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Abstract

The last two decades have seen enormous progress in the development of sublinear-time
algorithms — i.e., algorithms that examine/reveal properties of “data” in less time than it
would take to read all of the data. A large, and important, subclass of such properties turn
out to be “linear”. In particular, these developments have contributed to the rich theory of
probabilistically checkable proofs (PCPs) and locally testable codes (LTCs). In this survey, we
focus on some of the general technical themes at work behind the many results in this area.
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1 Introduction

Property testing refers to the study of algorithms that attempt to assess properties of massive data
by random sampling. The formal study views the data as some function f mapping some finite
(but huge) domain D to some finite (and often small) range R. The property itself maybe specified
by the set of functions P that satisfy the property. The central goal of property testing is to design
some (probabilistic, oracle) testing algorithm that has oracle (or black-box) access to some function
f , and queries f on few locations and accepts functions f ∈ P with high probability, while rejecting
functions f that are far from P with high probability. Here “farness” is measured in terms of
relative Hamming distance (formalized below). The first modern property tests were proposed and
analyzed in the seminal works of Blum, Luby and Rubinfeld [16] and Babai, Fortnow and Lund [3].
The formal definition appeared later in the work of Rubinfeld and Sudan [43]. The first systematic
study of property testing, which also extended the study beyond algebraic properties, was carried
out by Goldreich, Goldwasser, and Ron [21]. Today the scope is quite extensive and the surveys
by Rubinfeld [42] and Ron [41] and the articles in [20] describe some of the many developments.

In this survey, we focus on results focussing on the testability of “linear” properties. Here we
restrict our attention to functions mapping to a range that is a finite field, and properties are
themselves vector spaces over this field. This subcollection of properties turn out to be extremely
well-motivated due to their use in the design of locally testable codes and in constructions of
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probabilistically checkable proofs. We hope to highlight here some of the simple technical ideas
that emerge in this line of work (and so our coverage will be spotty). Indeed, it would be more
normal to consider linear properties as the same objects as locally testable codes (defined in [43],
studied systematically by Goldreich and Sudan [25] and extensively since then). But we prefer to use
the former term, mainly for philosophical reasons. Our interest is not only in designing codes that
achieve extremal parameters (a natural tendency when speaking of codes), but to study the entire
range of properties including potentially “weaker” families, mainly to get insight into when and why
testability manages to emerge. Within this scope, we want to focus on some general themes, not
the “best results”. Nevertheless, it is good to keep “codes” in mind, since we certainly wish/need
to cover them; and they offer the sharpest contrast with combinatorial properties. In testing of
codes — the “members” satisfying the property are pairwise far from each other, whereas much
of graph property testing considers properties where members satisying the property are clustered
close to each other. Thus this area (linear property testing) ends up with really different problems,
different techniques and different motivations and applications. Here we attempt to highlight three
themes within: (1) Sparse properties with extremally large distance are testable; (2) Codes that are
constructed by iterating a simple combinatorial operation (tensoring) are testable; (3) Properties
that show sufficient symmetries are testable.

Before going on to describing these results, a personal disclaimer: As with all other surveys I’ve
written, this one was also finished in a hurry. So errors and typos are bound to exist - but the hope
is that there is more good information than bad. Furthermore, the choice of topics is obviously
biased by my own research. Comments and criticisms would be most welcome.

2 Basic Definitions

We start with some of the basic definitions and properties associated with linear properties. The
definitions were explored carefully in [25], but significant variety is possible and we may deviate
from all known ones anyway. The basic results are mostly from the work of Ben-Sasson, Harsha
and Raskhodnikova [8].

We start with the usual basic notation: We use Z to denote the set of integers, and [n] to denote
the set {1, . . . , n}. The set {D → R} denotes the set of all functions from D to R. We use Fq to
denote the finite field on q elements and F,K,L to denote arbitrary finite fields. For vector a ∈ Fn,
ai with denote the ith coordinate of the vector. For vectors a, b ∈ Fn, their inner product, denoted
〈a, b〉, is the element

∑n
i=1 ai · bi.

For sets D and R, we use {D → R} to denote the set of all functions from D to R. A property
P is a subset of {D → R}. When the range is a finite field F, then P ⊆ {D → F} is said to be
F-linear (or simply linear) if it is a vector space over F. Specifically P is linear if for all f, g ∈ P
and α, β ∈ F, the function αf + βg, given by (αf + βg)(x) = αf(x) + βg(x), is also in P.

We use x←A to denote a random variable x chosen from distribution A. Prx←A[E(x)] denotes
the probability of event E(x), and Ex←A[f(x)] denotes the expectation of f(x). We use |A − B|
to denote the statistical difference between distributions A and B, which is the maximum over all
events E of |Prx←A[E(x)] − Prx←B[E(x)]|. Abusing notation somewhat, if A is just a set, then
x←A will denote x drawn uniformly from A.
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The normalized Hamming distance between functions f, g : D → R, denoted δ(f, g), is the quantity
Prx∈D[f(x) 6= g(x)]. f is said to be δ-close from g if δ(f, g) ≤ δ and δ-far otherwise. We extend
the notions above to the case when g is replaced by a set of functions P be minimizing over g ∈ P.
So δ(f,P) = ming∈P{δ(f, g)} and f is δ-close to P if δ(f,P) ≤ δ and δ-far otherwise. Finally, for
a property P, we define δ(P) to be the minimum over distinct functions f, g ∈ P of δ(f, g).

We are now ready to define our main definition of a locally testable property now. This definition
is not the standard one, but convenient for our purposes. We clarify the difference later.

Definition 2.1 (Locally Testable Property). We say that a property P ⊆ {D → R} is (q, ε, ρ)-
locally testable if there is an algorithm T that makes q queries to an oracle for f : D → R and
accepts f ∈ P with probability one while rejecting f that is ε-far from P with probability at least
ρ. A family of properties {Pi ⊆ {Di → Ri}}i is said to be q(·)-locally testable if there exists some
constant τ > 0 and a test T that, on input i, makes q(|Di|) queries, accepts f ∈ Pi with probability
1 and rejects every other f with probability τ · δ(f,Pi).

We now comment on the distinctions with standard definitions. (A reader unfamiliar with related
definitions can safely skip this and the next two paragraphs.) First, the definition above only allows
for “one-sided” error, but in the case of linear properties one can get this feature (and others, see
below) without loss of generality.

More significantly, this definition allows only “proximity oblivious tests” in the sense of Goldreich
and Ron [23]. To explain this, the usual definition of testing allows a “proximity parameter” ε as
input to the tester and allows the query complexity to grow as ε → 0, while requiring the tester
to reject only functions that are ε-far with some fixed probability. In our case, the tester is not
promised any lower bounds on the proximity of the function being tested. It must simply pick its
query points oblivious of this parameter and decide whether to accept or not. It is natural in this
setting that functions very close to having the property may evade detection, and so our requirement
that functions are rejected with probability proportional to their distance from the property. In the
setting of combinatorial and graph properties, proximity oblivious tests are not the most natural
and required separate study. In the case of linear properties, we are not aware of any proximity-
sensitive tests and indeed many basic concepts (such as constraints and characterizations, see below)
are naturally related to proximity-oblivious tests, and so we restrict ourselves to this setting.

Finally, the test above is also a “strong” test in that it is required to reject every function not
in P with non-zero probability. Again this is somewhat restrictive, but all known tests satisfy
this condition and since we are mostly interested in “positive results” it is good to get this strong
property.

We now move to some basic “combinatorial” way of looking at local tests for linear properties.

Definition 2.2 (Constraints, Characterizations). For functions mapping D to F a k-local con-
straint C is a collection of points α1, . . . , αk ∈ D and a vector space V ( Fk. A function f satisfies
C if (f(α1), . . . , f(αk)) ∈ V . A property P satisfies C if every function in P satisfies C. We say
that C is a basic constraint if V is given by a single linear equation

∑
i λif(αi) = 0 with λi’s being

non-zero. A collection of constraints C1, . . . , Cm give a k-local characterization of P if every Cj is
k-local and f : D → R is in P if and only if it satisfies Cj for every j.
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The following proposition from [8] shows the intimate relationship between local tests and con-
straints and characterizations. To describe their proposition, we first define the notion of a canon-
ical q-tester T for a property P ⊆ {D → F}. We say T is a canonical q-tester if it is given by a
collection of q-local basic constraints C1, . . . , Cm and distribution A on [m]. Given oracle acces to
f , the tester T simply picks j←A and accepts f if and only if it satisfies Cj .

Proposition 2.3 ([8]). Let P ⊆ {D → F} be a linear property with a q-query testing algorithm
accepting f ∈ P with probability at least c while accepting f that is ε-far from P with probability
at most c − ρ. Then P has a canonical tester T which accepts f ∈ P with probability one, while
accepting f that is ε-far with probability at most 1− (1− 1/|F|) · ρ.

Note that canonical testers are special in that they are non-adaptive (they decide on all their queries
before examining the responses to other queries) and makes one-sided error only. Furthermore, the
final test is extremely simple: It simply checks that the responses satisfy a single homogenous linear
equation, and all for a small price in the error and no loss in query complexity!

Finally, if the original tester satisfies the strong condition that every function not in P is rejected
with positive probability, then the resulting collection of constraints implied by the canonical tester
form a q-local characterization. We remark that a property with a local characterization is a
well-studied concept under the label of “low-density parity check (LDPC) codes”.

An early hope that every LDPC code may be testable was eventually refuted by [8] who showed that
even “random” LDPC codes are not locally testable. Further explanation for why this happens
was given recently by Ben-Sasson et al. [7] who show that locally testable codes need to have
“redundancy” among its local constraints. Specifically, if one examines the constraints C1, . . . , Cm
in the support of the distribution A in Proposition 2.3, it must be the case that a constant fraction
of such constraints must be implied by the remaining ones for the property to be O(1)-locally
testable. The notion of redundancy turns out to give useful insight into local testability, and in
each of the cases in the following sections we will attempt to explain where this comes from (first).

With these preliminaries in places, we are ready to start talking about some themes in testing.

3 Sparse Properties: “Structure Everywhere”

The first general class of locally testable linear properties are what we call “sparse” ones. Here
we consider properties on a domain of size N , with only NO(1) functions satisfying the property.
Furthermore, if functions in the property have pairwise distance at least 1/2−N−Ω(1) then it turns
out any such property is locally testable. One motivation for this was to generalize the linearity
test in [16] which ends up showing that the “sparsest possible”, “highest-distance possible” linear
property is testable. We will describe this interpretation of their result below, after giving the main
definitions and theorem of the section.

We start with a basic observation about linear properties:

Proposition 3.1. For every linear property P ⊆ {D → F2}, we can view the domain D as a subset
of Fn2 (for some appropriate n, which we refer to as the dimension of P) and for every function
f : D → F2, f ∈ P if and only if there exists an a ∈ Fn2 such that f(x) = 〈a, x〉.
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Thus every linear property P with range F2 is described by its dimension n and the domain D ⊆ Fn2 .
We use PD to denote the property described by the domain D ⊆ Fn2 .

We say that a property P ⊆ {D → F} is c-sparse if |P| ≤ |D|c. Note that if P has dimension n,
then |P| = 2n and for a c-sparse property, this implies |D| ≥ 2n/c. The main result of this section
is stated below.

Theorem 3.2 (Kaufman and Sudan [34]). For every γ > 0 there exists a q < ∞ such that for
every n and every linear property P ⊆ {D → F2} of dimension n that is c-sparse and satisfies
δ(P) ≥ 1

2 − 2−γ·n, P is q-locally testable.

Note that the condition that P is δ(P) ≥ 1
2 − 2−γ·n actually implies c ≤ 1

γ . The proof in [34] of the
above theorem relied principally on techniques introduced earlier by Kaufman and Litsyn [30] who
also gave a (quantitatively and qualitatively) weaker version the theorem. In this section however,
we will give a much simpler proof of the qualitatively weaker version of the theorem above, from
the work of Kopparty and Saraf [37].

The result from [37] only works for “small-biased” properties (as opposed to high-distance ones).
We define this concept next. A property is said to be ε-biased if for every pair of distinct functions
f, g ∈ P, we have |δ(f, g)− 1

2 | ≤ ε/2. [37] proves this result for the case of properties P whose bias
is at most 2−γn. We focus on the weaker result since it seems almost as interesting, and the proofs
are nicer.

We will sketch the proof of Theorem 3.2 later, but first we describe the “ultimate” special case
of this theorem, namely the Hadamard property, which is important as motivation and also as an
ingredient in the proof.

3.1 Hadamard Property

Had is the n-dimensional property PD for the special case of D being the entire set Fn2 . In other
words, the Hadamard property consists of all the linear functions mapping Fn2 to F2. It is the
ultimate property in various senses, as described below.

Proposition 3.3. 1. Every linear property P is a “subcode” of the Hadamard property.

2. The Hadamard property is 1-sparse.

3. The Hadamard property is 0-biased.

Part (1) of the Proposition is just a restatement of the definition, Part (2) follows immediately
from the definition of sparsity, and Part (3) is a standard coding-theory fact (whose proof we leave
to the reader as an exercise).

[16] shows that the following 3-query test is a good one for the Hadamard property: “Pick x, y ∈U Fn2
and accept f if and only if f(x)+f(y) = f(x+y).” We refer to this test as the BLR-test. Subsequent
work of Bellare et al. [5] gives a slightly cleaner statement which we describe below.

Theorem 3.4 ([16, 5]). The BLR-test accepts f ∈ Had with probability one, while rejecting all f
with probability at least δ(f,Had).
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Given Proposition 3.3, it becomes clear that the theorem above yields Theorem 3.2 for the “ulti-
mate” special case. The remarkable aspect of [37] is that it manages to reduce the general case to
this special case, as we describe next.

3.2 Reducing sparse testing to Hadamard testing

The key idea behind the test and analysis in [37] is to consider a t-fold “direct sum” (probabilistic)
function f (⊕t) : Fn2 → F2 which is defined from f and to show that if f ∈ P then f⊕t ∈ Had whereas
δ(f (⊕t),Had) is bounded away from 0 if δ(f,P) is bounded away from 0. In order to make their
argument precise, we need to define the direct sum function and extend the notion of distances to
probabilistic functions.

We start by recalling two basic probability facts that are commonly used in TCS research (so we
won’t give exact references). First we note that if x1, . . . , xt are independent random variables
taking on values in F2 with Pr[xi = 0] being (1 + α)/2, then the probability that

∑
i xi = 0 (sum

being over F2) is exactly (1 +αt)/2. Next we recall the “Vazirani XOR lemma” which says that for
a random variable x taking values in Fn2 with some distribution A, if it holds that for every a ∈ Fn2 ,
|Prx←A[〈a, x〉 = 0]− 1/2| ≤ ε, then |A−U | ≤ ε2n where U denotes the uniform distribution on Fn2 .

We now return to our task. Recall we are considering a function f : D → F2. Let D(∗t) denote the
distribution on Fn2 sampled by picking (x1, . . . , xt)←Dt and outputting x1 + · · ·+ xt. For x in the
support of D(∗t) let Dt

x denote the distribution on (Fn2 )t given by picking (x1, . . . , xt) according to
Dt, conditioned on

∑t
i=1 xi = x.

For f : D → F2, let f (⊕t) : Fn2 → F2 be the probabilistic function given as follows: For x ∈ Fn2 , if x
is in the support of D(∗t), then select (x1, . . . , xt)←Dt

x and output f(x1) + · · ·+ f(xt). [If x is not
in the support of D(∗t), we may set f (⊕t)(x) = 0, though this case will not arise in the following.]

We are now in a position to describe the test in [37].

1. Pick t to be an odd integer that is sufficiently large (depending on γ).

2. Pick x, y←Fn2 .

3. Sample (independently) a = f (⊕t)(x), b = f (⊕t)(y) and c = f (⊕t)(x+y) and accept if a+b = c.

To analyze the test, one more definition: We extend the definition of distance between func-
tions also to probabilistic functions. So for probabilistic functions f, g : S → F2, let δ(f, g) =
Ex∈US [|Pr[f(x) = 1]− Pr[g(x) = 1]|]. (Note that this does extend our usual definition.)

The key claims that allow an analysis of the test above are the following: (1) As t → ∞, the
distribution D(∗t) converges to the uniform distribution on Fn2 (proved using the Vazirani XOR
lemma and the small-bias of P), (2) If f ∈ P then f (⊕t) converges to a member of the Hadamard
property (verified easily) and (3) If δ(f,P) = 1−α

2 then δ(f (⊕t),Had) ≈ 1−αt

2 ± |D(∗t) − U | where
U is the uniform distribution on Fn2 (this fact is proved using the other probability fact mentioned
above). Once these three facts are shown, the analysis of the test is immediate!

Before concluding this section, let us just note where the “redundancy” of local constraints (which
we claimed was necessary for testability) occurs here. The claim that D(∗t) converges to the uniform
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distribution implies that for every x ∈ Fn2 there are many t-tuples in Dt, that sum to x. Any pair
of these, say α1, . . . , αt and β1, . . . , βt, gives a constraint (of locality 2t) since if f(·) = 〈a, ·〉,
then f (⊕t)(x) =

∑t
i=1 f(αi) =

∑t
j=1 f(βj). So the proofs are effectively showing that redundancy

follows from some (simple) counting. This of course relies heavily on the sparsity; and so in following
sections we seek other sources of redundancy.

4 Tensor Products: “Testability by Design”

While the previous section focused on the testability of “random” or “natural” codes/properties,
of appropriate parameters, most of the “efficient” codes tend to be designed by a series of intri-
cate operations. In this section we focus on one of the simplest operation that manages to build
properties with a redundant collection of local constraints, and (in some cases) use this redundancy
to design/analyze local tests for these properties. Our initial codes will only be “mildly” locally
testable (say with

√
|D| sized tests), and even the final ones will be ω(1)-locally testable. How-

ever we note that the techniques can/do play a role in some of the best known constructions of
O(1)-locally testable codes due to Meir [38]. With these preliminaries in place, lets get down to
business.

4.1 Tensor Products of Properties

Definition 4.1. Given two properties P1 ⊆ {D1 → F} and P2 ⊆ {D2 → F}, their tensor product,
P1 ⊗ P2 ⊆ {D1 ×D2 → F}, is the property

P1 ⊗ P2 = {f : D1 ×D2 → F|∀a ∈ D1, f(a, ·) ∈ P2 and ∀b ∈ D2, f(·, b) ∈ P1}.

A priori it may not be clear that the tensor product is a non-empty property, and indeed for non-
linear properties it may not be. However for linear properties it is a nice notion, and below we
mention some notions that help explain why.

For a property P ⊆ {D → F}, a set S ⊆ D is said to be an interpolating set if for every function
f : S → F there exists a unique extension f̂ ∈ P, i.e., f̂ : D → F and satisfies f̂(a) = f(a) for every
a ∈ S.

The following three propositions follow from basic linear algebra.

Proposition 4.2. Every linear property P has an interpolating set.

A useful fact relating interpolating sets to distances of codes is the following.

Proposition 4.3. Every set T ⊆ D satisfying |T | > (1− δ(P)) · |D| contains an interpolating set
for P.

The next proposition, while also elementary, is a very powerful feature of tensor products.

Proposition 4.4. For i ∈ {1, 2} if Si is an interpolating set for Pi, then S1×S2 is an interpolating
set for P1 ⊗ P2.
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The importance of the proposition above to this section is that it implies a certain redundancy
among the constraints specifying tensor products. Let us elaborate on this. Suppose we are given
a function f : S1 × S2 → F. To “extend” it to a function f̂ : D1 → D2 → F in P1 × P2, we
could do so in two steps. First we could extend f to a function f̃ : D1 × S2 → F, by fixing b ∈ S2

and letting f̃(·, b) be the extension from P1 of f(·, b) as guaranteed to exist by the interpolating
property of S1. Next we could let f̂ : D1 → D2 → F be the function obtained by extending, for
every a ∈ D1, f̃(a, ·) to the function f̂(a, ·) ∈ P2 (now using the interpolating property of S2). The
uniqueness of the interpolating steps makes it clear that the resulting function is the only one that
could satisfy the conditions f̃(a, ·) ∈ P2 for every a ∈ D1 and f̃(·, b) ∈ P1 for every b ∈ S2, which
are necessary to ensure f̃ ∈ P1 ⊗ P2. But the definition includes more constraints, since we also
need to satisfy the conditions f̃(·, b) ∈ P1 for b 6∈ S2. The remarkable (though simple) fact about
linear properties is that these conditions are actually redundant and will be automatically satisfied
by the construction above. In the quest for “operations” that support testability, such a natural
emergence of redundancy is very encouraging, and motivate the question of the testability of tensor
products of codes.

4.2 Robust Local Testability

A priori, just the redundancy mentioned above need not lead to local testability. But we in fact
seek even more, something called “robust local testability”. To motivate this notion, let us reveal
our agenda. Our goal really is to start with some small code (i.e., property on small domain) with
moderate local testability, and then take its tensor with itself many times to get a really long code
with local testability being roughly the same as that of the starting code! And furthermore we
hope to analyze the testability by induction. So suppose we’ve managed to show that P⊗k is locally
testable and we would now like to show that P⊗(2k) = P⊗k ⊗P⊗k is also locally testable. And the
test we hope to analyze is the following: Given f , pick a, b←Dk uniformly and verify f(a, ·) and
f(·, b) are in P⊗k. We’d like a statement about tensor products to show that such a test implies
f is contained in the tensor product. Unfortunately, the local tests can only show that f(a, ·) and
f(·, b) are close to being members of P⊗k and not that they are actually members of this set. So
what we’d really like is a statement of the form “If f(a, ·) and f(·, b) are usually close to P1 and
P2, then f is close to P1 × P2.” Such a property is what we formally define as robust testability
below.

Definition 4.5. The tensor of properties P1 and P2 is said to be α-robust locally testable (or
simply α-robust) if the following holds for every function f : D1 ×D2 → F:

δ(f,P1 ⊗ P2) ≤ α · (Eb←D2 [δ(f(·, b),P1)] + Ea←D1 [δ(f(a, ·),P2)]) .

The initial hope expressed in Ben-Sasson and Sudan [10] was that perhaps the tensor of any pair of
high-distance properties may be α-robust (where α depends only of the relative distance, but not
the size of the domain). But this was refuted with a very creative counterexample by P. Valiant [45].
In view of this counterexample, one has to consider more restricted classes of properties, or other
tests. We describe some of the positive results next.
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4.3 Robust testability results

The first robustness result for a “tensor” was a very specific one, where the properties P1 and P2

were the properties of being low-degree univariate polynomials. Specifically, let RS(d,F) ⊆ {F →
F} consist of all polynomial functions in F[x] of degree at most d. The tensor of RS(d,F) with
itself consists of all bivariate functions f(x, y) that are polynomials of degree at most d in x and at
most d in y. Robustness of the tensor would imply that if a bivariate function usually is in good
agreement with a univariate polynomial (for random settings of its first or second variable), then
the funcion must be close to a bivariate polynomial. This innocuous statement turns out to be
quite non-trivial to analyze. Early results (e.g., from [43]) could only yield robustness depending
on d. Subsequent results due to Arora and Safra [2] and Polishchuk and Spielman [39] however
improved this significantly leading to the following theorem.

Theorem 4.6 ([39]). There exist constants c, α such that for every field F and d ≤ |F|/c, the tensor
RS(d,F)⊗RS(d,F) is α-robust.

Of course, given the specific algebraic nature of the results, they were not stated in terms of tensor
products. The explicit study of robustness of tensor products (motivated partially by an attempt,
thus far unsuccessful, to generalize the above theorem) started in [10]. In their work, however they
considered a slightly different class of properties and tests. Rather than testing the tensor of two
properties with the projection to one of the two dimensions, they considered the tensor of three
properties and tested them by projecting onto various two dimensional surfaces. We define the
resulting robustness concept next.

Definition 4.7. The triple-wise tensor of a property P with itself said to be α-pairwise robust if
the following holds for every function f : D ×D ×D → F:

δ(f,P ⊗ P ⊗ P) ≤ α ·Ea←D [δ(f(·, ·, a),P) + δ(f(·, a, ·),P) + δ(f(a, ·, ·),P)] .

[10] shows that if δ(P) is large enough, then P⊗3 has positive robustness.

Theorem 4.8. There exists δ < 1 and α <∞ such that for every property P with δ(P) ≥ δ, P⊗3

is at least α-pairwise robust.

We note that properties with arbitrarily large δ < 1 exist provided the range F is sufficiently large.
In particular, random linear codes, as well as algebraic codes like Reed-Solomon or algebraic-
geometric codes over large alphabets can satisfy the requirement.

We won’t prove the theorem above but the main idea, which goes back to a work of Raz and
Safra [40] is as follows: Given a function f 6∈ P⊗3, we focus on the combinatorial properties of a
graph derived from f . The graph has 3 · |D| vertices, one corresponding to each “plane” (i.e., the
set of points of the form {(a, ·, ·)}, or {(·, b, ·)} or {(·, ·, c)}). To each vertex we associate the nearest
member of P ⊗ P (so for the plane {(a, ·, ·)} we associate a function ga ∈ P ⊗ P which minimizes
the distance to f(a, ·, ·)). We then throw away vertices where the distance between f(a, ·, ·) and
ga is noticeably high (based on a carefully chosen threshold). We now add edges to this graph to
capture “inconsistencies”. Specifically we add an edge between the a-plane ({(a, ·, ·)}) and b-plane
({(·, b, ·)}), if the functions ga and gb are in disagreement on some point of the form (a, b, x). The
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“interpolating property” of tensor products tell us that if this graph has a large independent set
consisting of (1 − δ) fraction of planes in each of the three coordinate axes, then there is some
function g ∈ P⊗3 which is consistent with the ga’s on this independent set, and is hence close to
f . So the principal question reduces to showing that this graph has a large independent set. To
this end, it is easy to show that the graph is relatively sparse (has only τ -fraction of all edges, for
arbitrarily small, but constant τ). But this is not sufficient to imply a large independent set (in
random graphs of this density the size of the independent set may only be constant depending on
1/τ). Here is where the structure of the tensor product code comes into play. Suppose there is an
edge between the a-plane and the b-plane. Then the functions ga and gb, when restricted to the
“line” {(a, b, ·)} are different members of P and so disagree on most points. It follows that for most
choices of c, either the a-plane is adjacent to the c-plane or the b-plane is adjacent to the c-plane.
We conclude that at least one of two endpoints must have (linearly) high degree. So, if we throw
away from the graph all vertices with linearly high degree, then we are left with an independent
set (and as argued above, this suffices)!

Moving on, we now describe a somewhat different approach to getting broad robustness results
for tensor products, as studied by Dinur, Sudan and Wigderson [19]. They considered the original
tensor product of two codes, but restricted (one of) the codes to have “nice” locality properties.
E.g., one of the codes being tensored may itself be locally testable, or one of the codes may be a “low
density parity check” code. In such cases they show that the tensor does show robustness. These
results were subsequently strengthened significantly in the works of Ben-Sasson and Viderman [14,
13]. Below we state a sample result in this area. (We don’t state the most general results, since
stating them requires more definitions. The reader is pointed to the works for complete results.)

Theorem 4.9 ([13, Theorem 10]). For every ε, δ, ρ > 0, and q < ∞ there exists an α < ∞ such
that if P1,P2 satisfy δ(P1), δ(P2) ≥ δ and P1 is (q, ε, ρ)-LTC, then P1 ⊗ P2 is α-robust.

Again we won’t prove the result, but let us highlight the main idea behind the proof. Consider a
function f : D1 ×D2 → F, for which the “testing error”, i.e., the quantity Eb←D2 [δ(f(·, b),P1)] +
Ea←D1 [δ(f(a, ·),P2)] is small. We’d like to show f is close to a member of P1 × P2. Let f1, f2

be the “row” and “column”-wise decoding of f . I.e., f1(·, b) ∈ P1 for every b and among all such
functions, it is one that minimizes δ(f, f1). Similarly f2 is the nearest function to f satisfying
f2(a, ·) ∈ P2 for every a. Now consider the “error” function e = f1 − f2. It can be easily seen
that δ(e, 0) ≤ Eb←D2 [δ(f(·, b),P1)]+Ea←D1 [δ(f(a, ·),P2)] and so e is rarely non-zero. The key step
in the analysis is to show that there are large subsets (large enough to contain interpolating sets)
S1 ⊆ D1 and S2 ⊆ D2 such that e is identically zero on S1 × S2. One hope would be that once we
throw away from D1 and D2 rows and columns where e is non-zero on a noticeable fraction of points,
e becomes all zero on the remaining points. When P1 is an LTC, then something nice happens.
Suppose there is a “basic local test” of P1 that examines a given function at locations i1, . . . , iq ∈ D1

and verifies that the sum of the values of the function at these locations is zero. Suppose further
that e(i1, ·), . . . , e(iq, ·) are rarely non-zero. In particular suppose δ(e(ij , ·), 0) < δ/q. Then it turns
out (by a simple coding-theoretic argument) that

∑q
j=1 e(ij , ·) = 0. (So the sum of the error values

on these rows is not just rarely non-zero, it is identically zero.) In other words, every “column”
of e satisfies this constraint. A simple counting argument reveals that the e function satisfies such
constraints for many of the local tests of P1 and the local testability of P1 now implies that once
we erase a small set of rows of e, it would look like a member of P1 ×P2 on every column. In turn
this implies on the non-erased rows, most columns are zero (since e is usually zero).
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4.4 Usage of tensor products

Based on just simple repetition of the tensor operation one can design codes of block length n that
have Ω(1) distance and dimension nΩ(1) that are testable with poly log n queries [10, Theorem 2.7].
Indeed the above work (see also [13]) shows that one can start with any high-distance code and
tensor it enough times to get such locally testable codes.

However, this is weak compared to the best known locally testable codes in the literature. The
best known performance yields codes of distance Ω(1) with dimension n/poly log n that are testable
with O(1) queries, as given by Dinur [17] building on codes with same distance and dimension with
poly log n queries given by Ben-Sasson and Sudan [11]. It turns out even this optimal performance
can be matched by codes constructed by mostly combinatorial steps, with the most “algebraic”
operation being that of taking tensors, as shown by Meir [38]. Indeed theorems such as those listed
above do play some role in Meir’s construction, though there are many other careful operations
that are used and analyzed to get the final result.

5 Invariance: “Testability in Nature”

The previous sections focussed on two possible themes that could lead to testability: Either we
pick parameters to be so extremal that testing is inevitable, or we design codes so carefully that
testing can be imposed. In this section we consider a third option: that the property offers enough
structure/symmetry as to allow testing. To this end let us explain what we mean by symmetries
and then focus on a specific type of symmetry which seem appropriate to study (in that they are
commonly seen) and the current understanding we have of properties with this class of symmetries.

5.1 Invariance in Property Testing

We say that P ⊆ {D → F} is invariant under a function π : D → D if for every f ∈ P it is the
case that the function f ◦ π, defined as f ◦ π(x) = f(π(x)), is also in P. We say that P is invariant
under a set G ⊆ {D → D} if for every π ∈ G, P is invaraint under π. The set of all functions π
under which P is invariant is termed the invariance class of P. (The invariance class is a semi-group
under composition.) The set of all permutations (bijections) π under which P is invariant is the
automorphism group of P.

The notion of examining testability of properties with explicit attention on their invariance is a
slowly emerging theme. An early result of Babai, Shpilka and Stefankovic [4] gave lower bounds
on rates of locally testable codes for cyclic codes is perhaps the first to explicitly relate testability
to invariances, albeit to give negative results. The work by Goldreich and Sheffet [24] also uses
symmetries to give lower bounds on query complexity. Alon et al. [1] were possibly the first to
suggest this might lead to positive results. The work by Kaufman and Sudan [33] seems to be
the first to to explicitly focus on invariances to derive positive results. The class of invariances
they studied were “linear-invariances” and “affine-invariances”. We will describe these shortly, but
before doing so, we will first point out the broader relevance of invariances in property testing.

While invariances were not explicitly highlighted in works (other than those listed above), a lot of the
work in property testing does assume and exploit invariances. Indeed all of “graph property testing”
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(an extensively studied class of properties) is characterized by its “invariances” — a property is
a graph propery if and only if it is invariant under all vertex renamings. Similarly “properties
of Boolean functions” are those that are invariant under renamings of variables. “Statistical”
properties in turn are those that are invariant not only under (all) permutations of the domain,
but also under permutations of the range. Each of these classes is an extensively studied class of
properties. We won’t list the results here, but the reader is pointed to [44, Section 2] for a more
detailed description and pointers to these lines of work. We merely wish to assert that there is
pedagogical benefit to viewing all of these results as being characterized by the nature of invariance
assumed and consequences derived.

5.2 Affine and Linear Invariance

The invariances of greatest interest to “algebraic property testing” are those induced by linear or
affine transformations of the domain. To motivate this, notice that one of the basic properties
of interest in property testing is that of a function being a low-degree multivariate polynomial.
This property is invariant under any affine transformation of the domain: E.g., the degree of the
polynomial p(3x+y, y−x) is at most the degree of p(x, y). Furthermore, examination of the known
tests of this property makes it clear that this aspect is central to the tests. This motivates some
natural questions: Does this symmetry (invariance under affine transformations) suffice to explain
the tests? What other properties are invariant under such transformations? Can any of the others
lead to codes with better performance than multivariate polynomials? Such questions motivate
a systematic study of affine-invariance and this has been carried out in a sequence of works. We
report on the main results below.

First start with the formal setup. From this point onwards, throughout this section we will consider
functions from an n-dimensional vector space over a field K of size 2s to a subfield F. For simplicity
we will just set F = F2 (though much of the study can be (and has been) extended to fields of
arbitrary finite characteristic). Looking forward, we also note that pretty soon we would have
managed to restrict our attention to the case n = 1 which turns out to be the most general one.

We will consider linear properties P of functions mapping Kn → F that are “affine-invariant” in
the sense below.

Definition 5.1 (Affine-invariant Properties). A function A : Kn → Kn is said to be affine if there
exists a matrix M ∈ Kn×n and a vector b ∈ Kn such that A(x) = Mx + b for x ∈ Kn. A property
P ⊆ {Kn → F} is said to be affine-invariant (over Kn) if for every f ∈ P and affine function
A : Kn → Kn it is the case that f ◦A ∈ P, where f ◦A(x) = f(A(x)).

Many of the techniques we will explore do extend to a slightly broader class of symmetries, namely
“linear-invariance” (invariance under linear transformations of the domain only), but the results,
though more general, are more cumbersome to state and so we won’t talk about such results here.

The class of affine-invariances is simultaneously “small” and “rich” in the following senses. The
number of affine invariances is only quasi-polynomial in the domain size: It is of size |K|n2

where
the domain size is |K|n, and indeed if n = O(1) it is even polynomial sized. In this sense this
is a small collection of invariances (compared to say the setting of statistical properties or graph
properties). On the other hand it is still highly symmetric in that it is a “2-transitive” class:
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A class of invariances Γ is t-transitive if for every pair of t-tuples (x1, . . . , xt) and (y1, . . . , yt) of
distinct elements from D, there is a function π ∈ Γ satisfying π(xi) = yi for every i ∈ [t]. 2-
transitivity reflects a fairly high level of symmetry and is known to imply “local decodability” (we
won’t define this concept here) of codes, in the presence of a single local constraint. One of the
motivating questions leading to the study of affine-invariance, raised by Alon et al. [1] was whether
2-transitivity of the invariance class is a sufficient condition for local testability. As it turns out the
answer is NO, but closely related questions do lead to positive answers. We discuss these below.

5.3 Single-orbit characterizations and Testability

One of the main reasons that a “rich” class of invariances might enable local testing is that the
presence of even a single local constraint (as in Definition 2.2) turns into a rich collection of
constraints. This motivates our definition of the “orbit” of a constraint, which we define only for
affine-invariant properties (though the definition can be generalized).

Definition 5.2. The orbit of a constraint C = (α1, . . . , αk;V ) is the set of constraints orbit(C) =
{A ◦ C = (A(α1), . . . , A(αk);V )|A : Kn → Knaffine}.

2-transitivity of the affine-invariant class says that the orbit of a single constraint ensures the
presence of local constraints relating every pair of function values. Indeed this collection is so rich
that in most previously studied affine-invariant properties, the orbit of a single local constraint
actually characterized the property.

Definition 5.3. P is said to have a k-single orbit characterization if there exists a k-local constraint
C such that f ∈ P if and only if f satisfies every constraint in orbit(C).

One possible hope with affine-invariant properties that satisfy some k-local constraint might be
that they also have a k′ = k′(k)-single orbit characterization, and that k′-single orbit characterized
properties are k′′ = k′′(k′)-locally testable. If so, this would yield a positive resolution of the
question raised in [1]. As it turned out, the second part of this hope did turn out to be true, as
captured by the following theorem.

Theorem 5.4 ([33]). If P is has a k-single orbit characterization, then P is (k, ρ/O(k2), ρ)-locally
testable for every ρ.

The test used to prove the above theorem is the natural one. Let C = (α1, . . . , αk;V ) be a constraint
such that orbit(C) characterizes P. Then the test picks a random constraint in orbit(C) and accepts
f if and only if f satisfies this test. It is easy to see this accepts f ∈ P with probability one and
the harder part is to see why some function f rejected with low probability is actually close to P.
We won’t describe the analysis in full, however we will say a few words. The key to the analysis
is showing that for every x ∈ Kn there is some value g(x) that satisfies the following condition:
For almost all affine A satisfying A(α1) = x, it is the case that (g(x), f(A(α2), . . . , f(A(αk))) ∈ V .
(I.e., f satisfies the constraint A ◦ C if f(x) replaced by g(x)). The proof that such a function
g exists ends up following, somewhat surprisingly, from properties of tensor products of codes,
and this aspect ends up emerging as the technique that unifies many previous results in algebraic
property testing. Once the existence of such a function g is established, it is also possible to show
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that g satisfies every constraint C and usually g equals f thereby showing f is close to a member
(specifically g) of P.

Returning to the broader question, why is this theorem important, it turns out that single-orbit
characterizations seem to play a very important role in the testing of affine-invariant properties.
All known locally testable affine-invariant properties seem to owe their testability to single-orbit
characterizability. Most algebraic properties studied early on in property testing (typically low-
degree polynomials with different tradeoffs between degrees and field sizes) enjoy the single-orbit
property for natural (or well-known) reasons. Functions over high-dimensional vector spaces over
small fields also do so for simple reasons. But less obvious cases, like sparse families also end up
having single-orbit characterizations which may be somewhat surprising.

Proposition 5.5 (See e.g. [1]). Let RM(n, r) ⊆ {Fn2 → F2} be the set of evaluations of n-variate
polynomials of degree at most r over F2. Then RM(n.r) has a 2r+1-single orbit characterization.

Note that the locality of the characterization is independent of n, the number of variables. The
intuition why such a characterization exists is natural: The basic constraint leading to the above
proposition simply examines the given function on some arbitrary r + 1 dimensional subspace and
accepts the function if and only if it agrees with some degree r polynomial on this subspace. The
orbit of this constraint now constrains a given function to be of degree at most r on every affine
subspace of dimension at most r+ 1. The main step in the analysis (based on basic algebra) shows
that every polynomial of degree greater than r actually has degree r + 1 (maximum possible) on
some r + 1 dimensional affine subspace.

The above is an example of an explicit family that has the single orbit characterization. A somewhat
general result, relevant when the domain K is a small field is the following:

Theorem 5.6 ([33]). For every k and field K extending F there exists a k′ = k′(k, |K|) such that
for every n, every affine-invariant property P ⊆ {Kn → F} that satisfies some k-local constraint is
k′-single orbit characterizable.

The proof of the above theorem follows from some structural analysis of affine-invariant properties
that we will describe in the next section. Roughly one can attribute to every property some sort of
a “degree bound” describing the highest degree of a function satisfying the property and use this
degree to lower bound the size of the local constraint, while using it also to bound from above the
size of the single-orbit characterization. We will comment more on such algebraic degrees in later.

Both theorems above are interesting only when we consider functions mapping Kn → F for small
K and large n. We now turn to some results about the case where n = 1. This case is the most
interesting since all others are special cases of this one, as we explain next.

In what follows we will often find it useful to view a vector space Kn as a large field L, with
|L| = |Kn|. We will say a bijection φ : Kn → L is a natural map if it preserves the vector space (i.e.,
αφ(x) + βφ(y) = φ(αx + βy) for every α, β ∈ K and x, y ∈ Kn). Abusing notation somewhat, we
say that a property P ⊆ {L→ F2} is a RM(n, r) property if there exists a natural map φ : Fn2 → L
such that P is equivalent to RM(n, r) ⊆ {Fn2 → F2} under φ, i.e., P = {f ◦ φ−1|f ∈ RM(n, r)}.

Proposition 5.7 (Grigorescu [26], Ben-Sasson et al. [6]). For every n, r, if P ⊆ {F2n → F2} is a
RM(n, r) property then P is 2r+1-single orbit characterized.
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The above result does not give a new family of properties testable by affine-invariance but it does
give a new (and more randomness efficient) test for this property, since the orbit of a constraint is
much smaller when the domain of the property is viewed as F2n , as opposed to Fn2 . (Hope my latex
conveys what I mean.)

A much more diverse collection of properties that turn out to have single orbit characterizations are
“sparse” properties. The fact that sufficiently sparse properties are testable is something we already
covered (in Section 3). However the tests for general sparse properties are quite unstructured. If
the property turns out to be affine-invariant one could hope that the test becomes more structured,
and this could be shown by showing such properties have single-orbit characterizations. Indeed
this hope turned out to be true, as shown by Kaufman and Lovett [31] building on Grigorescu et
al. [28]. The first work outlines an approach to getting single-orbit characterizations, but succeeds
in a limited setting (for range being F2, domain being F2t for prime t). The second work manages
to prove strong technical results that allow the approach to work more broadly, for arbitrary prime
fields as range, arbitrary extensions as domain. (They also get some local testability for codes that
are quasi-polynomial sized, though not O(1)-local testability.) We present their theorem below.

Theorem 5.8 ([31]). For every prime p and c there exists k such that if P ⊆ {Fpt → Fp} is an
affine-invariant property with |P| ≤ pc·t, then P has a k-single orbit characterization.

While the above results list the “basic” single-orbit characterizable properties, it is possible to get
other single-orbit characterized properties by manipulating these basic ones.

Proposition 5.9 (Ben-Sasson et al. [6]). For every k1, k2 there exists t0 such that for all t ≥ t0
the following holds. If P1,P2 ⊆ {F2t → F2} are affine invariant properties respectively with k1- and
k2-single orbit characterizations, then

1. P1 ∩ P2 has a (k1 + k2)-single orbit characterization.

2. P1 + P2 = {f1 + f2|f1 ∈ P1, f2 ∈ P2} has a (k1 · k2)-single orbit characterization.

We remark that both parts do require some structural understanding of affine-invariance and single-
orbit characterizations. Part (1) follows relatively easily once such understanding is attained while
Part (2) seems less immediate and is known only for sufficiently large n (though it is conceivable
that it is true for all n).

A different way to get single-orbit characterized properties from known ones is by a “lifting” oper-
ator.

Definition 5.10 (Lifting properties). Let F ⊆ K ⊆ L be fields. Given an affine-invariant property
P ⊆ {K → F} its lift P ′ = LiftK→L(P) is the affine-invariant property P ′ ⊆ {L → F} given by
P ′ = {f |∀ affine A : L → L, (f ◦ A)|K ∈ P}, where for a function g : L → F, the function g|K
denotes the restriction of g to the subdomain K ⊆ L.

The nice aspect of lifting is that the lift of a k-single orbit characterized property is also k-single
orbit characterized. (This follows essentially from the definition, though we admit it may be hard
for a first time reader to verify this.) What is more interesting is that lift of sparse properties need
not be sparse. So lifting gives new collections of single-orbit characterized properties.
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One reason for the lengthy enumeration of single-orbit properties above is that it is actually open
whether this enumeration may give a complete explanation of single-orbit characterizability. The
following question asks formally if every single orbit characterized property is the sum or intersection
of a constant number of lifts of sparse properties or lifts of Reed-Muller properties.

Question 5.11. Is the following true: For every k,F there exist c, r, s such that for every K
extending F and every k-single orbit characterized property P ⊆ {K → F} is derived from at most
s properties P1, . . . ,Ps, each of which is the lift of a c-sparse property or a Reed-Muller property of
degree at most r, by a sequence of sum or intersection operators?

A complementary question asks how important single-orbit properties are?

Question 5.12. Is the following true: For every k,F there exists k′ such that for every K extending
F and every k-locally testable property P is k′-single orbit characterized?

If the answer to both questions is affirmative then this would lead to a full characterization of
the testability of linear, affine-invariant codes. However, at the moment even the truth of the two
statements, leave alone our ability to prove them, seems quite optimistic. Indeed we seem to know
relatively little about the structure of affine-invariant properties. In the following sections we report
on what they look like, and what we know thus far.

5.4 Structure of affine-invariant properties

In this section we describe some of the “structure” exhibited by affine-invariant properties mapping
K = F2n to F2. The results can be extended to other fields as also to “multivariate functions”,
but we’ll stick to the simpler setting. The study of such results started in [33], and continued in
the subsequent works. In the lemmas below we will attempt to point to the place in the literature
where the result appears exactly as stated, though possibly slight variants existed earlier.

Fix a property P ⊆ {K → F2}. To explore its structure, we start by recalling that every function
from K to K, and therefore every function from K to F2 is a polynomial (of degree at most 2n− 1).
Much of the structural results will be obtained by looking at the monomials in the support of
functions in P. To this end, let us define, for a polynomial f(x) =

∑2n−1
d=0 cdx

d, its support to be
supp(f) = {d|cd 6= 0}. A central concept associated with an affine-invariant property is its degree
set, Deg(P) = ∪f∈P supp(f).

A priori, this set may not seem to be very useful to focus on. Does it really contain much information
about P? It turns out it uniquely determines P. To this end, let us define for a set D of integers,
Code(D) = {f : K→ F| supp(f) ⊆ D}. In words, the code of the set D contains all functions with
support from D that take on values from F2. We have the following lemma.

Lemma 5.13 (Ben-Sasson et al. [9]). Let P ⊆ {K→ F2} be affine-invariant. Then P = Code(Deg(P)).

In other words, any function supported on Deg(P) is a member of P with the only restriction being
it should be an F2-valued function. And how restrictive is this condition? Somewhat, but in a
very well-understood way. Note that a function f(x) mapping to F2 should satisfy f(α)2 = f(α)
for every α ∈ K. In terms of polynomial identities, this implies that f(x)2 = f(x) mod (x2n − x),
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which in turn implies that if f(x) =
∑2n−1

d=0 cdx
d, then c2dmod (2n−1) = c2

d for every d. Among other
things this implies that if d ∈ Deg(P) then also 2d ∈ Deg(P). This motivates the notion of the
shifts of an integer d or a set of integers S. We let shift(d) = {2i · d(mod 2n − 1)|i ∈ Z}, and let
shift(S) = ∪d∈Sshift(d). We say S is shift-closed if shift(S) = S.

We can further ask, what other properties do degree sets satisfy? It turns that the binary represen-
tations of integers becomes important in understanding this. For integer d, let [d]i denote the ith
least significant bit in the binary representation of d (so d =

∑
i[d]i2

i). We say, e is in the shadow of
d, denoted e ≤2 d, if for all i, [e]i ≤ [d]i. We let the shadow of integer d, denoted shadow(d), be the
set of all integers e ≤2 d, and let shadow(S) = ∪d∈Sshadow(d). A set S is said to be shadow-closed
if shadow(S) = S. Shadows and shifts suffice to explain what degree sets of affine-invariant families
look like, as formalized below.

Lemma 5.14. For every P, Deg(P) is shadow-closed and shift-closed. Conversely if, S ⊆ {0, . . . , 2n−
1} is a shadow-closed and shift-closed set, then Code(S) is an affine-invariant family with S =
Deg(Code(S)).

The key ingredient used in the proofs of the above two lemmas is the identity (an inverse Fourier
transform) that for a function f(x) =

∑2n−1
d=1 cdx

d, we have cdx
d =

∑
α∈K−{0} α

−df(αx). The reason
this is useful in our context is that the right hand side expression is just a linear combination of
affine (even linear) transforms of f . This would be a member of P if the coefficients were from F2

rather than K. But this is not the case, and so to remedy it, we resort to the trace function given
by Trace(z) = z + z2 + z4 + · · ·+ z2n−1

. This is a nice additive function that maps K to F. When
applied to the coefficients Trace(αd) on the right in the expression above, it yields the identity
Trace(cdx

d) =
∑

α∈K−{0}Trace(α−d)f(αx) which is definitely in P if f ∈ P. This allows us to
separate the monomials occuring in f and treat them essentially separately. With some care, one
can show that if cd 6= 0 then Trace(λxd) is in P for every λ ∈ K and then it is straightforward to
argue that P = Code(Deg(P)). The fact that c2d = c2

d implies the degree sets are shift-closed. And
one explores functions of the form f(x+α)− f(x) to show that the degree sets are shadow-closed.
The second lemma above is thus easily verified.

Thus looking at the degree sets of affine-invariant properties gives us an alternate, somewhat more
explicit, view of affine-invariant properties, but thus far we haven’t said anything about what makes
a property locally testable. Can we somehow relate local testability to the degrees seen in the degree
set? There has been only minimal progress on this front. We explain some of the issues and results
next.

5.5 Locality from Structural Properties

First we make a (relatively) simple connection between constraints (or even characterizations)
and degree sets. For simplicity we restrict our attention to basic constraints in this section, i.e.,
constraints of the form

∑k
i=1 f(αi) = 0.

Lemma 5.15 ([9]). Let P ⊆ {K→ F2} be an affine-invariant property with degree set S = Deg(P).
Then we have:

1. α1, . . . , αk form a basic constraint on P if and only if
∑k

i=1 α
d
i = 0 for all d ∈ S.
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2. The basic constraint α1, . . . , αk on P give a k-single orbit characterization of P if and only
if for every d 6∈ S there exists e ≤2 d such that

∑k
i=1 α

e
i 6= 0.

The lemma above follows easily from the structural properties described in the previous section. The
importance of this lemma is that it converts questions about existence of constraints/characterizations
to questions about the kernel of a “van der Monde” like matrix. Let us introduce this matrix next.
For ~α = (α1, . . . , αk) ∈ K and set S of integers, let M = M(~α, S) be the |S| × k matrix with rows
indexed by elements of S and columns by elements of [k] with Md,j = αdj . If S = {0, . . . , k−1} this
would simply be the van der Monde matrix, but our interest is in other S’s.

The importance of this matrix to our setting is fairly straightforward. Lemma 5.15 above essentially
says the following: ~α is a basic constraint on P if and only if the all 1’s vector is in the right kernel
of M(~α,Deg(P)) (i.e., M(~α,Deg(P)) ·~1 = ~0. And a somewhat similar statement would also explain
when ~α is a characterization. Analyzing conditions when ~1 is not in the right kernel turns out to be
quite challenging and we have relatively few results of this nature. (This is related to the general
theme exploring conditions under which an explicit, non-square, matrix has full column rank. This
is an area of relative darkness, especially over finite fields.)

We describe a few limited cases where progress has been made.

Lemma 5.16 (Grigorescu et al. [27]). Let S = {1, 2, 4, . . . , 2k−1} and α1, . . . , αk ∈ K be linearly
independent over F2. Then M(~α, S) is non-singular.

[27] uses this result to show that there are affine-invariant families that exhibit local constraints
(8-local constraints, to be specific) but are not O(1)-locally characterized, which resolves the earlier
mentioned question raised in [1] negatively.

A more general class of results (incomparable to the above) is given by Ben-Sasson and Sudan [12]
who relate the locality of contraints to the “weights” of degrees. To this end, let the weight of
integer d, denoted wt(d), be the number of non-zero bits in the binary representation of d. I.e.,
wt(d) =

∑
i[d]i. For set S, we let wt(S) = maxd∈S{wt(d)}. The weight of integers play an

important role in understanding affine-invariant properties. For example, we have the following
proposition:

Proposition 5.17. If P ⊆ {K→ F2} is an RM(n, r) code, then Deg(P) = {d|wt(d) ≤ r}.

Since degree sets are monotone with respect to inclusion it follows that any property P with
wt(Deg(P)) ≤ r is contained in RM(n, r) and thus satisfies a 2r+1-local constraint. The following
result gives a weak converse.

Theorem 5.18 ([12]). If P is an affine invariant property satisfying an k-local constraint, then
wt(Deg(P)) < k.

Thus the minimum locality of a constraint satisfied by any family is between k and 2k where
k = 1 + wt(Deg(P)). Both extremes are known to be tight.

The main lemma leading to the above theorem is yet another rank lower bound for a “generalized
van der Monde” matrix.
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Lemma 5.19 ([12]). Let S be a shadow-closed set with wt(S) ≥ k. Then M(α1, . . . , αk, S) has
rank k.

Theorem 5.18 may well be a first step towards a potential characterization of O(1)-locally testable
affine-invariant properties. It provides some restrictions on the scope of locally testable properties,
but is still far from pinning them down exactly. We note it provides a useful tool however: For
instance, the (current) proof of Proposition 5.9 above uses this theorem as an ingredient.

Finally we mention one more result which is obtained by giving a rank lower bound on a carefully
constructed generalized van der Monde matrix. Ben-Sasson et al. [9] construct an example of a
locally characterized (LDPC) affine invariant property which is not locally testable, which refutes
a more interesting, and weaker, variant of the earlier-mentioned question of Alon et al. [1].

6 Conclusions

In the previous sections we described some general techniques (in that they apply to a wide variety
of properties) in the testing of linear properties. Most of these themes developed in an attempt
to abstract and generalize some basic property tests including the linearity test from [16] and low-
degree tests as in [43, 1, 32, 29]. Still we do not reach the state of the art in the constructions of
locally testable codes. To get there we need to capture some more of the techniques in property
testing (e.g., those introduced in [2, 39, 40] or in [17, 38]. The former class of results, which focus
on testing polynomials, use two aspects of polynomials: (1) The fact that low-degree polynomials
are affine-invariant, and (2) the fact that the product of low-degree polynomials is itself low-degree.
It is conceivable that one could abstract the latter property and build tests based on these, and it
would be interesting to see if it can be done, and if it can suggest new designs of locally testable
codes.

On the topic of “invariance”, certainly it is our hope that this theme leads to a broad understanding
of many themes is property testing (not just in that of testing linear properties). However it is
worth stressing that it will still fail to capture many property tests. Indeed it has been shown
by Goldreich and Kaufman [22] that random sparse properties show no invariance at all (so this
theme has its limitations). In the other direction they also show that invariance, even with local
characterizations, is insufficient for testing. ([22] shows this for a non-linear property with some
1-transitive invariance class. The subsequent work of Ben-Sasson et al. [9] mentioned earlier shows
this for a linear property that is even affine-invariant.) Despite the limitations, we do believe
invariances have significant unifying power (even if it does not explain everything). We also hope
that with further understanding it can lead to new classes of locally testable properties with novel
additional features if not extremal parameters.
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