
Perfect Matching in Bipartite Planar Graphs is in UL

Samir Datta ∗ Raghav Kulkarni † Raghunath Tewari‡

January 4, 2011

Abstract

We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon
the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space
complexity bounds for some related problems. Summarizing, we show that, constructing:

1. a Perfect Matching in bipartite planar graphs is in UL

2. a Hall Obstacle in bipartite planar graphs is in NL;

3. an Even Perfect Matching in bipartite planar graphs is in NL; and

4. an Even Path in planar DAGs is in UL.

For the proof of 2 and 3, we revisit the flow technique of Miller and Naor [MN89]
which was used to provide an NC algorithm for bipartite planar matching construction.
To obtain the main result (item 1 above), we combine it in a simple but subtle way with
the double counting technique of Reinhardt and Allender [RA00] to yield the UL bound.

To prove the UL bound in 4 above, we combine two existing isolation techniques (viz.
[BTV09] and [FKS84, Hoa10]) in a non-obvious way.

1 Introduction

1.1 Matching Problems in Graphs

A matching M in a graph G is a set of vertex disjoint edges. The end-points of the edges in
M are said to be matched. A perfect matching in a graph G is a matching M such that every
vertex of G is matched. See [LP86] for an excellent introduction to matching and related
problems. We consider the following computational problems related to matching:

• Perfect-Matching (Decision) : decide if G contains a perfect matching.

• Perfect-Matching (Construction) : construct a perfect matching in G (if exists).

• Min-Wt-PM (Decision) : given G together with edge-weights w : E(G) → Z such
that |w(e)| ≤ nO(1), and an integer k - decide if G contains a perfect matching of weight
at most k.

∗Chennai Mathematical Institute, India: email:sdatta@cmi.ac.in
†University of Chicago. Part of the work was done while visiting Chennai Mathematical Institute and

University of Nebraska-Lincoln: email:raghav@cs.uchicago.edu
‡University of Nebraska-Lincoln: email:rtewari@cse.unl.edu. Research supported in part by NSF grants

CCF-0830730 and CCF-0916525.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 201 (2010)

• Max-Matching (Decision) : given G and an integer k, decide whether or not G has
a matching of cardinality at least k.

• UPM (Decision) : decide whether or not G has a unique perfect matching

The Hall’s Theorem (see for instance [LP86]) asserts that a bipartite graph G = (A∪B,E)
has a perfect matching iff |A| = |B| and for every S ⊆ A : |N(S)| ≥ |S|, where N(S) := {v ∈
B | ∃u ∈ A : (u, v) ∈ E}. A Hall-obstacle in a bipartite graph G = (A ∪ B,E) is a set
S ⊆ A such that |N(S)| < |S|. We consider the following computational problems related to
Hall-obstacle:

• Hall-Obs (Decision) : decide if a bipartite G contains a Hall-obstacle.

• Hall-Obs (Construction) : construct a Hall-obstacle in a bipartite G (if exists).

Historically, matching problems have been occurring as central problems in Algorithms
and Complexity Theory. Edmond’s blossom algorithm [Edm65] for Max-Matching was one
of the first examples of a non-trivial polynomial time algorithm. It had a considerable share in
initiating the study of efficient computation, including the class P itself; Valiant’s #P-hardness
[Val79] for counting perfect matchings in bipartite graphs provided surprising insights into
the counting complexity classes. The study of whether or not Perfect-Matching is well
parallelizable has yielded powerful tools such as isolating lemma [MVV87] that have found
numerous applications elsewhere.

The rich combinatorial structure of matching problems combined with their potential
to serve as central problems in the field invites their study from several perspectives. The
focus of this paper is on the space complexity of the matching problems. The best known
upper bound for Perfect-Matching (and other matching problems mentioned above) is
non-uniform SPL [ARZ99] whereas the best hardness known is NL-hardness [CSV84].

1.2 Matching Problems in Planar Graphs

A well known example where planarity is a boon is that of counting perfect matchings. The
problem in planar graphs is in P [Kas67] as opposed to being #P-hard in general graphs
[Val79]. Counting perfect matchings in planar graphs can in fact be done in NC [Vaz88];
thus Perfect-Matching (Decision) in planar graphs is in NC. “Is Perfect-Matching
(Construction) in planar graphs in NC?” remains an outstanding open question, whereas
the bipartite planar case is known to be in NC [MN89], [MV00], [KMV08], [DKR10].

The space complexity of matching problems in planar graphs was first studied by Datta,
Kulkarni, and Roy [DKR10] where it was shown that Min-Wt-PM in bipartite planar
graphs is in SPL. This result was recently generalized to bounded genus bipartite graphs
by Datta, Kulkarni, Tewari, and Vinodchandran [DKTV10]. Kulkarni [Kul09] shows that
Min-Wt-PM in planar graphs (not necessarily bipartite) is NL-hard. The only known hard-
ness for Perfect-Matching in planar graphs is L-hardness (see for instance [DKLM10]). For
bipartite planar graphs, nothing better than L-hardness is known for any matching problem.

Given a directed graph G and two vertices s and t in G, let Dir-Reach denote the problem
of deciding if there exists a path from s to t in G. Dir-Reach is NL-complete. It turns out
that Dir-Reach in planar graphs reduces (in log-space) to Perfect-Matching in bipartite
planar graphs [DKLM10]; the former was proved to be in UL ∩ coUL by Bourke, Tewari, and
Vinodchandran [BTV09]. In this paper we show that the later is in UL, leaving the coUL

2

Table 1: Space Complexity of Matching Problems in Planar Graphs

Problem in Planar Graphs Upper Bound Hardness

Perfect-Matching (Construction) PSPACE 1 L

Max-Matching (Decision) PSPACE L

Min-Wt-PM (Decision) LC=L [Kas67] NL [Kul09]

Perfect-Matching (Decision) LC=L [Kas67] L

bipartite Max-Matching LC=L [Hoa10] L

bipartite Min-Wt-PM SPL [DKR10] L

bipartite Hall-Obs (Construction) NL (new) L

bipartite Hall-Obs (Decision) coUL (new) L

bipartite Perfect-Matching UL (new) L

bipartite UPM UL (new) L [DKLM10]

bound as an intriguing open question. Table 1.2 records the current knowledge (including the
results in this paper) about the space complexity of matching problems in planar graphs.

1.3 Our Results

Theorem 1.1. In bipartite planar graphs:
(a) Perfect-Matching (Decision + Construction) is in UL;
(b) Hall-Obs (Decision) is in coUL;
(c) Hall-Obs (Construction) is in NL.

We build on two key algorithms: (1) Miller and Naor’s algorithm [MN89] for perfect
matching in bipartite planar graphs; (2) Rienhardt and Allender’s [RA00] UL algorithm for
shortest path in min-unique graphs: graphs with polynomially bounded edge-weights and
having at most one minimum weight path between any pair of vertices. Miller and Naor reduce
the Perfect-Matching (Decision) in planar graphs to the following problem in directed
planar graphs: Neg-Cycle (Decision) problem - given a directed graph with polynomially
bounded edge-weights, decide whether or not the graph contains a negative weight cycle.
We observe that this reduction works in log-space and Neg-Cycle problem is in NL. This
yields the NL bound for perfect matching in bipartite planar graphs. For the proof of the
UL bound in part (a), we first provide a technical extension of (2) when the graph contains
negative weight edges but no negative weight cycles. A simple but subtle combination of
(1) and (2) then yields the desired result. For part (b) and part (c), we argue that via a
simple adaptation of Miller and Naor’s algorithm, the Neg-Cycle directly corresponds to
a Hall-obstacle. To the best of our knowledge this is the first time a bound on the space
complexity (and the parallel complexity) of constructing Hall-obstacle in bipartite planar
graphs is being noted. As opposed to [KMV08] and [DKR10], our space bounded algorithms
do not require determinant computation as a subroutine, instead we make use of a variant of
planar reachability. However, for the weighted case we do not know how to improve upon the
SPL bound in [DKR10]. We also do not know how to improve on LC=L bound for maximum
matching due to [Hoa10].

3

Let Exact-PM (Decision) denote the problem of deciding, given an integer k, whether or
not a graph G with edges colored Red or Blue contains a perfect matching with exactly k Red
edges. This problem was first posed by Papadimitriou and Yannakakis [PY82]. It is known
to be in RNC [MVV87] but not known to be in P. We consider the following relaxation of the
Exact-PM problem: Let Even-PM (Decision) denote the problem of deciding whether or
not a graph G with edges colored Red or Blue contains a perfect matching with even number
of Red edges. In this paper, we observe the following:

Theorem 1.2. (a) Even-PM in bipartite graphs is in P;
(b) Even-PM in bipartite planar graphs is in NL.

We also consider Even-Path problem: deciding whether or not there is a directed path of
even length between two specified vertices. Even-Path is NP-complete [LP83] but restricted
to planar graphs it is in P [Ned99]. In DAG, the problem is NL-complete. Even-Path
problem in planar DAG can be viewed as a relaxation of the following problem, which is
NL-complete in planar DAG [Kul09]: Red-Blue-Path problem - given a directed graph
with edges colored Red or Blue, decide whether or not there is a (simple) path between two
specified vertices such that any two consecutive edges in the path are of two different colors.

Theorem 1.3. Even-Path in planar DAG is in UL.

A motivation to study whether Even-Path in planar DAG is in UL is the hope to develop
new techniques to prove Red-Blue-Path in planar DAG is in UL, and thus NL = UL. Indeed,
our proof of the UL bound for Even-Path in planar DAG combines two different isolation
techniques ([BTV09], [Hoa10]) in a non-obvious way. In the process, we also give a simple
log-space procedure to obtain generalized BTV weights (see Weighting Scheme A in Section
5.2) in planar graphs without going through any piecewise linear embedding of the graph.
Our procedure is inspired by the subroutine of computing pseudo-flow in Miller and Naor’s
algorithm and it might be of independent interest.

2 Preliminaries

2.1 Space Complexity Classes

Definition 1 (Complexity Classes). - The class L consists of the decision problems that
can be solved using a deterministic log-space Turing machine.

- The class NL consists of the decision problems that can be solved using a non-deterministic
log-space Turing machine.

- The class UL consists of the decision problems that are solvable by an NL machine with
at most one accepting path.

- The class #L consists of functions of the form #accM (x) : Σ∗ → N (counting the
number of accepting computations of an NL machine M on input x).

- The class GapL consists of functions that are the difference of two #L functions.

- The class SPL consists of those decision problems A ⊆ Σ∗ for which the characteristic
vector χA ∈ GapL, where χA ∈ {0, 1}Σ

∗
indicates membership in A.

4

- The class ⊕L consists of the decision problems A ⊆ Σ∗ defined as follows:

⊕L = {A | ∃f ∈ GapL such that: x ∈ A ⇐⇒ f(x) ≡ 1 (mod 2).}

See for instance [Vol99] for definitions of standard complexity classes. It is known that
UL ⊆ NL ⊆ NC ⊆ P and UL ⊆ SPL. It is also known that SPL ⊆ ⊕L ⊆ NC. As of now, NL
and SPL as well as NL and ⊕L are incomparable.

2.2 Flow Terminology

Here we rephrase the terminology used in [MN89].
An undirected edge is a two element unordered set {u, v} such that u, v ∈ V. An undirected

graph G = (V,E) consists of a set V of vertices and a set E of undirected edges. An arc is

an ordered tuple (u, v) ∈ V × V . A directed graph
−→
G = (V,

−→
E) consists of a set V of vertices

and a set
−→
E ⊆ V × V of arcs. Given an undirected graph G = (U, V), its directed version is

a directed graph
←→
G = (V,

←→
E) where

←→
E := {(u, v) | {u, v} ∈ E}.

A capacity-demand graph is a triple (G, c, d) where G = (V,E); every arc (u, v) ∈
←→
E is

assigned a real value c(u, v) called the capacity of the arc and every vertex v ∈ V is assigned
a real value d(v) called the demand at the vertex.

A pseudo-flow in a capacity-demand graph (G, c, d) is a function f :
←→
E → R such that:

(i) for every arc (u, v) ∈
←→
E , we have:

(skew-symmetry) f(u, v) = −f(v, u),

and
(ii) for every vertex v ∈ V, we have:

(demands met)
∑

w∈V :(v,w)∈
←→
E

f(v, w) = d(v).

A flow in a capacity-demand graph (G, c, d) is a function f :
←→
E → R such that:

(a) f is a pseudo-flow in (G, c, d);

(b) for every (u, v) ∈
←→
E , we have:

(capacity constraints satisfied) f(u, v) ≤ c(u, v).

A zero-demand graph (G, c) is a capacity-demand graph in which the demand at every
vertex is zero.

2.3 Main Lemmas from Miller and Naor [MN89]

Definition 2 (Directed Dual). Let G be a planar graph. Fix an embedding of G in the plane.
Let G∗ denote the dual of G with respect to the fixed embedding. The directed dual of G is the

directed version of G∗ denoted by
←−→
(G∗). The arcs of

←→
G and that of

←−→
(G∗) are in one to one

correspondence.

Proposition 2.1 (folklore, see for instance [MN89]). Let (G, c) be a zero-demand graph. Let

f be a flow in (G, c). If C∗ = (e∗1, . . . , e
∗
k) is a directed cycle in

←−→
(G∗), then∑

e : e∗∈C∗
f(e) = 0.

5

Lemma 2.2 (Miller, Naor [MN89]). If (G, c) be a zero-demand graph then: there exists a

flow in (G, c) ⇐⇒
←−→
(G∗) has no negative weight cycle with respect to weights c.

3 The NL Bounds

3.1 Decision Version

In this section, we describe the Miller and Naor’s algorithm (Algorithm (I) in [MN89], Al-
gorithm 2 below) for solving the decision version of the Perfect-Matching problem in
bipartite planar graphs. We refer the reader to [MN89] for the proof of correctness of the
algorithm. Our main observation is that the algorithm can be implemented in NL.

Constructing a pseudo-flow

Algorithm 1 gives a Log-space procedure to construct a pseudo-flow in a zero-demand graph.
Miller and Naor (Algorithm (I) in [MN89]) use this as a subroutine to reduce Perfect-Matching
(Decision) to Neg-Cycle (Decision) We observe that Neg-Cycle (Decision+ Construction)
is in NL. This immediately yields an NL algorithm for Perfect-Matching (Decision).

Input : A capacity-demand graph (G, c, d)
Promise:

∑
v d(v) = 0

Output : A pseudo-flow in (G, c, d)

1 Compute a spanning tree T in G;

2 For any arc (u, v) /∈
←→
T , set f ′(u, v) = 0;

3 For an arc (u, v) ∈
←→
T , removing the edge {u, v} separates the tree T into two

subtrees. Let Tu denote the subtree containing u and Tv denote the subtree

containing v. For any (u, v) ∈
←→
T , set f ′(u, v) =

∑
w∈Tu

d(w);

Algorithm 1: MN-Pseudo-Flow [MN89]

Observation 3.1. Constructing a pseudo-flow is in Log-space.

Input : A bipartite planar graph G = (A ∪B,E)
Output : Yes if G has a perfect matching; No otherwise

1 Construct a capacity-demand graph (G, c, d) as follows: for each vertex v ∈ A, set
d(v) = 1 and for each vertex v ∈ B, set d(v) = −1. For u ∈ A, v ∈ B, set c(u, v) = 1
and c(v, u) = 0;

2 Construct a pseudo-flow f ′ in (G, c, d);
3 Construct a zero-demand graph (G, c− f ′);
4 Output Yes if

←−→
(G∗) has no negative weight cycle with respect to weights (c− f ′);

Output No otherwise;

Algorithm 2: MN-Decision [MN89]

6

Observation 3.2. Given a directed graph
−→
G with polynomially bounded weights on its arcs,

the problem of deciding whether or not the graph contains a negative weight cycle is in NL.

Corollary 3.3. (of Observation 3.1 and Observation 3.2) Algorithm 2 shows that:
Perfect-Matching (Decision) in bipartite planar graphs is in NL.

3.2 Constructing a Hall-obstacle

In this section, we note the correspondence between the Hall-obstacles in a bipartite planar
graph and the negative weight cycles in a related planar graph with suitable weights. Let
G = (A∪B,E) be a bipartite planar graph. Let (G, c, d) be a capacity-demand graph defined
as follows: for each vertex v ∈ A, set d(v) = 1 and for each vertex v ∈ B, set d(v) = −1. For
u ∈ A, v ∈ B, set c(u, v) = 1 and c(v, u) = 0. Let f ′ be a pseudo-flow in (G, c, d). Let C∗ be a

negative weight cycle in
←−→
(G∗) with respect to weights c−f ′. Let (V1 = A1∪B1, V2 = A2∪B2)

be the directed cut in
←→
G corresponding to C∗, where V1 corresponds to the set of faces of←−→

(G∗) that are in the interior of C∗ or equivalently the vertices on
←→
G that are on one side of

the cut corresponding to C∗. Since f ′ is skew-symmetric, f ′(C∗) decomposes into the sum of

f ′s of the faces (in
←−→
(G∗)) that are in the interior of C∗. Thus we have:

f ′(C∗) = |A1| − |B1|. (1)

Lemma 3.4. If (a, b) ∈ (V1, V2) such that a ∈ A1, b ∈ B2 and c(a, b) = 1 then, moving b from
B2 to B1 does not increase the weight of the cut (and the corresponding cycle in the dual)
with respect to the weights c− f ′.

Proof: From Eqn. 1, f ′ decreases by 1 by such a move; c decreases at least by 1. �

Corollary 3.5.
←−→
(G∗) has a negative weight cycle with respect to weights c − f ′ iff (a) there

exists one with respect to weights −f ′, i.e., the total weight contribution from c is zero, and
hence iff (b) it has a negative weight cycle with respect to weights c · n4 − f ′.

Theorem 3.6. (Theorem 1.1 (c)) Hall-Obs (Construction) in a bipartite planar graphs
is in NL.

Proof: Constructing a negative weight cycle with respect to the weights c · n4 − f ′ is in
NL. The set A1 forms a Hall-obstacle since N(A1) ⊆ B1 and |A1| > |B1| (see Eqn. 1). �

3.3 Constructing a Perfect Matching

In this section, we describe the Miller and Naor’s algorithm (Algorithm 3) for constructing a
perfect matching in bipartite planar graphs.

Observation 3.7. Given a directed graph with polynomially bounded weights w such that
there are no negative weight cycles, computing the shortest distance distw(u, v) between any
two vertices with respect to weights w is in NL.

Corollary 3.8. (of Observation 3.7) Algorithm 3 shows that Perfect-Matching (Decision+
Construction) in bipartite planar graphs is in NL.

7

Input : A planar bipartite graph G = (A ∪B,E)

Promise:
←−→
(G∗) has no negative weight cycle with respect to w = c− f ′

Output : A Perfect Matching in G

1 Fix a vertex s∗ ∈
←−→
(G∗);

2 Set f ′′(u∗, v∗) := distw(s∗, v∗)− distw(s∗, u∗);
3 Set f = f ′′ + f ′;
4 For u ∈ A, v ∈ B output “u is matched to v” iff f(u, v) = 1;

Algorithm 3: MN-Construction [MN89]

4 The UL Bounds

Suppose we have a directed graph G with polynomially bounded weights on its edges. The
weights could be positive or negative. Let s be a fixed vertex in G. Let d(u, v) denote the
length of the minimum length path from u to v.

Vk := {v | d(s, v) ≤ k}.

Let distwk (u, v) denote the weight of the minimum weight walk (with respect to weights w) of
length at most k from u to v. Note that distwk (u, v) could be negative.

Σw
k :=

∑
v∈Vk

distwk (s, v).

First we describe subroutines adapted from [RA00] that eventually compute distwk (s, v)
and Vk in UL. Next we combine these subroutines with Miller and Naor’s algorithm via
Weighting Sceheme A in Section 5.2 to obtain the UL bound for perfect matching in bipartite
planar graphs. Algorithm 4 and 5 can be combined in a straightforward way (see Appendix 6)
to obtain an extention of [RA00] when the graph contains negative weight edges but no
negative weight cycle. We call this extension as Extended-RA Algorithm. The following
lemmas are the consequence of Extended-RA Algorithm and min-uniqueness achieved via
generalized BTV weights (Weighting Scheme A in Section 5.2).

Lemma 4.1. Given a directed planar graph with polynomially bounded weights w on its arcs
such that there are no negative weight cycles, the shortest distance distw(u, v) between any
pair of vertices with respect to weights w can be computed in UL.

Proof: If there are no negative weight cycles then every minimum weight walk between
any pair of vertices is a path and distwn (u, v) = distw∞ = distw(u, v). In the absence of negative
weight cycles, the generalized BTV weights (Section 5.2) guarantee min-uniqueness and hence
the Algorithm 4 computes distwn (u, v) in UL. �

Lemma 4.2. Given a directed planar graph with polynomially bounded weights w on its arcs,
deciding whether or not the graph contains a negative weight cycle is in coUL.

Proof: Let N denote the sum of the absolute values of the weights on the arcs. If there
were no negative weight cycle then distwt (u, v) remains unchanged for t ≥ n; otherwise for
t > Nn the distwt (u, v) would decrease for some (u, v). �

8

Input : (G, s), (k, |Vk|,Σw
k), and v

Output : distwk (s, v) (<∞ if v ∈ Vk; ∞ otherwise)

1 Initialize c← 0; s← 0; distwk (s, v)←∞ ;
2 foreach x ∈ V do
3 Guess a walk of length at most k from s to x;
4 if Guess fails then
5 Halt and reject
6 else
7 Let p be the weight of the walk;
8 Set c = c+ 1; s = s+ p;

9 end
10 if x = v then Set distwk (s, v)← p

11 end
12 if c = |Vk| and s = Σw

k then
13 Output distwk (s, v);
14 else
15 Halt and Reject;
16 end

Algorithm 4: Constructing Vk from (k, |Vk|,Σw
k) (adapted from [RA00])

Input : (G, s) and (k, |Vk−1|,Σw
k−1)

Output : (|Vk|,Σw
k)

1 Initialize c← |Vk−1|; s← Σw
k−1 ;

2 foreach v ∈ V do
3 if v ∈ V \ Vk−1 then
4 Set distwk (s, v)← minx:(x,v)∈E(G)[distwk−1(s, x) + w(x, v)];

5 end
6 if distwk (s, v) <∞ then
7 Set c← c+ 1 and s← s+ distwk (s, v);
8 end
9 if there exist x1 and x2 such that

distwk−1(s, x1) + w(x1, v) = distwk−1(s, x2) + w(x2, v) then
10 Halt and reject (saying that graph is not min-unique);
11 end

12 end
13 Set |Vk| ← c and Σw

k ← s;
14 Output (|Vk|,Σw

k);

Algorithm 5: Computing (|Vk|,Σw
k) from (|Vk−1|,Σw

k−1) (adapted from [RA00])

9

Input : A directed graph G on n vertices; edge-weights w : E(G)→ Z such that
|w(e)| ≤ nO(1); s, v ∈ V (G); and an integer t

Output : distwt (s, v)

1 Initialize V0 ← {s} and Σw
0 ← 0;

2 for k = 1 to t do
3 Compute (|Vk|,Σw

k) from (|Vk−1|,Σw
k−1);

4 end
5 Compute distwt (s, v) from (|Vt|,Σw

t) and output;

Algorithm 6: Extended-RA Algorithm (adapted from [RA00])

Input : A bipartite planar graph G
Output : A perfect matching in G if one exists; else reject

1 Construct a capacity-demand graph (G, c, d) as follows: for each vertex v ∈ A, set
d(v) = 1 and for each vertex v ∈ B, set d(v) = −1. For u ∈ A, v ∈ B, set c(u, v) = 1
and c(v, u) = 0;

2 Run Algorithm 1 to construct a pseudo-flow f ′ in (G, c, d);
3 Construct a zero-demand graph (G, c− f ′);
4 Run Extended-RA Algorithm on

←−→
(G∗) with weights w = n4(c− f ′) + btv to

compute the shortest distances distwn (u, v) in
←−→
(G∗), where btv denotes generalized

BTV weights (Weighting Scheme A in Section 5.2);

5 Compute distc−f
′

n (u, v) in
←−→
(G∗) from the above by ignoring the lower order weights

from btv;
6 Run Algorithm 3 to compute f ;
7 If f is a flow then for u ∈ A and v ∈ B, output “u is matched to v”
⇐⇒ f(u, v) = 1;

8 otherwise reject and output “No perfect matching”;

Algorithm 7: UL algorithm for Perfect-Matching in bipartite planar graphs

10

Theorem 4.3. (Theorem 1.1 (a)) Perfect-Matching(Decision + Construction) in
bipartite planar graphs is in UL.

Proof: The correctness of the above algorithm follows from [MN89]. To see the UL bound,
note that the Extended-RA algorithm computes distwn correctly along a unique path assuming
min-uniqueness of the weights. If there are no negative weight cycles then the generalized
BTV weights (Section 5.2) guarantee min-uniqueness.

Thus: if there are no negative weight cycles in
←−→
(G∗) then we get a valid flow and thus a

valid perfect matching along a unique accepting path; otherwise we get f that is not a valid
flow and we reject. �

Corollary 4.4. (Theorem 1.1 (b)) Hall-Obs (Decision) in bipartite planar graphs is in
coUL.

Corollary 4.5. UPM in bipartite planar graphs is in UL.

Corollary 4.6. Single-source, single-sink maximum flow problem in planar networks with
polynomially bounded capacities is in LUL.

Proof: As observed in [MN89], all the subroutines of the above UL algorithm work for any
capacity-demand graph such that the sum of the demands is zero. If one knows the value α of
the maximum flow then one can construct such a capacity-demand graph by setting demands
of all vertices other than s and t to be zero and demand of s to α and demand of t to −α.
Now, one could search through all possible values of α. �

5 Applications to Related Problems

5.1 Even Perfect Matching in bipartite planar graphs is in NL

Definition 3 (Even-PM). Given a graph with each edge colored either Red or Blue, an Even-
PM is a perfect matching that contains even number of Red edges. Let Even-PM denote the
problem of deciding whether or not there exists such a perfect matching.

Theorem 5.1. (Theorem 1.2 (a)) Even-PM in bipartite graphs is in P.

Proof: Given a bipartite graph G, first find a perfect matching M in it. If M is Even-PM
we are done, otherwise construct an auxiliary directed graph H with respect to M as follows:
u→H u iff ∃w such that {u,w} ∈M and {w, v} /∈M. If the matching edge {u,w} as well as
the non-matching edge {w, v} are of the same color then set the weight of the directed edge
(u, v) to 0; otherwise set it to 1.

It is easy to check that there exists Even-PM iff H has a cycle of odd weight. Testing
for odd weight cycle can be done in NL. It is easy to see that the complexity of the entire
procedure is NLBip-Perfect-Matching; where Bip-Perfect-Matching denotes the complexity
of Perfect-Matching in bipartite graphs. �

Corollary 5.2. (restatement of Theorem 1.2 (b)) Even-PM in bipartite planar graphs is in
NL.

11

5.2 Even-Path in planar DAG is in UL

Definition 4 (Red-Blue-Path). Given a directed graph with each edge colored either Red or
Blue, a Red-Blue-Path from s to t is a (simple) directed path from s to t such that the two
consecutive edges are of different colors. The Red-Blue-Path problem is the problem of
deciding whether or not there is a Red-Blue-Path from s to t.

Definition 5 (Even-Path). Given a directed graph and two notes s and t, an Even-Path
from s to t is a (simple) directed path from s to t containing even number of edges. The
Even-Path problem is the problem of deciding whether or not there is an Even-Path from s
to t.

Theorem 5.3 ([Kul09]). Red-Blue-Path in planar DAG is NL-complete.

In this section, we prove that the Even-Path problem (which can be viewed as a relax-
ation of the Red-Blue-Path problem as a path starting with say Red edge and ending with
say Blue edge is always of even length) in planar DAG is in fact in UL. Our proof involves a
combination of two different isolation techniques that are currently available.

The weighting scheme A

Weighting scheme A is a generalization of the weight function in [BTV09] to planar graphs.
In other words, given a directed planar graph G, we construct a log-space computable edge
weight function with respect to which any simple cycle in G has non-zero weight. Tewari
and Vinodchandran [TV10] give a log-space construction of such a weight function by an
application of Green’s Theorem.

Input : A planar graph G
Output : An edge weight function wA such that for any simple cycle C in G

wA(C) 6= 0

1 Compute a spanning tree T in G;

2 For any arc e ∈
←→
T , set wA(e) = 0;

3 Let R denote the spanning tree in G∗ consisting of the edges that do not belong to

T. Fix a root r for R (say the unbounded face) and let
−→
R denote the orientation of

R where each edge is oriented towards the root;

4 An arc e∗ = (u, v) ∈
−→
R separates the tree R into two subtrees. Let αu denote the

number of vertices in the subtree containing u. Set wA(u, v) = αu and
wA(v, u) = −αu;

5 Set wA(e) = wA(e∗) for every e ∈ E(G) where e∗ is the (directed) dual edge of e;

Algorithm 8: Weighting Scheme A

Lemma 5.4 (adaptation of [BTV09]). With respect to the weight function wA the absolute
value of the sum of the weights of the arcs along any directed cycle is equal to the number of
faces in the interior of the cycle.

Proof: For a simple cycle C of G, let us define the weight of C, w(C), to be the sum of
weights of the edges lying along C in clockwise order. It suffices to show that for a facial

12

cycle F of G, w(F) = +1. This is because for a simple cycle C:

w(C) =
∑

F∈Interior(C)

w(F).

But w(F) equals the sum of the weights of dual edges (in G∗) outgoing from the dual vertex
F ∗ ∈ V (G∗), so it suffices to show that for every vertex u ∈ V (G∗):∑

v:(u,v)∈E(G∗)

αv = +1.

Observe that the number of nodes in the subtree rooted at u is one more than sum of the
number of vertices in the subtrees rooted at v for various v, such that (u, v) is a dual edge.
This, together with the skew symmetry of the weights wA(u, v), completes the proof. �

Lemma 5.5. Let G be a planar DAG and u and v be any two vertices in G. Then with respect
to the weight function wA, (a) if P1 and P2 are two minimum weight Even-Paths from u to
v, then P1 ⊕ P2 divides the plane into at most two bounded regions; (b) no three minimum
weight Even-Paths from u to v share a common vertex w other than u and v, such that the
path segments between the vertices u and w and between w and v are not identical. (c) there
are at most 2n4 minimum weight Even-Paths from u to v.

Proof. (a) For the sake of contradiction let C1, C2 and C3 be any three bounded regions of
P1 ⊕P2. Let Pij be the restriction of the i-th path to the j-th for i ∈ {1, 2} and j ∈ {1, 2, 3}.
Observe that wA(P1j) 6= wA(P2j) since Cj is a simple cycle and by Lemma 5.4 we have that
wA(Cj) 6= 0. Now the parity of the lengths of the path segments P1,j and P2,j are different
since if they were the same, we could replace the higher weighted segment with the lower
weighted one and get an even length path of lesser weight. This implies that wA(C1 +C2 +C3)
is odd since the weight of each Ci is odd. Let P ′i =

⋃
j Pij for i ∈ {1, 2}. Therefore either

wA(P ′1) is odd or wA(P ′2), but not both. Without loss of generality lets assume wA(P ′1) is
odd. For each j pick the path segment between P1j and P2j that has lesser weight to create
a set say P ′. Now wA(P ′) is strictly smaller than both wA(P ′1) and wA(P ′2). If wA(P ′) is odd
then replace P ′1 with P ′ and if wA(P ′) is even then replace P ′2 with P ′ to get a path of smaller
weight and same parity. This is a contradiction. Thus P1 ⊕ P2 has at most two bounded
regions.

(b) Let P1, P2 and P3 be three minimum weight paths from u to v that share a common
vertex (say w) such that the segments of each of the three paths between the vertices u and
w and between w and v are distinct. In other words, if P ′i and P ′′i are the segments of Pi

between the vertices u and w and between w and v respectively (for i ∈ {1, 2, 3}), then {P ′i}
are pairwise non-identical and so are {P ′′i }. There exists at least two path segments between
P ′1, P ′2 and P ′3 whose lengths have the same parity. Without loss of generality assume its
P ′1 and P ′2. Now if wA(P ′1) 6= wA(P ′2) then since they have the same parity we can pick the
lesser weight path between P ′1 and P ′2 and similarly the lesser weight path between P ′′1 and
P ′′2 and append them to get an even path of weight less than either that of P1 or P2 from
u to v. Thus we can assume wA(P ′1) = wA(P ′2). By Lemma 5.4, this implies that P ′1 ⊕ P ′2
as at least two bounded regions. Moreover since P ′′1 and P ′′2 are also not identical, therefore
P ′′1 ⊕ P ′′2 has at least one one bounded region. Thus P1 ⊕ P2 has at least 3 bounded regions,
thus contradicting part (a).

13

(c) Let a, b, c and d be four vertices in G and let Pa,b,c,d be the set of all minimum weight
even length paths from u to v that pass through the vertices a, b, c and d in that order and
are vertex disjoint between the vertices a and b and between the vertices c and d respectively.
Then by part (b), Pa,b,c,d will have at most 2 paths. Since the total number of such tuples is
at most n4, therefore the number of minimum weight, even length u-v paths is bounded by
2n4.

Constructing an auxiliary graph

Construct a directed (multi)graph G′ from G as follows: the vertex set of G′ is the vertex
set of G. An edge (vi, vj) is in G′ if and only if there exists a vertex vk in G and the edges
(vi, vk) and (vk, vj) are in G. The weight w of an edges in G′ is the sum of the weights of the
corresponding two edges in G.

Now Lemma 5.6 follows by definition of G′ and part (c) of Lemma 5.5.

Lemma 5.6. (a) G has an Even-Path from u to v if and only if G′ has a directed path from
u to v; (b) the number of minimum weights paths from u to v in G′ with respect to wA is at
most 2n4.

Weighting scheme B

Our weighting scheme B is based on a well known hashing scheme based on primes, due to
Fredman, Komlós and Szemerédi [FKS84].

Lemma 5.7 ([FKS84]). Let c be a constant and S be a set of n-bit integers with |S| ≤ nc.
Then there is a c′ and a c′ log n-bit prime number p so that for any x 6= y ∈ S x 6≡ y (mod p).

Hoang used this scheme to give better upper bounds for Perfect-Matching in certain
classes of graphs [Hoa10]. Pavan, Tewari and Vinodchandran showed that reachability in
graphs where the number of paths from s to any vertex is bounded by a polynomial is in UL,
by applying this hashing scheme. We use Lemma 5.7 here to define a weight function with
respect to which G′ in min-unique.

Let pi be the ith prime number. Consider the lexicographical ordering of the edges of G′

and denote the jth edge in this ordering by ej . Define the ith weight function (for 1 ≤ i ≤ q(n)
and an appropriate polynomial q(n) dictated by Lemma 5.7), wBi(ej) = 2j(mod pi).

Lemma 5.8 (Adapted from [PTV10]). There exists an i ≤ q(n) such that the graph G′ with
respect to the weight function Wi = wA · n10 + wBi is min-unique.

Proof. Let Pv be the set of minimum weight paths from s to a vertex v in G′, with respect
to wA. Then by Lemma 5.6, |Pv| is bounded by 2n4. It follows from Lemma 5.7 that with
respect to some wBi , all paths in

⋃
v Pv will have distinct weights. Therefore G′ is min-unique

with respect to Wi for some i.

For each i ∈ [q(n)], check if G′ is min-unique with respect to Wi or not. Once we have
an appropriate i, we can decide reachability in G′ in UL [RA00]. By Lemma 5.6 a path in G′

corresponds to an EvenPath in G and thus we have Theorem 5.9.

Theorem 5.9. (Theorem 1.3) Even-Path in planar DAG is in UL.

14

5.3 Neg-Cycle Problem

Lemma 5.10. In planar graphs:

(a) Bip-Perfect-Matching ≤ Neg-Cycle ≤Min-Wt-PM (bipartite), and

(b) Neg-Cycle(Decision + Construction) is in NL ∩ SPL.

Proof Sketch: The first inequality in Part (a) follows from the Miller and Naor’s algorithm.
To prove the second inequality in Part (a), given a directed graph G with polynomially
bounded weights, construct an undirected graph H as follows: for each vertex u ∈ G we
have two vertices uin and uout in H; a directed edge (u, v) in G becomes an undirected edge
between uout and vin in H. In addition we have weight 0 edges between uin and uout. It is
easy to check that G has a negative weight cycle iff H has a perfect matching of negative
weight. Note that H is bipartite. Moreover, by replacing a vertex of degree d by a cycle of
length d we can transform G such that the sum of in-degree and out-degree at any vertex is
at most 3. Now H will also be planar. �

6 Open Ends

1. Is Neg-Cycle (Decision) in planar graphs in UL?

2. Is Odd-Cycle in planar graphs in ⊕L?

3. Is Perfect-Matching (Decision) in bipartite planar graphs in coUL?

4. Is Min-Wt-PM in bipartite planar graphs in NL?

5. Is Max-Matching in bipartite planar graphs in NL?

Acknowledgement

We would like to thank Prajakta Nimbhorkar for discussion in the initial stages of the work,
in particular for pointing out that the Neg-Cycle problem is in NL. We would like to thank
N. V. Vinodchandran for pointing out references [FKS84] and [PTV10] which are crucially
used in the proof of Theorem 5.9.

References

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and count-
ing: Uniform and nonuniform upper bounds. Journal of Computer and System
Sciences, 59:164–181, 1999.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar
reachability is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–
17, 2009.

[CSV84] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibil-
ity. SIAM Journal on Computing, 13(2):423–439, 1984.

15

[DKLM10] Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Planarity,
determinants, permanents, and (unique) matchings. ACM Trans. Comput. The-
ory, 1(3):1–20, 2010.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating
a perfect matching in bipartite planar graphs. Theory of Computing Systems,
47:737–757, 2010. 10.1007/s00224-009-9204-8.

[DKTV10] Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran.
Space complexity of perfect matching in bounded genus bipartite graphs. Tech-
nical Report TR10-079, Electronic Colloquium on Computational Complexity,
2010.

[Edm65] J. Edmonds. Paths, trees and flowers. Canad. J. Math., 17:449–467, 1965.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0(1) worst case access time. J. ACM, 31:538–544, June 1984.

[Hoa10] Thanh Minh Hoang. On the matching problem for special graph classes. In IEEE
Conference on Computational Complexity, pages 139–150, 2010.

[Kas67] P. W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical
Physics, 1:43–110, 1967.

[KMV08] Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect
matchings and perfect half-integral matchings in NC. Chicago Journal of Theo-
retical Computer Science, 2008(4), September 2008.

[Kul09] Raghav Kulkarni. On the power of isolation in planar graphs. Technical Report
TR09-024, Electronic Colloquium on Computational Complexity, 2009.

[LP83] Andrea Lapaugh and Christos Papadimitriou. The even-path problem for graphs
and digraphs. Networks Volume 14, Issue 4 , Pages 507 - 513, 1983.

[LP86] L. Lovász and M.D. Plummer. Matching Theory, volume 29. North-Holland
Publishing Co, 1986.

[MN89] G.L. Miller and J. Naor. Flow in planar graphs with multiple sources and sinks.
In Foundations of Computer Science, 1989., 30th Annual Symposium on, pages
112 –117, 1989.

[MV00] Meena Mahajan and Kasturi R. Varadarajan. A new NC-algorithm for finding a
perfect matching in bipartite planar and small genus graphs. In ACM Symposium
on Theory of Computing, 2000.

[MVV87] Ketan Mulmuley, Umesh Vazirani, and Vijay Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105–113, 1987.

[Ned99] Zhivko Prodanov Nedev. Finding an even simple path in a directed planar graph.
SIAM Journal on Computing, Volume 29 , Issue 2, Oct 99, 685-695, 1999.

16

[PTV10] Aduri Pavan, Raghunath Tewari, and N. V. Vinodchandran. On the power of
unambiguity in logspace. Technical Report TR10-009, Electronic Colloquium on
Computational Complexity, 2010.

[PY82] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted
spanning tree problems. J. ACM, 29(2):285–309, 1982.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM
Journal of Computing, 29:1118–1131, 2000. An earlier version appeared in FOCS
1997, pp. 244–253.

[TV10] Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in
planar graphs. Technical Report TR10-151, Electronic Colloquium on Computa-
tional Complexity, 2010.

[Val79] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput.
Sci., 8:189–201, 1979.

[Vaz88] Vijay Vazirani. NC algorithms for computing the number of perfect matchings
in k3,3–free graphs and related problems. In Proceedings of SWAT ’88, pages
233–242, 1988.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Springer-Verlag, 1999.

17

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

