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Abstract

In this note, we show the existence of constant-round computational zero-knowledge proofs
of knowledge for all NP. The existence of constant-round zero-knowledge proofs was proven by
Goldreich and Kahan (Journal of Cryptology, 1996), and the existence of constant-round zero-
knowledge arguments of knowledge was proven by Feige and Shamir (CRYPTO 1989). Although
it is widely believed that there exist constant-round zero-knowledge proofs of knowledge for all
NP, to the best of our knowledge, no proof of this fact has been published.

1 Introduction

In a zero-knowledge proof system, a prover and verifier interact so that the verifier is convinced of
the validity of the statement being proved, but learns nothing more [11]. In a proof of knowledge,
the verifier is also convinced of the fact that the prover knows a “witness” that testifies to the
validity of the statement being proved [11, 1]. Zero-knowledge proofs and zero-knowledge proofs
of knowledge are basic primitives in cryptography, and the fact that any statement in NP can be
proved in zero-knowledge has made them widely applicable [10]. An important question that has
been considerably studied relates to the round complexity of zero-knowledge protocols. We know
the following:

• Assuming the existence of 2-round perfectly-hiding commitments (which can be constructed
from families of claw-free functions), there exist 5-round zero-knowledge proof systems with
negligible soundness error for all NP. This was proven by Goldreich and Kahan [9]. (We
remark that if a language L has a four-round zero-knowledge proof then L ∈ MA [13]. Thus,
five rounds is actually the minimal number of rounds, unless co-NP ⊆ MA.)

• Assuming the existence of one-way functions, there exist 4-round zero-knowledge arguments
of knowledge with negligible soundness error for all NP (an argument is a “proof” where
soundness is only guaranteed computationally in the presence of a polynomial-time cheating
prover). This was proven by Feige and Shamir [6, 5].

However, to the best of our knowledge, it has never been proven that there exist constant-round
zero-knowledge proofs of knowledge for all NP. In this note, we prove the following theorem:

Theorem 1 Assuming the existence of 2-round perfectly-hiding commitments, every NP relation
has a 5-round computational zero-knowledge system for proofs of knowledge with negligible knowl-
edge error.
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The Goldreich-Kahan proof system [9]. Our construction is very similar to that of [9], and
we thus begin by describing the latter. Informally, the zero-knowledge proof of [9] works as follows:

1. The prover sends the first message of a perfectly-hiding commitment scheme.

2. The verifier commits to a query string q of length n using the perfectly-hiding commitment.

3. The prover begins n parallel executions of the three-round proof system of [10] (or equivalently
of [2]) and commits to the first prover message in each execution.

4. The verifier decommits to the query string q.

5. The prover concludes the proof based on the query string q.

The above is zero-knowledge because by rewinding, the simulator can learn the query string q before
it prepares the first message of the proof system. Simulation then follows from known techniques
which work when the verifier-queries can be guessed or otherwise obtained ahead of time. Before
proceeding, we warn that despite the fact that this strategy is intuitively appealing, and even
possibly “obvious”, it is highly non-trivial to analyze. Indeed, the proof by [9] that this is zero-
knowledge is quite involved, and contains an important and novel proof technique. The problem
that arises that makes this non-trivial is discussed at length in [9] and in our proof below. (We
remark that this technique is of general importance as it turns out that this problem arises in many
cryptographic settings where simulation is used.)

The reason why the protocol of [9] seems to not be a proof of knowledge is that in order to
extract, one must obtain multiple different responses from the prover relative to the same first
message of the proof system of [10] or [2]. However, the verifier (and thus the extractor) is bound
to its query before the prover sends its commitment, and this commitment may in turn be computed
as a function of the verifier’s first real message (i.e., the commitment). Thus the extractor cannot
change the query without the prover changing its first message.

Our zero-knowledge proof of knowledge. We solve the aforementioned problem in the pro-
tocol of [9] by essentially running a semi-simulatable coin-tossing protocol in order to choose the
query string q in between the first and second prover messages of the proof system of [10] or [2].
(We do not use a fully simulatable coin-tossing protocol because we need it to be constant-round
and secure even if the prover is computationally unbounded. The only such known protocol [14]
requires a constant-round zero-knowledge system for proofs of knowledge, which is exactly what
we are trying to build.) Informally, our protocol can be described as follows:

1. The prover begins n parallel executions of the proof system of [10] (or equivalently of [2])
and commits to the first prover message in each execution. The prover also sends the first
message of a perfectly-hiding commitment scheme.

2. The verifier commits to a query string q1 of length n using a perfectly-hiding commitment
scheme.

3. The prover commits to a string q2 of length n using a perfectly-binding commitment scheme.

4. The verifier decommits to the query string q1.

5. The prover decommits to q2 and concludes the proof based on the query string q = q1 ⊕ q2.
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The intuitive reasoning as to why this protocol is zero-knowledge is the same as for [9]. The
simulator guesses ahead of time a query string q, runs the verifier in order to obtain q1, and then
rewinds the verifier in order to set its q2 such that q1 ⊕ q2 = q. We note that proving this again
requires the techniques of [9].

The reason why this protocol is also a proof of knowledge is that it is now possible for an
extractor to rewind the prover multiple times relative to the same first message in order to obtain
multiple openings with different query strings q1 ⊕ q2. This enables us to apply the extraction
strategy of the basic protocols of [10, 2], albeit with some additional complications.

Remarks:

1. It is possible to use the technique of [16] in order to construct a 7-round zero-knowledge
system for proofs of knowledge for all NP with a simpler proof of security.1 The advantage
of the protocol presented here is in its minimal number of rounds.

2. Our method for obtaining 5-round zero-knowledge proofs of knowledge can be applied to any
3-round public-coin zero-knowledge proof with the property that simulation can be carried out
if the verifier query is known ahead of time and extraction works by obtaining two (or more)
valid prover-answers relative to the same first prover message. One important application of
this is that our method constitutes a highly-efficient generic construction of a zero-knowledge
system for proofs of knowledge from any Σ-protocol [4].

Semi-simulatable coin tossing. As we have mentioned, our protocol for constant-round zero-
knowledge proofs of knowledge works by having the prover and verifier jointly choose the verifier-
query q via a type of coin tossing protocol. In Section 3 we isolate this subprotocol and show that
it achieves a level of security that we call “semi-simulatable coin tossing”. Informally speaking,
this means that if P1 is corrupted then the protocol is secure according to the standard ideal/real
model simulation-based definitions of secure computation. Furthermore, if P2 is corrupted, it is
guaranteed that the output of P1 is either “abort” or a uniformly distributed string. We remark
that although the case of P2 being corrupted is not simulatable, the fact that P1 is nevertheless
guaranteed to output a uniformly distributed string (or abort) means that a meaningful security
level is obtained. We believe that this constant-round coin-tossing protocol, which is highly efficient,
is of independent interest.

Organization. In order to keep this note brief, we assume familiarity with the definitions of
zero-knowledge and zero-knowledge proofs of knowledge; see [7, Chapter 4] for details. We prove
that our protocol is a proof of knowledge using Definition 4.7.3 of [7].

2 Constant-Round Zero-Knowledge Proof of Knowledge

Our constant-round zero-knowledge proof of knowledge is based on n parallel repetitions of the
basic proof system for the Hamiltonian Cycle problem which is NP-complete. We therefore obtain

1Instead of the verifier sending a perfectly-hiding commitment to q1, it commits to q1 using stage 1 of the protocol
of [16]. Then, the prover sends q2 in the clear together with the first message of the underlying proof system. Finally,
the verifier reveals q1 as in [16], and the prover completes the proof with q = q1 ⊕ q2 as the query string.
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a proof system for any language in NP. We consider directed graphs (and the existence of directed
Hamiltonian cycles). Our methodology also works for the 3-coloring protocol of [10], but it is
simpler to describe it based on Hamiltonicity. See Appendix A for a full description of the basic
Hamiltonicity proof system.

We use a two-round perfectly-hiding commitment scheme. Such a scheme can be constructed
from families of claw-free functions. We denote the first message of such a scheme by α, and a
commitment to m using α and randomness r by Cα

ph(m; r). In addition, we use a non-interactive
perfectly-binding commitment scheme; a commitment tom using randomness r is denoted Cpb(m; r).
Perfectly-binding commitment schemes can be constructed from 1–1 one-way functions.2 The zero-
knowledge proof of knowledge system can be found in Protocol 2.

PROTOCOL 2 (Constant-Round ZKPOK)

• Common Input: a directed graph G = (V,E) with n
def
= |V |.

• Auxiliary Input to Prover: a directed Hamiltonian Cycle, C ⊆ E, in G.

• The protocol:

1. Prover’s first step (P1): The prover P sends n independent copies of the first message
(BP1) for the basic proof of Hamiltonicity, described in Appendix A. In addition, P
sends the first message α of a perfectly-hiding commitment scheme.

2. Verifier’s first step (V1): The verifier V chooses a random string q1 ∈R {0, 1}n and
computes c1 = Cα

ph(q1; r1) for a random r1 of the appropriate length. V sends c1 to
P .

3. Prover’s second step (P2): P chooses a random string q2 ∈R {0, 1}n and computes
c2 = Cpb(q2; r2) for a random r2 of the appropriate length. P sends c2 to V .

4. Verifier’s second step (V2): V decommits to c1 by sending q1 and r1.

5. Prover’s third step (P3): If Cα
ph(q1; r1) ̸= c1, then P aborts and halts. Otherwise,

P decommits to c2 by sending q2 and r2. P computes q = q1 ⊕ q2. Denoting q =
(q1, . . . , qn), P sends the second message (BP2) of the basic proof of Hamiltonicity
for each of the n copies, based on the verifier query qi in the ith copy.

6. Verifier’s output: V computes q = q1 ⊕ q2. If Cpb(q2; r2) ̸= c2 or the response of the
prover is not accepting in all n copies, based on the query qi in the ith copy, then V
outputs reject. Otherwise, V outputs accept.

Theorem 3 Assuming that Cph is a perfectly-hiding commitment scheme and that Cpb is a perfectly-
binding commitment scheme, Protocol 2 is a computational zero-knowledge proof of knowledge of
Hamiltonicity, with knowledge error κ(n) = 2−n.

Proof: We begin by proving that the protocol is a proof of knowledge with knowledge error
κ(n) = 2−n. We use Definition 4.7.3 in [7]. We construct an extractor K that works as follows:

1. K invokes P ∗
x,y,r, where x is the common input graph, and y and r are the auxiliary input

and random tape of P ∗, respectively. K receives the first prover message P1.

2We remark that it is also possible to use the 2-round statistically binding commitment scheme of [15] which
can be constructed from any one-way function. This enables us to rely on the sole assumption that there exists a
two-round perfectly-hiding commitment scheme, since this implies the existence of one-way functions.
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2. K continues the execution to the end of the proof, running the honest verifier.

(a) If the proof is not accepting, then K outputs ⊥ and halts.

(b) If the proof is accepting, then K rewinds P ∗
x,y,r to the beginning, and reruns the execu-

tion playing the honest verifier with fresh random coins. K repeats this until another
accepting proof is obtained. (Note that since P ∗

x,y,r is deterministic, the same first prover
message is obtained each time.)

3. Let q be the resulting query string in the first accepting transcript (where q = q1 ⊕ q2), and
let q′ be the query string in the second accepting transcript (where q′ = q′1 ⊕ q′2). If q = q′

then K outputs ⊥ and halts. Otherwise, let i be such that qi ̸= q′i. Since both transcripts
are accepting, K obtained responses to both query q = 0 and q = 1 relative to the same first
prover message. Thus, K can extract a Hamiltonian cycle C ⊆ E. K outputs C and halts.

It is immediate that if K does not output ⊥ then it outputs a valid Hamiltonian cycle C. We
now claim that K runs in expected polynomial time. Let p(x, y, r) be the probability that P ∗

x,y,r

convinces an honest verifier upon common input x and (y, r) as above. The important point to
notice is that the probability that each iteration concludes in Step 2b is exactly p(x, y, r). Thus,
the expected number of required iterations is 1/p(x, y, r). In addition, the probability that K
reaches Step 2b is exactly p(x, y, r). Finally, the cost of each iteration is polynomial in n. Thus,
the expected running-time of K is

p(x, y, r) · 1

p(x, y, r)
· poly(n) + (1− p(x, y, r)) · poly(n) = poly(n).

It remains to show that the probability that K outputs a valid cycle C is at least p(x, y, r)− 2−n.
Now, K outputs ⊥ if the first execution of the proof is not accepting or if q = q′. The probability
that the first execution of the proof is not accepting is 1− p(x, y, r), by the definition of p(x, y, r).
Next, we claim that the probability that K outputs ⊥ due to the fact that q = q′ is at most 2−n;
we denote this event by collision (because q and q′ collide). Note that this event can only happen if
the first execution was accepting. Thus, denoting the event that the first execution was accepting
by accept1 we have that

Pr
[
KP ∗

x,y,r(x) = ⊥
]

= Pr[¬accept1] + Pr[accept1 ∧ collision].

Now, let S ⊆ {0, 1}n+m be the set of pairs of strings (q1, r1) ∈ {0, 1}n+m for which P ∗
x,y,r concludes

with an accepting proof (we denote by m = m(n) the length of the random string needed to commit
to an n-bit string using Cph). We have

Pr[accept1] = p(x, y, r) = Pr(q1,r1)∈R{0,1}n+m

[
(q1, r1) ∈ S

]
=

|S|
2n+m

.

Next, observe that the event collision depends solely on the values (q1, r1) used in the first execution
and (q′1, r

′
1) used in the second execution. In particular, the string q2 chosen by P ∗

x,y,r, and thus
the string q = q1 ⊕ q2 is a deterministic function of the commitment value Cα

ph(q1; r1) computed by
V . To be concrete, let g be the (inefficient) function such that q2 = g(Cα

ph(q1; r1)), where q2 is the
value committed to by P ∗

x,y,r after receiving Cα
ph(q1; r1) from V . Using this notation, we have that

collision is the event that

q1 ⊕ g
(
Cα
ph(q1; r1)

)
= q′1 ⊕ g

(
Cα
ph(q

′
1; r

′
1)
)
.
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We therefore have

Pr[accept1 ∧ collision]

= Pr(q1,r1)∈{0,1}n+m,(q′1,r
′
1)∈S

[
accept1 ∧

(
q1 ⊕ g(Cα

ph(q1; r1)) = q′1 ⊕ g(Cα
ph(q

′
1; r

′
1))
)]

= Pr(q1,r1)∈{0,1}n+m,(q′1,r
′
1)∈S

[
q1 ⊕ g(Cα

ph(q1; r1)) = q′1 ⊕ g(Cα
ph(q

′
1; r

′
1)) | accept1

]
· p(x, y, r)

= Pr(q1,r1),(q′1,r′1)∈S
[
q1 ⊕ g(Cα

ph(q1; r1)) = q′1 ⊕ g(Cα
ph(q

′
1; r

′
1))
]
· p(x, y, r).

We now prove that

Pr(q1,r1),(q′1,r′1)∈S
[
q1 ⊕ g(Cα

ph(q1; r1)) = q′1 ⊕ g(Cα
ph(q

′
1; r

′
1))
]
≤ 1

2n · p(x, y, r)
. (1)

For every “commitment value” t (i.e., string in the range of Cα
ph), and every value v ∈ {0, 1}n,

define
St,v =

{
(q1, r1) ∈ S | Cα

ph(q1; r1) = t ∧ q1 ⊕ g(t) = v
}

to be the set of pairs (q1, r1) such that t = Cα
ph(q1; r1) and the resulting query q based on P ∗

x,y,r’s
reply equals v (i.e., v = q1 ⊕ g(Cα

ph(q1; r1))). Note that for every t and v, it holds that

Pr(q1,r1)∈S

[
Cα
ph(q1; r1) = t ∧ q1 ⊕ g(t) = v

]
= Pr(q1,r1)∈S

[
(q1, r1) ∈ St,v

]
=

|St,v|
|S|

. (2)

Let C denote the range of Cα
ph for commitments to strings of length n; i.e., C = {t | ∃v ∈ {0, 1}n, r ∈

{0, 1}m : t = Cα
ph(v; r)}. In addition, for the sake of clarity of the equations below, we denote the

perfectly-hiding commitment Cα
ph by C. We have:

Pr(q1,r1),(q′1,r′1)∈S

[
q1 ⊕ g(C(q1; r1)) = q′1 ⊕ g(C(q′1; r

′
1))
]

=
∑

t,t′∈C,v∈{0,1}n
Pr(q1,r1),(q′1,r′1)∈S

[
C(q1; r1) = t ∧ C(q′1; r

′
1) = t′ ∧ q1 ⊕ g(t) = q′1 ⊕ g(t′) = v

]
=

∑
v∈{0,1}n

∑
t,t′∈C

Pr(q1,r1)∈S [C(q1; r1) = t ∧ q1 ⊕ g(t) = v] · Pr(q′1,r′1)∈S

[
C(q′1; r

′
1) = t′ ∧ q′1 ⊕ g(t′) = v

]
=

∑
v∈{0,1}n

(∑
t∈C

Pr(q1,r1)∈S [C(q1; r1) = t ∧ q1 ⊕ g(t) = v]

)
·

(∑
t′∈C

Pr(q′1,r′1)∈S

[
C(q′1; r

′
1) = t′ ∧ q′1 ⊕ g(t′) = v

])

where the second equality holds because (q1, r1) and (q′1, r
′
1) are chosen independently. Next, observe

that for every v ∈ {0, 1}n∑
t∈C

Pr(q1,r1)∈S [C(q1; r1) = t ∧ q1 ⊕ g(t) = v] =
∑
t′∈C

Pr(q′1,r′1)∈S
[
C(q′1; r

′
1) = t′ ∧ q′1 ⊕ g(t′) = v

]
.

Thus,

Pr(q1,r1),(q′1,r′1)∈S
[
q1 ⊕ g(C(q1; r1)) = q′1 ⊕ g(C(q′1; r

′
1))
]

=
∑

v∈{0,1}n

(∑
t∈C

Pr(q1,r1)∈S [C(q1; r1) = t ∧ q1 ⊕ g(t) = v]

)2

=
∑

v∈{0,1}n

(∑
t∈C

|St,v|
|S|

)2
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=
∑

v∈{0,1}n

(∑
t∈C |St,v|
|S|

)2

=
∑

v∈{0,1}n

(
|Sv|
|S|

)2

(3)

where the second equality is from Eq. (2), and for every v ∈ {0, 1}n, we define

Sv =
∪
t∈C

St,v

(note that for every t ̸= t′, the sets St,v and St′,v are disjoint). Observe that by the perfect-hiding
property of C, it holds that Sv = Sw for all v, w ∈ {0, 1}n. In particular, this implies that for every
v ∈ {0, 1}n, the size of Sv is at most 2m. Now, for every v ∈ {0, 1}n, the value

∑
v∈{0,1}n(|Sv|/|S|)2

is maximized when some Sv are of maximal size (i.e., of size 2m) and the others are empty. Recalling
that |S| = p(x, y, r) · 2n+m, and observing that the minimum number of v ∈ {0, 1}n in the sum of
Eq. (3) when these are maximal is p(x, y, r) · 2n, we have that:

Pr(q1,r1),(q′1,r′1)∈S
[
q1 ⊕ g(C(q1; r1)) = q′1 ⊕ g(C(q′1; r

′
1))
]

=
∑

v∈{0,1}n

(
|Sv|
|S|

)2

≤ p(x, y, r) · 2n ·
(

2m

p(x, y, r) · 2n+m

)2

=
p(x, y, r) · 2n

(p(x, y, r) · 2n)2

=
1

p(x, y, r) · 2n
,

completing the proof of Eq. (1). We therefore conclude that

Pr[accept1 ∧ collision] ≤ 1

2n

and so

Pr
[
KP ∗

x,y,r(x) ̸= ⊥
]
= p(x, y, r)− 1

2n

as required.

Zero-knowledge. Next, we prove that Protocol 2 is zero-knowledge. The proof of this fact is
similar to the proof in [9]. We first present a simplified strategy for a black-box simulator S given
oracle access to a verifier V ∗ (with a fixed input, auxiliary input and random tape), and then
explain how to modify it. The simplified simulator S works as follows:

1. S chooses a random string q ∈R {0, 1}n. Then, for the prover message in the ith execution,
S generates a commitment to a random permutation of G if qi = 0, and to a simple n-cycle
if qi = 1. S hands V ∗ all of the commitments. In addition, S chooses α like an honest prover
would and hands it to V ∗.
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2. S receives from V ∗ its commitment c1. S chooses a random q2, r2, computes c2 = Cpb(q2; r2)
and hands c2 to V ∗.

3. S receives the decommitment q1, r1 from V ∗. If Cα
ph(q1; r1) ̸= c1, then S simulates P aborting,

outputs whatever V ∗ outputs, and halts. Otherwise, S proceeds to the next step.

4. Rewinding phase: S rewinds V ∗ until q1 ⊕ q2 = q:

(a) S fixes q2 = q1 ⊕ q, where q is the string it chose initially and q1 is the string that it
received from V ∗ in the decommitment.

(b) S rewinds V ∗ back to the point that it needs to send c2. S chooses a random r2 and
hands V ∗ the commitment c2 = Cpb(q2; r2).

(c) S receives q′1, r
′
1 from V ∗.

i. If Cα
ph(q

′
1; r

′
1) ̸= c1, then S returns back to Step 4b and repeats using fresh random-

ness (we stress that q2 is the same each time, whereas r2 is fresh).

ii. If Cα
ph(q

′
1; r

′
1) = c1 and q′1 ̸= q1, then S outputs ambiguous and halts.

iii. Otherwise, S completes the proof by decommitting either to the entire graph (for
qi = 0) or the simple cycle (for qi = 1).

5. S outputs whatever V ∗ outputs.

The intuition behind this simulation is clear. S repeatedly rewinds until the query string q is the
one that it initially chose. In this case, it can decommit appropriately and conclude the proof.
The fact that the result is computationally indistinguishable from a real proof by an honest prover
follows from the hiding property of the perfectly-binding commitments.

The problem with the above simplified strategy is that S actually may not run in expected
polynomial time. In order to see this, denote by ϵ(n) the probability that V ∗ decommits to c1
in the first iteration (before rewinding) and by δ(n) the probability that V ∗ decommits to c1 in
all later iterations. We stress that although the initial commitments do not change, ϵ(n) may not
equal δ(n). This is because ϵ(n) is based on the case that c2 is a random commitment to a random
q2, whereas δ(n) is based on the case that c2 is a random commitment to a fixed q2. Nevertheless,
it follows immediately from the hiding property of Cpb that the difference between ϵ(n) and δ(n)
is negligible; otherwise, one could use this fact to distinguish commitments. Now, the probability
that S runs the rewinding phase is ϵ(n), and the expected number of rewinding iterations in the
rewinding phase is 1/δ(n). Let µ(n) be a negligible function, such that ϵ(n) − δ(n) = µ(n). We
have that the expected running time of S is

(1− ϵ(n)) · poly(n) + ϵ(n) · 1

δ(n)
· poly(n) = poly′(n) · ϵ(n)

ϵ(n)− µ(n)
.

It may be tempting at this point to conclude that the above is polynomial because µ(n) is negligible,
and so ϵ(n)−µ(n) is almost the same as ϵ(n). This is true for “large” values of ϵ(n). For example,
if ϵ(n) > 2µ(n) then ϵ(n) − µ(n) > ϵ(n)/2. This then implies that ϵ(n)/(ϵ(n) − µ(n)) < 2.
Unfortunately, however, this is not true in general. For example, consider the case that µ(n) = 2−n

and ϵ(n) = µ(n) + 2−n/2 = 2−n + 2−n/2. Then,

ϵ(n)

ϵ(n)− µ(n)
=

2−n + 2−n/2

2−n/2
= 2n/2 + 1,
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which is exponential in n. This technical problem was observed and solved by [9], and we use their
solution here.

The problem described above is solved by ensuring that the simulator S never runs “too long”.
Specifically, if S proceeds to the rewinding phase of the simulation, then it first estimates the value
of ϵ(n). This is done by repeating Steps 2 and 3 of the simulation (choosing random q2 and r2
each time) until m = m(n) successful decommits occurs (for a polynomial m(n) to be determined
below), where a successful decommit is where V ∗ decommits to q1, the string it first decommit to.
We remark that as in the original strategy, if V ∗ correctly decommits to a different q′1 ̸= q1 then S
outputs ambiguous. Then, an estimate ϵ̃ of ϵ is taken to be m/T , where T is the overall number of
attempts until m successful decommits occurred. As shown in [9], this suffices to ensure that the
probability that ϵ̃ is not within a constant factor of ϵ(n) is at most 2−n. This can be proven using
the following bound, that is proven in Appendix B:

Lemma 2.1 (Tail inequality for geometric variables [12]): Let X1, . . . , Xm be m independent
random variables with geometric distribution with probability ϵ (i.e., for every i, Pr[Xi = j] =
(1− ϵ)j−1 · ϵ). Let X =

∑m
i=1Xi and let µ = E[X] = m/ϵ. Then, for every ∆,

Pr[X ≥ (1 + ∆)µ] ≤ e
− m∆2

2(1+∆) .qpace−4ex

Define Xi to be the random variable that equals the number of attempts needed to obtain the
ith successful decommitment (not including the attempts up until the i− 1th successful decommit-
ment), let X =

∑m
i=1Xi, and let ∆ = ±1/2. Clearly, each Xi has a geometric distribution with

probability ϵ. It therefore follows that

Pr

[
X ≤ m

2ϵ
∨X ≥ 3m

2ϵ

]
≤ 2 · Pr

[
X ≥ 3

2
· m
ϵ

]
≤ 2 · e−

m
12

Stated in words, the probability that the estimate ϵ̃ = m/X is not between 2ϵ/3 and 2ϵ is at most
2e−m/12. Thus, if m(x) = 12n it follows that the probability that ϵ̃ is not within the above bounds
is at most 2−n, as required.

Next, S repeats the following rewinding phase up to n times: S runs the rewinding phase in
Step 4 of the simulation. However, S limits the number of rewinding attempts in each rewinding
phase to n/ϵ̃ iterations. We have the following cases:

1. If within n/ϵ̃ rewinding iterations, S obtains a successful decommitment from V ∗ to q1, then
it completes the proof as described. It can do so in this case because the query string is q as
required.

2. If S obtains a valid decommitment to some q′1 ̸= q then it outputs ambiguous.

3. If S does not obtain any correct decommitment within this time, then S aborts this attempted
rewinding phase.

As mentioned, the above phase is repeated up to n times, each time using independent coins. If
the simulator S doesn’t successfully conclude in any of the n attempts, then it halts and outputs
fail. We will show that this strategy ensures that the probability that S outputs fail is negligible.
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In addition to the above, S keeps a count of its overall running time and if it reaches 2n steps,
then it halts, outputting fail. (This additional time-out is needed to ensure that S does not run too
long in the case that the estimate ϵ̃ is not within a constant factor of ϵ(n). Recall that this “bad
event” can only happen with probability 2−n.)

We first claim that S runs in expected polynomial-time.

Claim 2.2 Simulator S runs in expected-time that is polynomial in n.

Proof: Observe that in the first and all later iterations, all of S’s work takes a strict polynomial-
time number of steps. We therefore need to bound only the number of rewinding iterations. Before
proceeding, however, we stress that rewinding iterations only take place if V ∗ provides a valid
decommitment in the first place. Thus, all rewinding only occur with probability ϵ(n).

Now, S first rewinds in order to obtain an estimate ϵ̃ of ϵ(n). This involves repeating until
m(n) = 12n successful decommitments are obtained. Therefore, the expected number of repetitions
in order to obtain ϵ̃ equals exactly 12n/ϵ(n) (since the expected number of trials for a single success
is 1/ϵ(n)). After the estimate ϵ̃ has been obtained, S runs the rewinding phase of Step 4 for a
maximum of n times, in each phase limiting the number of rewinding attempts to n/ϵ̃.

Given the above, we are ready to compute the expected running-time of S. In order to do
this, we differentiate between two cases. In the first case, we consider what happens if ϵ̃ is not
within a constant factor of ϵ(n). The only thing we can say about S’s running-time in this case
is that it is bound by 2n (since this is an overall bound on its running-time). However, since this
event happens with probability at most 2−n, this case adds only a polynomial number of steps to
the overall expected running-time. We now consider the second case, where ϵ̃ is within a constant
factor of ϵ(n) and thus ϵ(n)/ϵ̃ = O(1). In this case, we can bound the expected running-time of S
by

poly(n) · ϵ(n) ·
(
12n

ϵ(n)
+ n · n

ϵ̃

)
= poly(n) · ϵ(n)

ϵ̃
= poly(n)

and this concludes the analysis.

Next, we prove that the probability that S outputs fail is negligible.

Claim 2.3 The probability that S outputs fail is negligible in n.

Proof: Notice that the probability that S outputs fail is less than or equal to the probability that
it does not obtain a successful decommitment in any of the n rewinding phase attempts plus the
probability that it runs for 2n steps.

We first claim that the probability that S runs for 2n steps is negligible. We have already
shown in Claim 2.2, that S runs in expected polynomial-time. Therefore, the probability that an
execution will deviate so far from its expectation and run for 2n steps is negligible. (It is enough
to use Markov’s inequality to establish this fact.)

We now continue by considering the probability that in all n rewinding phase attempts, S
does not obtain a successful decommitment within n/ϵ̃ steps. Consider the following two possible
cases (recall that ϵ(n) equals the probability that V ∗ decommits when q2 is random, and µ is the
negligible difference between ϵ(n) and δ(n), the probability that V ∗ decommits when q2 is fixed):

1. Case 1: ϵ(n) ≤ 2µ(n): In this case, V ∗ decommits to c1 with only negligible probability. This
means that the probability that S even reaches the rewinding phase is negligible. Thus, S
only outputs fail with negligible probability.
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2. Case 2: ϵ(n) > 2µ(n): Recall that V ∗ successfully decommits in any iteration with probability
δ(n) = ϵ(n) − µ(n). Thus, the expected number of iterations needed until V ∗ successfully
decommits is 1/(ϵ(n) − µ(n)). Now, since in this case ϵ(n) > 2µ(n) we have that µ(n) <
ϵ(n)/2 and so the expected number of rewinding attempts required to obtain a successful
decommitment to q1 is less than 2/ϵ(n).

Assuming that ϵ̃ is within a constant factor of ϵ(n), we have that 2/ϵ(n) = O(1/ϵ̃) and
so the expected number of rewindings in any given rewinding attempt is bound by O(1/ϵ̃).
Therefore, by Markov’s inequality, the probability that S tries more than n/ϵ̃ iterations in
any given rewinding phase attempt is at most O(1/n). It follows that the probability that
S tries more than this number of iterations in n independent rewinding phases is negligible
in n (specifically, it is bound by O(1/n)n). This covers the case that ϵ̃ is within a constant
factor of ϵ(n). However, the probability that ϵ̃ is not within a constant factor of ϵ(n) is also
negligible.

Putting the above together, we have that S outputs fail with negligible probability only.

Next, we prove the following:

Claim 2.4 The probability that S outputs ambiguous is negligible in n.

Proof: The proof of this claim is identical to the proof of this fact in [9]. Intuitively, if there
exists an infinite series of inputs x for which S outputs ambiguous with non-negligible probability,
then this can be used to break the computational binding of the Cph commitment scheme. The
only subtlety is that S runs in expected polynomial-time, whereas an attacker for the binding of
the commitment scheme must run in strict polynomial-time. Nevertheless, this can be overcome by
simply truncating S to twice its expected running time. By Markov’s inequality, this reduces the
success probability of the binding attack by at most 1/2, and so this is still non-negligible.

It remains to prove that the output distribution generated by S is computationally indistin-
guishable from the output of V ∗ in a real proof with an honest prover. We have already shown that
S outputs fail or ambiguous with only negligible probability. Thus, the only difference between the
output distribution generated by S and the output distribution generated in a real proof is that in
the case that qi = 0 the unopened commitments in the simulated transcript are all to 0, and not
to the rest of the graph apart from the cycle. The indistinguishability of this is therefore reduced
to the hiding property of the perfectly binding (and computationally hiding) commitment scheme.
Once again, the proof of this reduction is identical to the proof of this fact in [9] and so the details
are omitted. This completes the proof.

Reducing the knowledge error to zero. As shown in [1], if it is possible to find a valid witness
to the statement being proved in time poly(n)/κ(n) and it is possible to detect when the extractor
“fails” (i.e., in our case, outputs ⊥ because of the event “accept1 ∧ collision”), then the knowledge
error of a proof of knowledge can be reduced to 0. This is achieved by running the existing knowledge
extractor, and in the case of such a failure, finding a valid witness to the statement being proved
and outputting it. For the case of Hamiltonicity, it is possible to naively find a cycle in time n!.
Thus, in order to reduce the knowledge error to zero using this procedure, we simply need to run
the basic Hamiltonicity protocol n log n times in parallel, instead of just n times in parallel. This

11



yields

Pr[accept1 ∧ collision] ≤ 1

2n logn
<

1

n!

and so in the case that this event occurs, the extractor can find a Hamiltonian cycle using the naive
procedure, without affecting its polynomial expected running time. We therefore conclude:

Corollary 4 Assuming the existence of 2-round statistically-hiding commitment schemes, every
NP relation has a 5-round computational zero-knowledge system for proofs of knowledge, with zero
knowledge error.

3 Semi-Simulatable Coin Tossing

In our protocol for constant-round zero-knowledge proofs of knowledge, the verifier’s query q is
essentially chosen via a type of coin-tossing protocol. See Protocol 5 for a description of this coin-
tossing protocol; recall that Cα

ph(x; r) is a perfectly-hiding commitment to x using the receiver-
message α, and Cpb is a perfectly-binding commitment scheme. For the sake of this section, we
assume familiarity with the definitions of secure two-party computation; see [8, Chapter 7] and [3].

PROTOCOL 5 (Semi-Simulatable Coin Tossing)

• Common Input: a security parameter 1n and a length parameter ℓ.

• The protocol:

1. Party P2’s first step: P2 sends P1 the receiver-message α of the perfectly-hiding com-
mitment scheme.

2. Party P1’s first step: P1 chooses a random string x ∈R {0, 1}ℓ and computes c1 =
Cα

ph(x; r) for a random r of the appropriate length. P1 sends c1 to P2.

3. Party P2’s first step: P2 chooses a random string y ∈R {0, 1}ℓ and computes c2 =
Cpb(y; s) for a random r2 of the appropriate length. P2 sends c2 to P1.

4. Party P1’s second step: P1 decommits to c1 by sending x and r.

5. Party P2’s second step: If Cα
ph(x; r) ̸= c1, then P2 outputs ⊥ and halts. Otherwise,

P2 decommits to c2 by sending y and s.

6. Outputs:

(a) P1 checks that Cpb(y; s) = c2. If not, it outputs ⊥. Otherwise, it outputs x⊕ y.

(b) P2 outputs x⊕ y.

Protocol 5 has 5 rounds of communication and is highly efficient; in particular, it does not use
zero-knowledge proofs or arguments, as does the constant-round coin tossing protocol of [14]. In
addition, the proof of the zero-knowledge property in Theorem 3 demonstrates that in the case
that P1 (who is the verifier in Protocol 2) is corrupted, it is possible to prove security under
the standard simulation-based definitions of [3]. This is because the simulation strategy for the
proof of zero-knowledge works by the simulator first choosing the query string q at random and
then obtaining an execution in which the resulting query is q (with probability that is negligibly
close to the probability that the verifier doesn’t abort). Thus, the same strategy works when the
simulator receives a random string R from the trusted party and must generate an execution in
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which x⊕ y = R, with probability that is negligibly close to the probability that P1 does not cause
P2 to abort. In addition, observe that when P2 is corrupted, the output of P1 from the coin-tossing
protocol is uniformly distributed or ⊥. This holds because P1 commits to x using a perfectly-
hiding commitment and P2 commits to y using a perfectly-binding commitment. Thus, P2 is fully
committed to y before it knows anything (in an information-theoretic sense) about x. This implies
that x⊕y is uniformly distributed and so a corrupted P2 can either cause P1 to output this uniform
string, or to abort and output ⊥. We call this level of security “semi-simulatable coin tossing”,
and define it below. In the following definition, we refer to the coin-tossing functionality f defined
by f(1ℓ, 1ℓ) = (Uℓ, Uℓ), meaning that each party inputs the length 1ℓ and receives as output the
same uniformly-distributed ℓ-bit string. In addition, we denote by output1(realπ,A(z)(1

ℓ, 1ℓ, n))

the output of party P1 after interacting with adversary A in the protocol π, with inputs 1ℓ and
security parameter n.

Definition 6 A protocol π = (P1, P2) is a semi-simulatable coin-tossing protocol if the following
holds:

1. For every non-uniform probabilistic polynomial-time adversary A controlling P1 in the real
model, there exists a non-uniform probabilistic polynomial-time adversary/simulator S for the
ideal model such that{

idealf,S(z)(1
ℓ, 1ℓ, n)

}
z∈{0,1}∗;ℓ,n∈N

c≡
{
realπ,A(z)(1

ℓ, 1ℓ, n)
}
z∈{0,1}∗;ℓ,n∈N

.

2. For every non-uniform probabilistic polynomial-time adversary A controlling P2, and for every
R1, R2 ∈ {0, 1}ℓ, it holds that:

Pr
[
output1(realπ,A(z)(1

ℓ, 1ℓ, n)) ∈ {R1,⊥}
]
= Pr

[
output1(realπ,A(z)(1

ℓ, 1ℓ, n)) ∈ {R2,⊥}
]
.

Based on the above discussion, we obtain the following theorem:

Theorem 7 If Cph is a two-round perfectly-hiding commitment scheme and Cpb is a perfectly-
binding commitment scheme, then Protocol 5 is a 5-round semi-simulatable coin-tossing protocol.
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A Blum’s Zero-Knowledge Proof for Hamiltonicity [2]

PROTOCOL 8 (Basic proof system for Hamiltonicity)

• Common Input: a directed graph G = (V,E) with n
def
= |V |.

• Auxiliary Input to Prover: a directed Hamiltonian Cycle, C ⊆ E, in G.

• Prover’s first step (BP1): The prover selects a random permutation π over the vertices V ,
and commits (using a perfectly-binding commitment scheme) to the entries of the adjacency
matrix of the resulting permuted graph. That is, it sends an n-by-n matrix of commitments
so that the (π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and is a commitment to
0 otherwise.

• Verifier’s first step (BV1): The verifier uniformly selects q ∈ {0, 1} and sends it to the
prover.

• Prover’s second step (BP2):

– If q = 0, the prover sends π to the verifier and decommits to all of the commitments
in the adjacency matrix.

– If q = 1, the prover decommits to the commitments of entries (π(i), π(j)) for which
(i, j) ∈ C (and only to these commitments).

• Verifier’s second step (BV2):

– If q = 0, the verifier checks that the revealed graph is indeed isomorphic, via π, to G.

– If q = 1, the verifier checks that all revealed values are 1 and that the corresponding
entries form a simple n-cycle. In both cases the verifier checks that the decommitments
are proper (i.e., that they fits the corresponding commitments). The verifier accepts
if and only if the corresponding condition holds.
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B A Proof of Lemma 2.1

Lemma B.1 (Tail inequality for geometric variables [12] – Lemma 2.1 restated): Let X1, . . . , Xm

be m independent random variables with geometric distribution with probability ϵ (i.e., for every i,
Pr[Xi = j] = (1− ϵ)j−1 · ϵ). Let X =

∑m
i=1Xi and let µ = E[X] = m/ϵ. Then, for every ∆,

Pr[X ≥ (1 + ∆)µ] ≤ e
− m∆2

2(1+∆)

Proof: In order to prove this lemma, we define a new random variable Yα for any α ∈ N as follows.
Consider an infinite series of independent Bernoulli trials with probability ϵ (i.e., the probability of
any given trial being 1 is ϵ). Then, write the results of these trials as a binary string and let Yα be
the number of ones appearing in the prefix of length α. It is clear that

µα = E[Yα] = α · ϵ .

Furthermore,
Pr[X ≥ (1 + ∆)µ] = Pr[Yα < m]

for α = (1+∆)µ. In order to see why this holds, observe that one can describe the random variable
X =

∑m
i=1Xi by writing an infinite series of Bernoulli trials with probability ϵ (as above), and then

taking X to be the index of the mth one to appear in the string. Looking at it in this way, we have
that X is greater than or equal to (1 + ∆)µ if and only if Y(1+∆)µ < m (because if Y(1+∆)µ < m
then this means that m successful trials have not yet been obtained). Observe now that µα = α · ϵ,
α = (1 +∆)µ, and µ = m/ϵ. Thus, µα = (1 +∆) ·m. This implies that(

1− ∆

1 +∆

)
· µα =

(
1− ∆

1 +∆

)
· (1 + ∆) ·m = (1 +∆) ·m−∆ ·m = m ,

and so

Pr[Yα < m] = Pr

[
Yα <

(
1− ∆

1 +∆

)
· µα

]
.

Applying the Chernoff bound3, we have that

Pr
[
Yα < m

]
= Pr

[
Yα <

(
1− ∆

1 +∆

)
µα

]
< e−

µα
2
·( ∆

1+∆)
2

Once again using the fact that µα = (1 +∆) ·m we conclude that

Pr[X ≥ (1 + ∆)µ] = Pr
[
Yα < m

]
< e−

(1+∆)m
2

·( ∆
1+∆)

2

= e
− m∆2

2(1+∆)

as required.

3We use the following version of the Chernoff bound. Let X1, . . . , Xm be independent Bernoulli trials where
Pr[Xi = 1] = ϵ for every i, and let X =

∑m
i=1 Xi and µ = E[X] = mϵ. Then, for every β it holds that Pr[X <

(1− β)µ] < e−
µ
2
·β2

.
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