG ≥ 0
or νG < 0.

We state these two observations as a corollary:

Corollary 1. There exists a polynomial-time reduction from MPG to the weak automatizability
problem for Σ2-Frege, and to the interpolation problem for Σ2,2-Frege.

An intriguing question is whether a reverse connection exists. Clearly the weak automatizability
problem for a proof system is related to proving proof-size lower bounds for it, and the latter has
an obvious game-theoretic flavour. In this context it is perhaps interesting to recall that Zwick
and Paterson modeled the complexity of selection and sorting algorithms with limited storage as
mean-payoff games between an algorithm designer and an adversary [29]. Perhaps the proof-search
problem for a natural proof system for propositional logic can also be cast in such terms.
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