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Abstract

The main open problem in the area of locally testable codes (LTCs) is whether there exists
an asymptotically good family of LTCs and to resolve this question it suffices to consider the
case of query complexity 3. We argue that to refute the existence of such an asymptotically good
family one should prove that the number of dual codewords of weight at most 3 is super-linear
in the blocklength of the code.

The main technical contribution of this paper is an improvement of the combinatorial lemma
of Goldreich et al. [2006] which bounds the rate of 2-query locally decodable codes (LDCs) and
is used in state-of-the-art rate-bounds for linear LDCs. The lemma of Goldreich et al. bounds
the rate of 2-query LDCs of blocklength n in terms of the corruption parameter δ(n) — this
is the maximal number of corrupted codeword bits for which a (2-query) decoder can recover
correctly every message bit (with high probability). Our combinatorial lemma gives nontrivial
rate bounds for any corruption parameter δ(n) = ω(1), whereas the previous lemma works
only for corruption parameter larger than log n. The study of LDCs with sublinear corruption
parameter is also motivated by Dvir’s [2010] observation that sufficiently strong bounds on the
rate of such LDCs imply explicit constructions of rigid matrices.

1 Introduction

This paper is motivated by one of the most important open problems regarding locally testable
codes (LTCs), whether there exists an asymptotically good family of LTCs with constant query
complexity. For an introduction to LTCs and explanation of their relation to property testing and
probabilistically checkable proofs (PCPs) we refer the reader to the work of Goldreich and Sudan
[20] which started the recent line of work on LTC-rate. For a recent survey of known results about
rate-bounds of LTCs see [5]. To avoid repeating what is recounted in these works, suffice it to say
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that for all the work that has gone into the study of LTCs, our understanding of their rate is very
limited. The only negative results on LTCs rate concern special families of codes testable with just
2-queries [7, 21, 29, 28], random low density parity check (LDPC) codes [9], cyclic codes [4], solvable
codes [26] and affine-invariant codes [11]. In fact, we cannot even rule out the existence of binary
LTCs meeting the Gilbert-Varshamov bound (which is the best known rate for codes without any
local testing restriction). So, for all we know, the strong testability requirement of LTCs may not
“cost” anything extra over LDPC codes!

We suggest a strategy to disprove the existence of an asymptotically good family of linear LTCs.
Without loss of generality we may deal with the case of query complexity 3 (cf. Theorem A.1). Our
proof-strategy goes by way of contradiction and relies on proving the following pair of conjectures.

• If C is an asymptotically good 3-query LTC then C has a super-linear number of dual codewords
of weight at most 3.

• If C is an asymptotically good 3-query LTC and has a super-linear number of dual codewords
of weight at most 3 then rate(C) = o(1).

The result of Ben-Sasson et al. [8] seems to lead in the direction of proving the first item as it
shows that all LTCs have more small-weight dual codewords than what is needed to characterize
the code and the small-weight dual codewords display nontrivial dependencies among them. In this
paper we make initial progress on the second item and show that a broad family of 3-query LTCs
(including all “base constructions” of LTCs) cannot have both constant rate and a super-linear
number of dual codewords of weight at most 3.

Roughly speaking, LTCs are invariably constructed by starting with a decent “base-construction”
of an LTC (such as a Hadamard, Reed-Muller, or constant-blocklength code) and modifying it by
various techniques like repetition [32], concatenation [2, 3], tensoring [10], gap-amplification [12],
taking direct-products [13, 22] and PCPP-composition [6, 14]. These operations improve the LTC-
related parameters of the code, they increase soundness and/or reduce query complexity but none
of them increases rate. In fact, the improvement in LTC-related parameters of the afore-mentioned
operations comes at the price of reduced rate. So if asymptotically good LTCs are to be constructed
one should start with a “base-construction” that is asymptotically good, or come up with a new
set of LTC-related techniques that do not decrease code-rate.

Looking into known “base-constructions” of q-query LTCs they all share a few properties that
we formalize in this paper. First, they are q-regular, i.e., every codeword-bit sees the same number
of dual codewords of weight q′ ≤ q (see Definition 3.5). Second, they are all q-dense, by which we
mean that the number of dual codewords of weight at most q is super-linear in the code blocklength.
Indeed, a popular belief [34] (stated formally in Conjecture 3.3) says that all q-query LTCs are q-
dense (see Definition 3.1).

Our main result is that families of 3-dense and 3-regular LTCs cannot be asymptotically good.
We bound the rate of the code as a function of 3-density and show that even arbitrarily slowly
growing 3-density implies vanishing rate (cf. Theorem 3.6 and Corollary 3.7). We then put forth a
conjecture stating that all LTCs contain a punctured code that is roughly regular (Conjecture 3.11)
and show that under this conjecture there are no asymptotically good families of LTCs whatsoever
(cf. Theorem 3.9 and Corollary 3.12). We go on to say that regular codes strongly generalize
symmetric1 LTCs, i.e., LTCs which are invariant under a group of permutations that is 1-transitive.

1These codes are called symmetric since every coordinate of the code participates in a similar set of dual codewords.
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A subclass of these codes — so-called “2-transitive” codes — was suggested by Alon et al. [1] as
possibly being locally testable, and this family was first studied systematically for the special case
of affine-invariant codes by Kaufman and Sudan [24]. As a corollary of our main results we show
that 3-query symmetric LTCs with super-constant density are not asymptotically good.

Improved rate bounds for weak 2-query LDCs Our analysis of 3-query LTCs relies on
a new upper bound on the rate of families of locally decodable codes (LDCs) with a rather weak
requirement on their decoding capabilities described next. This LTC-to-LDC reduction is especially
interesting in light of the fact that LTCs and LDCs seem to be two very different kinds of codes
(cf. Kaufman and Viderman [25]).

Recall that q-query LDCs allow to recover each message entry with constant probability by
reading only q entries of the codeword even if “large” number of codeword bits are adversely
corrupted. Best known upper bounds on the rate of linear q-query LDCs [35, 36] (with the notable
exception of the bounds for nonlinear 2-query LDCs of Kerenidis and de Wolf [27]) go by reducing
the problem to that of showing rate bounds for 2-query LDCs. And the best rate bounds for 2-
query LDCs follow from the so-called “combinatorial lemma” of Goldreich et al. [19, Lemma 3.3]
(see also [16]). Our main technical contribution is an improvement of this combinatorial lemma as
described next. The combinatorial lemma of [19] bounds the rate of a 2-query LDC in terms of
the corruption parameter — the number of bits which can be adversarially corrupted. All things
considered, as the corruption parameter decreases, it should get easier to construct LDCs (because
the adversary is more restricted) and consequently is should get harder to prove upper bounds on
the rate of such LDCs. Indeed, the rate bound given by the combinatorial lemma becomes trivial
when the number of corrupted bits is roughly logarithmic in the blocklength of the code. Our
improved combinatorial lemma (Lemma 3.15) gives nontrivial rate bounds for any super-constant
corruption parameter (see Section 3.2).

Two additional remarks regarding our combinatorial lemma should be made. First, given that
state-of-the-art bounds on rate of q-query LDCs for q ≥ 3 rely on rate bounds 2-query LDCs with a
sublinear number of errors [35, 36] shows that proving rate bounds for smaller values should result
in improved bounds for q-query LDCs even for larger values of q. Second, the recent work of Dvir
[15] shows that proving sufficiently strong lower bounds on locally decodable codes which can be
corrected from a sublinear number of corruptions would result in explicit constructions of rigid
matrices, giving further motivation for our lemma.

We end with a few words on our proof of the rate-bound on 2-query LDCs (Lemma 3.15) and
how it differs from the proof method of Goldreich et. al in [19]. They provided two different proofs,
the first uses an isoperimetric inequality statement regarding the hypercube and the second is an
information-theoretic argument due to Alex Samorodnitsky. Our proof goes by removing carefully
selected columns from the generating matrix of a locally decodable code. This removal, we argue,
partitions the rows of the matrix into sets of identical rows. We study how the sets identical rows
grow in size with the removal of additional columns and perform a careful amortized analysis of
this process (see Section 5 for details).

Related work In the course of writing our result we have learned that Irit Dinur and Tali
Kaufman have independently studied the effect of 3-density on rate of locally testable codes and
have obtained related results through seemingly different methods.
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Organization of the paper. In the following section we provide background regarding locally
testable and locally decodable codes. In Section 3 we state our main results (Theorems 3.6, 3.9,
3.17). We prove our main results on LTCs in Section 4. We go on to prove the main technical
Lemma 3.15 in Section 5. Finally, in Section 6 we prove our improved bound for 2-query LDCs
over arbitrary fields (Theorem 3.17).

2 Preliminaries

We start with a few definitions. Let F be a finite field and [n] be the set {1, . . . , n}. Let C ⊆ F
n

be a linear code over F. The dimension of C is denoted by dim(C) and its rate is denoted by
rate(C) and defined to be rate(C) = dim(C)/n. For w ∈ F

n, let supp(w) = {i ∈ [n] | wi 6= 0} and

|w| = | supp(w)|. We define the relative distance between two words x, y ∈ F
n to be δ(x, y) = |x−y|

n .
The relative distance of a code is denoted by δ(C) and defined to be δ(C) = min

x 6=y∈C
δ(x, y). For

x ∈ F
n and C ⊆ F

n, let δ(x, C) = min
y∈C

{δ(x, y)} denote the relative distance of x from the code C.

The vector inner product between u1 and u2 is denoted by 〈u1, u2〉. The dual code C⊥ is defined
as C⊥ = {u ∈ F

n | ∀c ∈ C : 〈u, c〉 = 0}. In a similar way we define C⊥
≤t =

{

u ∈ C⊥ | |u| ≤ t
}

and

C⊥
t =

{

u ∈ C⊥ | |u| = t
}

. For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm,
let w|S = (wj1 , wj2 , . . . , wjm) be the restriction of w to the subset S. For V ⊆ F

n let V |S =
{v|S | v ∈ V } denote the restriction of the subspace V to the subset S. For any integer n ≥ 2 let
(

n
2

)

= [n] × [n] \ {(i, i) | i ∈ [n]}.

2.1 LTCs and LDCs

In this section, we define LTCs and LDCs formally and recall a few concepts that will be used later
in this paper. We define LTCs following [8].

Definition 2.1 (LTCs). Let C ⊆ F
n be a linear code. We say that C is a (q, ǫ, δ)-LTC if there

exists a distribution D over C⊥
≤q such that the following condition holds. For all x ∈ F

n such that
δ(x, C) ≥ δ it holds that Pr

u∼D
[〈u, x〉 6= 0] ≥ ǫ.

The parameter q is known as query complexity, ǫ is the rejection probability and δ is the distance
threshold.

Note that if C is a (q, ǫ, δ)-LTC then C is also a (q, ǫ, δ′)-LTC for all δ′ ≥ δ. We say that a family
of codes {Cn}n∈Z

over the field F is locally testable if there exist constants q, ǫ, δ > 0 such that for
infinitely many n it holds that Cn ⊆ F

n is a (q, ǫ, δ/3)-LTC, where δ(Cn) ≥ δ.

Remark 2.2. Note that every perfect code C is (0, 1, δ(C)/2)-LTC, i.e., the code is testable with
0 queries since there are no words which are (δ(C)/2)-far from the code. Hence, to avoid trivial
cases we must require the distance threshold parameter to be strictly less than δ(C)/2. Moreover,
in the area of LTCs we usually require δ(C)/3. E.g., all known constructions of LTCs satisfy this
requirement (see e.g., [10, 12, 20, 23, 24, 30]). On the other side, if for all constants q, ǫ > 0 the
code C is not (q, ǫ, δ(C)/3)-LTC we say that C is not locally testable (see e.g., [4, 8, 25]).

Now we define locally decodable codes (LDCs).
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Definition 2.3 (LDCs). Let C ⊆ F
n be a linear code and let k = dim(C). Let EC be the encoding

function, i.e., C =
{

EC(x) | x ∈ F
k
}

. Then C is a (q, ǫ, δ)-LDC, where q, ǫ, δ > 0, if there exists a
randomized decoder (D) that reads at most q entries and the following condition holds:

• For all x ∈ F
k, i ∈ [k] and ĉ ∈ F

n such that δ(EC(x), ĉ) ≤ δ we have Pr
[

D
ĉ[i] = xi

]

≥ 1

|F| + ǫ,

i.e., with probability at least 1
|F| + ǫ entry xi will be recovered correctly.

The parameter q is known as query complexity, ǫ is the recovery probability and δ is the
corruption parameter.

We say that a family of codes {Cn}n∈Z
over the field F is a (q, ǫ, δ)-locally decodable if for

infinitely many n it holds that Cn ⊆ F
n is a (q, ǫ, δ)-LDC.

3 Main Results

Our main motivation is the study of rate limitations of families of LTCs and the results regarding
this question are presented in Section 3.1. The main tool used in our proofs is a new bound on the
rate of weak 2-query LDCs. We present this bound and discuss its implications to LDCs in Section
3.2. We start by stating the popular belief about density of locally testable codes and for this we
need first to define the notion of “dense” codes.

The results presented in this section deal with linear codes over the binary field. These results
can be extended to any finite field but for simplicity we prefer to state them for the binary case.

Definition 3.1 (q-density). Let C ⊆ F
n
2 be a linear code and q > 0. Let ∆q(C) =

∣

∣

∣C⊥
≤q

∣

∣

∣ be the

number of dual codewords of weight at most q and ∆q,i(C) =
∣

∣

∣

{

u ∈ C⊥
≤q | i ∈ supp(u)

}∣

∣

∣
be the

number of small-weight dual codewords that “touch” the index i. The q-density of C is defined as

σq(C) =
∆q(C)

n .

Remark 3.2. The repetition code C = {0n, 1n} is a 3-query LTC but |C⊥
3 | = 0. This example

shows that the above definition of density which counts all words of weight at most q should not
be replaced with the finer definition which counts all words of weight exactly q.

Popular belief [34] says that q-query LTCs have a superlinear number of dual codewords of
weight at most q (e.g. see [8, Abstract]). Recall that to rule out the existence of asymptotically
good LTCs it is sufficient to rule out 3-query asymptotically good LTCs (cf. Theorem A.1). The
main point of this paper is to show that if the following conjecture is proven to be true then there
are no asymptotically good natural families of LTCs.

Conjecture 3.3 (LTCs are dense). Let ǫ, δ > 0 be constants. Then there exists a function σ :
N → N s.t. σ(n) = ωǫ,δ(1) such that the following condition holds.

If C ⊆ F
n
2 is a (3, ǫ, δ/3)-LTC and δ(C) ≥ δ then σ3(C) ≥ σ(n). (1)

Remark 3.4. To rule out the existence of asymptotically good families of LTCs it is sufficient to
make the weaker assumption that the family of codes in the conjecture above is asymptotically
good and then prove (1) for such families. Indeed, all our results regarding asymptotically good
codes work under this weaker assumption. The recent work of Ben-Sasson et al. [8] may be useful
in this context as they showed that LTCs have many linear dependencies in their small weight dual
codewords and this number increases with the rate of the code.
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3.1 Dense natural and regular LTCs cannot be asymptotically good

To state our main results about LTCs we formalize the notion of q-regular, and natural, codes.
(Recall that we have argued in the introduction that all base LTCs are natural, and even regular.)
We note that q-regular codes are similar to regular LDPC codes introduced by Gallager [17, 18]. The
main difference is that regular LDPC codes are defined by the regular structure of the parity check
matrix, while our q-regular codes assume a regular structure in the subspace of all dual codewords
of weight at most q. Later on we shall argue that the class of regular codes strictly contains the
class of symmetric codes, suggested as candidate LTCs in [1] and first studied systematically in
[24].

The notion of a natural code should be viewed as a weaker definition of regularity. It does
not require that all codeword coordinates participate in the exact same number of small-weight
dual words. Rather, it suffices that an independent set of indices (a notion we define next) each
participate in a large number of dual words of small weight. We say that I ⊆ [n] is a set of
independent indices of a code C ⊆ F

n if C|I = F
I , or equivalently, there is no u ∈ C⊥ s.t.

supp(u) ⊆ I. It can be easily verified that C has at least one set of independent indices of size
dim(C). So, in particular, all regular codes are natural according to the following definition but
the converse is not true.

Definition 3.5 (Regular and natural codes). We say that a code C ⊆ F
n
2 is q-regular if for all

q′ ≤ q and i, j ∈ [n] we have
∣

∣

∣

{

u ∈ C⊥
q′ | i ∈ supp(u)

}∣

∣

∣ =
∣

∣

∣

{

u ∈ C⊥
q′ | j ∈ supp(u)

}∣

∣

∣ .

We say that C is (α,∆)-natural if there exists a set of independent indices I ⊆ [n] s.t. |I| ≥
α · dim(C) and for every i ∈ I it holds that ∆3,i(C) ≥ ∆.

Our first main result demonstrates a tight relation between the density and the rate of 3-regular
codes.

Theorem 3.6 (3-density limits rate of regular codes). Let C ⊆ Fn
2 be a 3-regular code s.t. σ3(C) ≥

2. Then

rate(C) ≤ 2 log(σ3(C)) + 2
√

σ3(C)
.

Spielman [33] suggested to use dense regular expander codes for constructing LTCs. The next
corollary says that dense 3-regular codes cannot be asymptotically good even without any expansion
assumptions. Furthermore, this corollary limits the rate of 3-regular LTCs under Conjecture 3.3.

Corollary 3.7 (No asymptotically good regular 3-query LTCs). Let C = {Cn}n∈Z
is a family of

3-regular codes, where Cn ⊆ F
n
2 .

• If σ3(Cn) = ω(1) then

rate(Cn) ≤ 2 log(σ3(Cn)) + 2
√

σ3(Cn)
= o(1).

• Let ǫ, δ > 0 be constants. Under Conjecture 3.3, if Cn ⊆ F
n
2 is a (3, ǫ, δ/3)-LTC and δ(Cn) ≥ δ

then rate(Cn) = o(1).

Proof. The first bullet follows from Theorem 3.6. For the second bullet, assume the contra-positive,
i.e., rate(Cn) ≥ ρ for some constant ρ > 0. Conjecture 3.3 says that σ3(Cn) = ω(1). Theorem 3.6
then implies that rate(Cn) = o(1).
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Natural codes Next we present limits on the rate of natural LTCs. We then present a believable
conjecture that is stronger than Conjecture 3.3 and show that it implies there are no asymptotically
good LTCs. We need the following definition which says that a code is “t-repetitive” for small t if
not too many coordinates are identical in all codewords. All known basic constructions of LTCs,
such as Hadamard, Reed-Muller and those appearing in [10, 20, 24, 30] have no dual codewords of
weight 2, hence are non-repetitive, or 1-repetitive according to the following definition.

Definition 3.8 (Bounded repetition). Let C ⊆ F
n
2 be a linear code. For i1, i2 ∈ [n] we say that

i1 is a repetition of i2 if for all c ∈ C we have ci1 = ci2 , which happens if and only if there exists
u ∈ C⊥

2 s.t. supp(u) = {i1, i2}. We say that C is t-repetitive if for every i ∈ [n] it holds that
|{j | j is a repetition of i}| ≤ t. We say that C is non-repetitive if there exists a constant t > 0
s.t. C is t-repetitive.

We now show that natural non-repetitive LTCs have bounded rate.

Theorem 3.9 (Natural non-repetitive 3-query LTCs have bounded rate). Let C ⊆ F
n
2 be (α,∆)-

natural and t-repetitive s.t. ∆ ≥ 2t. Then

rate(C) ≤ 1

α
· log(∆/(4t)) + 1

∆/(4t)
.

Corollary 3.10 (No asymptotically good natural dense codes). Let α, t > 0 be constants and
∆ : N → N be a function s.t. ∆(n) = ω(1). Let C = {Cn}n∈Z

be a family of codes, where Cn ⊆ F
n
2

is an (α,∆(n))-natural code that is t-repetitive. Then

rate(Cn) ≤ 1

α
· log(∆(n)/(4t)) + 1

∆(n)/(4t)
= o(1).

Intuitively, the following conjecture says that if C is an asymptotically good 3-query LTCs then
a large part of C looks like a natural code with super-linear density. Note that Conjecture 3.3
implies that 3-query LTCs have a superlinear number of dual codewords of weight at most 3.

Conjecture 3.11 (LTCs contain natural non-repetitive punctured code). Let ǫ, δ, ρ > 0 be con-
stants. Then there exist a function ∆ : N → N s.t. ∆(n) = ωǫ,δ,ρ(1) and constants α, β, t > 0 which
depend only on ǫ, δ, ρ such that the following condition holds. If C ⊆ F

n
2 is a (3, ǫ, δ/3)-LTC, where

δ(C) ≥ δ and rate(C) ≥ ρ then there exists J ⊆ [n] s.t. |J | ≥ βn and C|J is (α,∆(n))-natural and
t-repetitive.

Under this conjecture we can rule out the existence of asymptotically good LTCs altogether.

Corollary 3.12 (No Asymptotically good LTCs). Under Conjecture 3.11 there is no family of
asymptotically good 3-query LTCs. Consequently (cf. Theorem A.1) there is no asymptotically
good family of linear LTCs.

Proof. Assume the contrary, i.e., there exists a family C = {Cn}n∈Z
, where Cn ⊆ F

n
2 is a (3, ǫ, δ/3)-

LTC, δ(Cn) ≥ δ and rate(Cn) ≥ ρ for some constants ǫ, δ, ρ > 0. Conjecture 3.11 implies that there
exist a function ∆(n) : N → N s.t. ∆(n) = ωǫ,δ,ρ(1), constants α, β, t > 0 which depend only on
ǫ, δ, ρ and Jn ⊆ [n] s.t. |Jn| ≥ βn and (Cn)|Jn is (α,∆(n))-natural and t-repetitive.

Note that ∆(n) ≥ 2t for sufficiently large n. Theorem 3.9 implies that rate(Cn) ≤ dim(Cn)
βn ≤

1
βα · log(∆(n)/(4t))+1

∆(n)/(4t) ≤ o(1). Contradiction.
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Symmetric codes are regular We end this section by focusing on an interesting class of regular
codes that has been investigated intensively in recent years (cf. [1, 24]) — the class of symmetric,
or 1-transitive, LTCs.

Let G be a group of permutations over [n]. For π ∈ G and w = (w1, w2, ..., wn) ∈ F
n with some

abuse of notation we let π(w) = (wπ−1(1), ..., wπ−1(n)) be a π-permuted word. Note that since G
is a group and π ∈ G we have π−1 ∈ G. A linear code C is invariant under G if for every π ∈ G
and c ∈ C we have π(c) ∈ C. Note that if C is invariant under G then also C⊥ is invariant under
G. G is called 1-transitive if for all i, j ∈ [n] we have π ∈ G such that π(i) = j. A linear code C is
1-transitive if it is invariant under some 1-transitive permutation group G.

All relevant LTCs based on the “invariance” approach are regular. This is true since 1-
transitivity is a minimal possible requirement for such LTCs and all 2-transitive codes, affine-
invariant codes, linear invariant codes etc. are 1-transitive (for further information see [24]). It is
not hard to show that 1-transitive codes are q-regular for every q > 0 (cf. Claim A.3) and this leads
to the following corollary. Moreover, the next corollary shows that under Conjecture 3.3 there is
no asymptotically good 1-transitive 3-query LTCs.

Corollary 3.13 (Dense 1-transitive LTCs are not asymptotically good). Let C = {Cn}n∈Z
be a

family of codes, where Cn ⊆ F
n
2 is 1-transitive.

• If σ3(Cn) = ω(1) then

rate(Cn) ≤ 2 log(σ3(Cn)) + 2
√

σ3(Cn)
= o(1).

• Under Conjecture 3.3, if Cn is a (3, ǫ, δ/3)-LTC and δ(Cn) ≥ δ then rate(Cn) = o(1).

Proof. The first bullet follows from Claim A.3 (which implies that Cn is 3-regular) and Corollary
3.7. The second bullet follows from the first bullet.

3.2 Limiting the rate of weak 2-query LDCs

The proof of our main theorems regarding LTCs, presented in the previous section, follow from an
improved version of the rate-bound on 2-query LDCs due to [19]. In this section we present this
improved version and discuss its corollaries for locally decodable codes.

The following lemma is due to Goldreich et al. [19], stated there as Lemma 3.3. This lemma had
a crucial role in proving lower bounds for LDCs (see, e.g., the results of Goldreich et al. [19], Dvir
and Shpilka [16], Obata [31], Woodruff [35, 36]). The lemma is used as a combinatorial core which
analyzes the relation between the rate of a LDC and the number of tuples used in the decoding.

Let us first recall the definition of a singleton vector: let ei = 0i−110k−i for i ∈ [k]. For a matrix
G we let Gi denote the ith row of G. In this section we think of G ∈ F

n×k
2 as a generator matrix

for some 2-query LDC C. We also relate k to dim(C) and n to the blocklength of C.

Lemma 3.14 (Lemma 3.3 in [19]). Let G ∈ F
n×k
2 be a matrix and ∆ ≥ 1. Suppose for every i ∈ [k]

there is a matching Mi ⊆
(

n
2

)

, i.e., a set of disjoint pairs of indices (j1, j2), such that Gj1 +Gj2 = ei.

Moreover, suppose it holds that
Pk

i=1 |Mi|
k ≥ ∆. Then k ≤ n(log n)

2∆ .

Goldreich et al. [19] prove the lemma using the assumption that
∑

i |Mi| is large. They go
on to point out that in the context of LDCs one has a stronger assumption, namely, that every
single matching Mi is large but this stronger assumption is not used. The following lemma, which
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is the main technical contribution of this paper, improves upon Lemma 3.14 by using the stronger
assumption on the size of individual matchings.

Lemma 3.15 (Main technical lemma). Let G ∈ F
n×k
2 be a matrix and ∆ ≥ 1. Suppose for every

i ∈ [k] there is a matching Mi ⊆
(

n
2

)

, i.e., a set of disjoint pairs of indices (j1, j2), such that

Gj1 + Gj2 = ei. Moreover, suppose for every i ∈ [k] it holds that |Mi| ≥ ∆. Then k ≤ n(log ∆)+n
∆ .

Notice that this lemma implies Lemma 3.14 and works for smaller densities. In particular, for
any super-constant function ∆(n) ≥ ω(1) our lemma gives k

n = o(1) but for ∆(n) ≤ (log n)/2
Lemma 3.14 gives no nontrivial bounds.2

In Section 5 we prove Lemma 3.15 and in Section 6.1 we generalize it to arbitrary fields. The
tightness of Lemmata 3.15, 3.14 is shown in Section 5.4.

Next we use Lemma 3.15 to limit the rate of weak 2-query LDCs, i.e., LDCs that allow correct
decoding of message bits under the weak assumption that a super-constant (but sublinear) number
of codeword bits are corrupted. We believe that Theorem 3.17 might be useful for improving the
existing rate bounds of q-query locally decodable codes with q ≥ 3 and subconstant corruption
parameter δ = o(1). The point is that the best known lower bounds for q-query LDCs (q ≥ 3)
are obtained by way of reduction to 2-query LDC (with worse parameters) and applying the lower
bound for 2-query LDC (see e.g. [35], [36]). However, the parameter δ of an LDC is strongly
decreased in such a reduction and becomes o(1) even if initially we have started the reduction from
a q-query LDC with δ = Ω(1).

The best known lower bound for 2-query LDCs is due to Goldreich et al. [19] who proved it for
binary fields (see also [31]), it was generalized to general fields in [16]:

Theorem 3.16 ([16]). Let F be any field. Let C ⊆ F
n be a linear (2, δ, ǫ)-LDC with k = dim(C).

Then n ≥ 2
ǫδk
4

−1.

Previous lower bounds on LDCs with δ = o(1) were not achieved because of lack of tight lower
bounds on 2-query LDCs with very small but non-trivial δ, i.e., where ω(1) ≤ δn ≤ log n (see Dvir
[15] for motivation for such bounds). In Theorem 3.17 we give such a lower bound.

Theorem 3.17 (Main Theorem on LDCs). Let F be any field. If C ⊆ F
n is a (2, ǫ, δ)-LDC with

k = dim(C) then

n ≥ 2
δk

32(1−ǫ)
−1 · 1 − ǫ

δ
.

Corollary 3.18. Let F be any field, ǫ > 0 and δ : N → N be a function s.t. δ(n) ≥ ω(1).
Let C = {Cn}n∈Z

be a family of codes, where C ⊆ F
n is a (2, ǫ, δ(n))-LDC. Then rate(Cn) ≤

O( log δ(n)
δ(n) ) = o(1).

Proof. Let k = dim(Cn). Theorem 3.17 implies that n ≥ 2
δ(n)k

32(1−ǫ)
−1 · 1−ǫ

δ(n) ≥ 2
δ(n)k

32
−1 · 1

δ(n) . Hence

δ(n)n ≥ 2
δ(n)k

32
−1. We conclude that rate(Cn) = k/n ≤ O

(

log δ(n)
δ(n)

)

= o(1).

Remark 3.19. The above corollary says that there is no constant rate 2-query LDC s.t. δ(n) ·n =
ω(1). In contrast, the best known lower bound for 2-query LDCs (by Dvir and Shpilka [16]) does
not give any non-trivial bound when δ(n) · n ≤ log n.

2Recall that we think of k as dim(C) and n is a blocklength of C, where C is a linear code. Hence dim(C) = k ≤ n
is a trivial bound in this case, in contrast to the bound k/n = o(1).
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4 Proof of Main Results for LTCs

In this section we prove our main results regarding LTCs — Theorems 3.6 and 3.9 — and show
how they follow from the main technical Lemma 3.15.

We first prove an auxiliary Proposition 4.1 which is the main place where Lemma 3.15 is used.
Then we show how Proposition 4.1 implies Theorem 3.9. Theorem 3.6 will follow from Theorem
3.9.

Proposition 4.1. Let C ⊆ F
n
2 be a t-repetitive code and let I ⊆ [n] be a set of independent indices.

Assume that for every i ∈ I it holds that |
{

u ∈ C⊥
3 | i ∈ supp(u)

}

| ≥ ∆. Then, |I|/n ≤ log(∆/(2t))+1
∆/(2t) .

Proof. We start from showing the following claim.

Claim 4.2. For every i ∈ I there exists Mi ⊆
(

n
2

)

s.t. |Mi| ≥ ∆/(2t) and the following condition
holds. For every (j1, j2) ∈ Mi we have u ∈ C⊥

3 , where supp(u) = {i, j1, j2} and for every (j1, j2) 6=
(j′1, j

′
2) ∈ Mi we have {j1, j2} ∩ {j′1, j′2} = ∅.

Proof. Let i ∈ I. We construct the subset Mi iteratively. With some abuse of notation, for S ⊆ [n]
we say that S ∩ Mi = ∅ if for all x ∈ Mi we have S ∩ x = ∅.

• Mi := ∅

• While there exists u ∈ C⊥
3 s.t. i ∈ supp(u) and supp(u) ∩ Mi = ∅

– Mi := Mi ∪ (supp(u) \ {i})

The construction of Mi implies that for every (j1, j2), (j
′
1, j

′
2) ∈ Mi we have u ∈ C⊥

3 , where
supp(u) = {i, j1, j2} and {j1, j2} ∩ {j′1, j′2} = ∅. If |Mi| ≥ ∆/(2t) we are done.

Assume that |Mi| < ∆/(2t). With some abuse of notation let supp(Mi) = {j | ∃j′ ∈ [n] : (j, j′) ∈ Mi}.
We have | supp(Mi)| = 2|Mi| < ∆/t. By assumption, it holds that |

{

u ∈ C⊥
3 | i ∈ supp(u)

}

| ≥ h
and by construction for every u ∈ C⊥

3 s.t. i ∈ supp(u) we have (supp(u) \ {i}) ∩ {j1, j2} 6= ∅ for
some (j1, j2) ∈ Mi. Let Ti,j =

{

u ∈ C⊥
3 | i, j ∈ supp(u)

}

. By pigeonhole principle we conclude that
there exists j ∈ [n] s.t. j ∈ supp(Mi) and |Ti,j | > t. Note that if u1, u2 ∈ Ti,j and u1 6= u2 then
supp(u1) ∩ supp(u2) = {i, j} but | supp(u1)| = | supp(u2)| = 3. Clearly, u1 + u2 ∈ C⊥

2 . Letting
i1, i2 ∈ [n] be s.t. {i1} = supp(u1)\{i, j} and {i2} = supp(u2)\{i, j} we have that i2 is a repetition
of i1. Hence for every u ∈ T letting i′ ∈ [n] be s.t. {i′} = supp(u) \ {i, j} it holds that i′ is a
repetition of i1, so there are |T | > t repetitions of i1. Contradiction.

Claim 4.2 implies that for every i ∈ I there exists a subset Mi ⊆
(

n
2

)

of disjoint pairs s.t.
|Mi| ≥ ∆/(2t) and for all (j1, j2) ∈ Mi we have u ∈ C⊥

3 s.t. supp(u) = {i, j1, j2}.
Let k = dim(C). Let G ∈ F

n×k
2 be a generator matrix for C and assume without loss of

generality (reordering of indices) that I = {1, 2, ..., |I|}. Assume without loss of generality that the
first |I| rows and the first |I| columns of G form an identity matrix. 3

Let G′ ∈ F
n×|I|
2 be a submatrix of G obtained by removing all columns c of G which have

c|I = 0|I| (there are k−|I| such columns). Note that the top |I| rows of G′ form an identity matrix
|I| × |I|. Moreover, for all u ∈ C⊥ it holds that uT ·G′ = 0 since G′ contains only the columns of G

3Do gaussian elimination on columns to get identity matrix in the first |I| rows, since rank(G||I|×k) = |I| the
submatrix G||I|×k will contain the identity submatrix |I| × |I|.
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(i.e., the codewords of C). For the rest of the proof let ei be a singleton vector in F
|I|
2 . Note that

for all i ∈ [|I|] it holds that G′
i = ei.

We conclude that for all i ∈ I we have a set Mi ⊆
(

n
2

)

of disjoint pairs s.t. |Mi| ≥ ∆/(2t) and

for all (j1, j2) ∈ Mi we have G′
j1

+ G′
j2

= ei. Lemma 3.15 implies that |I|/n ≤ log(∆/(2t))+1
∆/(2t) .

We are ready to prove Theorem 3.9.

Proof of Theorem 3.9. The fact that C is (α,∆(n))-natural implies that there exists a set of inde-
pendent indices I ⊆ [n] s.t. |I| ≥ α · dim(C) and for every i ∈ I it holds that ∆3,i(C) ≥ ∆(n).
Since C is t-repetitive it follows that for every i ∈ I we have

∣

∣

{

u ∈ C⊥
≤2 | i ∈ supp(u)

}∣

∣ ≤ t.

Hence for every i ∈ I we have
∣

∣

{

u ∈ C⊥
3 | i ∈ supp(u)

}∣

∣ ≥ ∆ − t ≥ ∆/2. Proposition 4.1 says

that |I|/n ≤ log(∆/(4t))+1
∆/(4t) and so rate(C) = dim(C)

n ≤ 1
α · log(∆/(4t))+1

∆/(4t) .

Now we prove Theorem 3.6.

Proof of Theorem 3.6. Let σ = σ3(C) and note that σ ≥ 2 is an integer since C is regular. Note
that

∣

∣C⊥
1

∣

∣ = 0 since otherwise C = {0n} (C is 3-regular and hence in particular 1-regular). The
fact that C is 3-regular implies that every index i ∈ [n] has the same number of repetitions in C (see
Definition 3.8). Let t be this number of repetitions per index. Let k = dim(C). Then there exists
an independent set I ⊆ [n] s.t. |I| = k, and in particular, all indices in I are not repetitions of each
other. So, |I| · t = k · t ≤ n. If t ≥ √

σ/2 then k
n ≤ 1

t ≤ 2√
σ

and we are done. Otherwise, t <
√

σ/2

and hence C is (
√

σ/2)-repetitive. We argue that C is (1, σ)-natural. This is true since for every
i ∈ I it holds that ∆3,i(C) ≥ σ, because every index i ∈ [n] it holds that ∆3,i(C) ≥ σ3(C) = σ.

Theorem 3.9 implies that rate(C) ≤ log(σ/4t)+1
σ/4t ≤ 2 log σ+2√

σ
.

5 Proof of Main Technical Lemma 3.15

In this section we prove Lemma 3.15. We end the section by showing that Lemmas 3.15 and 3.14
are tight (Section 5.4).

Overview of proof We study the generating matrix G ∈ F
n×k
2 of a 2-query LDC of dimension

k and blocklength n. We may assume without loss of generality that the first k rows contain the
k singleton vectors e1, . . . , ek, where ei has 1 in position i and is 0 elsewhere. Notice that when
the first column of G is removed, for each pair of indices i 6= j used to decode the first message
bit (i.e., Gi + Gj = e1) we now have that the i and j rows of the smaller n × (k − 1) matrix
are identical. In other words, after removing column 1 we may partition the rows of the residual
matrix, denoted G|n×([k]\{1}), into sets of equal rows. Typically such sets will have size either 2
or 1. The former correspond to rows participating in a query for decoding the first message bit
and the latter correspond to all other rows. Now, if we go on to remove the second column from
G we may expect to see in the residual matrix sets of equivalent rows of sizes between 1 and 4.
The former sets correspond to rows not participating in any decoding of bits 1, 2 and the latter
include rows that participate both in decoding message-bit number 1 and number 2. Continuing
in this manner we would expect the size of sets of equivalent rows to double with every removal of
an additional column from G and this would show that after ≈ log n column-removals all rows are
equivalent, which means k = O(log n).
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Of course, the description above is a gross oversimplification of what actually happens when
columns are removed. The problem is that the size of different sets of equivalent rows can grow
in arbitrary ways. To prove our lemma we rely on a simple fact — that whenever two equivalence
classes “merge” into one larger class after removing a column of G, then at least one of them (the
smaller) must double in size. This observation leads us to measure size of sets on a logarithmic scale
and carry out an amortized analysis of the number of times sets (of equivalent rows) are merged
upon removal of columns of the generating matrix. We shall explain how we remove columns from
G after making a few preliminary definitions and claims used in our proof.

5.1 Equivalence Relation and Matchings

With some abuse of notation consider every set as a multiset if not stated otherwise. The size of
the multiset is the number of elements in it including repetitions. We recall that for w ∈ Fn and
S ⊆ [n] we let w|S to be the restriction of w to the subset S.

We define an equivalence relation over the set of rows of G.

Definition 5.1 (Equivalence relation and class). Let J ⊆ [k]. For any i, j ∈ [n] we say that
Gi ≈J Gj if and only if Gi|[k]\J = Gj |[k]\J . Since ≈J is an equivalence relation over G it defines
equivalence classes. Let [Gi]J be the equivalence class of Gi under J , i.e., [Gi]J = {Gj | Gi ≈J Gj}.

We let PJ denote the quotient set of the multiset G by ≈J , i.e., PJ = {[Gi1 ]J , ..., [Gim ]J}. It
holds that PJ is a partition of the multiset G hence we will also say that PJ is a J-partition of G.

Now we define the important concept, called valid matchings. The concepts “equivalence
classes” and “valid matchings” are central in the proof of Lemma 3.15.

Definition 5.2 (i-Matching). Let J ⊆ [k] and i ∈ [k]. Let M ⊆
(

n
2

)

. We say that M is an
i-matching if for all pairs (i1, i2) ∈ M it holds that Gi1 + Gi2 = ei. We say that the matching M
is valid for J if for all pairs (i1, i2) ∈ M it holds that Gi1 |[k]\J + Gi2 |[k]\J = (ei)|[k]\J .

For a ∈ [n] we say that an element Ga ∈ G appears in the pair (i1, i2) if either a = i1 or a = i2.
We say that Ga appears in the matching M if it appears in at least one pair of M .

Recall that for every i ∈ [k] we have an i-matching Mi s.t. |Mi| ≥ ∆. Note that for every
i ∈ [k] it holds that every element of G appears at most once in the matching Mi. The following
two simple claims summarize the effect of projection on the equivalence classes and matchings.

Claim 5.3 (Projection does not affect non-projected matchings). Let J ⊆ [k] and i ∈ [k] \ J . If
M is an i-matching then M is valid for J .

Proof. This is true since for all pairs (i1, i2) ∈ M we have Gi1 +Gi2 = ei hence Gi1 |[k]\J +Gi2 |[k]\J =
(ei)|[k]\J .

Claim 5.4 (Projection implies Collapse of Equivalence Classes). Let J ⊆ [k] and ei = Gj + Gj′.
If i ∈ J then Gj ≈J Gj′, or equivalently, [Gj ]J = [Gj′ ]J .

Proof. If Gj + Gj′ = ei then Gj |[k]\J + Gj′ |[k]\J = 0. So, Gj |[k]\J = Gj′ |[k]\J hence Gj ≈J Gj′ .
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5.2 Selection of columns to be removed from the generating matrix

In this section we describe the process by which columns of G are removed. We start with an
explanation of the intuition behind this selection process. Recall that our goal is to upper-bound
the number k. We start from the definition of small multisets and good matchings.

Definition 5.5 (Small Multisets and Good Matching). A multiset S is called small if |S| < ∆ and
otherwise it is called large. We say that the i-matching Mi is J-good if i ∈ [k] \ J and for all edges
(j, j′) ∈ Mi it holds that at least one of [Gj ]J , [Gj′ ]J is a small multiset.

Let J = {i1, i2, ..., ih} ⊆ [k] and for t ≤ h let J(t) = {i1, i2, ..., it} and J(0) = ∅. Assume that
for all t ≤ h it holds that the it-matching Mit is J(t − 1)-good. By Definition 5.5 all pairs of Mit

“touch” many small subsets in PJ(t−1) and note that Claim 5.4 implies that a large number of pairs
of multisets [Gj1 ]J(t−1) and [Gj2 ]J(t−1) collapse into the single multiset [Gj1 ]J(t). In this way, we
can expect that for all t ≤ h the size of PJ(t) will be much smaller than the size of PJ(t−1). Note
also that

∣

∣PJ(h)

∣

∣ ≥ 1 and
∣

∣PJ(0)

∣

∣ ≤ n. Hence the subset J cannot be too large. Later on in the
proof we will upper-bound |J | and on the other side we will argue that |[k] \ J | is small, obtaining
the upper bound on k.

The following algorithm constructs the set J ⊆ [k]. Roughly we maintain an iteration number
t and set J(t) which grows slowly. For analysis it is better to denote sets separately.

Construction of J

• t := 0

• J(t) := ∅

• While there exists i ∈ [k] \ J(t) s.t. the matching Mi is J(t)-good

– J(t + 1) := J(t) ∪ {i}
– t := t + 1

• J := J(t)

• return J

For the rest of the proof, we assume that the algorithm returns the subset J = {i1, i2, ..., ih},
where it is the element added in the t’th iteration of the algorithm. Notice J(t) = {i1, i2, ..., it} and
J(0) = ∅. We have two immediate but crucial properties, stated formally in Claims 5.6 and 5.7.

Claim 5.6. For every t ∈ [h] it holds that the it-matching Mit is J(t − 1)-good.

Claim 5.7. For every i ∈ [k] \ J it holds that the i-matching Mi is not J-good, i.e., there exists a
pair (j, j′) ∈ Mi such that both multisets [Gj ]J and [Gj′ ]J are large.

Proof. The claim follows from the construction of J . If for some i ∈ [k]\J the i-matching is J-good
then the construction of J would not stop.
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5.3 Completing the proof of Main Technical Lemma 3.15

In this section we present Lemmas 5.8 and 5.9. The proof of the Combinatorial Lemma 3.15 will
follow immediately from these two lemmas. The rest of this section is devoted to the proofs of the
two sub-lemmas stated next.

Lemma 5.8 (Bound on k − |J |). It holds that k − |J | ≤ n
∆ .

Lemma 5.9 (Bound on |J |). It holds that |J | ≤ n log ∆
∆ .

The proof of Lemma 3.15 follows by a combination of Lemmas 5.8 and 5.9.

Proof of Lemma 3.15. We have k = |J | + (k − |J |) ≤ n log ∆+n
∆ .

In Sections 5.3.1 and 5.3.2 we prove Lemmas 5.8 and 5.9, correspondingly.

5.3.1 Proof of Lemma 5.8

Let m = k − |J | and assume without loss of generality that J = {m + 1, m + 2, ..., k}. Let r be the
number of large multisets in PJ and assume without loss of generality that the large multisets of
PJ are [G1]J , ..., [Gr]J . We have that r ≤ n/∆ since the number of rows is |G| = n and every large
subset has size at least ∆.

Claim 5.7 says that for every i ∈ [m] = [k] \ J the matching Mi is not J-good, i.e., there exists
at least one edge (j, j′) ∈ Mi such that both [Gj ]J and [Gj′ ]J are large, meaning |[Gj ]J | ≥ ∆ and
|[Gj′ ]J | ≥ ∆. Note that in this case Gj |[m] + Gj′ |[m] = ei|[m], i.e., ei|[m] ∈ span

{

Gj |[m], Gj′ |[m]

}

.
We conclude that for every i ∈ [m] it holds that ei|[m] ∈ span

{

Gj |[m] | j ∈ [r]
}

. We argue that
m ≤ r. To see this recall that G1|[m], ..., Gt|[m] ∈ F

m
2 and note that for every i ∈ [m] we have ei|[m] ∈

span
{

Gj |[m] | j ∈ [r]
}

. Thus m = dim(span
{

ei|[m] | i ∈ [m]
}

) ≤ dim(span
{

G1|[m], ..., Gr|[m]

}

) ≤
r.

We conclude that k − |J | = m ≤ r ≤ n/∆ and this completes the proof of Lemma 5.8.

5.3.2 Proof of Lemma 5.9

In this section we prove that |J | ≤ n log ∆
n . We first define the valence of a multiset.

Definition 5.10 (Valence of the Multiset). Given a multiset S 6= ∅ its valence v(S) is defined as
⌊log |S|⌋.

Remark 5.11. Recall from Definition 5.5 that a multiset S is large if v(S) ≥ log ∆.

Definition 5.12 (Consumptions - Edges vs. Rows). Let t ≤ h. For it ∈ J(t) \ J(t − 1) let Mit

be the it-matching and e = (m, m′) ∈ Mit . In this case, we say that the edge e was consumed in
iteration t.

If |[Gm]J(t−1)| ≤ |[Gm′ ]J(t−1)| we say that Gm consumed the edge e in iteration t. Note that if
|[Gm]J(t−1)| = |[Gm′ ]J(t−1)| then both Gm and Gm′ consumed e in iteration t.

Since every row of G appears in any given matching at most once, we know that every row
consumes at most one edge in iteration t, hence we can define the following indicator variables.
Let E(m,m′),t be the indicator for the event that the edge (m, m′) was consumed in iteration t. Let

Et =
∑

e∈Mit
Ee,t be the number of edges that were consumed in time t and let E≤t =

∑t
i=1 Ei be

the number of edges that were consumed up to time t.
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Similarly, for l ∈ [n] we let Rl,t be the indicator for the event that the row Gl consumes some
edge in time t. Let Rt =

∑

l∈[n] Rl,t be the number of rows that consume an edge in iteration t,

and let R≤t =
∑t

i=1 Ri be the number of consumptions which happen up to time t.

The intuition behind this definition is as follows. The consumption of edges is tightly related
to the consumption by rows. The numbers are roughly equal since when an edge is consumed, it is
consumed by at least one (and at most two) rows. So, on the one side there are many edges that
were consumed and on the other side, as shown in Proposition 5.14, every row can not consume
too many edges, since the valence of an equivalence class containing the row is increased at least
by one after consumption.

We go on to present Claim 5.13 and Propositions 5.14 and 5.15. Then we prove Lemma 5.9.
We end this section by proving Claim 5.13 and Propositions 5.14 and 5.15.

Claim 5.13 (Consumption implies increase of valence). Let t < h, Mit+1 be the it+1-matching and
(j, j′) ∈ Mit+1. It holds that

• at least one of Gj , Gj′ consumes the edge (j, j′) in iteration t + 1, and

• if Gj consumes the edge (j, j′) in iteration t then v([Gj ]J(t+1)) ≥ 1 + v([Gj ]J(t)).

Proposition 5.14 (Row Consumption). For every t ≤ h it holds that R≤t ≤ n log ∆.

Proposition 5.15 (Edge Consumption). For every t ≤ h we have E≤t ≥ ∆ · |J(t)| = ∆ · t.

We are ready now to prove the Lemma 5.9, which says |J | ≤ n log(∆)
∆ .

Proof of Lemma 5.9. Recall that h = |J |. Proposition 5.14 implies that R≤h ≤ n log ∆. Proposition
5.15 implies that the total number of edge consumptions E≤h is at least h · ∆. Claim 5.13 implies

that E≤h ≤ R≤h. We conclude that h ·∆ ≤ E≤h ≤ R≤h ≤ n · log ∆, and thus |J | = h ≤ n log(∆)
∆ .

Now we prove Claim 5.13 and Propositions 5.14 and 5.15.

Proof of Claim 5.13. Claim 5.3 implies that Mit+1 is valid for J(t) and, in particular,

Gj |J(t) + Gj′ |J(t) = eit+1 .

Hence [Gj ]J(t) 6= [Gj′ ]J(t) since otherwise, if [Gj ]J(t) = [Gj′ ]J(t) then it holds that Gj |J(t)+Gj′ |J(t) =
0 6= eit+1 . Clearly, either |[Gj ]J(t)| ≤ |[Gj′ ]J(t)| or |[Gj′ ]J(t)| ≤ |[Gj ]J(t)| hence, by definition, at least
one of Gj , Gj′ consumes the edge in iteration t + 1. This completes the proof of the first bullet.

For the second bullet, by assumption, we have |[Gj ]J(t)| ≤ |[Gj′ ]J(t)|. Claim 5.4 implies that

[Gj ]J(t+1) = [Gj′ ]J(t+1) but [Gj ]J(t) 6= [Gj′ ]J(t).

This means [Gj ]J(t) ∪ [Gj′ ]J(t) ⊆ [Gj ]J(t+1) and so, |[Gj ]J(t)| + |[Gj′ ]J(t)| ≤ |[Gj ]J(t+1)|. The fact
that |[Gj ]J(t)| ≤ |[Gj′ ]J(t)| implies that

2|[Gj ]J(t)| ≤ |[Gj ]J(t)| + |[Gj′ ]J(t)| ≤ |[Gj ]J(t+1)|.

It follows that

1 + ⌊log |[Gj ]J(t)|⌋ = ⌊1 + log |[Gj ]J(t)|⌋ = ⌊log(2|[Gj ]J(t)|)⌋ ≤ ⌊log |[Gj ]J(t+1)|⌋.
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We conclude that

1 + v([Gj ]J(t)) = 1 + ⌊log |[Gj ]J(t)|⌋ ≤ ⌊log |[Gj ]J(t+1)|⌋ = v([Gj ]J(t+1)).

Proof of Proposition 5.14. We first claim that for every row Gl ∈ G it holds that
∑h

t=1 Rl,t ≤ log ∆.
Note that for all v([Gi]J(·)) is monotonic non-decreasing, i.e., v([Gi]J(0)) ≤ v([Gi]J(1)) ≤ ... ≤
v([Gi]J(h)). This is true because [Gi]J(0) ⊆ [Gi]J(1) ⊆ ... ⊆ [Gi]J(h).

We argue that if for some time t ≤ h we have v([Gl]J(t)) ≥ log ∆ then for every t′ such
that t < t′ ≤ h we have Rl,t′ = 0 and v([Gl]J(t′)) ≥ log ∆. Assume the contrary. Clearly,
for every t′ > t we have v([Gl]J(t′)) ≥ v([Gl]J(t)) ≥ log ∆ since [Gl]J(t) ⊆ [Gl]J(t′). So, there
exists t′ > t s.t. v([Gl]J(t′−1)) ≥ log ∆ but Rl,t′ = 1. Note that it′ ∈ J . From the definition
of “consumption” (Definition 5.12) it follows that there exists an edge (l, l′) ∈ Mit′ such that
|[Gl]J(t′−1)| ≤ |[Gl′ ]J(t′−1)|. But then |[Gl′ ]J(t′−1)| ≥ |[Gl]J(t′−1)| ≥ ∆. In this case, the matching
Mit′ is not J(t′ − 1)-good, contradicting Claim 5.6. We conclude that if for some time t ≤ h we
have v([Gl]J(t)) ≥ log ∆ then for every t′ such that t < t′ ≤ h we have Rl,t′ = 0 and v([Gl]J(t′)) ≥
v([Gl]J(t)) ≥ log ∆.

Now, in iteration 0 the valence of [Gl]∅ is at least 0. Claim 5.13 implies that if Gl consumes
an edge in iteration t′ ≤ h then v([Gl]J(t′)) ≥ v([Gl]J(t′−1)) + 1. This means that if Rl,t′ = 1
then v([Gl]J(t′)) ≥ v([Gl]J(t′−1)) + Rl,t′ . Note that if Rl,t = 0 it is also true that v([Gl]J(t′)) ≥
v([Gl]J(t′−1)) + Rl,t′ . Hence for every t′ ≤ h we have v([Gl]J(t′)) ≥ v([Gl]J(t′−1)) + Rl,t′ . Recalling

v([Gl]J(0)) ≥ 0 it follows that for every t′ ≤ h we have
∑t′

t=1 Rl,t′ ≤ v([Gl]J(t′)).

We conclude that for every row Gl ∈ G it holds that
∑h

t=1 Rl,t ≤ log ∆. Recalling that |G| = n,
we have

R≤t =

t
∑

i=1

∑

l∈[n]

Rl,t =
∑

l∈[n]

(

t
∑

i=1

Rl,t) ≤
∑

l∈[n]

log ∆ = n log ∆.

Proof of Proposition 5.15. Recall that J(t) = {i1, i2, ..., it} is an ordered set. By construction of J ,
for every t ≤ h it holds that it ∈ [k] \ J(t− 1). Claim 5.13 implies that all edges of the it-matching
Mit are consumed in iteration t. Thus for every t ≤ h we have |Et| ≥ |Mit | ≥ ∆. Recalling that
|Mil | ≥ ∆ we conclude

E≤t =
t

∑

l=1

El =
t

∑

l=1

|Mil | ≥ t · ∆.

5.4 Tightness of Lemmas 3.15 and 3.14

We end our discussion of Lemmas 3.15 and 3.14 by showing that each of them is tight.

Lemma 5.16 (Tightness of Lemma 3.15). Let ∆ : N → N be a function s.t. ∆(n) ≤ n/2. Then
there exists a matrix G ∈ F

n×k
2 and for every i ∈ [k] there exists a set of disjoint pairs of indices

Mi ⊆
(

n
2

)

such that

• For every (i1, i2) ∈ Mi we have Gi1 + Gi2 = ei,
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• For every i ∈ [k] we have |Mi| ≥ ∆(n),

• Furthermore, it holds that k = n log ∆(n)+n
2∆(n) .

Remark 5.17. We assume that ∆(n), n
2∆(n) and log ∆(n) are integers. Otherwise, we would work

in terms of ⌊∆(n)⌋, ⌊n/2∆(n)⌋ and ⌊log ∆(n)⌋.

Proof of Lemma 5.16. Let k = n(log(∆(n))+1)
2∆(n) . Let k1 = log(∆(n)) + 1 and n1 = 2k1 = 2∆(n). Let

H ∈ F
n1×k1
2 be the generator matrix of the Hadamard code (with blocklength n1 and dimension

k1).
We show how to construct the required matrix G ∈ F

n×k
2 . Informally, G will be constructed

from n
2∆(n) copies of matrix H and they will be located along the diagonal of the matrix G.

1. Initialization G := 0n×k.

2. For row = 1 to n and for column = 1 to k

(a) Copy the matrix H to the submatrix of G with coordinates

[row, ...., row + n1 − 1] × [column, ..., column + k1 − 1]

(b) row := row + n1

(c) column := column + k1

We argue that for every i ∈ [k] there are at least ∆(n) disjoint pairs (i1, i2) ∈ [n] × [n] such
that Gi1 + Gi2 = ei. Let i ∈ [k]. Assume without loss of generality that i ∈ [k1].

4 It is sufficient
to show that there are n1/2 = ∆(n) disjoint pairs (i1, i2) ∈ [n1] × [n1] such that Gi1 + Gi2 = ei.
Recall that G|[n1]×[k1] = H ∈ F

n1×k1
2 is the generating matrix for the Hadamard code hence contains

n1/2 = ∆(n) disjoint pairs (i1, i2) ∈ [n1] × [n1] such that Hi1 + Hi2 = ei. This true for G[n1]×[k] as
well since G|[n1]×[k] is zero outside the submatrix [n1] × [k1].

We now show that it is crucial to take into account the fact that every matching, not just an
average on, is large. In particular, we show that if this fact is not taken into account then the lower
bound of Goldreich et al. [19] is tight.

Lemma 5.18 (Tightness of Lemma 3.14). Let ∆ : N → N be a function s.t. ∆(n) ≤ n/2. Then
there exists matrix G ∈ F

n×k
2 and for every i ∈ [k] there exists a set of disjoint pairs of indices

Mi ⊆
(

n
2

)

such that

• For every (i1, i2) ∈ Mi we have Gi1 + Gi2 = ei,

• ∑k
i=1 |Mi| = k · ∆(n), i.e., in the average |Mi| = ∆(n),

• Furthermore, it holds that k = n log n
2∆(n) .

Remark 5.19. Once again, we assume that ∆(n), n
2∆(n) and log ∆(n) are integers. Otherwise, we

would work in terms of ⌊∆(n)⌋, ⌊n/2∆(n)⌋ and ⌊log ∆(n)⌋.
4It can be assumed without loss of generality since the matrix G was constructed in a completely symmetric way.
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Proof of Lemma 5.18. Note that ∆(n) ≤ n/2 since a single matching can not be larger. Let
k = n log n

2∆(n) . Let k1 = log n and k2 = k−k1. Let H ∈ F
n×k1
2 be the Hadamard generator matrix. Let

L = 0n×k2 be a zero matrix. Let G = H ◦L (we took H and appended L). We argue that for every
i ∈ [k1] there are n/2 distinct pairs Gi1 , Gi2 ∈ G such that Gi1+Gi2 = ei. This is true since for every
i ∈ [k1] there are n/2 distinct pairs Hi1 , Hi2 ∈ H such that Hi1 + Hi2 = ei and L is a zero matrix
and hence does not affect this property when it is appended to H. Note also that

∑k
i=k1+1 |Mi| = 0

because of zero matrix L. Hence
∑k

i=1 |Mi| =
∑k1

i=1 |Mi| = (n/2) · k1 = n log(n)/2 = k · ∆(n).

6 Limiting the rate of weak 2-query LDCs — Proof of Theorem

3.17

In this section we prove Theorem 3.17. We first present Lemmas 6.1 and 6.2. The proof of Theorem
3.17 will follow by a combination of these lemmas.

Lemma 6.1 (Combinatorial Lemma for General Field). Let F be any field and let G ∈ F
n×k. For

every i ∈ [k] let Mi ⊆ [n]× [n] be a set of disjoint pairs of indices such that ei ∈ span{Gj1 , Gj2} for
every (j1, j2) ∈ Mi. Assume that for all i ∈ [k] we have |Mi| ≥ ∆, where ∆ ≥ 1. Then,

k ≤ 16n log ∆ + 16n

∆

The proof of Lemma 6.1 is postponed to Section 6.1. The following Lemma 6.2 is due to Obata
[31]. The main result of [31] (Lemma 6.2) provides a tight analysis of the number of matchings which
has a 2-query LDC. Although Obata [31] proved this result over the binary field but generalization
to arbitrary fields is straightforward. To make the paper self-contained we give a proof-sketch of
Lemma 6.2, stated for all fields, in Section 6.2.5

Lemma 6.2. Let C ⊆ F
n be a (2, ǫ, δ)-LDC and k = dim(C). Let G ∈ F

n×k be a generator matrix
for C. Then for every i ∈ [k] there exists Mi ⊆ [n] × [n] of disjoint pairs s.t. |Mi| ≥ 1

2 · δn

1− |F|
|F|−1

·ǫ
and ei ∈ span{Gj1 , Gj2} for every (j1, j2) ∈ Mi.

We are ready to prove Theorem 3.17.

Proof of Theorem 3.17. Let G ∈ F
n×k be a generator matrix for C. Let ∆ = 1

2 · δn
1−ǫ·|F|/(F−1) ≥ 1

2 · δn
1−ǫ .

Lemma 6.2 implies that for every i ∈ [k] there is a set Mi ⊆ [n] × [n] of disjoint pairs such that
|Mi| ≥ ∆ and for every (j1, j2) ∈ Mi we have ei ∈ span{Gj1 , Gj2}. Then Lemma 6.1 implies that

k ≤ 16n log ∆+16n
∆ .

We conclude that k ≤
16n log(1

2 · δn
1−ǫ) + 16n

(1
2 · δn

1−ǫ)
≤

32 log( δn
1−ǫ) + 32
δ

1−ǫ

. Hence δk
32(1−ǫ) − 1 ≤ log( δn

1−ǫ)

and n ≥ 2
δk

32(1−ǫ)
−1 · 1−ǫ

δ .

5It might be the case that this lemma was already stated for all fields as we wrote. We did not verify it.
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6.1 Proof of Lemma 6.1 – General field F

In this section we prove Lemma 6.1. We need the following Lemma 6.3 due to Dvir and Shpilka
[16, Lemma 2.5].

Lemma 6.3 ([16]). Let F be any field and let G ∈ F
n×k. For every i ∈ [k] let Mi ⊆ [n] × [n] be a

set of disjoint pairs of indices, such that ei ∈ span{Gj1 , Gj2} for every (j1, j2) ∈ Mi. Then, there
exist G′′ ∈ F

n×k
2 and k sets M ′′

1 , ..., M ′′
k ⊆

(

n
2

)

of disjoint pairs, such that:

• For every (j1, j2) ∈ M ′′
i it holds that G′′

j1
⊕ G′′

j2
= ei,

• ∑k
i=1 |Mi| ≤ 2

∑k
i=1 |M ′′

i | + n,

• For every i ∈ [k] it holds that M ′′
i ⊆ Mi

Remark 6.4. The only difference between [16, Lemma 2.5] and Lemma 6.3 is that the third bullet
was not explicitly stated in [16, Lemma 2.5]. However, it can be readily verified that for all i ∈ [k]
it holds that M ′′

i ⊆ Mi. We briefly explain this and refer a reader to [16, Lemma 2.5] for notation
and definitions.

This is true since Dvir and Shpilka [16, Lemma 2.5] showed the reduction from a general field
F to binary field in two steps. In the first step some pairs were removed from the matchings
M1, ..., Mk resulting in the matchings M ′

1, ..., M
′
k s.t. M ′

i ⊆ Mi. In the second step they suggested
a transformation from F to F2 s.t. for all i ∈ [k] some pairs from M ′

i were removed resulting in
M ′′

i . So, they obtained matchings M ′′
1 , ..., M ′′

k s.t. M ′′
i ⊆ M ′

i .

Proof of Lemma 6.1. Let M1, ..., Mk ⊆ [n]×[n] be matchings s.t. for every i ∈ [k] we have |Mi| ≥ ∆.
We can assume w.l.o.g. that for every i ∈ [k] we have |Mi| = ∆ (otherwise remove some pairs from
Mi).

Lemma 6.3 implies the existence of G′′ ∈ F
n×k
2 and matchings M ′′

i s.t. ∆ · k =
∑k

i=1 |Mi| ≤
2

∑k
i=1 |M ′′

i | + n and for every i ∈ [k] it holds that M ′′
i ⊆ Mi, which means |M ′′

i | ≤ |Mi| ≤ ∆.
Moreover, for every (j1, j2) ∈ M ′′

i it holds that G′′
j1
⊕G′′

j2
= ei. We say that the matching M ′′

i is bad

if |M ′′
i | < ∆/4. If the number of bad matchings is more than 3k/4 then fk ≤ 2

∑k
i=1 |M ′′

i | + n ≤
2((3k/4)(∆/4) + (k/4)∆) + n ≤ (14/16)k∆ + n = (7/8)k∆ + n. In this case we get k ≤ 8n/∆ and
we are done since 8n/∆ ≤ 16n log ∆+16n

∆ . Otherwise, the number of bad matchings is less than 3k/4,
hence there are at least k/4 good matchings (those with |M ′′

i | ≥ ∆/4).
Assume w.l.o.g. that for all i ∈ [k/4] the matching M ′′

i is good, i.e., |M ′′
i | ≥ ∆/4. Consider A′′ =

G′′|n×(k/4) ∈ F
n×(k/4)
2 and note that for every i ∈ [k/4] and (j1, j2) ∈ M ′′

i we have A′′
j1
⊕ A′′

j2
= ei.

Lemma 3.15 implies that k/4 ≤ n log(∆/4)+n
∆/4 ≤ 4n log ∆+4n

∆ . We conclude that k ≤ 16n log ∆+16n
∆ .

6.2 Proof of Lemma 6.2

In this section we give a sketch of the proof of Lemma 6.2. We start from the (non-standard)
definition of non-redundant matchings.

Definition 6.5 (Non-redundant Edges and Matching). Let G ∈ F
n×k and let i ∈ [k]. We say

that (j1, j2) ∈ [n] × [n] is a non-redundant i-edge if we have ei ∈ span{Gj1 , Gj2}, and moreover,
if ei ∈ span{Gj1} or ei ∈ span{Gj2} then j1 = j2. We say that Ei ⊆ [n] × [n] is an i-set of non-
redundant edges if for every (j1, j2) ∈ Ei we have that (j1, j2) is a non-redundant i-edge. We say
that Mi ⊆ Ei is a non-redundant i-matching if every i ∈ [n] appears in at most one edge of Mi.
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Note that Definition 6.5 allows self-loops in the non-redundant matchings, and we demonstrate
this in the next example.

Example 6.6. Let G ∈ F
3×3
2 such that G =





1 0 0
1 1 1
0 1 1



, i.e., G1 = (100) is a first row, G2 =

(111) is a second row and G3 = (011) is a third row. Then, E1 = {(1, 1), (2, 3)} is a 1-set of
(non-redundant) edges and a non-redundant 1-matching M1 = E1. Note that M1 is a (legal) non-
redundant 1-matching, e.g., 1 appears only in the single edge (1, 1) of M1. Moreover, a 2-set and
a 3-set of non-redundant edges are empty, i.e., E2 = E3 = ∅.

The intuition behind the definition of “non-redundant” edges (Definition 6.5) is as follows. Let
C be a 2-query linear LDC and G be its generator matrix. Without loss of generality [19], a 2-
query decoder for C recovers the message bit i by querying (at most) two bits indexed by j1,j2 s.t.
ei ∈ span{Gj1 , Gj2}. However, if it holds that ei ∈ span(Gj1) or ei ∈ span(Gj2) we can assume
w.l.o.g. [19] that the decoder queries (at the same invocation) at most one from j1,j2. So, if
ei ∈ span{Gj1 , Gj2} but ei /∈ span{Gj1} and ei /∈ span{Gj2} then (j1, j2) is a non-redundant i-edge;
and if ei ∈ span{Gj1} (or ei ∈ span{Gj2}) then (j1, j1) (or (j2, j2)) is a non-redundant i-edge.

We continue by recalling an implicit argument from [19] (see also [16]).

Claim 6.7 (Implicit in [19]). Let C ⊆ F
n be a (2, ǫ, δ)-LDC and k = dim(C). Let G ∈ F

n×k be
a generator matrix for C. The decoder D for C is associated with a list of distributions {Di}i∈[k],
where Di is a distribution over the i-set of non-redundant edges Ei. On a word w and input i ∈ [k]
the decoder D picks a pair (j1, j2) ∈ Ei according to the distribution Di and recovers the ith message
entry in the following way. If j1 6= j2 then c′ · Gj1 + c′′ · Gj2 = ei for some c′, c′′ ∈ F \ {0}, and the
message bit is recovered by c′ · wj1 + c′′ · wj2. Otherwise, j1 = j2 and then c′ · Gj1 = ei for some
c′ ∈ F \ {0}, and the message bit is recovered by c′ · wj1.

We are ready to prove Lemma 6.2.

Proof of Lemma 6.2. Let i ∈ [k]. Let Ei be an i-set of non-redundant edges as in Claim 6.7. Let
Ti = ([n], Ei) be an undirected graph, where [n] is a set of nodes and Ei is a set of edges. Let Di

be a distribution over Ei as in Claim 6.7, i.e., the probability that the edge (j1, j2) is chosen is
Di(j1, j2).

Let L ⊆ [n] be a maximal independent set in the graph Ti and let αi > 0 be s.t. |L| = αin. Let
R = [n] \L and note that |R| = (1−αi)n. Notice that (L, R) is a partition of [n] and by definition
there are no edges going from L to L. 6

We argue that 1−αi ≥ δ

1− |F|
|F|−1

·ǫ
. We consider the following sampling. A set R0 ⊆ R is selected

uniformly (independently) at random s.t. |R0| ≤ δn, and independently, the edge (j1, j2) ∈ Ti is
sampled according to Di. Let Ind be an indicator variable for the event R0 ∩ (j1, j2) 6= ∅. Then,

E[Ind] = Pr[Ind = 1] =
∑

(j1,j2)∈Ei

Di(j1, j2)·Pr[j1 ∈ R0 ∨ j2 ∈ R0] =
∑

(j1,j2)∈Ei

Di(j1, j2)·
δn

(1 − αi)n
=

δ

1 − αi
·

∑

(j1,j2)∈Ei

D(j1, j2) =
δ

1 − αi
.

6Note that the graph might be not bipartite.
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Let R0 s.t. |R0| ≤ δn be a subset which achieves (at least) this expectation, i.e.,

∑

(j1,j2)∈Ti

Di(j1, j2) · Pr[j1 ∈ R0 ∨ j2 ∈ R0] ≥
δ

1 − αi
.

Change every symbol in R0 independently to uniformly chosen random element of F, i.e., every
symbol from R0 is independently and uniformly distributed in F. Then, the probability that the
decoder will not recover correctly the ith message symbol is at least |F|−1

|F| · δ
1−αi

.7 But the mistake

of the decoder must be at most 1 − ( 1
|F| + ǫ) = |F|−1

|F| − ǫ. Hence |F|−1
|F| · δ

1−αi
≤ |F|−1

|F| − ǫ and

δ
1−αi

≤ 1 − |F|
|F|−1 · ǫ. We conclude that 1 − αi ≥ δ

1− |F|
|F|−1

·ǫ
.

Let Mi ⊆ Ei be a maximal matching (self loops are allowed). We argue that |Mi| ≥ (1−αi)n/2.
The vertices left uncovered by Mi must be an independent set, since for an edge between any of
these vertices would allow us to increase the size of the matching at least by one. Since the size of
the maximal independent set is αin it follows that the number of vertices covered by Mi is at least
(1− αi)n. Since every edge of Mi covers at most two vertices (self-loop covers only one vertex) we
have |Mi| ≥ (1 − αi)n/2.

Thus |Mi| ≥ (1−αi)n
2 ≥ 1

2 · δn

1− |F|
|F|−1

·ǫ
and recall that for every (j1, j2) ∈ Mi we have ei ∈

span{Gj1 , Gj2}.
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A Proofs of folklore statements

This section contains two statements used earlier in the paper, the proofs of which we view as
folklore. We present these results and their proofs for the sake of completeness.

A.1 Query reduction

The following theorem (its proof is folklore) stresses the importance of obtaining lower bounds on
3-query LTCs.

Theorem A.1 (Folklore). If there exists an asymptotically good family of LTCs then there exists
an asymptotically good family of binary 3-query LTCs. Equivalently, if there is no asymptotically
good family of 3-query LTCs then there is no asymptotically good family of LTCs.

The proof of Theorem A.1 follows from the following folklore proposition, which appeared e.g.
in [30, Theorem 6.11].

Proposition A.2 (Query Reduction). If C ⊆ F
n is a (q, ǫ, δ)-LTC and k = dim(C) then there

exist constants α, m > 0 (which depend only on q) and C ′ ⊆ F
nm s.t. C ′ is a (3, αǫ, δ)-LTC,

rate(C ′) = α · rate(C) and δ(C ′) ≥ 0.99 · δ(C). Moreover, the code C ′ is obtained from C by
appending additional symbols.

Proposition A.2 implies that every LTC over the field of constant size can be converted to 3-
query LTC over the same field (with only a constant factor loss in parameters). Hence we conclude
Theorem A.1.

A.2 Transitive codes are regular

Claim A.3. Let C ⊆ F
n
2 be a code. If C is 1-transitive then C is q-regular for every q > 0.

Proof. For l ∈ [n] and q > 0 let T q
l =

{

u ∈ C⊥
q | l ∈ supp(u)

}

. It is sufficient to argue that for
every i, j ∈ [n] and q > 0 we have |T q

i | = |T q
j |.

Assume the contrary, i.e., there exist i, j ∈ [n] and q > 0 s.t. |T q
i | > |T q

j |. Let G be a 1-transitive
group s.t. C is invariant under G. For π ∈ G let π(T q

i ) = {π(u) | u ∈ T q
i }. Note that for all π ∈ G

we have |T q
i | = |π(T q

i )|. Let π ∈ G be s.t. π(i) = j (such π exists since G is 1-transitive). It holds
that π(T q

i ) ⊆ T q
j since for all u ∈ π(T q

i ) we know that j ∈ supp(u) and u ∈ C⊥
q . This implies that

|T q
i | = |π(T q

i )| ≤ |T q
j |. Contradiction.
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