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Abstract

We study the following problem raised by von zur Gathen and Roche [GR97]:

What is the minimal degree of a nonconstant polynomial f : {0, . . . , n} → {0, . . . ,m}?

Clearly, when m = n the function f(x) = x has degree 1. We prove that when m = n− 1 (i.e.
the point {n} is not in the range), it must be the case that deg(f) = n − o(n). This shows an
interesting threshold phenomenon. In fact, the same bound on the degree holds even when the
image of the polynomial is any (strict) subset of {0, . . . , n}. Going back to the case m = n, as
we noted the function f(x) = x is possible, however, we show that if one excludes all degree 1
polynomials then it must be the case that deg(f) = n−o(n). Furthermore, the same conclusion
holds even if m = O(n1.475−ε). In other words, there are no polynomials of intermediate degrees
that map {0, . . . , n} to {0, . . . ,m}.

Moreover, we give a meaningful answer when m is a large polynomial, or even exponential,
in n. Consider the case m = 1

d! ·
(
n−d
2e

)d
. f can of course be a degree d − 1 polynomial, e.g.,

f(x) = xd−1 or even f(x) =
(
x−n/2
d−1

)
(whose range is bounded by

(
n/2
d−1

)
). We show that when

d ≤ 2
15n, either deg(f) ≤ d− 1 or f must satisfy deg(f) ≥ n/3−O(d log n). Stated differently,

if we remove the ‘trivial’ cases where f is of degree at most d− 1, the next example must have
a very high degree. So, again, no polynomial of intermediate degree mapping {0, . . . , n} to{

0, . . . , 1
d! ·
(
n−d
2e

)d}
exists.

We complement these results by showing that for every d = o(
√
n/ log n) there exists

a polynomial f : {0, . . . , n} → {0, . . . , O(nd+0.5)} of degree n/3 − O(d log n) ≤ deg(f) ≤
n−O(d log(n)).

Our work considerably extends the results of [GR97] that studied the case m = 1.
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1 Introduction

In this paper we study the following problem that was raised by von zur Gathen and Roche [GR97]

What is the minimal degree of a nonconstant polynomial f : {0, . . . , n} → {0, . . . ,m}?

As f is defined over n + 1 points, its degree is at most n, so the question basically asks whether
the degree can be much smaller than n. The answer must of course depend on the choice of m.
For example, when m ≥ n we have the polynomial f(x) = x whereas when m = 1 the degree of f
is at least n/2. More generally, using the pigeonhole principle it easily follows that for every m we
have deg(f) ≥ (n + 1)/(m+ 1). The reason that one may expect a meaningful answer is that the
requirement that f takes values in the domain {0, . . . ,m} restricts the freedom that the coefficients
of f a priori had and puts a severe limitation on their structure. Von zur Gathen and Roche were
mainly interested in the case that m is independent of n, but the problem is also relevant when
m = n − 1 and in fact even for m ≥ n. In such cases, one should omit other ‘trivial’ examples
besides the constant functions.

The problem of understanding the degree of univariate polynomials is self explanatory and well
motivated on its own (and, arguably, seems like a ‘classical’ problem), but it is also related to other
questions in theoretical computer science. Specifically, questions of similar nature have been exten-
sively studied in the area of computational complexity. Most notably, the Fourier transform, which
is a way to view a Boolean function as a real multivariate polynomial, has received a lot of atten-
tion and results concerning the Fourier spectrum are ubiquitous in the areas of derandomization,
learning theory, circuit complexity, voting theory and more.

Univariate polynomials correspond to symmetric Boolean functions. Indeed, the value of a
symmetric function on the Boolean cube depends only on the weight of the input and not on
its specific value. Understanding the degree of univariate polynomials that represent symmetric
Boolean functions has been an important goal for the problem of learning symmetric juntas [MOS04,
KLM+09], and for questions related to the complexity of modular circuits (see [Bei93]). The
question studied here concerns symmetric functions from the cube to the integers that take more
than two values. As was shown in [ST10], the problem of understanding integer polynomials that
take three values, {0, 1, 2}, is closely connected to the question of better understanding the Fourier
transform of symmetric Boolean functions.

1.1 Our results

We prove two main results concerning the degree of polynomials over the integers. Both results
present a dichotomy behavior. That is, given a function f : {0, . . . , n} → {0, . . . ,m}, either deg f is
very small (we consider those cases as ‘trivial’) or deg f is very high. The first result gives a strong
lower bound when m is not too large (but still larger than n).

Theorem 1. For every ε > 0 there exists nε such that for every n > nε and f : {0, 1, . . . , n} →
{0, 1, . . . , n1.475−ε}, either deg(f) ≤ 1 or deg(f) ≥ n− 4n/ log logn.

As an immediate corollary we get that if a polynomial tries to “compress” the domain even by
one value, then it must have a nearly full degree.

Corollary 1.1. Let S ( {0, . . . , n} and f : {0, . . . , n} → S be a nonconstant polynomial. Then,
deg(f) ≥ n− 4n/ log logn.
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Note that such a strong result cannot hold for m ≥ n as, for example, the function f(x) = x
maps {0, . . . , n} to itself. Our second main result concerns larger values of m at the price of a
slightly weaker dichotomy.

Theorem 2. There exists a constant n0 such that if d, n are integers satisfying d ≤ 2
15n and n > n0

then the following holds. If f : [0, n]→
{

0, . . . ,
⌊

1√
7d
·
(
n−d
2d

)d⌋}
is a polynomial then deg(f) ≤ d−1

or deg(f) ≥ 1
3n− 1.2555 · [d ln(n−d2d )− 1

2 ln(nd )].

In other words, besides the (“trivial”) case where deg(f) ≤ d− 1, the only other option is that
f has a relatively high degree.

The proof of Theorem 2 relies on the following theorem that gives a lower bound on the maxi-
mum value that any monic polynomial must obtain on the points {0, . . . , n}.

Theorem 3. Let f : R → R be a degree d monic polynomial. Then, maxi=0,1,...,n |f(i)| >
(
n−d
2e

)d
.

In particular, if f : Z→ Z is a degree d polynomial (not necessarily monic) then

max
i=0,1,...,n

|f(i)| > 1
d!
·
(
n− d

2e

)d
≥ 1√

7d
·
(
n− d

2d

)d
.

A related question that was studied (and answered) in the past concerns the minimal maximum
value that monic degree d polynomials obtain on the real interval [−1, 1] (i.e. the minimum, over
all such polynomials, of the maximum absolute value that the polynomial obtains on the interval).
It is well known that the Chebyshev polynomials obtain the minimal maximum value, which is
21−d. In contrast, (after we rescale the input domain) our problem basically asks for the minimal
maximum that a degree d monic polynomial attains at the points {−1,−1 + 2

n , . . . , 1}. This is a
different problem than the original question as we allow the polynomial to take arbitrarily high
values on other points in the interval. However, using the connection to Chebyshev polynomials
we still manage to obtain an improvement of Theorem 3 for d ≤

√
n/2 (Theorem 6 in Section 5.1).

Our next result gives an upper bound on the degree when the range is of size at most exp(o(
√
n)).

Theorem 4. For every large enough integer n > 0 and integer d = o(
√
n/ log n) there exists

f : {0, . . . , n} → {0, . . . , O(nd+0.5)} of degree 2d < deg(f) ≤ n− d log(n).

In particular, by Theorem 2, it holds that n/3 − O(d log n) ≤ deg(f) ≤ n − d log(n). We note
that in [GR97] von zur Gathen and Roche conjectured that any such nonconstant polynomial to
{0, 1} must be of degree n − O(1). While this conjecture is still open, Theorem 4 shows that one
can get polynomials of lower degree when the range is larger, even after excluding the obvious
examples.

Finally, we consider polynomials f : {0, . . . , n} → {0, 1}, where n = p2 − 1 and p is a prime
number. We are able to show that in this case deg(f) ≥ p2− p > n−

√
n. This improves the result

of [GR97] for this special case.

Theorem 5. Let p be a prime number, n = p2 − 1 and f : {0, . . . , n} → {0, 1} be nonconstant.
Then deg(f) ≥ p2 − p > n−

√
n.

We summarize our results in Table 1.
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Lower Bounds on Degree

Ref. Range of f “Trivial” case Excluding “Trivial” case

[GR97] {0, 1} f is constant
deg(f) = n

when n = p− 1, p is prime

[GR97] {0, 1} f is constant deg(f) ≥ n− n0.525

Thm. 5 {0, 1} f is constant
deg(f) ≥ n−

√
n

when n = p2 − 1, p is prime

Cor. 1.1 S ( {0, . . . , n} f is constant deg(f) ≥ n− 4n/ log logn

Thm. 1 {0, 1, . . . , n1.475−ε} deg(f) ≤ 1 deg(f) ≥ n− 4n/ log logn

Cor. 5.4
{

0, . . . ,
⌊
n2−4Γ(n)2

8

⌋}
deg(f) ≤ 1 deg(f) ≥ n/2− 2n/ log log n

Thm. 7 {0, 1, . . . , n2.475−ε} deg(f) ≤ 2 deg(f) ≥ n/2− 2n/ log log n

Thm. 2

{
0, . . . ,

⌊
1√
7d
·
(
n−d
2d

)d⌋}
deg(f) ≤ d− 1

deg(f) ≥
1
3n− 1.2555 ·

[
d ln

(
n−d
2d

)
− 1

2 ln
(
n
d

)]
d ≤ 2

15n

Upper Bounds on Degree

Ex. 5.1
{

0, . . . ,
(n+d−1

2
d

)
≈
(
e(n+d)

2d

)d}
f =

(x−n−d+1
2

d

)

Thm. 4

{
0, . . . , O

(
nd+0.5

)}
deg(f) ≤ d

deg(f) ≤ n− d log n

d = o(
√
n/ log n) (and n/3−O(d log n) ≤ deg(f))

Table 1: Summary of Results
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1.2 Related work

The most relevant result is the work mentioned above of von zur Gathen and Roche [GR97]. There
the problem of understanding the degree of polynomials over the integers that attain only two
values was considered. They showed that when n = p − 1, p prime, it must be the case that
deg(f) = n (when f is not constant). Using the density of prime numbers (see Theorem 2.6) they
concluded that deg(f) ≥ n−o(n) for every n (in the notations of Theorem 2.6, deg(f) ≥ n−Γ(n)).
For the case of a polynomial taking values in {0, . . . ,m}, von zur Gathen and Roche observed
that deg(f) ≥ (n + 1)/(m + 1) and mentioned that their techniques cannot give any result of the
form deg(f) = n − o(n). However, they suggested that “...for each m there is a constant Cm
such that deg(f) ≥ n − Cm for all n.” In particular, when m = O(1), this amounts to having
deg(f) ≥ n−O(1). This conjecture is still open, even for the case m = 1.

Another line of work concerning symmetric Boolean functions F : {0, 1}n → {0, 1} has focused
on bounding from above the minimal size of a nonempty set S such that F̂ (S) 6= 0, where F̂ (S)
is the Fourier coefficient of F at S. We do not want to delve into the definition of the Fourier
transform, so we only mention that when F is balanced, i.e. takes the values 0 and 1 equally often,
this is the same as bounding from below the degree of F ⊕ PARITY, see [KLM+09] for details.
As symmetric Boolean functions can be represented by univariate polynomials from {0, . . . , n} to
{0, 1}, this problem is closely related to the questions studied here. Furthermore, in [ST10] it was
shown that bounding from below the degree of univariate polynomials to {0, 1, 2}, will give an upper
bound on the size of such a set S, even when f is not balanced. Thus, an advance in understanding
the degree of polynomials over the integers that obtain more than two values may shed new light
on a well studied problem concerning the Fourier spectrum of symmetric Boolean functions.

1.3 Proof technique

We give a very rough sketch of the idea of the proof of Theorem 1. Our goal is to show that every
nonlinear polynomial f : {0, . . . , n} → {0, . . . ,m}, for m ∼ n1.475, must have high degree. As the
coefficients of f are determined by the set of values {f(0), f(1), . . . , f(n)}, and in fact are linear
combinations of them, a natural approach is to look at these dependencies and prove that one
of the highest coefficients cannot be zero. Specifically, representing f in the basis of the Newton
polynomials (see Definition 2.2) we get an explicit and nice formula for each coefficient. If f is
not of high degree, many of those coefficients vanish and this gives a set of linear equations that
the values {f(0), f(1), . . . , f(n)} must satisfy. In fact, we manage to get many linear equations
from every zero coefficient. The idea is that if the degree of f is smaller than a prime number p,
then the values f(r) and f(r + p) must be strongly correlated for r ∈ {0, . . . , n − p}. Using such
correlations for many different primes, we obtain a set of special linear equations (which we call
linear recurrence relations) on the values of f . A similar approach was taken in [KLM+09] (and
arguably also in [GR97]) where the authors used different primes to obtain information for the case
m = 1.

It is not clear, however, how to exploit the information from the different primes. We manage
to do so by considering prime numbers that form a ‘nice’ and ‘rigid’ structure that we call a cube
of primes. An r-dimensional cube of primes is a set P = Pp;δ1,...,δr ⊆ [n] of the form

P =

{
p+

r∑
i=1

aiδi | a1, . . . , ar ∈ {0, 1}

}
,
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such that all the elements of P are prime numbers. The idea is that we can partition P , in many
different ways, to pairs of primes such that the differences, between the primes in each pair, are
the same. This enables us to combine the different linear recurrences obtained from each prime in
a way that reveals more information on the values that f takes.

Theorem 2 is an immediate corollary of Theorem 3 whose proof goes along completely different
lines than the proof of Theorem 1. The idea is to observe that since f has at most d roots in
the interval {0, . . . , n} then some point in that interval is relatively far from all roots of f . This
immediately implies that f obtains a large value at this point.

1.4 Organization

The paper is organized as follows. In Section 2 we give the basic definitions and discuss mathemat-
ical tools that we shall later use. In Section 3 we demonstrate our general technique by considering
the case of 2-dimensional cube of primes. In Section 4 we prove Theorem 1 and conclude Corol-
lary 1.1. In Section 5 we prove Theorems 2 and 3 and discuss their tightness. We then present
the connection to Chebyshev polynomials in Section 5.1 and conclude Theorem 6 that improves
Theorem 3 for d ≤

√
n/2. We prove the existence of a polynomial that has degree n − d log n in

Section 6. Finally, in section 7 we consider the case m = 1 and n = p2 − 1 for a prime p.

2 Preliminaries

For two integers a, b we denote with [a, b] the set of all integers between a and b. Namely, [a, b] ,
{c ∈ Z | a ≤ c ≤ b} = {a, a+ 1, . . . , b}. We also denote [m] , [1,m]. We sometimes abuse notation
and speak of the real interval [a, b] (in this case [a, b] = {a ≤ x ≤ b | x ∈ R}). We will always
mention the words ‘real interval’ whenever we speak of the real interval.

For a prime number p and integers a, b we denote a ≡p b when a and b are equal modulo p. For
a polynomial f(x) =

∑n
i=0 aix

i we denote with monom(f) the number of monomials in f . I.e. the
number of nonzero ai’s. We denote the family of all polynomials from [0, n] to [0,m] by Fm(n).
Namely,

Fm(n) = {f ∈ Q[x] | deg(f) ≤ n, f : {0, 1, . . . , n} → {0, 1, . . . ,m}}.

Throughout the paper we avoid the use of floor and ceiling in order not to make the equations
even more cumbersome. This does not affect our results and only makes the reading easier.

We denote by log(·) and ln(·) the logarithms to the base 2 and to the base e (that is, the natural
logarithm) respectively.

In the next subsections we present some well known technical tools that we require for our
proofs.

2.1 Stirling’s formula

We shall make use of the well known Stirling approximation for the factorial function.

Theorem 2.1 (Stirling’s formula). For every natural number n ∈ N it holds that

n! =
√

2πn ·
(n
e

)n
· eλn
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with
1

12n+ 1
< λn <

1
12n

.

A proof of this theorem can be found, e.g., in [Rob55] (see also pages 50-53 of [Fel68]).

2.2 Newton basis

Definition 2.2. For every k ∈ N, define the polynomial
(
x
k

)
as follows(

x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

The set of polynomials
{(

x
k

)
: k ∈ N

}
is called the Newton basis.

It is easy to see that
{(

x
k

)
: k = 0, 1, . . . , d

}
forms a basis to the vector space of polynomials of

degree at most d. An interesting property of the Newton basis is given in the next theorem whose
simple proof can be found in Appendix A.

Theorem 2.3. Let f ∈ Q[x] be a polynomial of degree ≤ n. Then f can be represented as

f(x) =
n∑
d=0

γd ·
(
x

d

)
where γd =

d∑
j=0

(−1)d−j ·
(
d

j

)
· f(j) .

As noted in [GR97], Theorem 2.3 implies that a polynomial f is of degree smaller than d iff for
all d ≤ s ≤ n it holds that

s∑
j=0

(−1)j
(
s

j

)
f(j) = (−1)sγs = 0 .

As an immediate corollary we get the following useful lemma.

Lemma 2.4. Let f : [0, n]→ Z be such that deg(f) < d. Then for all r ∈ [0, n− d] we have that

d∑
j=0

(
d

j

)
· (−1)j · f(j + r) = 0 .

Proof. For r ∈ [0, n− d] set gr(x) = f(x+ r). We think of gr as a function gr : [0, n− r]→ Z. As
deg(gr) = deg(f) < d, Theorem 2.3 implies that

d∑
j=0

(−1)j
(
d

j

)
f(j + r) =

d∑
j=0

(−1)j
(
d

j

)
gr(j) = 0 .
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2.3 Lucas’ theorem

The following theorem of Lucas [Luc78] allows one to compute a binomial coefficient modulo a
prime number. In Appendix B we give one of the many known proofs.

Theorem 2.5 (Lucas’ theorem). Let a, b ∈ N \ {0} and let p be a prime number. Denote with

a = a0 + a1p+ a2p
2 + · · ·+ akp

k and b = b0 + b1p+ b2p
2 + · · ·+ bkp

k

their base p expansion. Then (
a

b

)
≡p

k∏
i=0

(
ai
bi

)
,

where
(
ai
bi

)
= 0 if ai < bi.

2.4 The gap between consecutive primes

Denote with pn the n-th prime number. Understanding the asymptotic behavior of pn+1 − pn is a
long standing open question in number theory. Cramér conjectured that pn+1 − pn = O((log pn)2)
and, assuming the correctness of Riemann hypothesis, he proved that pn+1 − pn = O(

√
pn log pn)

[Cra36]. The strongest unconditional result is due to Baker et al. [BHP01].1 Denote with π(n) the
number of primes numbers less than or equal to n.

Theorem 2.6 ([BHP01]). For any large enough integer n and any y ≥ n0.525 we have that

π(n)− π(n− y) ≥ 9
100
· y

log n
.

For convenience, we denote
Γ(n) , n0.525 .

We will usually apply the theorem above to claim, for some integer n, that there exists a prime
number p ∈ [n− Γ(n), n].

2.5 Linear recurrence relations

Definition 2.7. Let Φ(t) =
∑s

i=0 αit
i be a polynomial with rational coefficients.2 For f ∈ Q[x] we

define the action of Φ on f as

(Φ ◦ f)(x) ,
s∑
i=0

αi · f(x+ i) .

When we consider Φ as an operator acting on other polynomials, we call Φ a linear recurrence
polynomial.

From now on we will always denote linear recurrence polynomials with capital Greek letters:
Φ,Ψ,Υ. Following is a list of properties of linear recurrence polynomials.

1The main theorem of [BHP01] only claims that there exists a prime number in the interval [n−n0.525, n], however
they actually prove the stronger claim that is stated here.

2There is nothing special about Q and the only reason that we use it is that in our proofs we encounter rational
coefficients.
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Lemma 2.8. For polynomials f, g and linear recurrences Φ,Φ′ the following claims hold.

1. Φ ◦ f ∈ Q[x].

2. deg(Φ ◦ f) ≤ deg(f).

3. (Φ + Φ′) ◦ f = Φ ◦ f + Φ′ ◦ f .

4. Φ ◦ (f + g) = Φ ◦ f + Φ ◦ g.

5. (Φ · Φ′) ◦ f = Φ ◦ (Φ′ ◦ f).

Proof. Properties 1-4 follow trivially from the definition. Property 5 follows by a simple calculation.
Denote, w.l.o.g., Φ(t) =

∑d
i=0 αix

i and Φ′(t) =
∑e

j=0 βjx
j . We have that

(
Φ · Φ′

)
◦ f(x) =

 d∑
i=0

e∑
j=0

αiβjx
i+j

 ◦ f(x) =
d∑
i=0

e∑
j=0

αiβjf(x+ i+ j)

=
d∑
i=0

αi

 e∑
j=0

βjf (x+ i+ j)


︸ ︷︷ ︸

(Φ′◦f)(x+i)

=
(
Φ ◦ (Φ′ ◦ f)

)
(x) .

While property 2 of Lemma 2.8 states the obvious fact that applying a linear recurrence cannot
increase the degree, the following lemma assures that the degree can decrease by (roughly) at most
the number of monomials in the linear recurrence polynomial.

Lemma 2.9. Let f ∈ Q[x] be a nonconstant polynomial and let Φ(t) =
∑s

i=1 αi · tdi be some linear
recurrence, Φ 6= 0. Then, for g = Φ ◦ f we have that

deg(f) ≤

{
s− 2 g ≡ 0
s+ deg(g)− 1 otherwise

Proof. As Φ 6= 0 we can assume w.l.o.g. that the exponents d1, . . . , ds are distinct (indeed if
they are not distinct then we can rewrite Φ as a polynomial with s′ < s monomials and obtain
stronger results). Similarly, if deg(f) ≤ s − 2 then we are done. So, we may assume w.l.o.g.
that deg(f) ≥ s − 1. Let f(x) =

∑D
`=0 bix

i, where bD 6= 0. Let U be a (D + 1) × (D + 1)
lower triangular matrix whose (i, j) entry (for i, j = 0, . . . , D) is Ui,j , bD+j−i ·

(
D+j−i

j

)
(where

bD+j−i = 0 if j > i). This is clearly a lower triangular matrix with a nonzero diagonal. Let V
be a (D + 1) × s Vandermonde matrix defined as (for i = 0, . . . , D and j = 1, . . . , s) Vi,j , (dj)i.
It is now easy to verify that the coefficients of the polynomial g = Φ ◦ f are the result of the
matrix-vector multiplication U · V · ~α where ~α = (α1, . . . , αs). Namely, if g(x) =

∑D
i=0 cix

i then
(cD, . . . , c0) = U · V · ~α. I.e. cD−r = (U · V · ~α)r. Indeed,

(Φ ◦ f)(x) =
s∑
i=1

αif(x+ di) =
s∑
i=1

αi

D∑
j=0

bj(x+ di)j =
s∑
i=1

αi

D∑
j=0

bj

j∑
k=0

(
j

k

)
dj−ki xk =

D∑
k=0

xk
D∑
j=k

bj

(
j

k

) s∑
i=1

αid
j−k
i =

D∑
k=0

xk
D−k∑
`=0

b`+k

(
`+ k

k

) s∑
i=1

αid
`
i .
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Hence, the coefficient of xD−r is:

r∑
`=0

b`+D−r

(
`+D − r
D − r

) s∑
i=1

αid
`
i =

r∑
`=0

Ur,`(V · ~α)` =
D∑
`=0

Ur,`(V · ~α)` = (U · V · ~α)r .

As the first s rows (recall that D + 1 = deg(f) + 1 ≥ s) of U · V form an invertible matrix (as a
product of a Vandermonde matrix with a lower triangular matrix that has a nonzero diagonal), we
see that the top s coefficients of g are zero iff ~α = 0 (which is a contradiction to the assumption).
Hence, the degree of g is at least D − s+ 1 = deg(f)− s+ 1.

3 Warm up

In this section we prove some preliminary results that give good intuition to the proofs of Theorem 1
(and also to the proof of Theorem 7). Similarly to other works that studied the degree of polynomials
over the integers [GR97, KLM+09], we shall consider properties of the polynomial modulo different
prime numbers.

As a first step we show that if f ∈ Fn−1(n) is of low degree then it is actually a constant
function. The proof of the lemma already contains some of the ingredients that we will later use
in a more sophisticated manner.

Lemma 3.1. Let f ∈ Fn−1(n) be such that deg(f) < n/6− Γ(n), then f is a constant.

Proof. Let p ∈ [n/2, n/2 + Γ(n)] be a prime number, guaranteed to exist by Theorem 2.6. Since
deg(f) < p, Lemma 2.4 implies that for all r ∈ [0, n/2− Γ(n)] ⊆ [0, n− p] we have that

0 =
p∑

k=0

(−1)k
(
p

k

)
f(k + r) ≡p f(r)− f(p+ r) .

In particular, if we define g by g(r) = f(r)−f(p+r)
p , then we have that g : [0, n/2 − Γ(n)] → [−1, 1]

(indeed, f(r)−f(p+r) ∈ [−n+1, n−1]). Clearly, g+1 ∈ F2(n). Note that if g is not constant then
its degree must be at least (n/2−Γ(n))/3 as one of the values in its range is obtained at least that
many times. Since in this case n/6− Γ(n) < deg(g) ≤ deg(f) we get a contradiction. Therefore, g
must be constant. However, in this case we get by Lemma 2.9 that deg(f) ≤ deg(g) + 2 − 1 = 1.
Indeed, for Φ(t) = 1

p −
1
p t
p, it holds that g = Φ ◦ f . Hence, deg(f) ≤ 1. Since the range of f is

smaller than its domain (and f takes integer values), f is constant.

Clearly, for m ≥ n, we cannot expect such a strong behavior (that is, degree 0 as apposed to
degree Ω(n)). However, the following lemma, which relies on Lemma 3.1, shows that a slightly
weaker dichotomy behavior exists for m which is roughly quadratic in n. We later strengthen this
result (Corollary 5.4).

Lemma 3.2. Let m < n2−4Γ(n)2

8 be an integer and f ∈ Fm(n) be such that deg(f) < n/12− Γ(n),
then deg(f) ≤ 1.

Proof. Let p ∈ [n2 − Γ(n), n2 ] be a prime number, guaranteed to exist by Theorem 2.6. As before,
Lemma 2.4 implies that for all r ∈ [0, n− p] we have that

0 =
p∑

k=0

(−1)k
(
p

k

)
f(k + r) ≡p f(r)− f(p+ r) .

9



In particular, if we define g by g(r) = f(r)−f(p+r)
p , then we have that g : [0, n− p]→ [−m/p,m/p].

Clearly, g + m
p ∈ F 2m

p
(n− p), and

2
m

p
<

(n2 − Γ(n))(n2 + Γ(n))
p

≤ n− p .

Hence, g + m
p is actually in Fn−p−1(n− p), and

deg(g +
m

p
) ≤ deg(f) ≤ n

12
− Γ(n) ≤ n− p

6
− Γ(n− p) .

Now we can apply Lemma 3.1 to conclude that g+ m
p is constant. From Lemma 2.9 it follows that

deg(f) ≤ 1 which completes the proof.

We note that the choice m < n2−4Γ(n)2

8 is very close to being tight. Indeed, assume that n is

odd and consider the function f : [0, n]→ [0, n
2−1
8 ] defined as f(x) =

(x−n−1
2

2

)
.

An important ingredient in the proof of Theorem 1 is the use of prime numbers that form a
structure analogous to a cube. To illustrate our approach, consider four prime numbers of the form
p < p+ δ1 < p+ δ2 < p+ δ1 + δ2. Using Theorem 2.6 one can show that such primes exist and that
we can even choose them so that they all lie in an interval of the form [n/3− o(n), n/3].

Lemma 3.3. Let n be a large enough integer. Then, there exist four prime numbers

n

3
− Γ(n) ≤ p < p+ δ1 < p+ δ2 < p+ δ1 + δ2 ≤

n

3
.

Proof. The lemma follows from the more general Lemma 4.1 that is proved in Section 4.1, however,
for clarity we prove this special case here.

Theorem 2.6 guarantees that for a large enough n there are at least3 Γ(n)/12 log(n) prime
numbers in the interval [n/3−Γ(n), n/3]. Consider all possible differences between two primes in this
set. There are at least, say, 1

3(Γ(n)/12 log(n))2 such differences. As all the differences are smaller

than Γ(n) it follows that one of the differences is obtained for at least
1
3

(Γ(n)/12 log(n))2

Γ(n) ≥ Γ(n)

500 log2(n)

many pairs of primes. Denote the i-th pair with (pi,1, pi,2) where pi,1 < pi,2. Consider any two
distinct pairs in the set, (p1,1, p1,2) and (p2,1, p2,2). Denote δ1 = p1,2 − p1,1 = p2,2 − p2,1 and
δ2 = |p1,1−p2,1| > 0. We have that 0 < δ1 +δ2 < Γ(n). In particular, {p1,1, . . . , p2,2} is the required
cube.4

As a warmup for our main result and to demonstrate our proof technique we shall prove here
the following easier theorem.

Theorem 3.4. If f ∈ Fm(n), where m < n/7, is nonconstant then deg(f) ≥ 2n/3− 2Γ(n).

Although the theorem is much weaker than Theorem 1, its proof demonstrates our general
technique and, hopefully, will make the proof of Theorem 1 easier to follow.

3There is nothing special about 12, it is just a large enough constant.
4We can of course make sure that p2,1 6= p1,2, and hence δ1 6= δ2, by ‘throwing’ away one pair.
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Proof. Let p, δ1, δ2 be as guaranteed in Lemma 3.3. Assume for a contradiction that f ∈ Fm (n) is
such that deg(f) < 2n/3 − 2Γ(n) ≤ 2p. Consider the identity guaranteed by Lemma 2.4 modulo
each of the four primes. For example, taking s = 2p (in the notations of Lemma 2.4), we get that
for all r = 0, . . . , n− 2p

0 =
2p∑
k=0

(−1)k
(

2p
k

)
f(k + r) ≡p f(r)− 2f(p+ r) + f(2p+ r) . (1)

Since |f(r)− 2f(p+ r) + f(2p+ r)| < 2n/7 < p, Equation (1) is actually satisfied over the integers.
Namely, f(r)−2f(p+r)+f(2p+r) = 0. In the same manner we get, for all r ∈ [0, n−2(p+δ1 +δ2)]

f0,0(r) , f(r)− 2f(p+ r) + f(2p+ r) = 0 ,
f1,0(r) , f(r)− 2f(p+ δ1 + r) + f(2p+ 2δ1 + r) = 0 , (2)
f0,1(r) , f(r)− 2f(p+ δ2 + r) + f(2p+ 2δ2 + r) = 0 ,
f1,1(r) , f(r)− 2f(p+ δ1 + δ2 + r) + f(2p+ 2δ1 + 2δ2 + r) = 0 .

We now show how to combine these equations in a way that will give information not only for small
values of r (i.e. r ≤ n− 2(p+ δ1 + δ2)) but also for larger values of r. By considering the following
linear combinations of the equalities f0,0, . . . , f1,1 we get that for r ∈ [0, n− 2(p+ δ2 + 2δ1)] it holds
that

0 = f0,0(r + 2δ1)− f1,0(r) = f(r + 2δ1)− f(r)− 2f(p+ r + 2δ1) + 2f(p+ r + δ1) ,
0 = f0,1(r + 2δ1)− f1,1(r) = f(r + 2δ1)− f(r)− 2f(p+ r + 2δ1 + δ2) + 2f(p+ r + δ1 + δ2) .

Therefore,

0 = (f0,0(r + 2δ1 + δ2)− f1,0(r + δ2))− (f0,1(r + 2δ1)− f1,1(r))
= f(r + 2δ1 + δ2)− f(r + δ2)− f(r + 2δ1) + f(r) . (3)

Similarly,

0 = −1
2
· ((f0,0(r + 2δ1)− f1,0(r))− (f0,1(r + 2δ1)− f1,1(r)))

= f(p+ r + 2δ1)− f(p+ r + δ1)− f(p+ r + 2δ1 + δ2) + f(p+ r + δ1 + δ2) (4)

and

0 = f0,0(r + δ1)− f1,0(r)− f0,1(r + δ1) + f1,1(r)
= f(2p+ r + δ1)− f(2p+ r + 2δ1)− f(2p+ r + δ1 + 2δ2) + f(2p+ r + 2δ1 + 2δ2) . (5)

We thus get the following equations for every 0 ≤ r ≤ n− 2(p+ δ1 + δ2)

0 = f(r + 2δ1 + δ2)− f(r + δ2)− f(r + 2δ1) + f(r) (6)
0 = f(p+ r + 2δ1)− f(p+ r + δ1)− f(p+ r + 2δ1 + δ2) + f(p+ r + δ1 + δ2) (7)
0 = f(2p+ r + δ1)− f(2p+ r + 2δ1)− f(2p+ r + δ1 + 2δ2) + f(2p+ r + 2δ1 + 2δ2) (8)
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These equations give linear recurrence relations on the values of f on the intervals [0, n − 2p −
2(δ1 + δ2)], [p, n− p− 2(δ1 + δ2)] and [2p, n− 2(δ1 + δ2)]. Indeed, Equations 7 and 8 are equivalent
to

0 = f(r + 2δ1)− f(r + δ1)− f(r + 2δ1 + δ2) + f(r + δ1 + δ2)
0 = f(r + δ1)− f(r + 2δ1)− f(r + δ1 + 2δ2) + f(r + 2δ1 + 2δ2) (9)

for r ∈ [p, n− p− 2(δ1 + δ2)] and r ∈ [2p, n− 2(δ1 + δ2)], respectively. Let

Φ(t) = (t2δ1+δ2 − tδ2 − t2δ1 + 1) · (t2δ1 − tδ1 − t2δ1+δ2 + tδ1+δ2) · (tδ1 − t2δ1 − tδ1+2δ2 + t2δ1+2δ2) (10)

It follows that (Φ◦f)(r) = 0 for all r ∈ [0, n−2p−6(δ1+δ2)]∪[p, n−p−6(δ1+δ2)]∪[2p, n−6(δ1+δ2)]
(see Property 5 in Lemma 2.8).5 We have two cases:

• The three ranges are distinct. In this case, Φ ◦ f has at least 3 · (n − 2p − 6(δ1 + δ2)) ≥
n− 18(δ1 + δ2) many roots.

• The three ranges overlap. In this case, Φ ◦ f has at least n− 6(δ1 + δ2) many roots.

Either way, Φ ◦ f has at least n − 18(δ1 + δ2) many roots. We conclude that either Φ ◦ f ≡ 0 or
deg(Φ ◦ f) ≥ n− 18(δ1 + δ2). As deg(Φ ◦ f) ≤ deg(f) < 2

3n < n− 18(δ1 + δ2) it must be the case
that Φ ◦ f ≡ 0. Hence, by Lemma 2.9 it follows that deg(f) = O(1). However, at this point we can
apply Lemma 3.1 and conclude that f is constant.

In the general case, we will not be able to deduce that in (the analogous equation to) Equa-
tion (2) the sum is equal to 0, but rather we will only bound it from above. Furthermore, we will
work with 2Ω(log logn) many prime numbers that form a structure of an Ω(log log n)-dimensional
cube (in the sense that {p, p+ δ1, p+ δ2, p+ δ1 + δ2} is a 2-dimensional cube). This will make the
construction of the relevant Φ more complicated, but the high level ideas will be similar.

4 Proof of Theorem 1

In this section we prove Theorem 1. We repeat it for the sake of readability.

Theorem (Theorem 1). For every ε > 0 there exists nε such that for every n > nε and f :
{0, 1, . . . , n} → {0, 1, . . . , n1.475−ε}, either deg(f) ≤ 1 or deg(f) ≥ n− 4n/ log log n.

Proof of Theorem 1. For convenience, set η = log log(n)/2 and m = n1.475−ε. Let f ∈ Fm(n) be a
function such that

deg(f) < n · (1− 2
η

) = n− 4n
log log n

.

As was demonstrated in Section 3, we will consider the behavior of f modulo various prime numbers
that form a high dimensional cube of primes. The existence (and properties) of this structure is
guaranteed by the next lemma.

5The change in the range of r occurs since we want all the evaluations points of Φ ◦ f to be inside the interval
[0, n].
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Lemma 4.1. Let 0 < ε < 1/2, there exists n0(ε) such that for any n > n0(ε) and η = log log(n)/2,
there exists a set

Pp;δ0,δ1,δ2,...,δη =

{
p+

η∑
i=0

ai · δi | ∀i ai ∈ {0, 1}

}
⊆
[

n

η + 1
− 4Γ(n),

n

η + 1
− Γ(n)

]
with the following properties:

1. Every q ∈ Pp;δ0,δ1,δ2,...,δη is a prime number.

2. δi > 0 for all i = 1, . . . , η.

3. ∆ ,
∑η

i=1 δi ≤ nε.

4. δ0 ∈ [Γ(n), 3Γ(n)].

We defer the proof of the lemma to Section 4.1 and continue with the proof of Theorem 1. We
shall consider two subcubes of Pp;δ0,δ1,δ2,...,δη . Denote B , Pp;δ1,δ2,...,δη and B0 , Pp+δ0;δ1,δ2,...,δη .
Note that in both B,B0 we do not consider shifts by δ0. Let q ∈ Pp;δ0,δ1,δ2,...,δη = B ∪B0 be a prime
number. From the construction of Pp;δ0,δ1,δ2,...,δη it follows that (for a large enough n)

deg(f) < n · (1− 2
η

) <
n

η + 2
· η < qη . (11)

Combining Lemma 2.4 and Lucas’ theorem (Theorem 2.5) we get that for every r ∈ [0, n − qη] it
holds that

0 =
qη∑
j=0

(
qη

j

)
· (−1)j · f(j + r) ≡q

η∑
j=0

(
η

j

)
· (−1)j · f(qj + r) . (12)

Notice that this equality is analogous to Equation (1) from the proof of Theorem 3.4. Since
f ∈ Fm(n) we can rewrite Equation (12) as

η∑
j=0

(
η

j

)
· (−1)j · f(qj + r) = Kq,r(f) · q, (13)

where

|Kq,r(f)| < 2η ·m
q

<
2η ·m

n/(η + 2)
=
m

n
· 2η · (η + 2) <

m

n
· 22η = n0.475−ε · 22η . (14)

Thus, instead of summing to 0 as was the case in Equation (2), we get that the sum equals
a relatively small (i.e., at most poly log(n) · n0.475−ε) multiple of q. In the language of linear
recurrence, when applying the linear recurrence

Ψq(t) =
η∑
j=0

(
η

j

)
· (−1)j · tqj (15)

to f we get
(Ψq ◦ f)(r) = Kq,r(f) · q (16)
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for every r ∈ [0, n − qη]. We now combine all the different Ψq’s to obtain a linear recurrence in
an analogous way to the way that we combined the different equalities in (2) to create the linear
recurrences given by (6),(7) and (8). Let p̃ be either p or p+δ0. We will cancel out all the monomials
of the linear recurrence except those whose exponents lie in a small range: [p̃k, p̃k+ η∆]. Consider
the following linear recurrence for k ∈ [0, η]

Φ′p̃,k(t) =
∑

~a∈{0,1}η
(−1)

∑η
i=1 ai ·Ψ(p̃+

∑η
i=1 ai·δi)(t) · t

∑k
i=1 (1−ai)·(i−1)·δi+

∑η
i=k+1 (1−ai)·i·δi . (17)

The reason for this complicated looking expression will become clear soon when we show that
this linear recurrence give information about f(r) for r ∈ [p̃k, p̃k + n − η(p̃ + ∆)] (recall that
∆ =

∑η
i=1 δi ≤ nε). The following claim shows that indeed Φ′p̃,k has the required property. To

simplify the statement of the claim let6

c~a,k,k(i) ,


k if ai = 1
i− 1 if ai = 0 and i ≤ k
i if ai = 0 and i ≥ k + 1

(18)

Claim 4.2. Φ′p̃,k(t) = tkp̃ · (−1)k ·
(
η
k

)
·
∑
~a∈{0,1}η (−1)

∑η
i=1 ai · t

∑η
i=1 c~a,k,k(i)·δi .

To ease the reading we postpone the proof of the claim to Section 4.2 and proceed with the
proof of Theorem 1. Claim 4.2 has two interesting consequences. The first is that p̃ only appears
in the term tkp̃. The second is that Φ′p̃,k is actually divisible by tkp̃. In particular if we set

Φp̃,k(t) , Φ′p̃,k(t)/t
kp̃ (19)

then we get that Φp̃,k gives a recurrence relation for every r ∈ p̃k+ [0, n− η(p̃+ ∆)] = [p̃k, p̃k+n−
η(p̃ + ∆)]. This is similar to the way that we obtained Equation (9) from Equations (6),(7) and
(8). Furthermore, since we factored out the term tkp̃, it follows that

Φp,k = Φp+δ0,k . (20)

We now wish to better understand the value of Φp̃,k ◦ f . Equations (16),(17) and (19) imply that
for

Lp̃,r(f) ,
∑

~a∈{0,1}η
(−1)

∑η
i=1 ai ·K(p̃+

∑η
i=1 ai·δi),r′~a

(f) (21)

and
Lp̃,j,r(f) ,

∑
~a∈{0,1}η :aj=1

(−1)
∑η
i=1 ai ·K(p̃+

∑η
i=1 ai·δi),r′~a

(f) (22)

where

r′~a , r − kp̃+
k∑
i=1

(1− ai) · (i− 1) · δi +
η∑

i=k+1

(1− ai) · i · δi ,

we have that

(Φp̃,k ◦ f)(r) = Lp̃,r(f) · p̃+
η∑
i=1

Lp̃,i,r(f) · δi . (23)

6In the proof of Claim 4.2 we use the more general notation c~a,j,k(i).
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Notice that

r′~a ∈ [0, n− η(p̃+
η∑
i=1

ai · δi)] .

From the bound in Equation (14) it follows that

|Lp̃,r(f)| < 23η · n0.475−ε and |Lp̃,i,r(f)| < 23η−1 · n0.475−ε . (24)

The following claim shows that we actually have Lp,r(f) = Lp+δ0,r(f) = 0, so, in fact,

(Φp̃,k ◦ f)(r) =
η∑
i=1

Lp̃,i,r(f) · δi . (25)

Therefore,
|(Φp̃,k ◦ f)(r)| ≤ 23η−1 · n0.475−ε ·∆ ≤ 23η−1 · n0.475 . (26)

Claim 4.3. Lp,r(f) = Lp+δ0,r(f) = 0.

We defer the proof of the claim to Section 4.2 and proceed with the proof of the theorem. The
good thing about Equation (26) is that it will allow us to reduce to the case of a polynomial with
a bounded range. This somewhat resembles the way that we concluded the proof of Theorem 3.4,
although it is done in a slightly more involved manner. Let

Υ(t) =
η∏
i=0

Φp,i(t) and Υk(t) =
Υ(t)
Φp,k

.

We now bound the value of
g(r) , (Υ ◦ f)(r)

for r ∈ [kp, kp + n − η(p + ∆) − deg(Υk)]. Notice that g(r) = (Υk ◦ (Φp,k ◦ f))(r). Furthermore,
Υk(t) =

∏
i 6=k Φp,i(t). Claim 4.2 implies that each Φp,i(t) contains 2η monomials 7, and that its

coefficients are upper bounded (in absolute value) by 2η. Therefore, since Υk(t) is a product of
η such Φp,i’s, it follows that Υk(t) is a sum of 2η

2
monomials with coefficients upper bounded (in

absolute value) by 2η
2

. Moreover, as a polynomial, the degree of each Φp,i(t) is at most η ·∆ (this
follows as c~a,k,k ≤ η). Hence, the degree of Υk(t) is at most η2 ·∆. Thus, we have that

Υk(t) =
2η

2∑
i=1

αi · tdi where 0 ≤ di ≤ η2 ·∆ , and |αi| ≤ 2η
2
.

This implies that for every k ∈ [0, η] and every8

r ∈ Ik , [kp, kp+ n− η(p+ ∆)− deg(Υk)]
7Note that here we allow different monomials with the same exponent
8The drop by deg(Υk) in the range of relevant r’s is so that r + di will be in the range [kp, kp+ n− η(p+ ∆)].
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we have that

|g(r)| = |(Υk ◦ (Φp,k ◦ f))(r)| =

∣∣∣∣∣∣
2η

2∑
i=1

αi · (Φp,k ◦ f)(r + di)

∣∣∣∣∣∣
≤

2η
2∑

i=1

|αi| · |(Φp,k ◦ f)(r + di)| ≤ 2η
2 · 2η2 · 23η−1 · n0.475 ≤ n0.475+o(1) , (27)

where we also used the bound on |Φp,k ◦ f | given in (26). Notice that the size of the interval Ik
satisfies

|Ik| = n− η(p+ ∆)− deg(Υk) + 1 > n− η(
n

η + 1
− n0.525)− deg(Υk) + 1 >

n

η + 1
> p

and therefore every two consecutive intervals Ik and Ik+1 have a nonzero intersection. Hence, we
conclude that for every r ∈ [0, n− η∆− deg(Υη)] (note that n− η∆− deg(Υη) is the endpoint of
Iη) it holds, by (27), that |g(r)| ≤ n0.475+o(1) < n0.5. We thus have that

g : [0, n− η∆− deg(Υη)]→ [−n0.5, n0.5] . (28)

In addition we have (by Lemma 2.8) that

deg(g) ≤ deg(f) < ηp . (29)

We now would like to show that deg(g) is small and then use Lemmas 2.9 and 3.2 to conclude that
f is constant. Before applying Lemma 2.9, we must ensure that Φp,k(t) 6= 0.

Claim 4.4. For every k ∈ [0, η] it holds that Φp,k(t) 6= 0.

We defer the proof of Claim 4.4 and continue with the proof of the Theorem. Assume first that
g is not a constant. The point is that now we can repeat the whole proof for g instead of f , with
n′ = n − η∆ − deg(Υη) instead of n. Note that due to the bound on the range of g we get that
Equation (14), applied to g instead of f , gives

|Kq,r(g)| < 2η · n0.5

q
<

2η · n0.5

n/(η + 2)
< 1.

I.e. Kq,r(g) = 0. Continuing, we see that (Φp̃,k ◦g)(r) = 0 for r ∈ [p̃k, p̃k+n′−η(p̃+∆)]. Therefore,
if we define h = Υ ◦ g then for every k ∈ [0, η] and r ∈ I ′k , [kp, kp + n′ − η(p + ∆) − deg(Υk)]
we have that h(r) = 0. As before, we see that any two consecutive intervals I ′k and I ′k+1 have a
nonzero intersection. Indeed

|I ′k| = n′ − η(p+ ∆)− deg(Υk) + 1 = n− ηp− 2η∆− deg(Υk)− deg(Υη) + 1

>(∗) n− η(
n

η + 1
− n0.525)− 2(η∆ + η2∆) >

n

η + 1
> p

where inequality (∗) follows from the properties of the construction in Lemma 4.1. It therefore
follows that h(r) is zero for all r ∈ [0, n′ − η∆− deg(Υη)]. Thus, if h 6≡ 0 then it must be the case
that deg(h) ≥ n′ − η∆− deg(Υη) + 1 > (η + 1)p. Since deg(g) ≥ deg(h) we get that

deg(g) ≥ (η + 1)p . (30)
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Combining Equations (29) and (30) yields a contradiction. On the other hand, if h ≡ 0 then by
Lemma 2.9,

deg(g) ≤ monom(Υ)− 2 .

However, if this is the case then applying Lemma 2.9 again yields that

deg(f) ≤ deg(g) + monom(Υ)− 1 ≤ 2 ·monom(Υ)− 3 ≤ 2η
2+η+1 − 3 = o(n) .

Lemma 3.2 now implies that f is constant.
On the other hand, if g is constant (in which case there was no point in trying to run the

argument again for g) then applying Lemmas 2.9 and 3.2 again we conclude that in this case too
f is a constant.

This completes the proof of the theorem (the missing proofs are given in Sections 4.1 and
4.2).

Corollary 1.1 follows immediately from Theorem 1. Indeed, as S is contained in and not equal
to the domain [0, n], any function with degree at most 1 is in fact a constant function.

4.1 A cube of primes

We shall now prove Lemma 4.1. To ease the reading we repeat the statement of the lemma.

Lemma (Lemma 4.1). Let 0 < ε < 1/2, there exists n0(ε) such that for any n > n0(ε) and
η = log log(n)/2, there exists a set

Pp;δ0,δ1,δ2,...,δη =

{
p+

η∑
i=0

ai · δi | ∀i ai ∈ {0, 1}

}
⊆
[

n

η + 1
− 4Γ(n),

n

η + 1
− Γ(n)

]
with the following properties:

1. Every q ∈ Pp;δ0,δ1,δ2,...,δη is a prime number.

2. δi > 0 for all i = 1, . . . , η.

3. ∆ ,
∑η

i=1 δi ≤ nε.

4. δ0 ∈ [Γ(n), 3Γ(n)].

As in the proof of Lemma 3.3, the proof of Lemma 4.1 is by the pigeonhole principle and relies
on Theorem 2.6.

Proof of Lemma 4.1. The high level idea is the same as in the proof of Lemma 3.3. However,
since we are looking for η-dimensional ‘cubes’ it will be convenient to first prove the following
combinatorial lemma. Note that the lemma does not necessarily concern prime numbers.

Lemma 4.5. Let A ⊆ [a1, a2] and let

` = a2 − a1, α = |A|/` .

Then, if r ≤ log log(`)− log log( 4
α), there is an r-dimensional ‘cube’ which is a subset of A

Px;δ1,...,δr ,

{
x+

r∑
i=1

ai · δi | ∀i ai ∈ {0, 1}

}
⊆ A

where δi > 0 for i = 1, 2, . . . , r.
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Note that we do not require that the δi’s are distinct.

Proof. We shall prove, by induction on r that for every r ∈ [0, log log(`) − log log( 4
α)], there exist

δ1, . . . , δr such that there are at least `·α2r

42r−1 r-dimensional cubes Px;δ1,...,δr (with different x’s) inside
A.

The case r = 0: This case is trivial as there are exactly ` · α = |A| elements in A, each is a
0-dimensional ‘cube’.

The induction step: Assume that we already proved the claim for r and we wish to prove it for
r + 1. Consider the smallest number in each r-dimensional cube that was found in the r-th step.
By the induction hypothesis we have `·α2r

42r−1 such different numbers, all of which in A ⊆ [a1, a2].

Looking at all the differences between those numbers, we get that if `·α2r

42r−1 ≥ 2 then there are

at least
(
`·α2r

42
r−1

2

)
≥ 1

4

(
`·α2r

42r−1

)2
many such differences, all between 1 and `. Using the pigeonhole

principle, we conclude that there is a ‘popular’ difference, δr+1, with at least 1
` ·

1
4 ·
(
`·α2r

42r−1

)2
many

occurrences. For such a ‘popular’ difference δr+1 and every pair of cubes at distance δr+1 we have
that

Px;δ1,δ2,...,δr ∪ Px+δr+1;δ1,δ2,...,δr = Px;δ1,δ2,...,δr,δr+1 .

This gives the required
1
4`
·
(
` · α2r

42r−1

)2

=
` · α2r+1

42r+1−1

(r + 1)-dimensional cubes.
To conclude the proof of Lemma 4.5 we need to show that for r ≤ log log(`) − log log( 4

α), it

holds that `·α2r

42r−1 ≥ 2, which is equivalent to showing that ` ≥ 2 · 42r−1 · ( 1
α)2r . It is clearly enough

to show that ` ≥ ( 4
α)2r , which follows since r ≤ log log(`)− log log( 4

α). This completes the proof of
the lemma.

We now proceed with the proof of Lemma 4.1. Recall that we have to find δ0 that will be much
larger than the other δi’s (in fact, it has to be much larger than their sum, as we consider ε which
is relatively small). We therefore start by first choosing δ0 and only then apply Lemma 4.5.

Let p, q be prime numbers such that:

q ∈ Iq , [
n

η + 1
− 2Γ(n),

n

η + 1
− Γ(n)] q ∈ Ip , [

n

η + 1
− 4Γ(n),

n

η + 1
− 3Γ(n)]

Clearly, |Ip| = |Iq| = Γ(n) and Γ(n) ≤ q−p ≤ 3Γ(n) for any such p and q. Theorem 2.6 implies that
each of the intervals Iq, Ip contains at least 9

100 ·
Γ(n)
logn different prime numbers. By the pigeonhole

principle, each of the intervals Ip, Iq has a sub-interval of length nε that contains at least 1
12 ·

nε

logn

many prime numbers. Denote these sub-intervals as I ′p, I
′
q respectively:

I ′p = [rp, rp + nε] I ′q = [rq, rq + nε].

Looking at all the differences between pairs of primes in I ′q × I ′p we get that there are at least
( nε

12·logn)2 many differences, each of which is between rq − rp − nε and rq − rp + nε. Hence, one
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of the differences occurs at least ( nε

12·logn)2/2nε = nε

2(12·logn)2
many times. Let δ0 be that popular

difference. Clearly, property 4 holds from this choice of δ0 . Consider the following set

A ,
{
x ∈ I ′p | x+ δ0 ∈ I ′q and both x and x+ δ0 are prime numbers

}
.

Obviously, A ⊆ I ′p, and by the choice of δ0 we are guaranteed that |A| ≥ nε

2(12·logn)2
. Let

α = |A|/|I ′p| ≥ 1
2(12·logn)2

. Note that

log log(nε)− log log(
4
α

) ≥ log log(n)− log log log(n)− log(1/ε)−O(1) >
log logn

2
= η .

We now apply Lemma 4.5 with parameters

` = |I ′p| = nε and α = |A|/|I ′p| ≥
1

2(12 · log n)2

and obtain that there exists an η-dimensional cube B = Px;δ1,...,δη ⊆ A. By the definition of
A it follows that all the elements in B + δ0 , {b + δ0 | b ∈ B} are prime numbers. Our final
(r + 1)-dimensional cube is therefore,

Px;δ0,δ1,...,δη =

{
x+

η∑
i=0

ai · δi | ∀i ai ∈ {0, 1}

}
.

We note that Lemma 4.5 also guarantees that all the δi’s are positive and that

∆ ,
n∑
i=1

δi ≤ |I ′p| = nε .

4.2 Missing proofs

We now give the proofs of Claims 4.2, 4.3 and 4.4. For the sake of readability we repeat the
statement of each of the claims before proving it.

Claim (Claim 4.2).

Φ′p̃,k(t) = tkp̃ · (−1)k ·
(
η

k

)
·
∑

~a∈{0,1}η
(−1)

∑η
i=1 ai · t

∑η
i=1 c~a,k,k(i)·δi .

Proof of Claim 4.2. Recall that

Φ′p̃,k(t) =
∑

~a∈{0,1}η
(−1)

∑η
i=1 ai ·Ψ(p̃+

∑η
i=1 ai·δi)(t) · t

∑k
i=1 (1−ai)·(i−1)·δi+

∑η
i=k+1 (1−ai)·i·δi . (31)

Denote

c~a,j,k(i) ,


j if ai = 1
i− 1 if ai = 0 and i ≤ k
i if ai = 0 and i ≥ k + 1
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This is consistent with the previous definition of c~a,k,k (see Equation (18)). By expanding Ψ (recall
Equation (15)) and using the c~a,j,k’s we get that

Φ′p̃,k(t) =
∑

~a∈{0,1}η
(−1)

∑η
i=1 ai ·

η∑
j=0

(−1)j ·
(
η

j

)
· tjp̃+

∑η
i=1 c~a,j,k(i)·δi .

Considering the coefficients for different j’s we have the following cases.

Case 1 : j < k. For every ~a = (a1, . . . , aj , 0, aj+2, . . . , aη), let ~b = (a1, . . . , aj , 1, aj+2, . . . , aη).
It is easy to verify that c~a,j,k = c~b,j,k. As (−1)

∑η
i=1 ai = −(−1)

∑η
i=1 bi we get that ~a and ~b cancel

each other.

Case 2 : j > k. Quite similarly, for every ~a = (a1, . . . , aj−1, 0, aj+1, . . . , aη), let ~b =
(a1, . . . , aj−1, 1, aj+1, . . . , aη). Again, ~a and ~b cancel each other.

Case 3 : j = k. This is the only case where coefficients do not get canceled out. We therefore
get that

Φ′p̃,k =
∑

~a∈{0,1}η
(−1)

∑η
i=1 ai · (−1)k ·

(
η

k

)
· tkp̃+

∑η
i=1 c~a,k,k(i)·δi

as claimed.

We now proceed to proving Claim 4.3. The specific properties of the cube (that may have
seemed somewhat arbitrary) play a major role in this proof.

Claim (Claim 4.3). Lp,r(f) = Lp+δ0,r(f) = 0.

Proof of Claim 4.3. Recall that Φp,k = Φp+δ0,k (Equation (20)). Therefore,

Lp,r(f) · p+
η∑
i=1

Lp,i,r(f) · δi = Φp,k(r) (32)

= Φp+δ0,k(r) = Lp+δ0,r(f) · (p+ δ0) +
η∑
i=1

Lp+δ0,i,r(f) · δi.

Rearranging (32) gives

(Lp,r(f)− Lp+δ0,r(f)) · p = Lp+δ0,r(f) · δ0 +
η∑
i=1

(Lp+δ0,i,r(f)− Lp,i,r(f)) · δi.

Recall that |Lp,r(f)|, |Lp+δ0,r(f)| < 23η · n0.475−ε and |Lp,i,r(f)|, |Lp+δ0,i,r(f)| < 23η−1 · n0.475−ε

(Equation (24)). By our choice of parameters we have that

|Lp+δ0,r(f) · δ0 +
η∑
i=1

(Lp+δ0,i,r(f)− Lp,i,r(f)) · δi| ≤ 23η · n0.475−ε · (δ0 +
η∑
i=1

δi) =

n0.475−ε · Γ(n) · poly log(n) = n1−ε · poly log(n) < p .
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As (Lp,r(f)−Lp+δ0,r(f))·p is an integer multiple of p, it must be the case that Lp,r(f)−Lp+δ0,r(f) =
0. We now show that Lp+δ0,r(f) = 0 which will conclude the proof.

As we just proved that Lp,r(f)− Lp+δ0,r(f) = 0 we can rewrite (32) as

Lp+δ0,r(f) · δ0 = −
η∑
i=1

(Lp+δ0,i,r(f)− Lp,i,r(f)) · δi .

Similarly to the previous argument we note that Lp+δ0,r(f) ·δ0 is an integer multiple of δ0 and that,
by our choice of parameters (Lemma 4.1)

|
η∑
i=1

(Lp+δ0,i,r(f)− Lp,i,r(f)) · δi| < 2 · 23η−1 · n0.475−ε ·
η∑
i=1

δi ≤ 23η · n0.475 < Γ(n) ≤ δ0 .

Hence, Lp+δ0,r(f) = 0. This completes the proof of the claim.

Claim (Claim 4.4). For every k ∈ [0, η] it holds that Φp,k(t) 6= 0.

Proof of Claim 4.4. By claim 4.2, Φp,k(t) is the sum of 2η (not necessarily different) monomials.
To prove that the different monomials do not cancel each other we will show that there is a unique
monomial of maximal degree. Note that for every ~a ∈ {0, 1}η we have a monomial of degree∑η

i=1 c~a,k,k(i) · δi in Φp,k(t). Let

~a , (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
η−k

).

Then, for every other binary vector ~a 6= ~b ∈ {0, 1}η we have

For i ≤ k, c~b,k,k(i) ≤ k = c~a,k,k(i) and the inequality is strong if bi = 0.

For i ≥ k + 1, c~b,k,k(i) ≤ i = c~a,k,k(i) and the inequality is strong if bi = 1 .

As ~a 6= ~b, it follows that c~b,k,k < c~a,k,k. Namely,

∀i ∈ [1, η] : c~b,k,k(i) ≤ c~a,k,k(i) and ∃i ∈ [1, η] : c~b,k,k(i) < c~a,k,k(i) .

Since all the δi’s are positive, we get that
∑η

i=1 c~b,k,k(i) · δi <
∑η

i=1 c~a,k,k(i) · δi, and the monomial
that corresponds to ~a is the unique monomial of maximal degree.

5 The range of a degree d polynomial

In this section we prove Theorem 2. It will be an easy corollary of Theorem 3 which we first prove.
The proof is quite elementary and basically follows from averaging arguments. At the end of the
section we present a possible approach for improving our results using the Chebyshev polynomials,
however at this stage we get more general results using our simple argument. To ease the reading
we repeat the statement of Theorem 3.
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Theorem (Theorem 3). Let f : R→ R be a degree d monic polynomial. Then, maxi∈[0,n] |f(i)| >(
n−d
2e

)d
. In particular, if f : Z→ Z is a degree d polynomial (not necessarily monic) then

max
i∈[0,n]

|f(i)| > 1
d!
·
(
n− d

2e

)d
≥ 1√

7d
·
(
n− d

2d

)d
.

Proof of Theorem 3. For d = 1 the theorem holds. So we can assume w.l.o.g that d ≥ 2. Consider
the factorization of f over C,

f(x) =
d∏
i=1

(x− αi) . (33)

Recall that if αi ∈ C is a root of f then its conjugate ᾱi is also a root of f . As we are interested
in bounding the range of f from above, we can assume w.l.o.g. that all the roots of f are real.
Indeed, for any complex α and real x it holds that (x− α) · (x− ᾱ) ≥ (x−R(α))2, where R(α) is
the real part of α.

We would like to give a lower bound on the maximum (absolute) value of f by showing that
the product

∏n
i=0 f(i) is large. However, since some of the i’s can be roots of f , or very close to

roots of f , we need to remove them from the product first.
Call an element i ∈ [0, n] an approximate root of f if there is a root of f , αj (in the notations

of Equation (33)), such that 9 round(αj) = i. Clearly, there are at most d approximate roots in
the set [0, n]. Denote with S ⊆ [0, n] the set of all non-approximate roots. Clearly |S| ≥ n+ 1− d.
Note that

max
i∈[0,n]

|f(i)| ≥

[∏
i∈S
|f(i)|

] 1
|S|

. (34)

As ∏
i∈S
|f(i)| =

d∏
j=1

∏
i∈S
| i− αj | , (35)

it will suffice for our needs to bound from below the value of each product
∏
i∈S | i− αj | and then

apply it in Equation 34.
Fix some j ∈ [d]. Notice that the closest element to αj in S has distances at least 1/2 from it.

The next element has distance at least 1 from it. The next has distance at least 3/2 from it, etc.
In other words, if we sort the elements in S according to their distances from αj , S = {i1, . . . , i|S|},
then the k element, ik will be at distance at least k/2. Hence,

∏
i∈S
| i− αj | ≥

|S|∏
k=1

| ik − αj | ≥
|S|∏
k=1

k

2
=
|S|!
2|S|
≥∗
(
|S|
2e

)|S|
·
√

2π|S|

where inequality (∗) follows from Stirling’s formula (Theorem 2.1). Plugging Equation (36) back
to Equations (35) and (34) we get

max
i∈[0,n]

|f(i)| ≥

[( |S|
2e

)|S|
·
√

2π|S|

]d 1
|S|

= (2π|S|)
d

2|S| ·
(
|S|
2e

)d
>

(
n− d

2e

)d
.

9 round(x) is the integer closest to x, if x = i+ 1/2 then round(x) = i. In other words, round(x) = dx− 1/2e
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This proves the first statement of the theorem. For the second statement we note that if f is a
polynomial over the integers, then by Theorem 2.3 the coefficient of xd in f is an integer multiple
of 1/d!. In particular there is an integer c 6= 0 such that (d!/c) · f(x) is monic. Therefore,

max
i∈[0,n]

|f(i)| =
∣∣∣ c
d!

∣∣∣ · max
i∈[0,n]

∣∣∣∣d!
c
· f(i)

∣∣∣∣ > 1
d!
·
(
n− d

2e

)d
≥ 1√

7d
·
(
n− d

2d

)d
,

where we used Stirling’s formula (and the assumption that d ≥ 2) in the last inequality.

We believe that Theorem 3 can be improved. Nevertheless, the next example shows that the
theorem is not far from being tight.

Example 5.1. For an odd integer n and an even integer d ≤ n, the polynomial f(x) =
(x−n−d+1

2
d

)
is a degree d polynomial mapping [0, n] to [0, nd

2d·d!
].

Proof. It is not difficult to see that since d is even, f(x) = f(n− x). In particular, f(x) ≥ 0 for all
x ∈ [0, n]. Furthermore, for all r ∈ [0, n]

f(r) ≤ f(n) =
(n+d−1

2

d

)
<

1
d!
·
(
n2 − 1

4

)d/2
<

nd

2d · d!
.

This upper bound is larger by a factor of (roughly) ed from the lower bound on the range that
is stated in Theorem 3. It is an interesting question to understand the ‘correct’ bound.

To derive Theorem 2 we will need the following easy property of the function

Dn(x) ,
1√
7x
·
(
n− x

2x

)x
.

Lemma 5.2. In the real interval [1, n] the function Dn(x) is first strictly increasing and then strictly
decreasing. Furthermore, it attains its maximum at some 0.135 · n < x < 0.136 · n (for n ≥ 450).

Proof. It is clearly sufficient to prove that the function

ln(Dn(x)) = ln
(

1√
7x
·
(
n− x

2x

)x)
= x ln(n− x)− x ln(x)− x ln(2)− 1

2
ln(x)− 1

2
ln(7)

has the claimed property. This will follow from the observation that the second derivative of
ln(Dn(x)) is negative. Indeed,

(ln(Dn(x)))′ = ln(n− x)− x

n− x
− ln(x)− 1− ln(2)− 1

2x

and
(ln(Dn(x)))′′ = − 1

n− x
− n

(n− x)2
− 1
x

+
1

2x2
< 0

where the last inequality holds since x ≥ 1.
To see the ‘furthermore’ part we note that (ln(Dn))′(0.135 · n) > 0 for n ≥ 450 and that

(ln(Dn))′(0.136 · n) < 0 for every n. Hence, by the intermediate value theorem, (ln(Dn(x)))′ = 0
for some 0.135 · n < x < 0.136 · n (when n ≥ 450).
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We denote the unique maximum point of Dn as xDn .

We can now derive Theorem 2. We first repeat its statement.

Theorem (Theorem 2). There exists a constant n0 such that if d, n are integers satisfying d ≤ 2
15n

and n > n0 then the following holds. If f : [0, n] →
{

0, . . . ,
⌊

1√
7d
·
(
n−d
2d

)d⌋}
is a polynomial then

deg(f) ≤ d− 1 or deg(f) ≥ 1
3n− 1.2555 · [d ln(n−d2d )− 1

2 ln(nd )].

Proof. If deg f ≤ d − 1 we are done. We may therefore assume that deg f ≥ d. If deg f ≤ xDn
then by Theorem 3 and Lemma 5.2, we get that the maximal value that f attains on [0, n] is larger
than Dn(deg(f)) ≥ Dn(d) > 1√

7d
·
(
n−d
2d

)d
, in contradiction to the assumption of the theorem. Since

Dn(x) is decreasing for x > xDn we observe, by substituting x = 1
3n− 1.2555 · [d ln(n−d2d )− 1

2 ln(nd )]
into Dn, that

Dn
(

1
3
n− 1.2555 ·

[
d ln

(
n− d

2d

)
− 1

2
ln
(n
d

)])
>

1√
7d
·
(
n− d

2d

)d
.

Indeed, it is not hard to see that for any c such that c < n/3− 0.136 ·n (which in particular means
that xDn < n/3− c) it holds that

Dn(n/3− c) =
1√

7(n/3− c)
·
(
n− (n/3− c)

2n/3− 2c

)n/3−c
=

1√
7(n/3− c)

·
(

1 +
3c/2

n/3− c

)n/3−c
≥(∗) 1√

7n/3
· e0.531·3c/2 =

√
3 · 1√

7d
· e0.7965·c− 1

2
ln(n/d) ,

where to prove inequality (∗) we used the simple fact that (1 + x) ≥ e0.531·x for x ≤ 2.1765,
together with the bound on c. In our case, since d ≤ 2

15n, it is not hard to verify that c ,
1.2555 · [d ln(n−d2d ) + 1

2 ln(nd )] satisfies c < n/3− 0.136 · n (for n large enough) as required.
We therefore obtain that

Dn
(

1
3
n− 1.2555 ·

[
d ln

(
n− d

2d

)
− 1

2
ln
(n
d

)])
≥
√

3 · 1√
7d
· e0.7965·c− 1

2
ln(n/d)

>
1√
7d
· ed ln(n−d2d ) =

1√
7d
·
(
n− d

2d

)d
as claimed. By Lemma 5.2, deg(f) ≥ 1

3n− 1.2555 ·
[
d ln

(
n−d
2d

)
− 1

2 ln
(
n
d

)]
.

To summarize, Theorem 2 uses the fact that Dn has a unique maximum, xDn , and aims to find,
for a given degree d < xDn , another degree d′ > xDn such that Dn(d′) ≥ Dn(d). In the theorem we
gave a relatively simple way to derive d′ from d. With more work one can push this result for d’s
closer to xDn .

We note that Theorem 2 implies that when Ω(n) ≤ deg(f) < (1 − ε)n/3 then the range of f
is exponential in n. As a corollary of Example 5.1 one can show that if we allow the range to be
as large as O

((
1+
√

5
2

)n)
then f can have any degree. Indeed, taking the maximum over

(n+d−1
2
d

)
,

when d + n is odd, we get an upper bound on that range that is smaller than the n-th Fibonacci
number, FIBn.
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Lemma 5.3. For integers d, n such that n+ d is odd, let Rn,d ,
(n+d−1

2
d

)
, and set

Rn , max{Rn,d | d ∈ [0, n], d+ n is odd } .

Then, Rn ≤ Rn−1 +Rn−2 for n > 2.

Proof. Since n > 2, we can assume that the maximum of Rn,d is achieved for some d > 0. We use
the combinatorial identity

(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1

)
to conclude that:

Rn,d =
(n+d−1

2

d

)
=
(n+d−1

2 − 1
d

)
+
(n+d−1

2 − 1
d− 1

)
=

=
( (n−2)+d−1

2

d

)
+
( (n−1)+(d−1)−1

2

d− 1

)
= Rn−2,d +Rn−1,d−1

maximizing over d in both sides we conclude that Rn ≤ Rn−2 +Rn−1.

As an immediate corollary, using the fact that R1 = R2 = 1, we deduce that

Rn ≤ FIBn ≤
1√
5
·

(
1 +
√

5
2

)n
which completes our argument.

5.1 A possible route for improvements

In this section we present a possible approach towards improving Theorem 2, when d ≤
√
n/2,

based on Chebyshev polynomials. We will only give a sketch of the approach and we will not cover
all necessary background on Chebyshev polynomials. The interested reader is referred to [MH03].

A natural approach to proving that a polynomial must take large values is by comparing it to
the Chebyshev polynomial of the same degree. Roughly, the Chebyshev polynomial of degree d is
defined on the real interval [−1, 1] in the following way:

Td(x) = cos(d arccos(x)) .

It is not hard to prove that Td is a degree d polynomial, having exactly d roots in the interval
[−1, 1], that its leading coefficient is 2d−1 and that it has d+1 extremal values in the same interval,
on which it is equal, in absolute value, to 1. Specifically, its roots lie on the points cos(π(2k−1)

2d )
and its extremal points are cos(πkd ), on which it alternates between 1 and −1. A well known
fact of the Chebyshev polynomials is that among the degree d monic polynomials the polynomial
fd(x) = 21−dTd(x) whose maximum on the real interval [−1, 1] is the smallest and equals 21−d.

The problem in using this fact is that we are interested in the maximum of a function on a
relatively small set of points. Consider a polynomial f : [0, n] → [0,m]. Let g(x) = f(n2x + n

2 ).
I.e. g : [−1, 1] → [0,m], (where [−1, 1] is the real interval) and we are interested in the value of g
on the points {−1,−1 + 2

n ,−1 + 4
n , . . . , 1}. Denote for simplicity xk = 2k/n− 1, k = 0, . . . , n. We

would like to say that as Td obtains the smallest maximum on [−1, 1] then (after we normalize g
by its leading coefficient) it must obtain a value larger than 21−d on one of the xk’s. However, all
that we know is that the maximum of g on the whole interval [−1, 1] is large and not necessarily
on one of the xk’s.
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To tackle this problem one has to prove that the values that Td obtains on the xk’s is relatively
large (close to its overall maximum). A possible way for proving this is by observing that we
can find a point xk near any extremal point and then, since we have a reasonable bound on the
derivative of Td, conclude that Td obtains a relatively large value there as well. This approach in
fact works; Since the derivative of Td is bounded by d2 it follows that when d <

√
n/2 there are

d+ 1 points among the xk’s on which Td alternates in sign and obtains absolute value larger than,
say, 1/2. Now, let g̃ = g/gd, where gd is the leading coefficient of g. Assume that |g̃(xk)| < 1

2 ·2
1−d,

for every k. Then the polynomial 21−dTd − g̃ has degree at most d − 1 (it is the difference of two
degree d monic polynomials) and it changes sign d times (between the xk’s on which Td obtains
large value), which is a contradiction. It therefore follows that maxk∈[0,n] |g(xk)| ≥ 1

2 |gd| · 2
1−d.

As gd equals fd · (n/2)d, where fd is the leading coefficient of f , and since |fd| ≥ 1
d! , we get that

maxk∈[0,n] |f(k)| = maxk∈[0,n] |g(xk)| ≥ 2−d · (n/2)d/d! = nd

22dd!
. We summarize this in the next

theorem.

Theorem 6. There exists a constant n0 such that for every two integers d, n such that n > n0

and d ≤
√
n/2 it holds that if f : Z → Z is a degree d polynomial (not necessarily monic) then

maxi∈[0,n] |f(i)| ≥ nd

22dd!
.

This result is slightly better than the bound maxi∈[0,n] |f(i)| ≥ 1
d! ·
(
n−d
2e

)d
that was obtained in

the proof of Theorem 3, but it holds only for d ≤
√
n/2.

We note, however, that this approach cannot work for d = ω(
√
n) as for such large d many

roots of Td are very close to each other. Indeed, the distances among the first roots (and among
the last roots) are smaller than 1/n while the xk’s are separated from one other.

5.2 The case of small degrees

In this section we give two small improvements for the case of polynomials of degrees 1 or 2. The
first improvement concerns polynomials whose range is (roughly) [0, n2.475].

Theorem 7. For every 0 < ε there exists n0 such that for every integer n0 < n the following holds:
Every

f : [0, n]→
[
0, n2.475−ε]

must satisfy deg(f) ≤ 2 or deg(f) ≥ n/2− 2n/ log log n.

Notice that Theorem 2 implies that if the range of f is, say, [0, n3/1000] then either deg(f) ≤ 2
or deg(f) ≥ n/3 − O(log n). Thus, the improvement that Theorem 7 gives is that if the range is
[0, n2.475−ε] then either deg(f) ≤ 2 (as before) or it is at least n/2 − 2n/ log logn (compared to
roughly n/3). The proof is quite similar to the proof of Lemma 3.1.

Proof. We first explain how n0 is defined. A corollary of Theorem 1 is that there exists n1 such that
for every n > n1 and f : [0, n] → [0, 17n1.475−ε], either deg(f) ≤ 1 or deg(f) > n − 4n/ log log n.
Define n2 (guaranteed to exist from Theorem 2.6) such that for every n > n2 it holds that there
is a prime number in the range [n2 − Γ(n), n2 ] and such that Γ(n) = n0.525 < n

2 −
n
3 . We set

n0 = max(2n1, n2).
The proof is by a reduction to Theorem 1. Let p ∈ [n2−Γ(n), n2 ] be a prime number If deg(f) ≥ p

then we are done, as in this case

deg(f) ≥ p ≥ n

2
− Γ(n) ≥ n

2
− 2n/ log logn .
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Therefore, we may assume that deg(f) < p. By Lemma 2.4, working modulo p, we get that
f(r) ≡p f(p+ r) for every r ∈ [0, n− p]. As in the proof of Lemma 3.1, we consider the polynomial
g(r) = f(r)−f(r+p)

p which is defined over r ∈ [0, n− p]. It follows that

g : [0, n− p]→
[
−n2.475−ε

p
,
n2.475−ε

p

]
⊆
[
−3 · n1.475−ε, 3 · n1.475−ε] .

In particular, g + 3 · n1.475−ε maps [0, n/2] to
[
0, 6 · n1.475−ε] ⊆ [0, 17(n/2)1.475−ε]. Since n > n0 ≥

2n1 Theorem 1 implies that either deg(g) ≤ 1 or deg(g) > n/2 − 2n/ log log n. By Lemma 2.9 we
get that deg(f) ≤ deg(g) + 1 and so the case deg(g) ≤ 1 translates to deg(f) ≤ 2. In the second
case where deg(g) > n/2− 2n/ log logn we get the same conclusion for f as deg(g) ≤ deg(f).

As an immediate corollary we get our second improvement that provides a strengthening of
Lemma 3.2.

Corollary 5.4. There exists a constant n0 such that if n > n0 and f : [0, n]→
{

0, . . . ,
⌊
n2−4Γ(n)2

8

⌋}
is a polynomial then deg(f) ≤ 1 or deg(f) ≥ n/2− 2n/ log logn.

Proof. Lemma 3.2 implies that if deg(f) > 1 then it is at least n/12−Γ(n). However, by Theorem 7
we get that actually deg(f) ≥ n/2− 2n/ log logn.

The example given after Lemma 3.2, f(x) =
(x−n−1

2
2

)
, gives a degree 2 polynomial mapping

[0, n] to
[
0, n

2−1
8

]
. Thus, up to an additive O(n1.05) term, the range in Corollary 5.4 is tight.

6 Proof of Theorem 4

In this section we prove Theorem 4. For convenience we repeat its statement.

Theorem (Theorem 4). For every large enough integer n > 0 and integer d = o(
√
n/ log n), there

exists f : {0, . . . , n} → {0, . . . , O(nd+0.5)} of degree 2d < deg(f) ≤ n− d log(n).

The proof of Theorem 4 is based on a reduction to the shortest vector problem (SVP) in lattice
theory. In section 6.1 we introduce basic definitions and tools from lattice theory. We then turn to
prove Theorem 4 in section 6.2.

6.1 Basic properties of lattices

Definition 6.1. Let b1, b2, . . . , bn be linearly independent vectors in Rm. We define the lattice
generated by them as

Λ(b1, b2, . . . , bn) =

{
n∑
i=1

xibi : xi ∈ Z

}
.

We refer to b1, b2, . . . , bn as a basis of the lattice. More compactly, if B is the m × n matrix
whose columns are b1, b2, . . . , bn, then we define

Λ(B) = Λ(b1, b2, . . . , bn) = {Bx : x ∈ Zn} .
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We say that the rank of the lattice is n and its dimension is m. The lattice is called full-rank lattice
if n = m. The determinant of Λ(B) is defined as det (Λ(B)) =

√
det (BTB). Although a basis of

a lattice is not unique, e.g. both
{

(0, 1)T , (1, 0)T
}

and
{

(1, 1)T , (2, 1)T
}

span Z2, it can be shown
that the determinant of a lattice is independent of the choice of basis.

Definition 6.2. let Λ be a lattice of rank n. For i ∈ [n], the i-th successive minimum is defined as

λi(Λ) = inf {r : dim (span (Λ ∩B(r))) > i}

where B(r) = {x ∈ Rn : ‖x‖ < r} is the open-ball of radius r.

We shall need the following theorem, due to Minkowski. A proof can be found in, e.g., [MG02].

Theorem 6.3. For any full-rank lattice Λ of rank n,

n∏
i=1

λi(Λ) ≤ nn/2 det Λ.

6.2 Proof of Theorem 4

The idea behind the proof of Theorem 4 is roughly as follows. We identify each function f : [0, n]→
Z with its set of values (f(0), f(1), . . . , f(n)). That is, we think of functions as vectors in Zn+1.
We shall construct a lattice in Rn+1 which is not full-rank, and contains only points representing
polynomials with degree deg(f) ≤ n− d log(n). We then prove that this lattice has many (at least
2d+ 2) linearly independent short vectors with `∞-norm smaller than O(nd+0.5), i.e. many linearly
independent polynomials whose image is (somewhat) bounded. One of these polynomials must be
of degree at least 2d+ 1. From technical reasons we will not work with the lattice described above
but rather we shall consider a full rank lattice obtained by adding ‘long’ orthogonal vectors to the
basis of our initial lattice.

Proof of Theorem 4. Set D = n − d log n and let m = O(nd+0.5).10 We now describe the basis for
the lattice. For i ∈ [0, D] define the vector bi ∈ Rn+1 as follows: (bi)j =

(
j
i

)
, for j = 0, . . . , n.

Notice that bi corresponds to the polynomial fi(x) =
(
x
i

)
. Let bD+1, . . . , bn ∈ Rn+1 be arbitrary

vectors of length ||bi||2 = M , m/2 + 1 such that for every i ∈ [D + 1, n], bi is orthogonal to bk
for all k 6= i (we can find the bi’s by, say, the Gram-Schmidt procedure). Denote by B the matrix
whose columns are b0, . . . , bn and let Λn,D = Λ(B).

Lemma 6.4.
det (Λn,D) ≤ 2(n+D+1)(n−D)/2 ·Mn−D .

We defer the proof of the lemma and continue with the proof. By a theorem of Minkowski (see
Theorem 6.3) we get

n+1∏
i=1

λi(Λn,D) ≤ (n+ 1)(n+1)/2 · det Λn,D. (36)

Note that for i ≥ D + 1, λi(Λn,D) ≥M . Indeed, if u is a point in Λn,D with a non-zero coefficient
for some bi, i ≥ D + 1, then by orthogonality and the fact that the length of such a bi is M , we

10The exact value of m will be determined later.
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have that u is a vector of length at least M . Combining this observation with Equation (36) and
Lemma 6.4, we get

D+1∏
i=1

λi(Λn,D) ≤ (n+ 1)(n+1)/2 · 2(n+D+1)(n−D)/2. (37)

Estimating the LHS from below gives

D+1∏
i=1

λi(Λn,D) ≥
D+1∏
i=2d+2

λi(Λn,D) ≥ λ2d+2(Λn,D)D−2d. (38)

Combining Equations (37) and (38), we get

λ2d+2(Λn,D) ≤ (n+ 1)
n+1

2(D−2d) 2
(n+D+1)(n−D)

2D−4d ≤ β · nd+0.5 ,

where the last inequality holds for a large enough n and some constant11 β (recall that D =
n− d log n and d = o(

√
n/ log n)). Letting m = 2βnd+0.5, we get that λ2d+2(Λn,D) ≤ m/2. Hence,

by the definition of λ2d+2, there are 2d + 2 linearly independent vectors, in Λn,D whose length is
not greater than m/2. In particular, those vectors are contained in Λn,D ∩ [−m/2,m/2]n+1.

Let v be any such vector. Denote with v =
∑n

i=0 αibi its representation according to the
basis B. Recall that all the coefficients αi are integers. Since ‖v‖ ≤ m/2 and for every j > D,
‖bj‖ = M = m/2 + 1 > m/2, we get, by orthogonality, that αD+1 = αD+2 = · · · = αn = 0. Hence,
for ` ∈ [0, n], the `-th coordinate of v is equal to v` =

∑D
i=0 αi

(
`
i

)
. Therefore, the polynomial

corresponding to v, fv, satisfies, fv(`) =
∑D

i=0 αi
(
`
i

)
. In other words, fv(x) =

∑D
i=0 αi

(
x
i

)
. As

v ∈ [−m/2,m/2]n+1 we get that fv(x) : [0, n]→ [−m/2,m/2] is a polynomial of degree at most D.
To end the proof we need to show that we can pick v such that deg(fv) ≥ 2d + 1. Indeed,

since there are 2d+ 2 linearly independent vectors in Λn,D ∩ [−m/2,m/2]n+1, we get 2d+ 2 linearly
independent polynomials fv. Consequently, there must exist v ∈ Λn,D ∩ [−m/2,m/2]n+1 such that
deg(fv) ≥ 2d+ 1. The polynomial we were looking for is therefore, f(x) = fv(x) +m/2.

This completes the proof of Theorem 4.

We now prove Lemma 6.4.

Proof of Lemma 6.4. By the orthogonality of bD+1, . . . , bn

det Λn,D = det (b0, . . . , bn) = det (b0, . . . , bD) ·
n∏

i=D+1

||bi||2 = det (b0, . . . , bD) ·Mn−D,

and so it is enough to show that det (b0, . . . , bD) ≤ 2(n+D+1)(n−D)/2. Let Bn,D be the (n+1)×(D+1)

matrix with columns b0, . . . bD. By definition, det (b0, . . . , bD) =
√

det(BT
n,DBn,D). Using basic rows

and columns operations on B, one can show that det(BT
n,DBn,D) = det (ATn,DAn,D) ·

(∏D
i=0 i!

)−2
,

where An,D is a (n+1)×(D+1) matrix with entries (An,D)i,j = ij .12 The matrix Cn,D , ATn,DAn,D
has the form (Cn,D)i,j =

∑n
`=0 `

i+j for 0 ≤ i, j ≤ D. In [VD99], the determinant of Cn,D, which is
a Vandermondian matrix, was computed.

11The choice of β does not depend on the exact value of m.
12It is easy to prove this by, say, induction on j.
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Theorem 6.5 ([VD99] subsection 6.10.4.).

∆n,D , det(Cn,D) ,
∑

0≤k0<k1<···<kD≤n
(V (k0, k1, . . . , kD))2,

where V (k0, k1, . . . , kD) is the determinant of the usual Vandermonde matrix with parameters
k0, k1, . . . , kD. That is, V (k0, k1, . . . , kD) =

∏
0≤i<j≤D (kj − ki).

To get a more explicit upper bound on the determinant of Cn,D, ∆n,D, we prove the following
lemma.

Lemma 6.6. For any integer ` > 0, ∆D+`,D ≤ ∆D+`−1,D · 4D+`.

We postpone the proof of Lemma 6.6 and continue with the proof. We note that

∆D,D =

 ∏
0≤i<j≤D

(j − i)

2

=

(
D∏
i=1

i!

)2

,

and so, applying Lemma 6.6 multiple times, we get

∆n,D ≤ ∆n−1,D · 4n ≤ ∆n−2,D · 4n+(n−1) ≤ · · ·

· · · ≤ ∆D,D · 4n+(n−1)+···+(D+1) =

(
D∏
i=1

i!

)2

· 2(D+n+1)(n−D).

Therefore,

(det (b0, . . . , bD))2 = det (BT
n,DBn,D) = det(Cn,D)·

(
D∏
i=1

i!

)−2

= ∆n,D·

(
D∏
i=1

i!

)−2

≤ 2(D+n+1)(n−D) .

Taking the square root of both sides we obtain Lemma 6.4.

We now prove Lemma 6.6.

Proof of Lemma 6.6. We shall map each of the sequences 0 ≤ k0 < k1 < k2 < . . . < kD ≤ D + ` to
a sequence 0 ≤ k′0 < k′1 < k′2 < . . . < k′D ≤ D + `− 1 as follows

1. If kD ≤ D + `− 1, then ∀i ∈ [0, D] : k′i = ki.

2. If 1 ≤ k0, then ∀i ∈ [0, D] : k′i = ki − 1.

3. Otherwise, let t be the first index satisfying kt < kt+1 − 1. Note that there is such an index
since k0 = 0, kD = D + ` and ` > 0. We set

k′i :=
{
ki if i ≤ t
ki − 1 otherwise
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Note that 0 ≤ k′0 < k′1 < k′2 < . . . < k′D ≤ D+`−1, and that at most D+2 sequences 0 ≤ k0 < k1 <
k2 < . . . < kD ≤ D+` were mapped to the same sequence 0 ≤ k′0 < k′1 < k′2 < . . . < k′D ≤ D+`−1.
We now wish to give an upper bound on

V (k0, k1, . . . , kD)
V (k′0, k

′
1, . . . , k

′
D)

=

∏
i<j kj − ki∏
i<j k

′
j − k′i

. (39)

In Cases 1,2 Equation (39) equals 1 since the mapping does not affect the differences between the
ki’s. In Case 3 we have

(39) =

∏
i<j kj − ki∏
i<j k

′
j − k′i

=
∏
i<j≤t

kj − ki
k′j − k′i

·
∏
i≤t<j

kj − ki
k′j − k′i

·
∏
t<i<j

kj − ki
k′j − k′i

=
∏
i<j≤t

kj − ki
kj − ki

·
∏
i≤t<j

kj − ki
kj − 1− ki

·
∏
t<i<j

kj − ki
(kj − 1)− (ki − 1)

=
t∏
i=0

D∏
j=t+1

kj − ki
kj − 1− ki

=
t∏
i=0

∏D
j=t+1 kj − ki∏D

j=t+1 kj − 1− ki

=
t∏
i=0

kD − ki
kt+1 − 1− ki

·
∏D−1
j=t+1 kj − ki∏D

j=t+2 kj − 1− ki

≤
t∏
i=0

kD − ki
kt+1 − 1− ki

.

Note, that by definition of t it must be the case that k0 = 0, k1 = 1,. . . , kt = t and kt+2 ≥ t+ 2.
Therefore,

t∏
i=0

(kt+1 − 1− ki) ≥
t+1∏
i=1

i .

and,
t∏
i=0

(kD − ki) ≤
t∏
i=0

(D + `− i),

it follows that

(39) ≤
t∏
i=0

kD − ki
kt+1 − 1− ki

≤
∏t
i=0D + `− i∏t+1

i=1 i
=
(
D + `

t+ 1

)
≤
(

D + `

(D + `)/2

)
<

2D+`√
1.5 · (D + `)

,
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where the last inequality follows from Stirling’s approximation for a large enough D. Hence

∆D+`,D =
∑

0≤k0<k1<···<kD≤D+`

(V (k0, k1, . . . , kD))2

≤
∑

0≤k0<k1,...<kD≤D+`

(
2D+`√

1.5 · (D + `)

)2

·
(
V (k′0, k

′
1, . . . , k

′
D)
)2

=
4D+`

1.5 · (D + `)
·

∑
0≤k0<k1,...<kD≤D+`

(
V (k′0, k

′
1, . . . , k

′
D)
)2

≤ 4D+`

1.5 · (D + `)
· (D + 2) ·

∑
0≤k′0<k′1,...<kD≤D+`−1

(
V (k′0, k

′
1, . . . , k

′
D)
)2

≤ 4D+`

1.5 · (D + `)
· (D + 2) ·∆D+`−1,D

≤ 4D+` ·∆D+`−1,D .

This completes the proof of the lemma.

7 Back to the Boolean case

In this section we consider the Boolean case. Specifically, let m = 1 and n = p2− 1 for some prime
p. We prove that in this case the degree must be at least n−

√
n. For completeness, we also give a

proof for the case n = p− 1, that was previously proved in [GR97]. To ease the reading we restate
Theorem 5.

Theorem (Theorem 5). Let p be a prime number, n = p2−1 and f : [0, n]→ {0, 1} be nonconstant.
Then deg(f) ≥ p2 − p > n−

√
n.

Proof. Let f be as in the statement of the theorem and assume that deg f < p2−p. By Lemma 2.4
we get that for all r ∈ [0, p− 1]

p2−p∑
k=0

(−1)k
(
p2 − p
k

)
f(k + r) = 0 . (40)

Since p2 − p = (p − 1) · p + 0, it follows, by Lucas’ theorem, that if k = k1 · p + k0, is the base p
representation of k, then

(
p2−p
k

)
≡p 0 when k0 6= 0 and

(
p2−p
k

)
≡p (−1)k1 when k0 = 0. Therefore,

(40) is equivalent to

0 =
p2−p∑
k=0

(−1)k
(
p2 − p
k

)
f(k + r) ≡p

p−1∑
k1=0

f(k1p+ r) .

Note that the RHS contains exactly p summands. As they are all in {0, 1} they must all be
equal in order for their sum to be 0 modulo p. We thus get that for every r ∈ [0, p − 1], f(r) =
f(p + r) = . . . = f((p − 1)p + r). In other words, if we set g(x) , f(x + p) − f(x) then g(x) = 0
for x ∈ [0, p2 − p− 1].
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If g is identically zero, then Lemma 2.9 implies that deg(f) = 0. I.e. that f is constant, as
claimed. Otherwise, since g has p2−p zeroes, it follows that deg(g) ≥ p2−p. This is a contradiction
as deg(f) ≥ deg(g) (in fact, deg(f) = deg(g) + 1).

For completeness we also prove the following result of [GR97].

Theorem 7.1 ([GR97]). Let p be a prime number, n = p−1 and f : [0, n]→ {0, 1} be nonconstant.
Then deg(f) = p− 1 = n.

Proof. Assume that deg(f) < n. As in the proof of Theorem 5, we apply Lemma 2.4 and Lucas’
theorem to obtain

0 =
p−1∑
k=0

(−1)k
(
p− 1
k

)
f(k + r) ≡p

p−1∑
k=0

f(k) .

Again, it must be the case that f(0) = f(1) = . . . = f(p− 1). I.e., f is constant.

8 Discussion

We proved that it is ‘hard’ for polynomials to ‘compress’ the interval [0, n]. Namely, that any such
nonconstant polynomial to a strict subset of [0, n] must have degree n− o(n). We also proved that
if we allow m = 1

d! ·
(
n−d
2e

)d
then f can of course have degree < d, but all other polynomials mapping

[0, n] to [0,m] must have degree ≥ n/3− o(n). We are not able to prove however that our results
are tight. In particular we believe that they can be improved both for the case m < n and for
the case of large m. We note that the following question, posed by von zur Gathen and Roche,
is still open: “... for each m there is a constant Cm such that deg(f) ≥ n − Cm”. Furthermore,
when m = 1 they raise the possibility that C1 = 3. As an intermediate goal it will be interesting to
manage to break the n−Γ(n) upper bound. Specifically, show that when f ∈ F1(n) is nonconstant,
deg(f) ≥ n −

√
n. It seems that new techniques are required in order to prove this claim as all

current proofs are based on modular calculations and we cannot guarantee the existence of a prime
p in the range [n−

√
n, n]. For the special case that n = p2−1 we managed to obtain such a result,

and of course when n = p− 1 a stronger result is known, but the general case is still open.
Another intriguing question is to understand what is the minimal range that a polynomial over

the integers of degree exactly d can have. We note that in Example 5.1 the degree is d and the
range is (roughly) of size 1

d! ·
(
n
2

)d. Theorem 2 asserts that if the degree is d then the range must

be larger than (roughly) 1
d! ·
(
n−d
2e

)d
(Theorem 6 actually improves it to 1

d! ·
(
n
4

)d for d ≤
√
n/2). It

is an interesting question to understand the ‘correct’ bound.
Finally, we think that it will be interesting to find examples that are significantly better than

those obtained in Theorem 4 and Example 5.1.
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A Newton polynomials

Theorem (Theorem 2.3). Let f ∈ Q[x] be a polynomial of degree ≤ n. Then f can be represented
as f(z) =

∑n
d=0 γd ·

(
z
d

)
and γd =

∑d
j=0 (−1)d−j ·

(
d
j

)
· f(j).

Proof. The set of polynomials {
(
z
0

)
,
(
z
1

)
, . . . ,

(
z
n

)
} is a basis of the vector space of real polynomials

with degree at most n. Thus, we can express f as a linear combination of them. We prove by
induction on d that γd =

∑d
j=0 (−1)d−j ·

(
d
j

)
· f(j). The basis for the induction is d = 0. Clearly,

f(0) =
∑n

i=0 γi ·
(

0
i

)
= γ0. We now prove the induction step. The value f(d) is given by

f(d) =
n∑
i=0

γi ·
(
d

i

)
=

d∑
i=0

γi ·
(
d

i

)
= γd +

d−1∑
i=0

γi ·
(
d

i

)
.

Rearranging the equation (isolating γd) we get

γd = f(d)−
d−1∑
i=0

γi ·
(
d

i

)
. (41)

By the induction assumption we have that γi =
∑i

j=0(−1)i−j ·
(
i
j

)
· f(j), for ` = 0, 1, . . . , d − 1.

Plugging this to Equation (41) we obtain

γd = f(d)−
d−1∑
i=0

(
d

i

)
·

i∑
j=0

(−1)i−j ·
(
i

j

)
· f(j)

= f(d)−
d−1∑
j=0

f(j) ·
d−1∑
i=j

(−1)i−j ·
(
d

i

)(
i

j

)

From the identity
(
d
i

)
·
(
i
j

)
=
(
d
j

)
·
(
d−j
i−j
)

it follows that

γd = f(d)−
d−1∑
j=0

f(j) ·
(
d

j

)
·
d−1∑
i=j

(−1)i−j ·
(
d− j
i− j

)

= f(d)−
d−1∑
j=0

f(j) ·
(
d

j

)
·
d−1−j∑
r=0

(−1)r ·
(
d− j
r

)
(42)

Since
∑d−j

r=0(−1)r ·
(
d−j
r

)
= (1 + (−1))d−j = 0, we conclude that

∑d−j−1
r=0 (−1)r ·

(
d−j
r

)
= −(−1)d−j .

Rewriting Equation (42) we obtain

γd = f(d) +
d−1∑
j=0

f(j) ·
(
d

j

)
· (−1)d−j

=
d∑
j=0

f(j) ·
(
d

j

)
· (−1)d−j ,

as required.
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B Lucas’ theorem

Proof of Theorem 2.5. Expanding (1 + x)a we get

(1 + x)a = (1 + x)
∑k
i=0 aip

i
=

k∏
i=0

(1 + x)aip
i

≡p
k∏
i=0

(1 + xp
i
)
ai

=
k∏
i=0

ai∑
j=0

(
ai
j

)
xjp

i
.

The coefficient of xb on the LHS is
(
a
b

)
. Since there is a unique way to represent b in base p we

have that the coefficient of xb on the RHS is
∏k
i=0

(
ai
bi

)
.
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