
Multivariate Polynomial Integration and Derivative Are Polynomial

Time Inapproximable Unless P=NP∗

Bin Fu

Department of Computer Science
University of Texas-Pan American

Edinburg, TX 78539, USA
binfu@cs.panam.edu

Abstract

We investigate the complexity of integration and derivative for multivariate polynomials in the
standard computation model. The integration is in the unit cube [0, 1]d for a multivariate poly-
nomial, which has format f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd), where each

pi(x1, · · · , xd) =
∑d

j=1
qj(xj) with all single variable polynomials qj(xj) of degree at most two and

constant coefficients. We show that there is no any factor polynomial time approximation for the in-
tegration

∫
[0,1]d

f(x1, · · · , xd)dx1 · · · dxd unless P = NP. For the complexity of multivariate derivative,

we consider the functions with the format f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd),
where each pi(x1, · · · , xd) is of degree at most 2 and 0, 1 coefficients. We also show that unless P = NP,

there is no any factor polynomial time approximation to its derivative ∂f(d)(x1,···,xd)
∂x1···∂xd

at the origin point

(x1, · · · , xd) = (0, · · · , 0). Our #P -hard result for derivative shows that the derivative is not be easier
than the integration in high dimension. We also give some tractable cases of high dimension integration
and derivative.

1. Introduction

Integration and derivative are basic operations in the classical mathematics. Integrations with a large number
of variables have been found applications in many areas such as finance, nuclear physics, and quantum
system, etc. The complexity for approximating multivariate integration has been studied by measuring the
number of function evaluations. For example, Sloan and Wozniakowski proved an exponential lower bounds
2s of function evaluations in order to obtain an approximation with error less than the integration itself,
which has s variables [9]. The integration

∫
[0,1]s

f(x1, · · · , xs)dx1 · · · dxs is over the cubic [0, 1]s for some
function f(x1, · · · , xs). In the quasi-Monte Carlo method for computing

∫
[0,1]d

f(x)dx, it is approximated by
1
n

∑n
i=1 f(xi). This approximation has an error Θ((ln n)d−1

n), which grows exponentially on the dimension
number d (see e.x., [7, 6] and the reference papers there).

An integration may be computed by the structure of the function without involving function evaluation.
For example,

∫
[0,1]2

x2y3dxdy = (
∫
[0,1]

x2dx) · (∫
[0,1]

y3dy) = 1
3 · 1

4 = 1
12 . The calculation gives the exact value

of the integration, but there is no evaluation for the function f(x, y) = x2y3. Using the computational com-
plexity theory, we study the polynomial time approximation limitation for the high dimensional integration
for some easily defined functions. In this paper, we consider the high dimensional integration for multivariate
polynomials, which are defined with format f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd),
where each pi(x1, · · · , xd) =

∑d
j=1 qj(xj) with polynomial qj(xj) of constant degree. Its integration can be

computed in polynomial space. We show how this problem is related to other hard problem in the field
of computational complexity theory. Therefore, our model for studying the complexity of high dimensional
integration is totally different from the existing approaches such as [9], and is more general than the old

∗This research is supported in part by National Science Foundation Early Career Award 0845376.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 202 (2010)

models. We show that there is no any factor polynomial time approximation to the integration problem
unless P = NP.

A similar hardness of approximation result is also derived for the derivative of the polynomial function.
The recent development of monomial testing theory [2, 3, 1] can be used to explain the hardness for computing
the derivative for a

∏∑∏
polynomial. For the hardness of the approximation for multivariate derivative, we

consider the functions with the format f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd), where
each pi(x1, · · · , xd) is of degree 2. We also show that unless P = NP, there is no any factor polynomial
time approximation to its derivative ∂f(d)(x1,···,xd)

∂x1···∂xd
at the origin point (x1, · · · , xd) = (0, · · · , 0). Our results

show that the high dimension derivative may not be easier than the high dimension integration. Since
both integration and derivative are widely used, this approach may help understand the complexity of some
mathematics systems that involve high dimension integration or derivative.

Partial derivatives were used in developing deterministic algorithms for the polynomial identity problem
(for example, see [8]), a fundamental problem in the computational complexity theory. Our intractability
result for the high dimension derivative over multivariate polynomial points out a barrier of this approach.

Second part of this paper about the inapproximability of derivative is an application of our recently
developed monomial testing theory [2, 3, 1]. It shows that it is #P-hard to compute the derivative of a∏∑

polynomial at the origin point. We also give some tractable cases of high dimension integration and
derivative.

In section 3, we give an overview about our method for deriving the inapproximation result of high
dimension integration. The main result of this paper is the inapproximation for high dimension integration,
and is presented in section 4. In section 5, we present the inapproximation result for high order derivative.
Some tractable cases of high dimension integration and derivative are shown in section 6.

2. Notations

Let N = {0, 1, 2, · · ·} be the set of all natural numbers. Let N+ = {1, 2, · · ·} be the set of all positive natural
numbers.

Assume that function r(n) is from N to N+. For a functor F (.), which converts a multivariate polynomial
into a real number, an algorithm A(.) gives an r(n)-factor approximation to F (f) if it satisfies the following
conditions: if F (f) ≥ 0, then F (f)

r(n) ≤ A(f) ≤ r(n)F (f); and if F (f) < 0, then r(n)F (f) ≤ A(f) ≤ F (f)
r(n) ,

where n is the number of variables in f .
Assume that functions r(n) and s(n) are from N to N+. For a functor F (.), an algorithm A(.) gives an

(r(n), s(n))-factor approximation to F (f) such that if F (f) ≥ 0, then F (f)
r(n) −s(n) ≤ A(f) ≤ r(n)F (f)+s(n);

and if F (f) < 0, then r(n)F (f)− s(n) ≤ A(f) ≤ F (f)
r(n) + s(n), where n is the number of variables in f .

In this paper, we consider two kinds of functors. The first one is the integration in the unit cube for
a multivariate polynomial:

∫
[0,1]d

f(x1, · · · , xd)dx1 · · · dxd
. The second is the derivative ∂f(d)(x1,···,xd)

∂x1···∂xd
at the

origin point (x1, · · · , xd) = (0, · · · , 0).
For the complexity of multivariate integration, we consider the functions with the format below:

f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd),

where each pi(x1, · · · , xd) =
∑d

j=1 qj(xj) with each single variable polynomials qj(xj) of constant degree.
This kind multivariate polynomial is called

∏∑
Sc if the degree of each qj(xj) is at most c.

For the complexity of multivariate derivative, we consider the functions with the format below:

f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd),

where each pi(x1, · · · , xd) is of a constant degree. The polynomial f(x1, · · · , xd) is called a
∏∑ ∏

k polyno-
mial if the degree of each pi(x1, · · · , xd) is at most k.

An algorithm is subexponential time if it runs in 2no(1)
time for all inputs of length n. Define subE to be

the class of languages that have subexponential time algorithms.

3. Overview of Our Methods

In this section, we show the brief idea to derive the main result of this paper (Theorem 5). 3SAT is an NP-
complete problem proved by Cook [4]. We show that approximating the integration of a

∏∑
S2 polynomial

2

is NP-hard by a reduction from 3SAT problem to it. It is still NP-hard to decide a conjunctive normal
form that each variable appears at most three times with at most one negative time. We assume that each
variable has its negation appears at most one time (Otherwise, we replace it by its negation).

We show (see Lemma 3 and equations (59) to (65) at its proof) that there exist integer coefficients
polynomial functions g1(x) = ax3 + bx2 + cx + d, g2(x) = ux + v, and f(x) = 2x satisfy that

∫ 1

0
g1(x)dx =

1,
∫ 1

0
g2(x)dx = 1,

∫ 1

0
f(x)dx = 1,

∫ 1

0
g1(x)g2(x)dx = 4,

∫ 1

0
g1(x)f(x)dx = 0,

∫ 1

0
g2(x)f(x)dx = 0, and∫ 1

0
g1(x)g2(x)f(x)dx = 0.
Example 1. Consider the logical formula F = (x1 +x2)(x1 +x2)(x1 +x2), which has the sum of product

expansion x1x1x1 + x1x1x2 + x1x2x1 + x1x2x2 + x2x1x1 + x2x1x2 + x2x2x1 + x2x2x2. The term x1x1x2

can bring a truth assignment x1 = true and x2 = true to make F true. As each variable appears at most 3
times with at most one negative appearance, the first positive xi is replaced by g1(yi), the second positive
xi is replaced by g2(yi), and the negative xi is replaced by f(yi). It is converted into the polynomial

p(y1, y2) = (g1(y1) + g1(y2))(g2(y1) + f(y2))(f(y1) + g2(y2)).

The polynomial p(y1, y2) has the sum of product expansion

g1(y1)g2(y1)f(y1) + g1(y1)g2(y1)g2(y2) + g1(y1)f(y2)f(y1) + g1(y1)f(y2)g2(y2) +
g1(y2)g2(y1)f(y1) + g1(y2)g2(y1)g2(y2) + g1(y2)f(y2)f(y1) + g1(y2)f(y2)g2(y2).

Consider the integration
∫
[0,1]2

p(y1, y2)dy1dy2 . The integration can be distributed into those product
terms.

∫
[0,1]2

g1(y1)g2(y1)g2(y2)dy1dy2 is one of them. We have

∫

[0,1]2
g1(y1)g2(y1)g2(y2)dy1dy2 = (

∫

[0,1]

g1(y1)g2(y1)dy1)(
∫

[0,1]

g2(y2)dy2) = 4 · 1 = 4.

The integrations for other terms are all non-negative integers. Thus,
∫
[0,1]2

p(y1, y2)dy1dy2 is a positive integer
due to the satisfiability of F .

Example 2. Consider the logical formula G = (x1 + x2)x1x2, which has the sum of product expansion
x1x1x2 +x1x2x2. Neither x1x1x2 nor x1x2x2 can be satisfied. As each variable appears at most 3 times with
at most one negative appearance, the first positive xi is replaced by g1(yi), the second positive xi is replaced
by g2(yi), and the negation case xi is replaced by f(yi). It is converted into the polynomial q(y1, y2) =
(g1(y1) + g1(y2))f(y1)f(y2). The polynomial q(y1, y2) has the sum of product expansion g1(y1)f(y1)f(y2) +
g1(y2)f(y1)f(y2).

Consider the integration
∫
[0,1]2

q(y1, y2)dy1dy2 , which is identical to
∫
[0,1]2

g1(y1)f(y1)f(y2)dy1dy2 +∫
[0,1]2

g1(y2)f(y1)f(y2)dy1dy2 . We have

∫

[0,1]2
g1(y1)f(y1)f(y2)dy1dy2 = (

∫

[0,1]

g1(y1)f(y1)dy1)(
∫

[0,1]

f(y2)dy2) = 0 · 1 = 0.

We also have
∫

[0,1]2
g1(y2)f(y1)f(y2)dy1dy2 = (

∫

[0,1]

f(y1)dy1)(
∫

[0,1]

g1(y2)f(y2)dy2) = 1 · 0 = 0.

Therefore,
∫
[0,1]2

q(y1, y2)dy1dy2 = 0 due to the unsatisfiability of G. Therefore, for any factor a(n) > 0, a
polynomial time factor a(n)-approximation to the integration of a

∏∑
S2 polynomial implies a polynomial

time decision for the satisfiability of the corresponding boolean formula.

4. Intractability of High Dimensional Integration

In this section, we show that the integration in high dimensional cube [0, 1]d does not have any factor
approximation. We will reduce an existing NP-complete problem to the integration problem. Our main
technical contribution is in converting a logical formula into a polynomial. We often use a basic property of
integration, which can be found in some standard text books of calculus (for example [11]). Assume function

3

f(x1, · · · , xd) = f1(xi1 , · · · , xid1
)f2(xj1 , · · · , xjd2

), where {x1, · · · , xd} is the disjoint union of {xi1 , · · · , xid1
}

and {xj1 , · · · , xjd2
}. Then we have

∫

[0,1]d
f(x1, · · · , xd)dx1 · · · dxd

(1)

=

(∫

[0,1]d1

f1(xi1 , · · · , xid1
)dxi1

· · · dxid1

)
·
(∫

[0,1]d2

f(xj1 , · · · , xjd2
)dxj1

· · · dxjd2

)
. (2)

In order to make the conversion from logical operation to algebraic operation, we represent conjunctive
normal form with the following format. For example, the formula (x1 +x2)(x1 +x2)(x1 +x2) is a conjunctive
normal form with two boolean variables x1 and x2, where + represents the logical

∨
, and . represent the

logical
∧

.

Definition 1.

• A 3SAT instance is a conjunctive form C1 · C2 · · ·Cm such each Ci is a disjunction of at most three
literals.

• 3SAT is the language of those 3SAT instances that have satisfiable assignments.

• A (3, 3)-SAT instance is an instance G for 3SAT such that for each variable x, the total number of
times of x and x in G is at most 3, and the total number of times of x in G is at most 1.

• (3, 3)-SAT is the language of those (3, 3)-SAT instances that have satisfiable assignments.

For examples, (x1 +x2 +x3)(x1 +x2)(x1 +x2) is both 3SAT and (3, 3)-SAT instance, and also belongs to
both 3SAT and (3, 3)-SAT. On the other hand, (x1 + x2 + x3)(x1 + x2)(x1 + x2) is not a (3, 3)-SAT instance
since x1 appears twice in the formula. The following lemma is similar to a result derived by Tovey [10].

Lemma 2. There is a polynomial time reduction f(.) from 3SAT to (3, 3)-SAT.

Proof: Let F be an instance for 3SAT. Let’s focus on one variable xi that appears m times in F . Introduce
a series of variables yi,1, · · · , yi,m for xi. Convert F to F ′ by changing the j-th occurrence of xi in F to yi,j

for j = 1, · · · ,m. Define

Gxi = (xi → yi,1) · (yi,1 → yi,2)(yi,2 → yi,3) · (yi,3 → yi,4) · · · (yi,m−1 → yi,m) · (yi,m → xi)
= (xi + yi,1) · (yi,1 + yi,2) · (yi,2 + yi,3) · (yi,3 + yi,4) · · · (yi,m−1 + yi,m) · (yi,m + xi).

Each logical formula (x → y) is equivalent to (x + y). If Gxi is true, then xi, yi,1, · · · , yi,m are equivalent.
Convert F ′ into F ′′ such that F ′′ = F ′Gx1 · · ·Gxk

, where x1, · · · , xk are all variables in F .
For each variable x in F ′′ with more than one x, create a new variable yx, replace each positive x of F by

yx, and each negative x by yx. Thus, F ′′ becomes F ′′′. It is easy to see that F ∈ 3SAT iff F ′′ is satisfiable
iff F ′′′ ∈(3,3)-SAT.

4.1. Integration of
∏ ∑

S2 Polynomial

Lemma 3 is our main technical lemma. It is used to convert a (3, 3)-SAT instance into a
∏∑

S2 polynomial.

Lemma 3. There exist integers b, c, d, u, and v such that the functions g1(x) = bx2 +cx+d, g2(x) = ux+v,
and f(x) = 2x satisfy that

1.
∫ 1

0
g1(x)dx,

∫ 1

0
g2(x)dx,

∫ 1

0
f(x)dx, and

∫ 1

0
g1(x)g2(x)dx are all positive integers, and

2.
∫ 1

0
g1(x)f(x)dx,

∫ 1

0
g2(x)f(x)dx, and

∫ 1

0
g1(x)g2(x)f(x)dx are all equal to 0.

4

Proof: We give the details how to derive the functions g1(x) and g2(x) to satisfy the conditions of the
lemma. In order to avoid solving nonlinear equations, we will fix the two variables u and v in the early phase
of the construction.

∫

[0,1]

f(x)dx =
∫

[0,1]

2xdx = x2|10 = 1. (3)

∫ 1

0

g1(x)dx =
∫ 1

0

(bx2 + cx + d)dx (4)

= (
bx3

3
+

cx2

2
+ dx)|10 (5)

=
b

3
+

c

2
+ d (6)

=
1
6
(2b + 3c + 6d). (7)

∫ 1

0

g2(x)dx =
∫ 1

0

(ux + v)dx (8)

= (
ux2

2
+ vx)|10 (9)

=
1
2
(u + 2v). (10)

∫ 1

0

g2(x)f(x)dx =
∫ 1

0

(ux + v)2xdx (11)

= 2
∫ 1

0

(ux2 + vx)dx (12)

= 2(
ux3

3
+

vx2

2
)|10 (13)

= 2(
u

3
+

v

2
) (14)

=
1
3
(2u + 3v). (15)

We let

u = −6 (16)
v = 4. (17)

Therefore, we have got
∫

[0,1]

g2(x)dx = 1 (by equations (8) to (10)), and (18)
∫

[0,1]

g2(x)f(x)dx = 0 (by equations (11) to (15)). (19)

∫ 1

0

g1(x)g2(x)dx =
∫ 1

0

(bx2 + cx + d)(ux + v)dx (20)

=
∫ 1

0

(bx2 + cx + d)(−6x + 4)dx (21)

5

=
∫ 1

0

(−6bx3 − 6cx2 − 6dx + 4bx2 + 4cx + 4d)dx (22)

=
∫ 1

0

((−6b)x3 + (4b− 6c)x2 + (4c− 6d)x + 4d)dx (23)

= (
(−6b)x4

4
+

(4b− 6c)x3

3
+

(4c− 6d)x2

2
+ 4dx)|10 (24)

= (
(−6b)

4
+

(4b− 6c)
3

+
(4c− 6d)

2
+ 4d) (25)

=
1
12

(3 · (−6b) + 4 · (4b− 6c) + 6 · (4c− 6d) + 48d) (26)

=
1
12

((−18 + 16)b + (−24 + 24)c + (48− 36)d) (27)

=
1
12

((−2)b + 12d) (28)

=
1
6
(−b + 6d). (29)

∫ 1

0

g1(x)f(x)dx =
∫ 1

0

(bx2 + cx + d)2xdx (30)

= 2
∫ 1

0

(bx3 + cx2 + dx)dx (31)

= 2(
bx4

4
+

cx3

3
+

dx2

2
)|10 (32)

= 2(
b

4
+

c

3
+

d

2
) (33)

=
1
6
(3b + 4c + 6d). (34)

∫ 1

0

g1(x)g2(x)f(x)dx (35)

=
∫ 1

0

(bx2 + cx + d)(ux + v)2xdx (36)

= 2
∫ 1

0

(bx2 + cx + d)(−6x + 4)xdx (37)

= 2
∫ 1

0

(−6bx3 − 6cx2 − 6dx + 4bx2 + 4cx + 4d)xdx (38)

= 2
∫ 1

0

((−6b)x3 + (4b− 6c)x2 + (4c− 6d)x + 4d)xdx (39)

= 2(
(−6b)x5

5
+

(4b− 6c)x4

4
+

(4c− 6d)x3

3
+

4dx2

2
)|10 (40)

= 2(
(−6b)

5
+

(4b− 6c)
4

+
(4c− 6d)

3
+

4d

2
) (41)

=
2
60

(12 · (−6b) + 15 · (4b− 6c) + 20 · (4c− 6d) + 120d) (42)

=
1
30

((−72 + 60)b + (−90 + 80)c + (−120 + 120)d) (43)

=
1
30

(−12b− 10c) (44)

=
1
15

(−6b− 5c) (45)

We need to satisfy the following conditions:

6b + 5c = 0 (46)

6

3b + 4c + 6d = 0 (47)
−b + 6d = 6n1 for some positive integer n1 (48)

2b + 3c + 6d = 6n2 for some positive integer n2 (49)

Equation (46) makes
∫
[0,1]

g1(x)g2(x)f(x)dx = 0 according to equations (35) to (45). Equation (47) makes∫
[0,1]

g1(x)f(x)dx = 0 according to equations (30) to (34). Equation (48) makes
∫
[0,1]

g1(x)g2(x)dx be a
positive integer according to equations (20) to (29). Equation (49) makes

∫
[0,1]

g1(x)dx be a positive integer
according to equations (4) to (7).

Let x and k be integer parameters to be fixed later. We have the solutions below:

b = 5x · 6k, (50)

c = −6b

5
= −6x · 6k, (by equation (46)) and (51)

d =
1
6
(−3b− 4c) =

1
6
(−3 · (5x · 6k)− 4(−6x · 6k)) (52)

= 9x · 6k−1 (by equation (47)). (53)

We have the equations:

−b + 6d = −5x · 6k + 6 · (9x · 6k−1) = 4x · 6k and (54)
2b + 3c + 6d = 2 · (5x · 6k) + 3 · (−6x · 6k) + 6 · (9x · 6k−1) (55)

= (10x− 18x + 9x)6k = x · 6k. (56)

Let x = 1 and k = 1. We have b = 30, c = −36, and d = 9. We also have

−b + 6d = 24 (by equation (54)) (57)
2b + 3c + 6d = 6 (by equation (56)). (58)

Thus, g1(x) = bx2 + cx + d = 30x2 − 36x + 9, g2(x) = −6x + 4, and f(x) = 2x. We have the following
equations to satisfy the conditions in the lemma.

∫ 1

0

f(x)dx = 1, (by equation (3))) (59)
∫ 1

0

g1(x)dx = 1, (by equations (4) to (7), and (58)) (60)
∫ 1

0

g2(x)dx = 1, (by equation (18)) (61)
∫ 1

0

g1(x)g2(x)dx = 4, (by equations (20) to (29), and (57)) (62)
∫ 1

0

g1(x)f(x)dx = 0, (by equations (30) to (34), and (47)) (63)
∫ 1

0

g2(x)f(x)dx = 0, (by equation(19)), and (64)
∫ 1

0

g1(x)g2(x)f(x)dx = 0. (by equations (35) to (45), and the solutions for b and c)) (65)

Lemma 4. There is a polynomial time algorithm h such that given a (3, 3)-SAT instance s(x1, · · · , xn), it
produces a

∏∑
S2 polynomial h(s(x1, · · · , xn)) = p(y1, · · · , yn) to satisfy the following two conditions:

1. if s(x1, · · · , xn) is satisfiable, then
∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn is a positive integer; and

2. if s(x1, · · · , xn) is not satisfiable, then
∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn is zero.

7

Proof: We give two examples to show how a logical formula is converted into a multivariate polynomial
in section 3. Let polynomials g1(y), g2(y), and f(y) be defined according to those in Lemma 3.

For a (3, 3)-SAT problem s(x1, · · · , xn), let p(y1, · · · , yn) be defined a follows.

• For the first positive literal xi in s(x1, · · · , xn), replace it with g1(yi).

• For the second positive literal xi in s(x1, · · · , xn), replace it with g2(yi).

• For the negative literal xi in s(x1, · · · , xn), replace it with f(yi).

The formula s(x1, · · · , xn) has a sum of product form. It is satisfiable if and only if one term does
not contain a positive and negative literals for the same variable. If a term contains both xi and xi, the
corresponding term in the sum of product for p(.) contains both gj(yi) and f(yi) for some j ∈ {1, 2}.
This makes it zero after integration by Lemma 3. Therefore, s(x1, · · · , xn) is satisfiable if and only if∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn is not zero. Furthermore, it is satisfiable, the integration is a positive integer
by Lemma 3. See the two examples in section 3. The computational time of h is clearly polynomial since
we convert s to h(s) by replacing each literal by a single variable function of degree at most 2.

Theorem 5. Let a(n) be an arbitrary function from N to N+. Then there is no polynomial time a(n)-factor
approximation for the integration of a

∏∑
S2 polynomial p(x1, · · · , xn) in the region [0, 1]n unless P = NP.

Proof: Assume that A(.) is a polynomial time a(n)-factor approximation for the integration∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn with
∏∑

S2 polynomial p(y1, · · · , yn). For a (3, 3)-SAT instance s(x1, · · · , xn),
let p(y1, · · · , yn) = h(s(x1, · · · , xn)) according to Lemma 4. By Lemma 4, a (3, 3)-SAT instance s(x1, · · · , xn)
is satisfiable if and only if the integration J =

∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn is not zero. Assume that
s(x1, · · · , xn) is not satisfiable, then we have A(J) ∈ [J/a(n), J · a(n)] = [0, 0], which implies A(J) = 0.
Assume that s(x1, · · · , xn) is satisfiable, then we have A(J) ∈ [J/a(n), J · a(n)] ⊆ (0, +∞), which implies
A(J) > 0. Thus, s(x1, · · · , xn) is satisfiable if and only if A(J) > 0.

Therefore, there is a polynomial time algorithm for solving (3, 3)-SAT, which is NP-complete by Lemma 2.
So, P = NP.

Theorem 6. Let a(n) be an arbitrary function from N to N+. Then there is no subexponential time a(n)-
factor approximation for the integration of a

∏∑
S2 polynomial p(x1, · · · , xn) in the region [0, 1]n unless

NP ⊆ subE.

Proof: Assume that A(.) is a subexponential time a(n)-factor approximation for the integration∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn with
∏∑

S2 polynomial p(y1, · · · , yn).
For a (3, 3)-SAT instance s(x1, · · · , xn), let p(y1, · · · , yn) = h(s(x1, · · · , xn)) according to Lemma 4.

By Lemma 4, a (3, 3)-SAT instance s(x1, · · · , xn) is satisfiable if and only if the integration J =∫
[0,1]n

p(y1, · · · , yn)dy1 · · · dyn is not zero. Assume that s(x1, · · · , xn) is not satisfiable, then we have
A(J) ∈ [J/a(n), J · a(n)] = [0, 0], which implies A(J) = 0. Assume that s(x1, · · · , xn) is satisfiable, then we
have A(J) ∈ [J/a(n), J · a(n)] ⊆ (0, +∞), which implies A(J) > 0. Thus, s(x1, · · · , xn) is satisfiable if and
only if A(J) > 0.

Therefore, there is a subexponential time algorithm for solving (3, 3)-SAT, which is NP-complete by
Lemma 2. Thus, NP ⊆ subE.

Lemma 7. Assume that a(1n) is a polynomial time computable function from N to N+ with a(1n) > 0 for
n. There is a polynomial time algorithm such that given a (3, 3)-SAT instance s(x1, · · · , xn), it generates a∏∑

S2 polynomial p(y1, · · · , yn) such that if s(x1, · · · , xn) is satisfiable, then
∫
[0,1]n

p(y1, · · · , yn)dy1···yn is a
positive integer at least 3a(1n)2; and if s(x1, · · · , xn) is not satisfiable,

∫
[0,1]n

p(y1, · · · , yn)dy1···yn is zero.

Proof: For a (3,3)-SAT problem s(x1, · · · , xn), let q(y1, · · · , yn) = h(s(x1, · · · , xn) be constructed as
Lemma 4.

Since a(1n) is polynomial time computable, let p(y1, · · · , yn) = 3a(1n)2q(y1, · · · , yn), which can be com-
puted in a polynomial time.

8

Theorem 8. Let a(1n) be a polynomial time computable function from N to N+. Then there is no polyno-
mial time (a(1n), a(1n))-approximation for the integration problem

∫
[0,1]

f(x1, · · · , xd)dx1 · · · dxd
for a

∏∑
S2

polynomial f(.) unless P = NP.

Proof: Assume that there is a polynomial time (a(1n), a(1n))-approximation App(.) for the integration
problem

∫
[0,1]

f(x1, · · · , xd)dx1 · · · dxd
for a

∏∑
S2 polynomial f(.).

Let s(x1, · · · , xn) be an arbitrary (3, 3)-SAT instance. Let p(y1, · · · , yn) be the polynomial according to
Lemma 7.

Let J =
∫
[0,1]n

p(y1, · · · , yn)dy1···yn
. If s(x1, · · · , xn) is not satisfiable, then J = 0. Otherwise, J ≥ 3a(1n)2.

Assume that s(x1, · · · , xn) is not satisfiable. Since App(J) is an (a(1n), a(1n))-approximation, we have
App(J) ≤ J · a(1n) + a(1n) = a(1n) by the definition in section 2.

Assume that s(x1, · · · , xn) is satisfiable. Since App(J) is an (a(1n), a(1n))-approximation, we have
App(J) ≥ J

a(1n) − a(1n) ≥ 3a(1n)2

a(1n) − a(1n) = 2a(1n) by the definition in section 2.
Therefore, s(x1, · · · , xn) is satisfiable if and only if App(J) ≥ 2a(1n). Thus, if there is a polynomial time

(a(1n), a(1n))–approximation, then there is a polynomial time algorithm for solving (3, 3)-SAT. By Lemma 2,
P = NP.

The well known exponential time hypothesis says NP 6⊆ subE [5]. Basing on such a hypothesis, we have
the following stronger result about the intractability of high dimension integration.

Theorem 9. Let a(1n) be a polynomial time computable function from N to N+. Then there is no subex-
ponential time (a(1n), a(1n))-approximation for the integration problem

∫
[0,1]

f(x1, · · · , xd)dx1 · · · dxd
with a∏∑

S2 polynomial f(.) unless NP ⊆ subE.

Proof: Assume that there is a subexponential time (a(1n), a(1n))-approximation App(.) for the integration
problem

∫
[0,1]

f(x1, · · · , xd)dx1 · · · dxd
with a

∏∑
S2 polynomial f(.).

Let s(x1, · · · , xn) be an arbitrary (3, 3)-SAT instance. Let p(y1, · · · , yn) be the polynomial according to
Lemma 7. Let J =

∫
[0,1]n

p(y1, · · · , yn)dy1···yn . By Lemma 7, we have J ≥ 0.
If s(x1, · · · , xn) is not satisfiable, then J = 0. Otherwise, J ≥ 3a(1n)2.
Assume that s(x1, · · · , xn) is not satisfiable. Since App(J) is an (a(1n), a(1n))-approximation, we have

App(J) ≤ J · a(1n) + a(1n) = a(1n) by the definition in section 2.
Assume that s(x1, · · · , xn) is satisfiable. Since App(J) is an (a(1n), a(1n))-approximation, we have

App(J) ≥ J
a(1n) − a(1n) ≥ 3a(1n)2

a(1n) − a(1n) = 2a(1n) by the definition in section 2.
Therefore, s(x1, · · · , xn) is satisfiable if and only if App(J) ≥ 2a(1n). Thus, if there is a subexponential

time (a(1n), a(1n))-approximation, then there is a subexponential time algorithm for solving (3, 3)-SAT. By
Lemma 2, NP ⊆ subE.

5. Inapproximation of Derivative

In this section, we study the hardness of high dimensional derivative. We derive the inapproximation results
under both NP 6= P and NP 6⊆ subE assumptions.

Definition 10. A monomial is an expression xa1
1 · · ·xad

d and its degree is a1+· · ·+ad. A monomial xa1
1 · · ·xad

d ,
in which x1, · · · , xd are different variables, is a multilinear if a1 = a2 = · · · = ad = 1.

For example, (x1x3 + x2
2)(x2x4 + x2

3) is a
∏∑ ∏

2 polynomial. It has a multilinear monomial x1x2x3x4

in its sum of products expansion.
We give Lemma 11 to convert an instance f for (3, 3)-SAT into a

∏∑ ∏
2 polynomial. The technology

developed in [2, 1] will be applied in the construction.

Lemma 11. Let a(1n) be a polynomial time computable function from N to N+. Then there is a polynomial
time algorithm A such that given a (3, 3)-SAT instance F (y1, · · · , yd), the algorithm returns a

∏∑ ∏
2

polynomial G(x1, · · · , xn) such that

1. If F is not satisfiable, then G does not have a multiliear monomial with an nonzero coefficient in its sum
of product expansion.

9

2. If F is satisfiable, then G has the multiliear monomial x1 · · ·xn with a positive integer coefficient at least
3a(1n)2 in its sum of product expansion.

Proof: Let (3, 3)-SAT instance F be C1C2 · · ·Ck. Each clause Ci has format y∗i1 + y∗i2 + y∗i3 , where literal
y∗j is either yj or its negation yj . Since F is a (3, 3)-SAT instance, for each variable yi in F , yi and yi totally
appear at most three times in F , and yi appears at most once in F .

For each variable yi in F , create four new variables zi,1, zi,2, ui,1 and ui,2. Convert formula F into
polynomial G1 such that for each yi in F , the first positive occurrence yi is changed into zi,1ui,1, the second
positive occurrence yi is changed into zi,2ui,2, and the negative occurrence yi is changed to zi,1zi,2. After the
conversion for all the variables, formula F is transformed into a polynomial G1. We have that F is satisfiable
if and only if G1 has a multilinear monomial with positive coefficient in its sum of products expansion. This
is because a multiliear monomial in the sum of product expansion of G1 corresponds a consistent conjunctive
term, which does not contain both yi and its negation yi for some variable yi, in the sum of product expansion
of F .

Let H1 be the set of all variables in G1. Assume that d1 is the degree of G1 (it is easy to see that all
monomials in the sum-product expansion of G1 have the same degree d1). Let m be the number of variables
in H1. Let d be the number of boolean variables in F . Assume that no clause Ci in F contains a single
literal (otherwise, we can force the literal to be true to simplify F). The number of clauses in F is at most
3d
2 since each variable appears in F at most three times and each clause Ci of F contains at least two literals.
The degree G1 is at most 3d since each literal of F is replaced by a product of two variables. The number
of variables in G1 is m = 4d (we create four new variables for each variable in F), which is larger than the
degree of G1.

Create new variables v1, · · · , vm−d1 . For j = 1, · · · ,m − d1, let qj =
∑

x∈H1
xvj . Finally, we get the

polynomial G = 3a(1n)2 ·G1 · q1 · · · qm−d1 , where n = m + (m− d1). Note that 3a(1n)2 in the polynomial G
is considered an integer constant which does not contain any variable. The degree of G is n = d1+2(m−d1) =
m + (m− d1). Thus, the degree of G is the same as the total number of variables in g. We can show that f
is satisfiable if and only if there is a multilinear monomial, which is the product of all variables in G, with
positive coefficient of size at least 3a(1n)2.

Theorem 12. Assume that r(n) is a function from N to N+. If there is a polynomial time algorithm A

such that given a
∏∑ ∏

2 polynomial g(x1, · · · , xn), it gives an r(n)-factor approximation to ∂g(n)(x1,···,xn)
∂x1···∂xn

at the origin point (x1, · · · , xn) = (0, · · · , 0), then P = NP.

Proof: Assume that A(.) is a polynomial time r(n)-approximation for computing ∂g(n)(x1,···,xn)
∂x1···∂xn

at the
origin point (x1, · · · , xn) = (0, · · · , 0).

Assume that f is an arbitrary formula in a (3, 3)-SAT problem. By Lemma 11, we can get a polyno-
mial g(x1, · · · , xn). The derivative ∂g(n)(0,···,0)

∂x1···∂xn
is equal to the coefficient of x1 · · ·xn in the sum of product

expansion of g.
If f is satisfiable, we have A(g) > 0, and if f is not satisfiable, we have A(g) = 0 since A(.) is a r(n)-

approximation and r(n) ≥ 1. We can know if the coefficient of x1 · · ·xn in the sum of product expansion
of g is positive in polynomial time. Thus, (3, 3)-SAT is solvable in polynomial time. Since (3, 3)-SAT is
NP-complete, we have P = NP.

Basing on exponential time hypothesis NP 6⊆ subE [5], we have the following stronger result about the
intractability of high dimension derivative.

Theorem 13. Assume that r(n) is a function from N to N+. If there is a subexponential time algorithm A

such that given a
∏∑ ∏

2 polynomial g(x1, · · · , xn), it gives an r(n)-factor approximation to ∂g(n)(x1,···,xn)
∂x1···∂xn

at the origin point (x1, · · · , xn) = (0, · · · , 0), then NP ⊆ subE.

Proof: Assume that A(.) is a subexponential time r(n)-approximation for computing ∂g(n)(x1,···,xn)
∂x1···∂xn

at
the origin point (x1, · · · , xn) = (0, · · · , 0).

Assume that f is an arbitrary formula in a (3, 3)-SAT problem. By Lemma 11, we can get a polyno-
mial g(x1, · · · , xn). The derivative ∂g(n)(0,···,0)

∂x1···∂xn
is equal to the coefficient of x1 · · ·xn in the sum of product

expansion of g.

10

If f is satisfiable, we have A(g) > 0, and if f is not satisfiable, we have A(g) = 0 since A(.) is a r(n)-
approximation and r(n) ≥ 1. We can know if the coefficient of x1 · · ·xn in the sum of product expansion of
g is positive in subexponential time. Thus, (3, 3)-SAT is solvable in subexponential time. Since (3, 3)-SAT
is NP-complete, we have NP ⊆ subE.

Theorem 14. Let a(1n) be a polynomial time computable function from N to N+. Then there is no poly-
nomial time (a(1n), a(1n))-approximation for ∂g(n)(x1,···,xn)

∂x1···∂xn
with g(x1, · · · , xn) as a

∏∑ ∏
2 polynomial at

the origin point (x1, · · · , xn) = (0, · · · , 0), unless P = NP.

Proof: Assume that App(.) is a polynomial time (a(1n), a(1n))-approximation for computing
∂g(n)(x1,···,xn)

∂x1···∂xn
at the origin point (x1, · · · , xn) = (0, · · · , 0).

Given an arbitrary (3, 3)-SAT instance F , let the
∏∑ ∏

2 polynomial G(x1, · · · , xn) be constructed
according to Lemma 11.

If F is not satisfiable, then we have ∂G(n)(x1,···,xn)
∂x1···∂xn

is zero at the origin point (x1, · · · , xn) = (0, · · · , 0).
Otherwise, it is at least 3a(1n)2.

Assume that F is not satisfiable. Since App(J) is an (a(1n), a(1n))-approximation, we have App(J) ≤
J · a(1n) + a(1n) = a(1n) by the definition in section 2.

Assume that F is satisfiable. Since App(J) is an (a(1n), a(1n))-approximation, we have App(J) ≥ J
a(1n)−

a(1n) ≥ 3a(1n)2

a(1n) − a(1n) = 2a(1n) by the definition in section 2.
Therefore, F is satisfiable if and only if App(J) ≥ 2a(1n). Thus, if there is a polynomial time

(a(1n), a(1n))-approximation, then there is a polynomial time algorithm for solving (3, 3)-SAT. By Lemma 2,
P = NP.

Theorem 15. Let a(1n) be a polynomial time computable function from N to N+. Then there is no subex-
ponential time (a(1n), a(1n))-approximation for ∂g(n)(x1,···,xn)

∂x1···∂xn
at the origin point (x1, · · · , xn) = (0, · · · , 0),

unless NP ⊆ subE.

Proof: The proof is similar to that of Theorem 14.

6. Some Tractable Integrations and Derivatives

In this section, we present some polynomial time algorithms for integration with some restrictions. We also
show a case that the derivative can fully polynomial time approximation scheme.

6.1. Bounded Width Product

Definition 16. A formula f1 · f2 · · · fm is c-wide if for each variables xi, there is an index j such that xi

only appears in fj , fj+1, · · · fj+c−1, where each fi is a sum of monomials.

Theorem 17. There is an O(mn3c) time algorithm to compute the integration
∫
[0,1]d

F (x1, · · · , xd) for a
c-wide formula F (x1, · · · , xd) = f1 · · · fm, where n is the total length of F .

Proof: Apply the divide and conquer method. Convert F into F1GF2 such that G is a product of at
most c sub-formulas fi · · · fj with j − i = c in the middle region of F (we can let i =

⌈
m−c

2

⌉
+ 1, and

j =
⌈

m−c
2

⌉
+ c).

Let S1 be the set of variables that are only in F1, S2 be the set of variables that are only in F2, and S
be the set of variables that appear in G. The set of variables in F is partitioned into S1, S, and S2.

As F1 = f1 · · · fi−1, we convert F1 into F ∗1 = f1 · · · fi−cf
∗
1 , where f∗1 is the product of the last c sub-

formulas: f∗1 = fi−c · · · fi−1. Similarly, as F2 = fj+1 · · · fm, we convert F2 into F ∗2 = f∗2 fj+c · · · fm, where
f∗2 is the product of the first c sub-formulas: f∗2 = fj+1 · · · fj+c. Convert G into the sum of products.

11

We have
∫

[0,1]d
F (x1, · · · , xd)dx1 · · · dxd

=
∫

[0,1]|S|
G · (

∫

[0,1]|S1|
F1dS1) · (

∫

[0,1]|S2|
F2dS2)dS

=
∫

[0,1]|S|
G · (

∫

[0,1]|S1|
F ∗1 dS1) · (

∫

[0,1]|S2|
F ∗2 dS2)dS .

The integration
∫
[0,1]|S1| F1dS1 can be expressed as a polynomial of variables in S. The integration∫

[0,1]|S2| F2dS2 can be expressed as a polynomial of variables in S.
We have the recursive equation for the computational time T (m) = 2T (m/2) + O(n3c). This gives

T (m) = O(mn3c).

6.2. Tractable Derivative

In this section, we show that computing the derivative of a class of
∏∑

polynomial is #P -hard, and also give
a polynomial time randomized approximation scheme by using the theory of testing monomials developed
by Chen and Fu [2, 1].

Definition 18. Let f(x1, · · · , xd) = p1(x1, · · · , xd) · · · pk(x1, · · · , xd) be a
∏∑

polynomial. If for each
pi(x1, · · · , xd), each variable’s coefficient is either 0 or 1, then f is called a

∏∑∗ polynomial.

We show that the derivative for a
∏ ∑∗ polynomial has a polynomial time approximation scheme. Chen

and Fu derived the following theorem by a reduction from the number of perfect matchings in a bipartite.

Theorem 19 (Chen and Fu [1]).

1. There is a polynomial time randomized algorithm to approximate the coefficient of a
∏∑∗ polynomial.

2. It is #P -hard to compute the coefficient of the multilinear x1 · · ·xd in a
∏∑∗ polynomial f(x1, · · · , xd).

Theorem 19 implies Theorem 20.

Theorem 20.

1. Let ε be an arbitrary constant in (0, 1). Then there is a polynomial time randomized algorithm that given
a

∏ ∑∗ polynomial f , it returns a (1 + ε)-approximation for ∂f(x1,···,xd)(d)

∂x1···∂xd
at the point (0, · · · , 0).

2. It is #P -hard to compute ∂f(x1,···,xd)(d)

∂x1···∂xd
at the point (0, · · · , 0) for a

∏∑∗ polynomial f .

Proof: For a
∏∑∗ polynomial f(x1, · · · , xd), its ∂f(x1,···,xd)(d)

∂x1···∂xd
at the point (0, · · · , 0) is identical to the

coefficient of the monomial x1 · · ·xd in the sum of products in the expansion of f(x1, · · · , xd). The theorem
follows from Theorem 19.

7. Conclusions

Using the theory of NP-hardness, we characterize the intractability of approximation for two fundamental
mathematical operations: Integration and derivative in high dimensional space. We may see that this
approach will be applied to determining the computational complexity of more mathematics systems that
involve integration and derivative. We show that derivative for

∏∑∏
2 is #P -hard. Both integration

and derivative for
∏∑∏

polynomials are in the class #P . This shows that derivative is not easier than
integration in the high dimension.

12

References

[1] Z. Chen and B. Fu. Approximating multilinear monomial coefficients and maximum multilinear monomi-
als in multivariate polynomials. Electronic Colloquium on Computational Complexit, ECCC-TR10-124,
2010.

[2] Z. Chen and B. Fu. The complexity of testing monomials in multivariate polynomials. Electronic
Colloquium on Computational Complexit, ECCC-TR10-114, 2010.

[3] Z. Chen, B. Fu, Y. Liu, and R. Schweller. Algorithms for testing monomials in multivariate polynomials.
Electronic Colloquium on Computational Complexity, ECCC-TR10-114, 2010.

[4] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the -65th Annual ACM
Symposium on Theory of Computing, pages 151–158, 1971.

[5] R. Impagliazzo and R. Paturi. The complexity of k-sat. In Proceedings of the 14th IEEE Conference
on Computational Complexity, page 237 240, 1999.

[6] H. Niederreiter. Quasi-monte carlo methods and pseudo-random numbers. Bulletin of the American
Mathematical Society, 84(6):957–1041, 1978.

[7] H. Niederreiter. Random Number Generation and quasi-Monte Carlo Methods, volume 63. SIAM,
Philadelphia, 1992.

[8] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pages 507–516, 2008.

[9] I. H. Sloan and H. Wozniakowski. An intractability result for multiple integration. Math. Comput.,
66(219):1119–1124, 1997.

[10] C. A. Tovey. A simplified satisfiability problem. Discrete Applied Mathematics, 8:85 89, 1984.

[11] W. F. Trench. Advanced Calculus. Harper & Row, New York, 1978.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

