
On the complexity of computational problems

regarding distributions (a survey)∗

Oded Goldreich†

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded@wisdom.weizmann.ac.il

Salil Vadhan‡

Division of Engineering and Applied Sciences

Harvard University

Cambridge, MA, USA.

salil@eecs.harvard.edu.

December 30, 2010

Abstract

We consider two basic computational problems regarding discrete probability distributions:
(1) approximating the statistical difference (aka variation distance) between two given distribu-
tions, and (2) approximating the entropy of a given distribution. Both problems are considered
in two different settings. In the first setting the approximation algorithm is only given samples
from the distributions in question, whereas in the second setting the algorithm is given the
“code” of a sampling device (for the distributions in question).

We survey the know results regarding both settings, noting that they are fundamentally
different: The first setting is concerned with the number of samples required for determining
the quantity in question, and is thus essentially information theoretic. In the second setting the
quantities in question are determined by the input, and the question is merely one of computa-
tional complexity. The focus of this survey is actually on the latter setting. In particular, the
survey includes proof sketches of three central results regarding the latter setting, where one of
these proofs has only appeared before in the second author’s PhD Thesis.
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1 Introduction

We consider two basic computational problems regarding discrete probability distributions:

1. Computing (or rather approximating) the statistical difference (aka variation distance) be-
tween two given distributions.

2. Computing (or rather approximating) the entropy of a given distribution.

The foregoing informal phrases avoid the question of representation; that is, how are the distribu-
tions given to the algorithms. Both computational problems are quite trivial in the case that the
distributions are explicitly given to the algorithm (i.e., by a list of all elements in the support of
the distribution coupled with the probability mass assigned to them). Very good additive approx-
imations can be obtained also in the case that the algorithm is given sufficiently many samples
(drawn independently) from the distribution, where “sufficiently many” means linear in the size
of the distribution’s support. For example, given N/poly(ǫ) samples from a distribution that has
support size (at most) N , one can estimate the distribution’s entropy up-to an additive deviation
of ǫ (w.v.h.p.). The same number of samples suffices for approximating the statistical distance
between two such distributions (again, up to an additive deviation of ǫ, w.v.h.p.).

The question is whether such approximations (or even weaker ones) can be obtained based on
significantly less samples. At the very least, we are interested in algorithms that take o(N) samples
(i.e., a “sub-linear” (in the support size) number of samples). In Section 3, we survey what is
known regarding this question. The bottom-line is that weak approximations of both quantities
can be obtained using N e samples, for some e < 1, but nothing significant can be achieved with
No(1) samples.

We note that the foregoing question is essentially an information-theoretical one; that is, the
question refers to the number of samples required to make some estimations regarding the dis-
tribution(s). In contrast, in Section 4, we consider a purely computational-complexity problem:
We consider algorithms that are given the “code” of a sampling device (for the distributions in
question). We stress that such a device fully determines the distribution (from an information-
theoretic point of view), and the issue is what quantities can be efficiently computed based on this
description of the distribution. Note that the algorithm may, of course, use the sampling device in
order to generate samples. However, the algorithm is not confined to this usage of the sampling
device and may try to analyze the device in other ways (e.g., try to “reverse-engineer” it).

To be concrete, the sampling device is represented by a circuit C : {0, 1}m → {0, 1}n, which can
be used to generate samples by feeding it with a uniformly selected m-bit long string. Alternatively,
one may say that C is an implicit representation of a distribution over {0, 1}n, obtained by feeding C
with a uniformly selected m-bit long string. Typically, the circuit’s size is polynomial in n, whereas
the distribution defined by it can have support size 2n. Thus, when we consider the aforementioned
computational problems in terms of the circuit size, polynomial-time algorithms correspond to
algorithms that run in time that may be poly-logarithmic in the size of the support. We stress
that, in this model, the algorithm has full information regarding the distribution in question, but
it does not have enough time to use this information in a straightforward way (i.e., feed the circuit
with all possible inputs). The question is whether the algorithm can obtain approximations to the
aforementioned quantities within time that is polynomial in the size of the circuit. In Section 4,
we survey what is known regarding this question. The bottom-line is that the complexity of
approximating each of the foregoing computational problems is complete (under polynomial-time
reductions) for the complexity class SZK ⊆ AM∩ coAM, which is conjectured to extend beyond
BPP (i.e., probabilistic polynomial-time). In particular, under the widely believed conjecture that
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the Discrete Logarithm Problem is intractable, it follows that the approximation versions of each
of the foregoing computational problems are intractable. It is also known that the two types of
computational problems are actually computationally equivalent; that is, each is efficiently reducible
to the other.

Organization: In Section 3 we briefly survey the known results regarding sampling-based algo-
rithms (i.e., algorithms that only get samples from the distributions in question). In Section 4 we
survey the known results regarding the second setting; that is, we consider algorithms that are
given as input a full description of a sampling device for the distributions in question. In Section 5
we present the main ideas underlying the proofs of the three theorems stated in Section 4. One of
these proofs has only appeared before in the second author’s PhD Thesis [22]. Sections 4 and 5 are
actually the main part of this survey.

2 Preliminaries

Traditionally, (discrete) probability distributions are represented by the list of probabilities assigned
to the various elements in their range (or potential support). That is, a distribution is presented
by a sequence (p1, ..., pN ) of non-negative numbers (which sum-up to one) such that pi represents
the probability mass that is assigned to the ith element, denoted ei. Without loss of generality, we

may assume that {ei : i = 1, ..., N} = [N ]
def
= {1, ...,N}.

In this survey, we prefer to represent probability distributions by corresponding random vari-
ables that represent an element selected according to the distribution in question. That is, for a
sequence (p1, ..., pN ) as above, we consider a random variable X ∈ [N ] such that pi = Pr[X =ei], and
identify the random variable X with the probability distribution that assigns to ei the probability
mass Pr[X =ei].

The statistical difference (or variation distance) between the distributions (or the random vari-
ables) X and Y is defined as

∆(X,Y )
def
=

1

2
·
∑

e

|Pr[X =e] − Pr[Y =e]| = max
S

{Pr[X ∈ S] − Pr[Y ∈ S]} (1)

We say that X and Y are δ-close if ∆(X,Y ) ≤ δ and that they are δ-far if ∆(X,Y ) ≥ δ. Note that
X and Y are identical if and only if they are 0-close, and are disjoint (or have disjoint support) if
and only if they are 1-far.

The entropy of a distribution (or random variables) X is defined as

H(X)
def
=

∑

e

Pr[X =e] · log2(1/Pr[X =e]) . (2)

The entropy of a distribution is always non-negative and is zero if and only if the distribution is
concentrated on a single element. In general, a distribution that has support size N has entropy at
most log2 N .

3 Sampling-based algorithms

In this section we consider algorithms that approximate quantities related to distributions solely
on the basis of samples of the relevant distributions. We refer to such algorithms as sampling-

based algorithms, and consider such algorithms for approximating the distance between pairs of
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distributions and approximating the entropy of a distribution. We denote by N an upper bound on
the size of the support of these distributions, and focus on algorithms that obtain o(N) samples.

We review the known results regarding the relationship between the number of samples and
the quality of the approximation. In other words, we consider the sample complexity of these
approximation problems.

3.1 Approximating the distance between distributions

The study of sampling-based algorithms for approximating the statistical distance between dis-
tributions was initiated by Batu et. al. [6]. They show that Θ(N1/2) samples are necessary and
sufficient in order to distinguish a pair of identical distributions from a pair of disjoint distributions
(i.e., to distinguish the case that the two distributions are 0-close from the case that they are 1-far),
where N is an upper bound on the support of the distribution. Regarding the more general prob-
lem of distinguishing pairs of identical distributions from pairs of distributions that are δ-far, Batu
et. al. [6] showed that Õ(N2/3δ−4) samples suffice, and claimed that Ω(N2/3) samples are necessary.
The latter claim was proved by P. Valiant [25]. Regarding the even more general problem of approx-
imating the statistical distance between distributions, it was shown by P. Valiant [25] that N1−o(1)

samples are required. That is, for every fixed 0 < δ1 < δ2 < 1, it is the case that N1−o(1) samples
are required in order to distinguish distribution-pairs that are δ1-close from distribution-pairs that
are δ2-far apart.

Our conclusion is that in order to obtain any meaningful information regarding the distance
between two distributions (in this model), one must obtain Ω(N1/2) samples. Furtherthmore, while
O(N2/3) samples suffice for distinguishing identical distribution-pairs from distribution-pairs that
are far apart (say 0.1-far), in the general case N1−o(1) samples are required in order to approximate
(up to any constant additive term) the statistical distance between two distributions (of support
size N).

3.2 Approximating the entropy of a distribution

Batu et. al. [4] considered the problem of approximating the entropy of a distribution based on
samples from it; that is, they considered sampling-based algorithms for this task. They presented
an algorithm that, for any γ > 1, using Õ(N1/γ) samples of a distribution that has entropy
Ω(γ) provides a γ-factor approximation of its entropy. We comment that some lower-bound on
the entropy is necessary for obtaining any approximation-factor based on samples.1 On the other
hand, also in the case that the entropy is lower-bounded (as in Footnote 1 or even more), a constant
factor approximation of the entropy requires NΩ(1) samples (i.e., a γ-factor approximation requires
Ω(N (1/γ)−o(1)) samples; see [25]).

Our conclusion is that, except in pathological cases (of distributions having very small entropy),
the sample complexity of obtaining a γ-factor approximation of the entropy of a distribution is
N (1/γ)±o(1), where N is an upper bound on the support of the distribution.

Additive error approximation. The foregoing discussion refers to multiplicative error approx-
imation. Recent work by G. Valiant and P. Valiant [23, 24] refers to additive error approximations
and shows that Θ(n/ log n) samples are necessary and sufficient in such a case.

1Consider, for example, the family of distributions (parameterized by ǫ > 0) having support size 2, assigning
probability ǫ to one element and 1 − ǫ to the other.
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3.3 Additional comments

A general framework for analyzing the sample complexity of various computational problems re-
garding distributions was recently provided by P. Valiant [25]. Indeed, some of the aforementioned
lower-bounds are derived using this framework. Furthermore, this framework may be applied to
other natural measures of distance between distributions.

Some of the aforementioned results can be cast naturally within the formalism of property
testing (cf. [20, 12, 9]). For example, one may consider the property of two distributions being
identical, and the task of accepting pairs having the property and rejecting pairs that are far from
having the property according to a natural distance measure (cf. [9]).

Related work. Batu et. al. [5] have considered the task of approximating the distance between
a fixed distribution and a second distribution for which one only obtains samples.2 They present
an algorithm that, for a parameter δ, determines whether the two distributions are µ(N) · δ3-close
or δ-far based on Õ(N1/2δ−O(1)) samples, where µ(N) = Õ(1/

√
N). This matches a lower bound

of Ω(
√

N) samples requires to distinguish the case that the distribution is uniform over [N ] from
the case that it is (say) 0.1-far from being uniform. Batu et. al. [4] considered the problem of
approximating the entropy of a distribution also in a model in which the algorithm has access to
an “evaluation oracle” instead or in addition to the samples, where the evaluation oracle is defined
to answer the query x with the probability mass assigned to x.

4 Algorithms that are given a sampling device

In this section we consider algorithms that are given a succinct description of the distributions
in question. That is, the algorithm is given a “sampling device” (in the form of a circuit) and
is supposed to approximate a quantity that refers to the distribution defined by this sampling
device. A sampling device is actually an algorithm, and the distribution defined by it is the output
distribution of the device when fed with a random input of adequate length. For concreteness, for a
feasibility parameter n, we consider poly(n)-size circuits that map poly(n)-bit long inputs to n-bit
long outputs. Note that such circuits define a distribution over {0, 1}n, which may contain N = 2n

elements. In other words, a distribution over {0, 1}n is represented by a corresponding (poly(n)-
size) sampling device (or circuit), which typically means that we use a succinct representation of
the distribution.

We consider algorithms that are given such a representation (i.e., a circuit) as input, and need
to approximate some quantities of the represented distribution. Indeed, one thing that such an
algorithm can do is evaluate the circuit on inputs of its choice, and in particular on uniformly
selected inputs. Thus, the algorithm can certainly produce samples of the distribution, where
these samples are indeed of the type used in Section 3. However, the algorithm is not confined
to operating in that way, and it may try to “reverse engineer” the circuit in order to learn more
about the distribution (than by merely observing random samples generated according to the
distribution). Needless to say, we don’t really believe that “reverse engineering” can help to answer
the computational problems considered here, still we cannot rule out this possibility.

We stress that unlike in Section 3, the algorithm gets full information of the distribution. That
is, from an information theoretic point of view, the sampling device (or circuit) determines the
distribution, and thus determines its entropy and its distance from another distribution. The

2Alternatively, the first distribution may be given explicitly (as input to the algorithm), which in this case has
running time linear in N .
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question is how much time is required in order to compute these quantities from the information
that fully-determines them. In the rest of this section we associate the sampling circuits with the
distributions generated by them. That is, we associate the circuit C with the distribution it outputs
when fed with a uniformly selected input.

We study the complexity of approximation problems by defining corresponding promise prob-
lems (cf. [7]), where the latter are pairs of disjoint sets (cf. [10]). A promise problem (A,B) consists
of distinguishing between inputs in A and inputs in B, where inputs out of A ∪ B are ignored (or
one is “promised” that the input is in A ∪ B).

We briefly recall the standard definitions of reductions, when applied to promise problems. The
promise problem (A1, B1) is Karp-reducible to (A2, B2) if there exists a polynomial-time computible
function f such that if x ∈ A1 (resp., x ∈ B1) then f(x) ∈ A2 (resp., f(x) ∈ B2). More generally,
(A1, B1) is Cook-reducible (or just reducible) to (A2, B2) if there exists a polynomial-time oracle
machine M that on input x∈A1 (resp., x∈B1) and oracle access to (A2, B2), outputs 1 (resp., 0),
where query q to the oracle (A2, B2) is answered arbitrarily in case q 6∈ A2 ∪ B2. Two problems
are said to be computationally equivalent (resp., computationally equivalent under Karp-reductions)
if each is Cook-reducible (resp., Karp-reducible) to the other.

4.1 Approximating the distance between distributions

We consider promise problems that take as input a pair of circuits and refer to the statistical dif-
ference between the two corresponding distributions (generated by the two circuits). For (thresh-
old) functions c, f : N → [0, 1], where c ≤ f , the promise problem GapSDc,f = (Closec, Farf )
is defined such that (C1, C2) ∈ Closec if ∆(C1, C2) ≤ c(|C1| + |C2|) and (C1, C2) ∈ Farf if

∆(C1, C2) > f(|C1| + |C2|). In particular, we focus on promise problem GapSD
def
= GapSD

1

3
, 2
3 .

Interestingly, the complexity of this gap problem, which captures a moderately good approxima-
tion requirement, is computationally equivalent to a very crude approximation requirement. That
is, the former problem is Karp-reducible to the latter:

Theorem 1 ([21], see proof sketch in Section 5.1:) There exists a Karp-reduction of GapSD
1

3
, 2
3 to

GapSDǫ,1−ǫ, where ǫ(n) = 2−n. More generally, for every polynomial-time computible c, f : N →
[0, 1] such that c(n) < f(n)2 − (1/poly(n)) it holds that GapSDc,f is Karp-reducible to GapSDǫ,1−ǫ.

Using a trivial reduction in the other direction, we conclude that for every c, f : N → [0, 1] such that

c(n) ≥ 2−n, c(n) < f(n)2 − (1/poly(n)) and f(n) ≥ 1 − 2−n, the problems GapSDc,f and GapSD =

GapSD
1

3
, 2
3 are computationally equivalent (under Karp reductions). This equivalence is useful in

determining the complexity of GapSD (as well as all these GapSDc,f ’s). Sahai and Vadhan [21] showed
that any promise problem having a statistical zero-knowledge proof system is Karp-reducible to

GapSD
1

2p2
, 1
p , for some polynomial p, and that GapSDǫ,1−ǫ (where ǫ(n) = 2−n) has a statistical zero-

knowledge proof system. Denoting the class of promise problem having statistical zero-knowledge
proof systems by SZK, we have:

Theorem 2 [21]: The promise problem GapSD is SZK-complete (under Karp-reductions).

Recall that SZK contains some promise problems (e.g., one equivalent to Discrete Logarithm
Problems) that are widely believed not to be in BPP (cf. [13]). On the other hand, SZK ⊆
AM∩ coAM (cf. [11, 1]), which in turn is quite low in the Polynomial-Time Hierarchy.

We comment that GapSD = (Close, Far) is Karp-reducible to its complement (Far, Close) [21];
that is, there is a Karp-reduction that maps pairs (C1, C2) to pairs (C ′

1, C
′
2) such that if ∆(C1, C2) ≤

1/3 then ∆(C ′
1, C

′
2) > 2/3 whereas if ∆(C1, C2) > 2/3 then ∆(C ′

1, C
′
2) ≤ 1/3.

5



4.2 Approximating the entropy of a distribution

We consider two computational problems related to approximating the entropy of a distribution.
The first problem is captured by promise problems that take as input a circuit and a value and
refers to the relation between the entropy of (the distribution generated by) the circuit and the
given value. For a (slackness) function s : N → R, where s > 0, the promise problem GapEnts =
(Smallers, Larger) is defined such that (C, v) ∈ Smallers if H(C) ≤ v−s(|C|) and (C, v) ∈ Larger

if H(C) ≥ v. In particular, we focus on promise problem GapEnt
def
= GapEnt1 (which refers to

approximating the entropy up to an additive error of 1). It is easy to see that, for every polynomial
p and for every ǫ > 0 and ℓ(n) = n1−ǫ(n), the problems GapEnt1/p, GapEnt1 and GapEntℓ are
computational equivalent (under Karp reductions).3

We also consider promise problems that take as input a pair of circuits and refer to the re-
lation between the entropies of the corresponding distributions (generated by the two circuits).
For a (slackness) function s : N → R, where s > 0, the promise problem GapCmprEnts =
(Smallers, Largers) is defined such that (C1, C2) ∈ Smallers if H(C1) ≤ H(C2)−s(|C1|+ |C2|) and
(C1, C2) ∈ Largers if H(C1) ≥ H(C2) + s(|C1| + |C2|). In particular, we focus on promise problem

GapCmprEnt
def
= GapCmprEnt1, and note that it is computationally equivalent (under Karp reduc-

tions) to GapCmprEnt1/p and GapCmprEntℓ (where p and ℓ are as above). Two easy observations
follow:

Observation 1: The problems GapEnt and GapCmprEnt are computationally equivalent (under
Cook reductions). Specifically, GapEnt is Karp-reducible to GapCmprEnt, whereas GapCmprEnt
is Cook-reducible to GapEnt.

For example, one may use a Karp-reduction that maps an instance (C, v) of GapEnt to the
intance (C,Cv−0.5) of GapCmprEnt1/3 such that Cv−0.5 is a standard circuit that generates
some distribution of entropy (approximately) v − 0.5. For the other direction, consider an
oracle machine that decides intances of GapCmprEnt by using queries to GapEnt1/3 in order to
determine the entropy of each of the two input distributions (up to an additive error of 1/3).

Observation 2: The problem GapCmprEnt = (Smaller, Larger) is Karp-reducible to its comple-

ment (Larger, Smaller); e.g., by the reduction that maps (C1, C2) to (C2, C1).

It is not know whether or not GapCmprEnt is Karp-reducible to GapEnt and whether or not GapEnt
is Karp-reducible to its complement. In fact, both questions are equivalent (cf. [16]), and we
conjecture that the answer (to both of them) is negative. It turns out that all these computa-
tional problems (regarding entropy) are computationally equivalent to the computational problems
regarding statistical distance:

Theorem 3 ([17], see proof sketch in Section 5.3:) The promise problems GapCmprEnt and GapSD

are computationally equivalent under Karp reductions.

Combining Theorem 3 and Observation 2, it follows that GapSD = (Close, Far) is Karp-reducible

to its complement (Far, Close). We comment that this result (which was already stated at the
end of Subsection 4.1) was originally proved in [21] without using the equivalence of GapSD and
GapCmprEnt (i.e., without using Theorem 3).

3The tighter (additive) approximation is reduced to the looser one by combining sufficiently many copies of the
circuit.
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4.3 Additional comments

We comment that the promise problems GapSD, GapEnt and GapCmprEnt were originally introduced
as tools in the study of statistical zero-knowledge.4 Consequently, the original presentations (cf. [21,
17, 16]) focus on the derivation and presentation of results regarding statistical zero-knowledge, and
the relation between the promise problems themselves is sometimes only implicit (and is typically
not at the main focus). In fact, redeeming this state of affairs has been our initial motivation for
writing the current survey.

The bottom-line of the foregoing results is that many of the approximation versions of the two
problems (i.e., approximating the distance between distributions and approximating their entropy)
are computationally-equivalent. The exceptional versions that are not known to be equivalent to
the other versions refer to too small gaps (which may yield even harder versions). Whereas in
the case of approximating the entropy the definition of “too small gaps” is a natural one, it is
somewhat artificial in the case of GapSDc,f where we require c < f2. An interesting open problem
is to determine the complexity of GapSDc,f in the case that c > f2 (but c < f , of course)5; that is,
is this problem computationally equivalent to GapSD or is it strictly harder?

An alternative perspective on the current section is that it concerns only probability distribu-
tions that have a succinct representation, where such a representation is one allowing to efficiently
obtain samples from the distribution. Specifically, for a feasibility parameter n, we consider proba-
bility distributions over {0, 1}n. The support of such a distribution may contain 2n elements, while
we consider algorithms operating in poly(n)-time. Thus, such algorithms cannot read an explicit
representation of the distribution (in the form of a sequence of length 2n), and hence the distribu-
tion is given to it in a succinct representation. Specifically, we have considered algorithms that are
given a sampling device, which is a poly(n)-size circuit that when feed with a random input output
a sample that is distributed according to the distribution. We have considered the complexity of
estimating various quantities of distributions given by such a succinct representation.

5 Proof sketches for the three theorems

In this section we outline the main ideas used in the proofs of the three theorems stated in Section 4.
Theorem 2 is the only one that refers to statistical zero-knowledge and its proof is the only one that
assumes any familiarity with zero-knowledge. The other two proofs are based merely on elementary
results from probability theory and probabilistic analysis.

As in Section 4, we associate the sampling circuits with the distributions generated by them.
That is, we associate the circuit C with the distribution it outputs when fed with a uniformly
selected input.

5.1 Proof sketch for Theorem 1

Theorem 1 was proven by Sahai and Vadhan [21], and here we provide an outline of their proof. Re-

call that the theorem claims a Karp-reduction of GapSD
1

3
, 2
3 (or any adequate GapSDc,f) to GapSDǫ,1−ǫ,

where ǫ(n) = 2−n. This reduction (called the Polarization Lemma in [21]) has the interesting effect
of “polarizing the situation”: pairs of distributions that are somewhat close (e.g., are at most at
distance 1/3 apart) are mapped to pairs of almost identical distributions (i.e., having negligible

4For more details regarding statistical zero-knowledge see either [21, 15, 17, 16] or [22].
5The above formulation refers to constant c and f . For c, f : N → [0, 1], we have to require that c(n) <

f(n) − (1/p(n)) for some polynomial p.
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distance between them), whereas pairs of distributions that are somewhat far apart (e.g., at dis-
tance at least 2/3) are mapped to pairs of distributions that are very different (e.g., have distance
negligiblly close to 1). The “polarizing” reduction is obtained by composing three Karp-reductions,
which in turn are of two types. These two types of Karp-reductions (among GapSDc,f problems)
are described next, starting with the simpler one.

The Direct Product reduction: This reduction increases both bounds in the definition of
GapSDc,f (but not in a tight manner). For any (polynomial) t, we reduce GapSDc,f to GapSDt·c,1−2 exp(−t·f2/2)

by constructing circuits that generate t samples of each of the corresponding input distributions.

That is, we map the circuit pair (C1, C2) to (C ′
1, C

′
2), where C ′

i(r1, ..., rt)
def
= (Ci(r1), ..., Ci(rt)).

Clearly, the statistical distance between the distributions grows by at most a factor of t. On the
other hand, it can be shown that if two distributions are at distance δ then the statistical difference
between their t-products is at least 1 − 2 exp(−t · δ2/2). (Indeed, it is not true that the statisti-
cal difference between the t-products is exactly t · δ, the latter is merely an upper bound on the
former.)6

The XOR reduction: This reduction decreases both bounds (in a tight manner). For any
(polynomial) t, we reduce GapSDc,f to GapSDct,f t

by mapping the circuit pair (C0, C1) to (C ′
0, C

′
1),

where

C ′
i(b1, ..., bt−1, r1, ..., rt−1, rt)

def
=

(
Cb1(r1), ..., Cbt−1

(rt−1), Ci+
∑t−1

j=1
bj mod2

(rt)

)
.

That is, the two output circuits (i.e., the C ′
i’s) select samples from the two input distributions

(respresented by the Ci’s), and differ only in the parity of the number samples taken from the (say)
first input distribution. Specifically, C ′

0 (resp., C ′
1) takes an even (resp., odd) number of samples

from C1. It can be shown that if two input distributions are at distance δ then the statistical
difference between the constructed (output) distributions is exactly δt. (Intuitively, a single sample
drawn for one of the two input distributions corresponds to a “weak” encryption of a bit, whereas a
sample drawn from one of the output circuits corresponds to encrypting a bit by applying “weak”
encryptions to a random sequence of bits that have the desired parity. The “weakness” of the
resulting encryption decays exponentially with t; cf. [26].)7

We now turn to the actual reduction of GapSD
1

3
, 2
3 (or any adequate GapSDc,f) to GapSDǫ,1−ǫ,

where ǫ(n) = 2−n. This reduction is composed of the following three reductions:

1. A Karp-reduction of GapSD
1

3
, 2
3 (or any GapSDc,f such that c(n) < f(n)2 − 1

poly(n)) to some

GapSDc′,f ′
such that f ′(n) >

√
8n · c′(n).

Specifically, for an adequate parameter t, we use the XOR reduction and get c′ = ct and
f ′ = f t, which satisfies the desired condition (regarding c′ and f ′) provided that c < f2 (or

6The lower bound of 1−2 exp(−t ·δ2/2) can be proved by referring to the second definition in Eq. (1). Specifically,

for an adequate set S, it holds that p
def
= Prr[C1(r) ∈ S] = Prr[C2(r) ∈ S] − δ. Thus, C′

1 (resp., C′
2) is expected

to have t · p (resp., t · (p + δ) elements in S. By applying a Chernoff Bound, we note that with probability at least
1− exp(−t · δ2/2), the output of C′

1 (resp., C′
2) will have less than t · (p + δ

2
) (resp., more than t · (p + δ

2
)) elements in

S. This yields a set S′ that demonstrates the claimed lower bound on the statistical difference between C′
1 and C′

2.
7Alternatively, consider the following problem. For pairs of random variables, (X0, X1) and (Y0, Y1), we define

a new pair of random variables, (Z0, Z1), such that Zi = (Xb, Yi⊕b), where b ∈ {0, 1} is uniformly distributed.
Using the first definition in Eq. (1) and expanding the expression for ∆(Z0, Z1), one can show that ∆(Z0, Z1) =
∆(X0, X1) · ∆(Y0, Y1). The general claim (stated above) follows by induction on t.
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actually c(n) < (8n)−t/2 · f(n)2). In particular, for c = 1/3 and f = 2/3, we set t = O(log n)

and reduce GapSDc,f to GapSDc′,f ′
, where c′(n)

def
= ct = 1/poly(n) and f ′(n)

def
= f t = (f2/c)t/2 ·

ct/2 >
√

8n · c′(n). In general, we set t = poly(n) such that (f(n)2/c(n))t/2 ≥ 8n, which is

possible because f(n)2

c(n) > 1 + 1
p(n) for some positive polynomial p.

2. A Karp-reduction of a GapSDc′,f ′
(with c′ and f ′ as obtained in Step 1) to GapSDc′′,f ′′

, where
c′′(n) = 1/4 and f ′′(n) ≥ 1 − 2 exp(−n).

Specifically, for an adequate parameter t (i.e., t = 1/4c′(n)), we use the Direct Product

reduction and get c′′(n)
def
= t · c′(n) = 1/4 and f ′′(n)

def
= 1 − 2 exp(−t · f ′(n)2/2). Using

the hypothesis f ′(n) ≥
√

8n · c′(n), it follows that f ′′(n) = 1 − 2 exp(−f ′(n)2/8c′(n)) ≥
1 − 2 exp(−n),

3. A Karp-reduction of a GapSDc′′,f ′′
(with c′′ and f ′′ as obtained in Step 2) to GapSDǫ,1−ǫ, where

ǫ(n) = 2−n.

Specifically, we apply the XOR reduction again, but this time with t = n/2, and use (1/4)t =
2−n = ǫ(n) and (1 − 2 exp(−n))t > 1 − 2−n = 1 − ǫ(n).

Combining the above three reductions, we obtain a Karp-reduction of GapSD
1

3
, 2
3 (or any GapSDc,f

such that c(n) < f(n)2 − 1
poly(n)) to GapSDǫ,1−ǫ, where ǫ(n) = 2−n.

On the use of the condition c < f2 in the current reduction: Note that in Step 2 we have
assumed that f ′(n) ≥

√
8n · c′, where (by Step 1) f ′ = f t and c′ = ct. It follows that we must have

f(n)t ≥ (8n)t/2 · (
√

c(n))t, and in particular f(n)2 > c(n). As discussed in Section 4.3, it is an open
problem whether or not there exists an alternative reduction that uses a more relaxed condition
(regarding c and f).

5.2 Proof sketch for Theorem 2

Theorem 2 was also proven by Sahai and Vadhan [21], and here we sketch the ideas underlying their
proof. The proof consists of two parts: (1) showing that GapSD has a statistical zero-knowledge
proof system, and (2) showing that any problem in SZK is Karp-reducible to GapSD. We try to
present the proof ideas while assuming only a superficial familiarity with the notion of statistical
zero-knowledge proof systems. A reader that does not feel comfortable with this assumption is
invited to skip the current subsection.

The problem GapSD has a statistical zero-knowledge proof system: Using Theorem 1, it
suffices to show such a proof system for GapSDǫ,1−ǫ, where ǫ(n) = 2−n. Actually, we present such
a proof system for the complement problem (i.e., (Far1−ǫ, Closeǫ)), and rely on the (highly non-
trivial) fact that GapSD is reducible to its complement.8 Employing the same idea as in [18, 14],
the verifier selects one of the input distributions at random and presents the prover with a random
sample generated according to this distribution. The verifier accepts if and only if the prover
correctly identifies the distribution from which the sample was taken. Observe that if the input
distributions are far apart then the prover can answer correctly with very high probability. On the

8As mentioned in Section 4, this fact follows by combining Theorem 3 with Observation 2. An alternative proof of
the fact that GapSD is reducible to its complement was given in [21]. (Actually this alternative proof was discovered
before Theorem 3.)
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other hand, if the input distributions are very close then the prover cannot guess the correct answer
with probability significantly larger than 1/2. This establishes that the protocol is an interactive
proof (and thus that GapSD is in coAM). It can be shown that this protocol is actually statistical
zero-knowledge, intuitively because the verifier learns nothing from the prover’s correct answer
which is a priori known to to the verifier (in case the two distributions are far apart).

Any problem in SZK is Karp-reducible to GapSD: We rely on Okamoto’s Theorem by which
any problem in SZK has a public-coin statistical zero-knowledge proof system. (We comment
that an alternative proof of that theorem has subsequently appeared in [17].) We consider an
arbitrary (public-coin) statistical zero-knowledge proof system. Following Fortnow [11], we observe
a discrepency between the behavior of the simulator on yes-instances versus no-instances:

• In case the input is a yes-instance, the simulator outputs transcripts that are very similar to
those in the real interaction. In particular, these trascripts are accepting and the verifier’s be-
havior in them is as in a real interaction. In particular, resorting to the public-coin condition,
this means that the verifier’s messages in the simulation are (almost) uniformly distributed
independently of prior messages.

• In case the input is a no-instance, the simulator must output either rejecting transcripts or
transcripts in which the verifier’s behavior is significantly different from the verifier’s behavior
in a real interaction. In particular, the only way the simulator can produce accepting tran-
scripts is by producing transcripts in which the verifier’s messages are not “random enough”
(i.e., they depend, in a noticeable way, on previous messages).

Thus assuming, without loss of generality, that the simulator only produces accepting transcripts,
we consider two types of distributions. The first type of the distributions is obtained by truncating
a random simulator-produced transcript at a random “location” (after some verifier message),
whereas the second type is obtained by doing the same while replacing the last verifier message
by a random one. Note that both distributions can be implemented by polynomial-size circuits
that depend on the input to the proof system being analyzed (and that these two circuits can be
constructed in polynomial-time given the said input). The key observation is that if the input is a
yes-instance then the two corresponding distributions will be very close, whereas if the input is a
no-instance then there will be a noticeable distance between the two corresponding distributions.
Thus, we reduced any problem having a (public-coin) statistical zero-knowledge proof system to
GapSDµ,ν , where µ is a negligible function and ν(n) is a noticeable function.9 The proof is completed
by using Theorem 1 (while noting that µ(n) < ν(n)2 − (1/poly(n))).

5.3 Proof sketch for Theorem 3

Theorem 3 was proven by Goldreich and Vadhan [21], by showing that GapCmprEnt is SZK-complete
(under Karp-reductions) and invoking Theorem 2 (which shows the same for GapSD). Here we follow
a more direct proof, which has appeared in Vadhan’s PhD Thesis [22]. The proof consists of two
parts: (1) showing that GapSD is Karp-reducible to GapCmprEnt, and (2) showing that GapCmprEnt
is Karp-reducible to GapSD.

9A function µ : N → [0, 1] is called negligible if µ(n) < 1/p(n) for every positive polynomial p and all sufficiently
large n. A function ν : N → [0, 1] is called noticeable if ν(n) > 1/p(n) for some positive polynomial p and all
sufficiently large n.
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Reducing GapSD to GapCmprEnt: Using Theorem 1, it suffices to reduce GapSDǫ,1−ǫ to GapCmprEnt,
for ǫ(n) = 2−n. Actually, we will reduce GapSDǫ,1−ǫ to a related problem, denoted GapCmprEnt′,
that refers to distinguishing pairs of distributions that have approximately the same entropy from
pairs in which the first distribution has (say half a unit of) more entropy.10 We reduce GapSDǫ,1−ǫ

to GapCmprEnt′ by mapping the circuit pair (C0, C1) to (C ′
1, C

′
2), where C ′

1(r, s, b)
def
= (Cs(r), b) and

C ′
2(r, s, b)

def
= (Cs(r), s). That is, C2 outputs a sample of one of the input distributions along with

the “selection bit” s used to determine the input distribution being sampled, whereas C1 outputs
such a sample along with an independently distributed random bit (denoted b). Clearly, the en-

tropy of C ′
1 is always v + 1, where v

def
= H(C0)+H(C1)

2 . Now, if the two input distributions are very
far apart then the selection bit s will be determined by the sample and so the entropy of C ′

2 will
be approximately v, which is significantly smaller than H(C ′

1). On the other hand, if the two input
distributions are very close then (even conditioned on the sampled selected) the selection bit s will
be almost random and so H(C ′

2) ≈ v + 1, which is approximately the same as H(C ′
1).

A warm-up: reducing GapEnt to GapSD. We first reduce GapEnt to GapEntℓ, where ℓ(n) =
√

n,
by using sufficiently many samples (of the input distribution): for example, we may map (C, v) to
(C ′, v′), where C ′(r1, ..., rn) = (C(r1), ..., C(rn)) and v′ = n · v. Next, we assume that the input
distribution is “flat”, where a distribution is called flat if it is uniform over some set (i.e., if all
elements in its support are assigned the same probability mass). We note that by taking sufficiently
many samples, we can transform each distribution to one that is “almost flat” (in a sense that is
sufficient for the rest of the proof), while maintaining its “relative entropy” (i.e., the average entropy
per output bit). Now, suppose that we are given a pair (C, v) such that C : {0, 1}m → {0, 1}n is flat
and |H(C)−v| ≥ √

n, and we are interested in the relation between H(C) and v. Suppose that h is a
random hash function11 mapping m-bit strings to (m−v−log2

2 n)-bit long string. Now, consider the
distributions (h,C(r), h(r)) and (h,C(r), h(r′)), where r, r′ ∈ {0, 1}m and h are uniformly selected.
By the property of the hashing function, the third part of the distribution (h,C(r), h(r′)) is almost

uniform over {0, 1}m−v−log2

2
n, even when conditioning on the first parts (specifically on h). On the

other hand, the third part of the distribution (h,C(r), h(r)) is distributed as h(r) conditioned on
C(r) (i.e., h(r)|C(r)). We note that H(r|C(r)) = m − H(C), and that the distribution r|C(r) is
flat. Furthermore, if H(C) ≤ v then H(r|C(r)) ≥ m − v and the distribution h(r)|C(r) is almost

uniform over {0, 1}m−v−log2
2

n, whereas if H(C) ≥ v + 2 log2
2 n then H(r|C(r)) ≤ m − v − 2 log2

2 n

and the distribution h(r)|C(r) is very far from being uniform over {0, 1}m−v−log2
2

n. Now, recall
that |H(C)− v| ≥ √

n, and observe that if H(C) < v then the distribution (h,C(r), h(r)) is almost
identical to the distribution (h,C(r), h(r′)), whereas if H(C) > v then (h,C(r), h(r)) is very far
from (h,C(r), h(r′)). Thus, we have reduced GapEnt to GapSD.

Reducing GapCmprEnt to GapSD: As in the warm-up, we first reduce GapCmprEnt to GapCmprEntℓ,
where ℓ(n) =

√
n, such that each of the two distributions is almost flat. Suppose that we are given a

pair of circuits (C1, C2) such that both are (almost) flat and |H(C1)−H(C2)| ≥
√

n, and we are inter-
ested in the question of which circuit (or distribution represented by it) has higher entropy. Further
suppose that C1, C2 : {0, 1}m → {0, 1}n. Suppose that h is a random hash function mapping (n+m)-
bit strings to (m− log2

2 n)-bit long string. Now, consider the distributions (h,C1(r1), h(C2(r2), r1))

10Indeed, the reduction from GapCmprEnt
′ to GapCmprEnt is easy: we just increase the gap in entropy (by repeated

sampling), and move the gap location (by augmenting the second distribution with a few random bits).
11Formally speaking, we mean a uniformly selected function in a collection of universal2 hashing functions [8]. For

example, we may select h uniformly among all affine mappings of GF (2m) to GF (2k), for k = m − v − log2

2
n.
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and (h,C1(r1), h(0n, r2)), where r1, r2 ∈ {0, 1}m and h are uniformly selected. By the property
of the hashing function, the third part of the distribution (h,C1(r1), h(0n, r2)) is almost uniform

over {0, 1}m−log2

2
n, even when conditioning on the first parts. On the other hand, the third part

of the distribution (h,C1(r1), h(C2(r2), r1)) is distributed as h(C2(r2), r1)|C1(r1)). We note that

u
def
= H(C2(r2), r1|C1(r1)) = H(C2) + (m − H(C1)), and that the distribution (C2(r2), r1)|C1(r1)

is flat. Furthermore, if u ≥ m then the distribution h(C2(r2), r1)|C1(r1)) is almost uniform over

{0, 1}m−log2

2
n, whereas if u ≤ m − 2 log2

2 n then the distribution h(C2(r2), r1)|C1(r1)) is very far

from being uniform over {0, 1}m−log2
2

n. Now, recall that |H(C1)−H(C2)| ≥
√

n, and observe that if
H(C2) > H(C1) then u = m + (H(C2)−H(C1)) > m, whereas if H(C2) < H(C1) then u ≤ m−√

m.
We conclose that in the first case the distribution (h,C1(r1), h(C2(r2), r1)) is almost identical to
the distribution (h,C1(r1), h(0n, r2)), whereas in the second case (h,C1(r1), h(C2(r2), r1)) is very
far from (h,C1(r1), h(0n, r2)). Thus, we have reduced GapCmprEnt to GapSD.

6 Conclusions

In Section 4 we considered the complexity of approximating the entropy of a distribution when
given the full description of a sampling device for the distribution. In contrast, the results of
Section 3 can be viewed as referring to the case that we are only given “black-box” access to such
a sampling device. Thus, the results surveys in these sections represent a potential gap between
black-box and “non-black-box” access to sampling devices. This gap may become a real separation
if SZK is contained in sub-exponential time (i.e., SZK ⊆ Dtime(f) for some f(n) = 2o(n)). On the
other hand, the hypothetical existence of “sampling obfuscators” (see [3, Def. 6.2]), which means
that non-black-box access to sampling devices does not actually help, implies that SZK 6= BPP
(see [3, Prop. 6.4]).

We comment that the general study of the relation between black-box and non-black-box algo-
rithms has received considerable attention lately. The interested reader is referred to Barak’s PhD
Thesis [2].
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