
Average-Case Separation in Proof Complexity:

Short Propositional Refutations for Random 3CNF Formulas

Sebastian Müller
∗

Iddo Tzameret
†

Abstract

Separating different propositional proof systems—that is, demonstrating that one proof sys-
tem cannot efficiently simulate another proof system—is one of the main goals of proof com-
plexity. Nevertheless, all known separation results between non-abstract proof systems are for
specific families of hard tautologies: for what we know, in the average case all (non-abstract)
propositional proof systems are no stronger than resolution. In this paper we show that this is
not the case by demonstrating polynomial-size propositional refutations whose lines are TC

0 for-
mulas (i.e., TC

0-Frege proofs) for random 3CNF formulas with n variables and Ω(n1.4) clauses.
By known lower bounds on resolution refutations, this implies an exponential separation of
TC

0-Frege from resolution in the average case.
The idea is based on demonstrating efficient propositional correctness proofs of the random

3CNF unsatisfiability witnesses given by Feige, Kim and Ofek [17]. Since the soundness of these
witnesses is verified using spectral techniques, we develop an appropriate way to reason about
eigenvectors in propositional systems. To carry out the full argument we work inside weak
formal systems of arithmetic, use a general translation scheme to propositional proofs and then
show how to turn these proofs into random 3CNF refutations.

∗Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic. Email:
muller@karlin.mff.cuni.cz. Supported by the Marie Curie Initial Training Network in Mathematical Logic
- MALOA - From MAthematical LOgic to Applications, PITN-GA-2009-238381

†Institute for Theoretical Computer Science, the Institute for Interdisciplinary Information Sciences, Tsinghua
University, Beijing, 100084, China. Email: tzameret@tsinghua.edu.cn. Supported by the National Natural Science
Foundation of China Grant and the National Basic Research Program of China Grant; Part of this work was done
while the author was a research fellow at the Mathematical Institute of the Academy of Science, Prague, Czech
Republic, supported by The Eduard Čech Center for Algebra and Geometry and The John Templeton Foundation.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 6 (2011)

Contents

1 Introduction 2
1.1 Background in proof complexity . 3
1.2 Our result . 5
1.3 The structure of the argument . 6
1.4 Organization of the paper . 8

2 Preliminaries 8
2.1 Miscellaneous linear algebra notations . 8
2.2 Propositional proofs and TC

0-Frege systems . 9

3 Theories of bounded arithmetic 11
3.1 The theory V0 . 12

3.1.1 Extending V0 with new function and relation symbols 14
3.1.2 Basic formalizations in V0 . 16

3.2 The theory V TC
0 . 19

3.2.1 Extending V TC
0 with new function and relation symbols 20

3.2.2 Summation in V TC
0 . 21

3.2.3 Counting in V TC
0 . 22

3.2.4 Manipulating big sums in V TC
0 . 26

3.2.5 The relation between V TC
0 and TC

0-Frege 28

4 Feige-Kim-Ofek witnesses and the main formula 30

5 Proof of the main formula 33
5.1 Formulas satisfied as 3XOR . 37
5.2 Bounding the number of NAE satisfying assignments 40

6 The spectral bound 42
6.1 Notations . 43
6.2 Rational approximations of real numbers, vectors and matrices 43
6.3 The predicate EigValBound . 43
6.4 Certifying the matrix identity . 46

7 Wrapping up the proof: TC
0-Frege refutations of random 3CNFs 50

7.1 Converting the main formula into a ∀ΣB
0 formula . 51

7.2 Propositional proofs . 52

1 Introduction

This paper deals with the average complexity of propositional proofs. Our major aim is to demon-
strate that already standard propositional proof systems, well within the hierarchy of Frege proofs,
can do much better than resolution, not only for specific families of hard instances, but rather for
almost all unsatisfiable 3CNF formulas (for sufficiently large clause-to-variable ratio). Specifically,
we will show that most 3CNF formulas with n variables and at least cn1.4 clauses, for a sufficiently

2

large constant c, have polynomial-size in n propositional refutations whose proof-lines are constant
depth circuits with threshold gates (namely, TC

0-Frege proofs). This is in contrast to resolution
(that can be viewed as depth-1 Frege) for which it is known that most 3CNF formulas with at most
n1.5−ε clauses (for 0 < ε < 1

2) do not admit sub-exponential refutations [8]. This result establishes
essentially the first average-case separation between non-abstract propositional proof systems, and
places a stream of recent results on efficient probabilistic refutation algorithms, culminating in the
work of Feige et al. [17], within the framework of propositional proof complexity.

1.1 Background in proof complexity

Propositional proof complexity is the systematic study of the efficiency of proof systems establishing
propositional tautologies (or dually, refute unsatisfiable formulas). One can view a propositional
proof system abstractly as a deterministic polynomial-time algorithm A that receives a string π
(“the proof”) and a propositional formula Φ such that there exists a π with A(π,Φ) = 1 iff Φ is
a tautology. Such an A is called an abstract proof system. Nevertheless, most research in proof
complexity is dedicated to more concrete or structured models, in which proofs are sequences of
lines, and each line is derived from previous lines by “local” and sound rules.

Perhaps the most studied family of propositional proof systems are those coming from proposi-
tional logic, under the name Frege systems, and their fragments (and extensions). In this setting,
proofs are written as sequences of Boolean formulas (proof-lines) where each line is either an axiom
or was derived from previous lines by means of simple sound derivation rules. The complexity of
a proof is just the number of symbols it contains, that is, the total size of formulas in it. And
different proof systems are compared via the concept of polynomial simulation: a proof system
P polynomially-simulates another proof system Q if there is a polynomial p such that for every
propositional tautology τ , if the minimal Q-proof of τ is of size s then the minimal P -proof of τ is
of size at most p(s). The definition of Frege systems is sufficiently robust, in the sense that different
formalizations can polynomially-simulate each other [29].

It is common to consider fragments (or extensions) of Frege proofs induced by restricting the
proof-lines to contain presumably weaker (or stronger) circuit classes than Boolean formulas. The
stratification of Frege proofs is thus analogous to that of Boolean circuit classes: Frege proofs
consist of Boolean formulas (i.e., NC1) as proof-lines, TC

0-Frege (also known as Threshold Logic)
consists of TC

0 proof-lines, Bounded Depth Frege has AC0 proof-lines, depth-d Frege has circuits
of depth-d proof-lines, etc. In this framework, the resolution system can be viewed as depth-1
Frege. Similarly, one usually considers extensions of Frege system such as NCi-Frege, for i > 1,
and P/poly-Frege (known as Extended Frege). Restrictions (and extensions) of Frege proofs form
a hierarchy with respect to polynomial-simulations, though it is open whether the hierarchy is
proper.

It thus constitutes one of the main goals of proof complexity to understand the above hierarchy
of Frege proofs, and most importantly to separate different propositional proof systems—that is, to
show that one proof system does not polynomially simulate another proof system. These questions
also relate in certain sense to the hierarchy of Boolean circuits (from AC0, through, AC0[p], TC

0,
NC1, and so forth; see [12]). Many separations between propositional proof systems (not just
in the Frege hierarchy) are known. For this kind of results it is enough to demonstrate a single
family of tautologies requiring super-polynomial proof-size in one system, while having polynomial-
size proofs in the other system. In the case of Frege proofs there are already known separations
between certain fragments of it (e.g., separation of depth-d Frege from depth d+1 Frege was shown

3

by Kraj́ıček [25]). It is also known that TC
0-Frege is strictly stronger than resolution, since, e.g.,

the former admits polynomial-size proofs of the propositional pigeonhole principle, while the latter
does not (see [23] for the resolution lower bound and [13] for the corresponding TC

0-Frege upper
bound).

Average case proof complexity. Much like in algorithmic research, it is important to know the
average-case complexity of propositional proof systems, and not just their worst-case behavior. To
this end one usually considers the model of random 3CNFs, wherem clauses with three literals each,
out of all possible 23 ·

(
n
3

)
clauses with n variables, are chosen independently, with repetitions. When

m is greater than cn for some sufficiently large c (say, c = 5), it is known that with high probability a
random 3CNF is unsatisfiable. (As m gets larger the task of refuting the 3CNF becomes easier since
we have more constraints to use.) In average-case analysis of proofs we investigate whether such
unsatisfiable random 3CNFs also have short (polynomial-size) refutations in a given proof system.
The importance of average-case analysis of proof systems is that it gives us a better understanding
of the complexity of a system than merely the worst-case analysis. If we separate two proof systems
in the average case—i.e., show that for almost all 3CNF one proof system admit polynomial-size
refutations, while the other system does not—we establish a stronger separation.

Until today only weak proof systems like resolution and Res(k) (for k ≤
√

log n/ log log n; the
latter system can be viewed as Frege operating with disjunctions of fan-in at most k) and polynomial
calculus (and an extension of it) were analyzed in the average case; for these systems exponential
lower bounds are known for random 3CNFs (with varying number of clauses) [11, 5, 8, 4, 30, 1, 7, 2,
20]. For random 3CNFs with n variables and n1.5−ε (0 < ε < 1

2) clauses it is known that there are
no sub-exponential size resolution refutations [8]. For many proof systems, like cutting planes (CP)
and bounded depth Frege (AC0-Frege), it is a major open problem to prove average case lower
bounds (even for number of clauses near the threshold of unsatisfiability, e.g., random 3CNFs with
n variables and 5n clauses). The results mentioned above only concerned lower bounds. On the
other hand, to the best of our knowledge, the only known non-trivial polynomial-size upper bound
on random kCNFs refutations in any non-abstract propositional proof system is for resolution.
This is a result of Beame et al. [5], and it applies for fairly large number of clauses (specifically,
Ω(nk−1/ logn)). This implies that no (non-abstract) average-case separations were known till now.

Efficient probabilistic refutation algorithms. A different kind of results on refuting random
kCNFs were investigated in Goerdt and Krivelevich [21] and subsequent works by Goerdt and
Lanka [22], Friedman, Goerdt and Krivelevich [19], Feige and Ofek [18] and Feige [16]. Here, one
studies efficient probabilistic refutation algorithms for kCNFs. Specifically, an efficient probabilistic
refutation algorithm receives a kCNF (above the unsatisfiability threshold) and outputs either
“unsatisfiable” or “don’t know”; if the algorithm answers “unsatisfiable” then the kCNF is required
to be indeed unsatisfiable; also, the algorithm should output “unsatisfiable” with high probability
(which by definition, is also the correct answer). Such refutation algorithms can be viewed as
abstract proof systems (according to the definition in Subsection 1.1) having short proofs on the
average-case: A(Φ) is a deterministic polytime machine whose input is only kCNFs (we can think of
the proposed proof π input as being always the empty string). On input Φ the machine A runs the
refutation algorithm and answers 1 iff the refutation algorithm answers “unsatisfiable”; otherwise,
A can decide, e.g. by brute-force search, whether Φ is unsatisfiable or not. (In a similar manner,
if the original efficient refutation algorithm is non-deterministic then we also get an abstract proof

4

system for kCNFs; now the proof π that A receives is the description of an accepting run of the
refutation algorithm.)

Goerdt and Krivelevich [21] initiated the use of spectral methods to devise efficient probabilistic
algorithms for refuting kCNFs. The idea is that a kCNF with n variables can be associated with
a graph on n vertices (or directly with a certain matrix). It is possible to show that certain
properties of the associated graph witness the unsatisfiability of the original kCNF. One then
uses a spectral method to give evidence for the desired graph property, and hence to witness the
unsatisfiability of the original kCNF. Now, if we consider a random kCNF then the associated graph
essentially becomes random too, and so one may show that the appropriate property witnessing the
unsatisfiability of the kCNF occurs with high probability in the graph. The refutation algorithms
devised in this way work for 3CNFs with at least Ω(n1.5) clauses [18].

Continuing this line of research, Feige, Kim and Ofek [17] considered efficient non-deterministic
refutation algorithms (in other words, efficient witnesses for unsatisfiability of 3CNFs). They
established the currently best—with respect to the number of clauses—efficient refutation procedure
(alas non-deterministic): they showed that with probability converging to 1 a random 3CNF with
n variables and at least cn1.4 clauses has a polynomial-size witness, for sufficiently big constant c.

The result in the current paper shows that all the above probabilistic refutation algorithms,
viewed as abstract proof systems, are not stronger in the average case than TC

0-Frege. The short
TC

0-Frege refutations will be based on the witnesses from [17], and so the refutations hold for the
same clause-to-variable ratio as in that paper.

1.2 Our result

The main result of this paper is an average case polynomial-size upper bound on proofs operating
with constant-depth threshold circuits (known as Threshold Logic or TC

0-Frege; see Definition
2.4). Since Frege and Extended Frege proof systems polynomially simulate TC

0-Frege proofs,
the upper bound holds for these proof systems as well. (The actual formulation of TC

0-Frege is
not important since different formulations, given in [10, 26, 9, 28, 13], polynomially simulate each
other.)

Theorem 1 With probability 1− o(1) a random 3CNF formula with n variables and cn1.4 clauses
(for a sufficiently large constant c) has polynomial-size TC

0-Frege refutations.

Beame, Karp, Pitassi, and Saks [5] and Ben-Sasson and Wigderson [8] showed that with prob-
ability 1 − o(1) resolution does not admit sub-exponential refutations for random 3CNF formulas
when the number of clauses is at most n1.5−ε, for any constant 0 < ε < 1/2.1 Therefore, Theorem
1 shows that TC

0-Frege has an exponential speed-up over resolution for random 3CNFs with at
least cn1.4 clauses (when the number of clauses does not exceed n1.5−ε, for 0 < ε < 1/2).

We now explain the significance and motivations behind our work. It is well known that most
contemporary SAT-solvers are based on the resolution proof system. Formally, this means that
these SAT-solvers use a backtracking algorithm that branch on a single variable and construct in
effect a resolution refutation (in case the CNF instance considered is unsatisfiable). (The original

1Beame et al. [5] showed such a lower bound for n5/4−ε number of clauses (for any constant 0 < ε < 1/4). Ben-
Sasson and Wigderson [8] introduced the size-width tradeoff that enabled them to prove an exponential lower bound
for random 3CNF formulas with n1.5−ε number of clauses (for any constant 0 < ε < 1/2), but the actual proof for
this specific clause-number appears in [6].

5

backtracking algorithm DPLL constructs a tree-like resolution refutation [15, 14].) It was known
since [11] that resolution is weak in the average case, but prior to the current work there was no
evidence that searching for (or constructing) refutations in a stronger propositional proof system
can potentially lead to better average case performance (some researchers have expressed the belief
that in the average case even Extended Frege do not outperform resolution). Although there is little
hope to devise polytime algorithms for constructing minimal TC

0-Frege proofs or even resolution
refutations (this stems from the conditional non-automatizability results for TC

0-Frege and reso-
lution, proved in [9] and [3], respectively), practical experience shows that current resolution based
SAT-solvers are quite powerful. Therefore, our average case upper bound theoretically justifies an
attempt to extend SAT-solvers beyond resolution.

Our result also advances our understanding of the relative strength of propositional proof sys-
tems: proving non-trivial upper bounds clearly rules out corresponding lower bounds attempts.
We conjecture that average case upper bounds similar to Theorem 1 could be achieved even for
systems weaker than TC

0-Frege on the expense of at most a quasipolynomial increase in the size
of proofs. This might help in understanding the limits of known techniques used to prove random
3CNFs lower bounds on resolution and Res(k) refutations.

The main result also contributes to our understanding of probabilistic refutation algorithms:
we give an explicit logical characterization of the Feige et al. [17] witnesses. This further places
a stream of results on probabilistic refutation algorithms using spectral methods, starting from
Goerdt and Krivelevich [21], in the propositional proof complexity setting. This is a non-trivial
job, especially because of the need to propositionally simulate spectral arguments.

1.3 The structure of the argument

Here we outline informally (and in some places in a simplified manner) the structure of the proof
of the main theorem. We need to construct certain TC

0-Frege proofs. However, to construct such
propositional proofs directly is technically too cumbersome, and so we opt to construct it indirectly,
by using a first-order characterization of TC

0-Frege. For this purpose we use the first-order (two-
sorted) theory, denoted V TC

0, introduced in [28] (we follow tightly [13]). Roughly speaking, when
restricted to proving only statements of a certain form (formally, ΣB

0 formulas), the theory V TC
0

characterizes (uniform) polynomial-size TC
0-Frege proofs. The construction of polynomial-size

TC
0-Frege refutations for random 3CNF formulas, will consist of the following steps:

I. Formalize the following statement as a first-order formula:

∀ assignment A
(
if C is a 3CNF and w is its FKO unsatisfiabiliy witness −→

exists a clause Ci in C such that Ci(A) = 0
)
,

(1)

where an FKO witness is a suitable formalization of the unsatisfiability witness defined by
Feige, Kim and Ofek [17]. The corresponding predicate is called the FKO predicate.

II. Prove formula (1) in the theory V TC
0.

III. Translate the proof in Step II into a family of propositional TC
0-Frege proofs (of the family of

propositional translations of (1)). By Theorem 3.25 (proved in [13]), this will be a polynomial-
size propositional proof (in the size of C). The translation of (1) will consist of a family of

6

propositional formulas of the form:

Jif C is a 3CNF and w is its FKO unsatisfiabiliy witnessK −→
Jexists a clause Ci in C such that Ci(A) = 0K,

(2)

where J·K denotes the mapping from first-order formulas to families of propositional formulas.
By the nature of the propositional translation (second-sort) variables in the original first-
order formula translate into a collection of propositional variables. Thus, (2) will consist of
propositional variables derived from the variables in (1).

IV. For the next step we first note the following two facts:

(i) Assume that C is a random 3CNF with n variables and cn1.4 clauses (for a sufficiently
large constant c). Then by [17] with high probability there exists an FKO unsatisfiability
witness w for C. These w and C can be encoded as finite sets of numbers as required
by the predicates for 3CNF and for the FKO witness formalized in (1), respectively. Let
us identify w and C with their encodings. Then, assuming (1) was formalized correctly,
assigning w and C to (1) satisfies the premise of the implication in (1).

(ii) Now, by the definition of the translation from first-order formulas to propositional for-
mulas, if an object α satisfies the predicate P (X) (i.e., P (α) is true in the standard
model), then there is a propositional assignment of 0, 1 values that satisfies the propo-
sitional translation of P (X). Thus, by Item (i) above, there exists an 0, 1 assignment ζ
that satisfies the premise of (2) (i.e., the propositional translation of the premise of the
implication in (1)).

Therefore, in this step we show that after assigning ζ to the conclusion of (2) (i.e., to the
propositional translation of the conclusion in (1)) one obtains precisely ¬C (formally, a re-
naming of ¬C, where ¬C is the 3DNF obtained by negating C and using the deMorgan
rules).

V. Take the propositional proof obtained in (III), and apply the assignment ζ to it. The proof then
becomes a polynomial-size TC

0-Frege proof of a formula φ→ ¬C, where φ is a propositional
sentence (without variables) logically equivalent to True (because ζ satisfies it, by (IV)).
From this, one can easily obtain a polynomial-size TC

0-Frege refutation of C (or equivalently,
a proof of ¬C).

The bulk of our work lies in (I) and especially in (II). We need to formalize the necessary
properties used in proving the correctness of the FKO witnesses and show that the correctness
argument can be carried out in the weak theory. There are two main obstacles in this process. The
first obstacle is that the correctness (soundness) of the witness is originally proved using spectral
methods, which assumes that eigenvalues and eigenvectors are over the reals; whereas the reals are
not defined in our weak theory. The second obstacle is that one needs to prove the correctness
of the witness, and in particular the part related to the spectral method, constructively (formally
in our case, inside V TC

0). Specifically, linear algebra is not known to be (computationally) in
TC

0, and (proof-complexity-wise) it is conjectured that TC
0-Frege do not admit short proofs of

the statements of linear algebra (more specifically still, short proofs relating to inverse matrices
and the determinant properties; see [31] on this).

7

The first obstacle is solved by using rational approximations of sufficient accuracy (polynomially
small errors), and showing how to carry out the proof in the theory with such approximations. The
second obstacle is solved basically by constructing the argument (the main formula; see above) in
a way that exploits non-determinism (i.e., in a way that enables supplying additional witnesses for
the properties needed to prove the correctness of the original witness; e.g, all eigenvectors and all
eigenvalues of the appropriate matrices in the original witness). In other words, we do not have
to construct certain objects but can provide them, given the possibility to certify the property we
need. Formally, this means that we put additional witnesses in the FKO predicate occurring in the
main formula in (I) above.

1.4 Organization of the paper

The remainder of the paper is organized as follows. Section 2 contains general preliminary def-
initions and notations, including propositional proof systems and the TC

0-Frege proof system.
Section 3 contains a long exposition of the basic logical setting we use, that is, the relevant theories
of (two-sorted) bounded arithmetic (V0 and V TC

0, from [13]), and a detailed explanation of how
to formalize certain proofs in these theories. This includes defining certain syntactic objects in
the theories as well as counting and doing computations in the theory. Readers who already know
the basics of bounded arithmetic can skip Section 3, and look only at specific parts or definitions,
when needed. Section 4 provides the formalization of the main formula we prove in the theory.
This formula expresses the correctness of the Feige at al. witnesses for unsatisfiability [17]. Section
5 contains the proof of the main formula, excluding the lemma establishing the spectral inequal-
ity which is deferred to a section of its own. Section 6 provides the full proof in the theory of
the spectral inequality. Section 7 finally puts everything together, and shows how to obtain short
propositional refutations from the proof in the theory of the main formula.

2 Preliminaries

We write [n] for {1, . . . , n}. We denote by >,⊥ the truth values true and false, respectively.

Definition 2.1 (3CNF) A literal is a propositional variable xi or its negation ¬xi. A 3-clause is
a disjunction of three literals. A 3CNF is a conjunction of 3-clauses.

Definition 2.2 (Random 3CNF) A random 3CNF is generated by choosing independently, with
repetitions, m clauses with three literals each, out of all possible 23 ·

(
n
3

)
clauses with n variables

x1, . . . , xn.

We say that a property holds with high probability when it holds with probability 1 − o(1).

2.1 Miscellaneous linear algebra notations

We denote by Rk and Qk the k-dimensional real and rational vector spaces in the canonical basis
e1, . . . , ek. The vectors in these spaces are given as sequences a = (a1 . . . ak). In this context for
some k-dimensional vector space V and two vectors a, b ∈ V by 〈a, b〉 we denote the inner product
of a and b which is defined by 〈a, b〉 :=

∑k
i=1 ai · bi. Two vectors a, b are orthogonal if 〈a, b〉 = 0.

The (Euclidean) norm of a vector a is denoted by ||a|| and is defined as
√∑k

i=1 a
2
i . A vector a is

8

called normal if ||a|| = 1. A set of vectors is called orthonormal if they are pairwise orthogonal
and normal. A function f : V −→ W is linear if for all v, w ∈ V , f(c1v + c2w) = c1f(v) + c2f(w).
Every linear function f : V −→ W can be represented by a matrix Af = (ai,j)i≤dim(W),j≤dim(V).
Observe that the representation depends not only on f but also on the bases of V and W . A matrix
A = (ai,j) is symmetric if ai,j = aj,i for all i, j. If for some matrix A and vector v it holds that
Av = λv we call v an eigenvector and λ an eigenvalue of A.

Fact 1 (cf. [24]) The eigenvectors of any real symmetric matrix A : V −→ V are an orthogonal
basis of V , and the eigenvalues of A are all reals numbers.

2.2 Propositional proofs and TC
0-Frege systems

In this section we define the notion of TC
0 formulas. Then we define the propositional proof system

TC
0-Frege as a sequent calculus operating with TC

0 formulas and prove basic properties of it. We
will follow the exposition from [13]. The system we give is only one of many possibilities to define
such proof systems (see e.g. [9] for a polynomially-equivalent definition).

The class of TC
0 formulas consists basically of unbounded fan-in constant depth formulas with

∧,∨,¬ and threshold gates. Formally, we define:

Definition 2.3 (TC
0 formula) A TC

0 formula is built from

(i) propositional constants ⊥ and >,

(ii) propositional variables pi for i ∈ N,

(iii) connectives ¬ and Thi, for i ∈ N.

Items (i) and (ii) constitute the atomic formulas. TC
0 formulas are defined inductively from atomic

formulas via the connectives:

(a) if A is a formula, then so is ¬A and

(b) for n > 1 and i ∈ N, if A1, . . . , An are formulas, then so is ThiA1 . . . An.

The depth of a formula is the maximal nesting of connectives in it and the size of the formula is
the total number of connectives in it.

For the sake of readability we will also use parentheses in our formulas, though they are not
necessary. The semantics of the Threshold Connectives Thi are as follows. Thi(A1, . . . , An) is true
if and only if at least i of the Ak are true. Therefore we will abbreviate Thi(A1, . . . , Ai) as

∧
k≤i

Ak

and Th1(A1, . . . , Ai) as
∨
k≤i

Ak. Moreover we let Th0(A1, . . . , An) = > and Thi(A1, . . . , An) = ⊥,

for i > n.
The following is the sequent calculus TC

0-Frege.

Definition 2.4 (TC
0-Frege) A TC

0-Frege proof system is a sequent calculus with the axioms

A −→ A, ⊥ −→, −→ >,
where A is any TC

0 formula, and the following derivation rules:

Weaken-left: From the sequent Γ −→ ∆ we may infer the sequent Γ, A −→ ∆.

Weaken-right: From the sequent Γ −→ ∆ we may infer the sequent Γ −→ A,∆.

9

Exchange-left: From the sequent Γ1, A1, A2,Γ2 −→ ∆ we may infer the sequent Γ1, A2, A1,Γ2 −→
∆.

Exchange-right: From the sequent Γ −→ ∆1, A1, A2,∆2 we may infer the sequent Γ −→
∆1, A2, A1,∆2.

Contract-left: From the sequent Γ, A,A −→ ∆ we may infer the sequent Γ, A −→ ∆.

Contract-right: From the sequent Γ −→ A,A,∆ we may infer the sequent Γ −→ A,∆.

¬-left: From the sequent Γ −→ A,∆ we may infer the sequent Γ,¬A −→ ∆.

¬-right: From the sequent Γ, A −→ ∆ we may infer the sequent Γ −→ ¬A,∆.
All-left: From the sequent A1, . . . , An,Γ −→ ∆ we may infer the sequent ThnA1 . . . An,Γ −→ ∆.

All-right: From the sequents Γ −→ A1,∆ . . .Γ −→ An,∆we may infer the sequent Γ −→
ThnA1 . . . An,∆.

One-left: From the sequents A1,Γ −→ ∆ . . . A1,Γ −→ ∆ we may infer the sequent
Th1A1 . . . An,Γ −→ ∆.

One-right: From the sequent Γ −→ A1, . . . , An,∆ we may infer the sequent Γ −→ Th1A1 . . . An,∆.

Thi-left: From the sequents ThiA2 . . . An,Γ −→ ∆ and Thi−1A2 . . . An, A1,Γ −→ ∆ we may infer
the sequent ThiA1 . . . An,Γ −→ ∆.

Thi-right: From the sequents Γ −→ ThiA2 . . . An, A1,∆ and Γ −→ Thi−1A2 . . . An,∆ we may infer
the sequent Γ −→ ThiA1 . . . An,∆.

Cut: From the sequents Γ −→ A,∆ and Γ, A −→ ∆ we may infer the sequent Γ −→ ∆,

for arbitrary TC
0 formulas Ai and sets Γ,∆ of TC

0 formulas. The intended meaning of Γ −→ ∆
is that the conjunction of the formulas in Γ implies the disjunction of the formulas in ∆. formula.
A TC

0-frege proof of a formula ϕ is a sequence of sequents π = (S1, . . . , Sk) such that Sk =−→ ϕ
and every sequent in it is either an axiom or was derived from previous lines by a derivation rule.
The size of the proof π is the total size of all formulas in its sequents. The depth of the proof
π is the maximal depth of a formula in its sequents. A TC

0-Frege proof of a family of formulas
{ϕi : i ∈ N} is a family of sequences {(Si

1, . . . , S
i
ki) : i ∈ N}, where each Si

j is a TC
0 formula that

can be derived from some Si
k for k < j using the above rules, such that Si

ki = −→ ϕi, and there
is a common constant c bounding the depth of every formula in all the sequences.

Proposition 2.5 The proof system TC
0-Frege is sound and complete. That is, every formula A

proven in the above way is a tautology and every tautology can be derived by proofs in the above
sense.

Definition 2.6 (Polynomial simulation; separation) Let P,Q be two propositional proof sys-
tems that establish Boolean tautologies (or refute unsatisfiable Boolean formulas, or refute unsat-
isfiable CNF formulas). We say that P polynomially simulates Q if there is a polynomial p such
that for every propositional tautology τ , if the minimal Q-proof of τ is of size s then the minimal
P -proof of τ is of size at most p(s). If P does not polynomially simulate Q or vice versa we say
that P is separated from Q.

For a possibly partial {0, 1} assignment ~a to the propositional variables, we write ϕ[~a] to denote
the formula ϕ in which propositional variables are substituted by their values in ~a. For a proof
π = (ϕ1, . . . , ϕ`) we write π[~a] to denote π = (ϕ1[~a], . . . , ϕ`[~a]). The system TC

0-Frege can
efficiently evaluate assignments to some of the variables of formulas in the following sense.

10

Claim 2.7 Let ϕ(~p, ~q) be a propositional formula in variables p1 . . . pm1 and q1 . . . qm2 and let ~a ∈
{0, 1}m1. If TC

0-Frege proves ϕ(~p, ~q) with a proof πϕ of length n, then it also proves ϕ(~a, ~q) in a
proof πϕ[~a] of length n. Additionally, for any formula ϕ(~p) in variables p1 . . . pm1 and an assignment

~a ∈ {0, 1}m1, TC
0-Frege has polynomial size proofs of either ϕ[~a] or ¬ϕ[~a].

Proof sketch: Consider with πϕ and substitute each occurrence of pi by ai. The resulting proof
remains correct and proves ϕ(~a, ~q), because every TC

0-Frege rule application is still correct after
the assignment.

The second claim is proved by induction over the complexity of ϕ. If ϕ[~a] is true we can construct
a proof by proving the (substitution instances of the) atomic formulas and then proceeding using
the appropriate rules of the calculus by the way the formula is built up.

If ϕ[~a] is false, then we proceed in the same way as above with ¬ϕ[~a] instead of ϕ[~a]. Claim

3 Theories of bounded arithmetic

In this section we give some of the necessary background from logic. Specifically, we present the
theory V0 and its extension V TC

0, as developed by Cook and Nguyen [13] (see also [32]). These
are weak systems of arithmetic, namely, fragments of Peano Arithmetic. The theories are (first-
order) two-sorted theories, having a first sort for natural numbers and a second sort for finite sets of
numbers (representing bit-strings via their characteristic function). The theory V0 corresponds (in a
manner made precise) to bounded depth Frege, and V TC

0 corresponds to TC
0-Frege (see Section

3.2.5). The complexity classes AC0, TC
0, and their corresponding function classes FAC0 and

FTC0 are also defined using the two-sorted universe (specifically, the first-ordered sort [numbers]
are given to the machines in unary representation and the second-sort as binary strings).

Definition 3.1 (Language of two-sorted arithmetic L2
A) The language of two-sorted arith-

metic, denoted L2
A, consists of the following relation, function and constant symbols:

{+, ·,≤, 0, 1, | |,=1,=2,∈} .

We describe the intended meaning of the symbols by considering the standard model N2 of
two-sorted Peano Arithmetic. It consists of a first-sort universe U1 = N and a second-sort universe
U2 of all finite subsets of N. The constants 0 and 1 are interpreted in N2 as the appropriate natural
numbers zero and one, respectively. The functions + and · are the usual addition and multiplication
on the universe of natural numbers, respectively. The relation ≤ is the appropriate “less or equal
than” relation on the first-sort universe. The function |·| maps a finite set of numbers to its largest
element plus one. The relation =1 is interpreted as equality between numbers, =2 is interpreted as
equality between finite sets of numbers. The relation n ∈ N holds for a number n and a finite set
of numbers N if and only if n is an element of N .

We denote the first-sort (number) variables by lower-case letters x, y, z, ..., and the second-
sort (string) variables by capital letters X,Y, Z, We build formulas in the usual way, using
two sorts of quantifiers: number quantifiers and string quantifiers. A number quantifier is said
to be bounded if it is of the form ∃x(x ≤ t ∧ . . .) or ∀x(x ≤ t → . . .), respectively, for some
number term t that does not contain x. We abbreviate ∃x(x ≤ t ∧ . . .) and ∀x(x ≤ t → . . .)
by ∃x ≤ t and ∀x ≤ t, respectively. A string quantifier is said to be bounded if it is of the form

11

∃X(|X| ≤ t ∧ . . .) or ∀X(|X| ≤ t → . . .) for some number term t that does not contain X. We
abbreviate ∃X(|X| ≤ t ∧ . . .) and ∀X(|X| ≤ t → . . .) by ∃X ≤ t and ∀X ≤ t, respectively. A
formula is in ΣB

0 or ΠB
0 if it uses no string quantifiers and all number quantifiers are bounded. A

formula is in ΣB
i+1 or ΠB

i+1 if it is of the form ∃X1 ≤ t1 . . .∃Xm ≤ tmψ or ∀X1 ≤ t1 . . .∀Xm ≤ tmψ,
where ψ ∈ ΠB

i and ψ ∈ ΣB
i , respectively, and ti does not contain Xi, for all i = 1, . . . ,m. We

write ∀ΣB
0 to denote the universal closure of ΣB

0 . (i.e., the class of ΣB
0 -formulas that possibly have

(not necessarily bounded) universal quantifiers in their front). We usually abbreviate t ∈ T , for a
number term t and a string term T , as T (t).

For a language L ⊇ L2
A we write ΣB

0 (L) to denote ΣB
0 formulas in the language L.

As mentioned before a finite set of natural numbers N represents a finite string SN =

S0
N . . . S

|N |−1
N such that Si

N = 1 if and only if i ∈ N . We will abuse notation and identify N
and SN .

In the context of a proof in the theory, we write nc to mean the term n · · ·n︸ ︷︷ ︸
c times

.

The (first-order) two-sorted proof system LK2. For proving statements in the two-sorted
theories we need to specify a proof system to work with (this should not be confused with the
propositional proof system we use). We shall work with a standard (two sorted) sequent calculus
LK2 as defined in [13], section IV.4. This sequent calculus includes the standard logical rules of
the sequent calculus for first-order logic LK augmented with four rules for introducing second-
sort quantifiers. We also have the standard equality axioms (for first- and second-sorts) for the
underlying language L2

A (and when we extend the language, we assume we also add the equality
axioms for the additional function and relation symbols). It is not essential to know precisely the
system LK2 since we shall not be completely formal when proving statements in the two-sorted
theories.

3.1 The theory V0

The base theory we shall work with is V0 and it consists of the following axioms:

Basic 1. x+ 1 6= 0 Basic 2. x+ 1 = y + 1 → x = y

Basic 3. x+ 0 = x Basic 4. x+ (y + 1) = (x+ y) + 1

Basic 5. x · 0 = 0 Basic 6. x · (y + 1) = (x · y) + x

Basic 7. (x ≤ y ∧ y ≤ x) → x = y Basic 8. x ≤ x+ y

Basic 9. 0 ≤ x Basic 10. x ≤ y ∨ y ≤ x

Basic 11. x ≤ y ↔ x < y + 1 Basic 12. x 6= 0 → ∃y ≤ x(y + 1 = x)

L1. X(y) → y < |X| L2. y + 1 = |X| → X(y)

SE. (|X| = |Y | ∧ ∀i ≤ |X| (X(i) ↔ Y (i))) → X = Y

ΣB
0 -COMP. ∃X ≤ y∀z < y(X(z) ↔ ϕ(z)) , for all ϕ ∈ ΣB

0

where X does not occur free in ϕ .

12

Here, the Axioms Basic 1 through Basic 12 are the usual axioms used to define Peano Arithmetic
without induction (PA−), which settle the basic properties of addition, multiplication, ordering,
and of the constants 0 and 1. The Axiom L1 says that the length of a string coding a finite set
is an upper bound to the size of its elements. L2 says that |X| gives the largest element of X
plus 1. SE is the extensionality axiom for strings which states that two strings are equal if they
code the same sets. Finally, ΣB

0 -COMP is the comprehension axiom scheme for ΣB
0 formulas (it

is an axiom for each such formula) and implies the existence of all sets which contain exactly the
elements that fulfill any given ΣB

0 property.
When speaking about theories we will always assume that the theories are two-sorted theories.

Proposition 3.2 (Corollary V.1.8. [13]) The theory V0 proves the (number) induction axiom
scheme for ΣB

0 formulas Φ:

(Φ(0) ∧ ∀x (Φ(x) → Φ(x+ 1))) → ∀zΦ(z).

In the above induction axiom, x is a number variable and Φ can have free variables of both sorts.
The following is a basic notion needed to extend our language we new function symbols (we

write ∃!yΦ to denote ∃x(Φ(x) ∧ ∀y(Φ(y/x) → x = y)), where y is a new variable not appearing in
Φ):

Definition 3.3 (Two-sorted definability) Let T be a theory over the language L ⊇ L2
A and let

Φ be a set of formulas in the language L. A number function f is Φ-definable in a theory T iff
there is a formula ϕ(~x, y, ~X) in Φ such that T proves

∀~x∀ ~X∃!yϕ(~x, y, ~X)

and it holds that2

y = f(~x, ~X) ↔ ϕ(~x, y, ~X). (3)

A string function F is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y) in Φ such that
T proves

∀~x∀ ~X∃!Y ϕ(~x, ~X, Y)

and it holds that
Y = F (~x, ~X) ↔ ϕ(~x, ~X, Y). (4)

Finally, a relation R(~x, ~X) is Φ-definable in a theory T iff there is a formula ϕ(~x, ~X, Y) in Φ such
that it holds that

R(~x, ~X) ↔ ϕ(~x, ~X). (5)

The formulas (3), (4), and (6) are the defining axioms for f , F , and R, respectively.

Definition 3.4 (Conservative extension of a theory) Let T be a theory in the language L.
We say that a theory T ′ ⊇ T in the language L′ ⊇ L is conservative over T if every L formula
provable in T ′ is also provable in T .

2Meaning it holds in the standard two-sorted model N2.

13

We can expand the language L and a theory T over the language L by adding symbols for
arbitrary functions f (or relations R) to L and their defining axioms Af (or AR) to the theory T .
If the appropriate functions are definable in T (according to Definition 3.3) then the theory T +Af

(+AR) is conservative over T . This enables one to add new function and relation symbols to the
language while proving statement inside a theory; as long as these function and relation symbols
are definable in the theory, every statement in the original language proved in the extended theory
(with the additional defining-axioms for the functions and relations) is provable in the original
theory over the original language. However, extending the language and the theory in such a way
does not guarantee that one can use the new function symbols in the comprehension (and induction)
axiom schemes. In other words, using the comprehension (and induction) axioms over the expanded
language might not result in a conservative extension. Therefore, definability will not be enough for
our purposes. We will show precisely in the sequel (Sections 3.1.2 and 3.2) how to make sure that
a function is both definable in the theories we work with and also can be used in the corresponding
comprehension and induction axiom schemes (while preserving conservativity).

When expanding the language with new function symbols we can assume that in bounded
formulas the bounding terms possibly use function symbols from the the expanded language3.

3.1.1 Extending V0 with new function and relation symbols

Here we describe a process (presented in Section V.4. in [13]) by which we can extend the language
L2

A of V0 by new function symbols, obtaining a conservative extension of V0 that can also prove
the comprehension and induction axiom schemes in the extended language.

First note that every relation or function symbol has an intended or standard interpretation
over the standard model N2 (for instance, the standard interpretation of the binary function “+”
is that of the addition of two natural numbers). If not explicitly defined otherwise, we will always
assume that a defining axiom of a symbol in the language defines a symbol in a way that its
interpretation in N2 is the standard one. Note also that we shall use the same symbol F (~x, ~X) to
denote a function and the function symbol in the (extended) language in the theory.

Definition 3.5 (Relation representable in a language) Let Φ be a set of formulas in a lan-
guage L extending L2

A. We say a relation R(~x, ~X) is representable by a formula from Φ iff there

is a formula ϕ(~x, ~X, Y) in Φ such that in the standard two-sorted model N2 (and when all relation
and function symbols in L get their intended interpretation), it holds that:

R(~x, ~X) ↔ ϕ(~x, ~X). (6)

We say that a number function f(~x, ~X) is polynomially-bounded if f(~x, ~X) ≤ poly(~x, ~X). We say
that a string function F (~x, ~X) is polynomially-bounded if |F (~x, ~X)| ≤ poly(~x, ~X).

Definition 3.6 (Bit-definition) Let F (~x, ~X) be a polynomially-bounded string function. We de-
fine the bit-graph of F to be the relation R(i, ~x, ~X), where i is a number variable, such that

F (~x, ~X)(i) ↔ i < t(~x, ~X) ∧R(i, ~x, ~X),

for some number term t(~x, ~X).

3Because any definable function in a bounded theory can be bounded by a term in the original language L
2
A (cf.

[13]).

14

Definition 3.7 (ΣB
0 -definability from a language; Definition V.4.1.2. in [13]) We say

that a number function f is ΣB
0 -definable from a language L ⊇ L2

A, if f is polynomially-bounded
and its graph is represented by a ΣB

0 (L) formula ϕ. We call the formula ϕ the defining axiom
of f . We say that a string function F is ΣB

0 -definable from a language L ⊇ L2
A, if F is

polynomially-bounded and its bit-graph is representable by a ΣB
0 (L) formula ϕ. We call the formula

ϕ the defining axiom of F or the bit-defining axiom of F .

Note: We used the term defining axiom of a function f in both the case where f is defined from
a language (Definition 3.7) and in case f is definable in the theory (Definition 3.3). We will show
in the sequel that for our purposes these two notions coincide: when we define a function from a
language the function will be definable also in the relevant theory, and so the defining axiom of
f from the language will be the defining axiom of f in the theory (when the theory is possibly
extended conservatively to include new function symbols).

Also, note that if the graph of a function F is representable by a ΣB
0 (L) formula then clearly

also the bit-graph of F is representable by a ΣB
0 (L) formula. Therefore, it suffices to show a ΣB

0 (L)
formula representing the graph of a function F to establish that F is ΣB

0 -definable from L.

Definition 3.8 (AC0-reduction) A number function f is AC0-reducible to L ⊇ L2
A iff there is a

possibly empty sequence of functions F1, . . . , Fk such that Fi is ΣB
0 -definable from L∪{F1, . . . , Fi−1},

for any i = 1, . . . , k, and f is ΣB
0 -definable from L ∪ {F1, . . . , Fk}.

We now describe the standard process enabling one to extend a theory T ⊇ V0 over the language
L2

A with new function symbols obtaining a conservative extension of T such that the new function
symbols can also be used in comprehension and induction axiom schemes in the theory (see Section
V.4. in [13] for the proofs):

(i) If the number function f is ΣB
0 -definable from L2

A, then T over the language L2
A ∪ {f},

augmented with the defining axiom of f , is a conservative extension of T and we can also
prove the comprehension and induction axioms for ΣB

0 (f) formulas.

(ii) If the string function F is ΣB
0 -definable from L2

A, then T over the language L2
A ∪ {F}, aug-

mented with the bit-defining axiom of F , is a conservative extension of T and we can also
prove the comprehension and induction axioms for ΣB

0 (F) formulas.

(iii) We can now iterate the above process of extending the language L2
A(f) (or equivalently,

L2
A(F)) to conservatively add more functions f2, f3, . . . to the language, which can also be

used in comprehension and induction axioms.

By the aforementioned and by Definition 3.8, we can extend the language of a theory with a
new function symbol f , whenever f is AC0-reducible to L2

A. This results in an extended theory
(in an extended language) which is conservative, and can prove the comprehension and induction
axioms for formulas in the extended language. In the sequel, when defining a new function in
V0 we may simply say that it is ΣB

0 -definable (or bit-definable) in V0 and give its ΣB
0 -defining

(bit-defining, respectively) axiom (that can possibly use also previously ΣB
0 -defined (or bit defined)

function symbols).
Extending the language of V0 with new relation symbols is simple: every relation R(~x, ~X)

which is representable by a ΣB
0 (L) formula, where L is an extension of the language with new

15

function symbols obtained as shown above, can be added itself to the language. This results in a
conservative extension of V0 that also proves the ΣB

0 induction and comprehension axioms in the
extended language.

Definition 3.9 (FAC0) A string (number) function is in FAC0 if it is polynomially-bounded and
its bit-graph (graph, respectively) is definable by a ΣB

0 formula in the language L2
A.

3.1.2 Basic formalizations in V0

In this section we show how to formalize basic notions in the theory V0.

Characteristic function of a relation. For a given predicate R we denote by χR the charac-
teristic function of R. If R is ΣB

0 -definable in V0 then χR is ΣB
0 -definable in V0, using the following

defining axiom:

y = χR(~x, ~X) ↔
(
R(~x, ~X) → y = 1 ∧ ¬R(~x, ~X) → y = 0

)
.

Natural number sequences of constant length. For two numbers x, y let 〈x, y〉 := (x +
y)(x + y + 1) + 2y be the pairing function, and let left(z), right(z) be the (easily ΣB

0 -definable in
V0) projection functions of the first and second element in the pair z, respectively. It should be
clear from the context when we mean 〈a, b〉 as an inner product of two vectors and when we mean
it as the pairing function. We also ΣB

0 -define inductively 〈v1, . . . , vk〉 := 〈〈v1, . . . , vk−1〉, vk〉, for any
constant k. Then V0 proves the injectivity of the pairing function and lets us handle such pairs in
a standard way.

Notation: Given a number x, coding a sequence of natural numbers of length k, we write 〈x〉ki ,
for i = 1, . . . , k, to denote the number in the ith position in x. This is a ΣB

0 -definable function in
V0 (defined via left(x), right(x) functions).

Rational numbers. Given the natural numbers, we can define the integers in V0 by identifying
an integer number with a pair 〈a, b〉, such that a is its “positive” part and b is its “negative” part.
We can define addition, product and subtraction of integers. All with ΣB

0 definitions.
Having the integer numbers, we define the rational numbers as follows: for two integer numbers

a, b, the rational number a/b, is defined by the pair 〈a, b〉. We can define addition, subtraction and
multiplication of rational numbers in V0 by ΣB

0 definitions. (See for example in [27]). However,
we shall take a simpler path in this paper: throughout this paper, all rational numbers used

inside the theories have the same denominator n2c, for some fixed constant c. This
enables us to represent every rational number with a pair of integer numbers, such that each has
a value polynomial in n. Addition and multiplication of two rational numbers is also ΣB

0 -definable
in V0. This also makes it more convenient to sum a non-constant number of rational numbers
in V TC

0 (see Proposition 3.16). To keep the invariant that all denominators are n2c, we then
make sure that all the rational numbers resulting from computation in the proof in the theory are
indeed integer products of 1/n2c. This will hold since by inspection of the computations made in
the theory it will be clear that:

1. all initial rational numbers will be integer products of 1/nc;

16

2. all arithmetic operations done on rational numbers are one of the following:

(a) addition of two rational numbers (this preserves the denominator);

(b) if we multiply two rational numbers x, y then x = nc·a
n2c and y = nc·b

n2c for some two integers

a, b, and so x · y = ab
n2c will have n2c as a denominator.

Convention: For the sake of readability we sometimes treat integer numbers in the theory m as
their corresponding rational number m/1, thus enabling one to compute with both types. (This is
simple to achieve formally. E.g., one can define a function numones ′(X) that outputs the corre-
sponding rational number of numones(X).)

Absolute numbers. We can ΣB
0 -define in V0 the absolute value function for integer numbers

absZ(·) from the language L2
A as follows (the function max is easily ΣB

0 -definable):

y = absZ(x) ↔ y = 〈max(left(x) − right(x), right(x) − left(x)), 0〉.

We ΣB
0 -define the absolute value function for rational numbers absQ(·) in V0 as follows:

y = absQ(x) ↔ y = 〈absZ(left(x)), 〈n2c, 0〉〉.

For simplicity, we shall suppress the subscript Z,Q in absZ, absQ; the choice of function can be
determined from the context.

Number (natural, integers and rational) sequences of polynomial length. If we wish to
talk about sequences of numbers (whether natural, integers or rationals) where the lengths of the
sequences are non-constant, we have to use string variables. Using the number tupling function
we can encode sequences as sets of numbers (recall that a string is identified with the finite set of
numbers encoding it). Essentially, a sequence is encoded as a string Z such that the xth number in
the sequence is y if the number 〈x, y〉 is in Z. Formally we have the following ΣB

0 -defining formula
for the function seq(x, Z):

y = seq(x, Z) ↔ (y < |Z| ∧ Z(〈x, y〉) ∧ ∀z < y¬Z(〈x, z〉))
∨ (∀z < |Z|¬Z(〈x, z〉) ∧ y = |Z|). (7)

Formula (7) states that the xth element in the sequence coded by Z is y iff 〈x, y〉 is in Z and
no other number smaller than y also “occupies the xth position in the sequence”, and that if no
number occupies position x then the function returns the length of the string variable Z. We write
Z[x] to abbreviate seq(x, Z).

According to the definition of the function seq(x, Z) above, there might be more than one string
Z that encodes the same sequence of numbers. However, we sometimes need to determine a unique
string encoding a sequence. To this end we use a ΣB

0 formula, denoted SEQ(y, Z), which asserts
that Z is the lexicographically smallest string that encodes a sequence of y + 1 numbers (i.e., no
string with smaller binary code encodes the same sequence). Specifically, the formula states that
if w = 〈i, j〉 is in Z then j is indeed the ith element in the sequence coded by Z, and for all y ≥ j
the pair 〈i, y〉 is not contained in Z:

17

SEQ(y, Z) ≡∀w < |Z| (Z(w) ↔ ∃i ≤ y∃j < |Z| (w = 〈i, j〉 ∧ j = Z[i])) . (8)

Note that elements of sequences Z coded by strings are referred to as Z[i], while elements of
sequences x coded by a number are referred to as 〈x〉ki (for k the length of the sequence x). We
define the number function length(Z) to be the length of the sequence Z, as follows:

` = length(Z) ↔ SEQ(`, Z) ∧ ∃w < |Z|∃j < |Z|(Z(w) ∧ w = 〈`− 1, j〉) .

The defining axiom of length(Z) states that Z encodes a sequence and is the lexicographically
smallest string that encodes this sequence and that the largest position in the sequence which is
occupied is `− 1 (by definition there will be no pair 〈a, b〉 ∈ Z with a > `− 1).

Array of strings. We want to encode a sequence of strings as an array. We use the relation
RowArray(x, Z) to denote the xth string in Z as follows (we follow the treatment in [13], Definition
V.4.26, page 114).

Definition 3.10 (Array of strings) The function RowArray(x, Z), denoted Z [x], is ΣB
0 -

definable in V0 using the following bit-definition:4

RowArray(x, Z)(i) ↔ (i < |Z| ∧ Z(〈x, i〉)).

We will abuse notation and write length(Z) for the length of the array Z (i.e., numbers of
strings in Z) even when Z is a RowArray (and not a sequence according to the predicate SEQ).

Functions for constructing sequences.

Definition 3.11 (Sequencef (y, ~x, ~X)) Let f(z, ~x, ~X) be a ΣB
0 -definable number function in V0

(or a ΣB
1 -definable number function in V TC

0[see section 3.2 below]), then Sequencef (y, ~x, ~X) is

the string function ΣB
0 -definable in V0(or ΣB

1 -definable in V TC
0, respectively) that returns the

number sequence whose jth position is f(j, ~x, ~X), for j = 0, . . . , y.

In other words, Sequencef (y, ~x, ~X) returns the graph of the function f(z, ~x, ~X) up to y (that is, the

sequence 〈f(0, ~x, ~X), . . . , f(y, ~x, ~X)〉). The following is the ΣB
0 -definition of the Sequencef (y, ~x, ~X):

Y = Sequencef (y, ~x, ~X) ↔ SEQ(y, Y) ∧ ∀z ≤ y (Y [i] = f(z, ~x, ~X)).

Sequences of numbers with higher-dimensions. For a constant k, let S be a k-dimensional
sequence of rational numbers. We encode a sequence S as a string variable Z such that the
〈i1, . . . , ik〉th element in S is extracted by the function seq (defined above). Specifically, we have
S[〈i1, . . . , ik〉] = y iff 〈〈i1, . . . , ik〉, y〉 ∈ Z and there is no z < y for which 〈〈i1, . . . , ik〉, z〉 ∈ Z.
Accordingly, we write Z[i1, . . . , ik] to abbreviate seq(〈i1, . . . , ik〉, Z).

4We use the name “RowArray” (instead of the name “Row” used in [13]).

18

Matrices. Given a rational n × n matrix M , we define it as a two-dimensional sequence in the
manner defined above; and refer to the number at row 1 ≤ i ≤ n and column 1 ≤ j ≤ n of M as
M [i, j]. We can define the string function that extracts the xth row of M , and the xth column of M ,
respectively, with ΣB

0 formulas as follows. First define f(M, i, x) := M [i, x], g(M, i, x) := M [x, i],
for any i = 0, 1, . . . , n (for i = 0, the value of M [i, x] and M [x, i] does not matter; but this value is
still defined by definition of the function seq). Then use Definition 3.11 to define:

Row(i,M) := Sequencef (i, n)

Column(i,M) := Sequenceg(i, n) .

3.2 The theory V TC
0

It is known that V0 is incapable of proving basic counting statements. Specifically, it is known
that the function that sums a sequence of numbers (of non-constant length) is not provably total,
namely, is not ΣB

1 -definable in V0. Therefore, if a proof involves such computations we might not
be able to perform it in V0. The theory V TC

0 extends V0, and is meant to allow reasoning that
involves counting, and specifically to sum a non-constant sequence of numbers. The theory V TC

0

was introduced in [28]; we refer the reader to Section IX.3.2 [13] for a full treatment of this theory.
The ΣB

0 theorems of V TC
0 correspond to polynomial-size TC

0-Frege propositional proofs, which
will enable us to prove the main result of this paper.

Definition 3.12 (NUMONES) Let δNUM(y,X,Z) be the following ΣB
0 formula:

δNUM(y,X,Z) := SEQ(y, Z) ∧ Z[0] = 0 ∧ ∀u < y((X(u) → Z[u+ 1] = Z[u] + 1)

∧ (¬X(u) → Z[u+ 1] = Z[u])).
(9)

Define NUMONES to be the following ΣB
1 formula:

NUMONES := ∃Z ≤ 1 + 〈y, y〉δNUM(y,X,Z). (10)

Informally one can think of the sequence Z(X), which existence is guaranteed by NUMONES,
as a sequence counting the number of ones in a string X, that is, the uth entry in Z(X) is the
number of ones appearing in the string X up to the uth position.

Definition 3.13 (V TC
0) The theory V TC

0 is the theory containing all axioms of V0 and the
axiom NUMONES.

Using NUMONES we can define the function numones(y,X) that, given y and X, returns the
yth entry of Z(X) via the following ΣB

1 -defining axiom

numones(y,X) = z ↔ ∃Z ≤ 1 + 〈|X| , |X|〉 (δNUM(|X| , X, Z) ∧ Z[y] = z) . (11)

We shall use the following abbreviation:

numones(X) := numones(|X| − 1, X).

Next we show how to obtain the functions we will use in the theory V TC
0 (these will include the

function numones).

19

3.2.1 Extending V TC
0 with new function and relation symbols

Similar to the case of V0, we would like to extend the language L2
A of V TC

0 with new function and
relation symbols, to obtain a conservative extension. Moreover, we require that the new function
and relation symbols could be used in induction and comprehension axioms (while preserving
conservativity). We can do this, using results from Sections I.X.3.2 and I.X.3.3 in [13], as follows.

Definition 3.14 (Number summation) For any number function f(z, ~x, ~X) define the number
function sumf (y, ~x, ~X) by5

sumf (y, ~x, ~X) =

y∑

i=0

f(i, ~x, ~X) .

Recall that by Definition 3.7, a string (number) function F is ΣB
0 -definable from L ⊇ L2

A iff
there is a ΣB

0 formula over the language L that bit-defines (defines, respectively) the function F
(when all the functions and relation symbols in L get their intended interpretation).

We can use the following facts to extend the language of V TC
0 with new function symbols

(proved in Section IX.3.2 in [13]): if f is a (number or string) function in FTC0 (see below),
then there is a ΣB

1 formula ϕ that represents its graph, and the theory V TC
0 extended with the

defining axiom for f (using ϕ, as in Definition 3.7) over the language L = L2
A∪{f} is a conservative

extension of V TC
0. And by Theorem IX.3.7 in Section IX.3.2 [13], V TC

0 can prove the induction
and comprehension axioms for any ΣB

0 (L) formula.
Thus, to extend V TC

0 with new function symbols, by the above it suffices to show how to
obtain FTC0 functions. For this we use the following equivalent characterizations of FTC0 (see
Sections IX.3.2 and IX.3.3 in [13]):

Proposition 3.15 (Theorem IX.3.12, Proposition IX.3.1 in [13]) The following statements
are equivalent:

1. The function f is ΣB
1 -definable in V TC

0, and is applicable inside comprehension and induc-
tion axiom schemes.

2. The function f is in FTC0.

3. The function f is obtained from FAC0 by number summation and AC0-reductions.

4. There exist a natural k and functions f1, . . . , fk = f such that for every i = 1, . . . , k, the
function fi is either definbale by a ΣB

0 formula in the language L2
A ∪ {f1, . . . , fi−1} or there

exists h ∈ L2
A ∪ {f1, . . . , fi−1} such that fi = sumh.

5. The function f is AC0-reducible to L2
A ∪ {numones}.

Therefore, to obtain new FTC0 functions, and hence to extend conservatively the language of
V TC

0 with function symbols that can also be used in comprehension and induction axioms, we
can define a function with a ΣB

0 formula in a language that contains sumf , for f in FAC0, and
possibly contains also other symbols already definable in V0. Then, we can iterate this process a
finite number of times, where now sumf is defined also for f being a function defined in a previous

5Note that this is a definition in the metatheory (or in other words the standard two-sorted model).

20

iteration. Since a function is in FTC0 iff it is ΣB
1 -definable in V TC

0, new functions obtained in
this way, are said to be ΣB

1 -definable in V TC
0.

To extend the language of V TC
0 with new relation symbols, we can simply add new ΣB

0 -
definable relations, using possibly relation and function symbols that where already added before
to the language, and specifically the numones function. Such relations can then be used in induction
and comprehension axioms, and we shall say that they are ΣB

0 -definable relations in V TC
0.

3.2.2 Summation in V TC
0

Here we show how to express and prove basic equalities and inequalities in the theory V TC
0.

Summation over natural and rational number sequences. Given a sequence X of natural
numbers, we define the function that sums the numbers in X until the yth position by sumseq(y,X)
which is equal to

∑y
i=0 seq(i,X).

To sum sequences of rational numbers, on the other hand, we do the following. For our purposes
it is sufficient to sum many small (that is, polynomially bounded) numbers (this is in contrast to
additions of numbers encoded as strings). Recall that we assume that all rational numbers in the
theory have the same denominator n2c, for some global constant c, independent of n.

Proposition 3.16 Let X be a sequence of rational numbers with denominator n2c and let
sumQ(z,X) be the number function that outputs

∑z
i=0X[i]. Then, the number function sumQ(z,X)

is ΣB
1 -definable in V TC

0.

Proof: It suffices to show that there is a ΣB
0 formula that defines the number function sumQ(z,X)

using only number summation functions and FAC0 functions.
The AC0 function seq(i,X) extracts the ith element (that is, rational number) from the se-

quence X (see Formula (7)). A rational number is a pair of integers, and hence is a pair of pairs.
Thus, gp(i,X) := left(left(seq(i,X))) extracts the positive part of the integer numerator of the
ith rational number in X, and gn(i,X) := right(left(seq(i,X))) extracts the negative part of the
integer numerator of the ith rational number in X. Note that both gp(i,X) and gn(i,X) are FAC0

functions. Therefore, sumgp(z,X) equals the sum of all the positive parts in X, and sumgn(z,X)
equals the function that sums of all the negative parts of the numerators in X. We can now define
sumQ(z,X) as follows:

w = sumQ(z,X) ↔ w =
〈
〈sumgp(z,X), sumgn(z,X)〉 ,

〈
n2c, 0

〉〉
(12)

Note indeed that
〈
〈sumgp(z,X), sumgn(z,X)〉 ,

〈
n2c, 0

〉〉
is a pair of integers that encodes the desired

rational number (with denominator n2c).

Notation: As a corollary from Proposition 3.16, we can abuse notation as follows: for f(y, ~x, ~X)
a number function mapping to the rationals we write sumf (n, ~x, ~X) to denote the sum of rationals∑n

i=0 f(i, ~x, ~X), for some fixed ~x, ~X and n. Abusing notation further, we can write in a formula in

the theory simply
∑n

i=0 f(i, ~x, ~X).

21

Expressing vectors and operations on vectors. Vectors over Q are defined as sequences of
rational numbers (for simplicity we shall assume that the number at the 0 position of a vector is 0).
Given two rational vectors v,u of size n, their inner prduct, denoted 〈v,u〉, is defined as follows
(we identify here v,u with the string variables encoding v,u): let f(y,v,u) be the FAC0 number
function defined by f(y) := v[y] · u[y]. Then the inner product of v and u is defined by

innerprod(v,u) := sumQ

(
length(v) + 1,Sequencef (length(v) + 1)

)
.

The function that adds two rational vectors is easily seen to be in FAC0 (use Definition 3.11 to
construct a sequence, where each entry in the sequence is the addition of the corresponding entries
of the two vectors).

Expressing product of matrices and vectors. Let v be an n-dimensional rational vector
and let M be an n × n rational matrix. Assume that f(z,M,v) := innerprod(Row(z,M),v). We
ΣB

1 -define in V TC
0 the product Mv as follows:

Matvecprod(M,v) := Sequencef (length(v) + 1,M,v) .

Notation: When reasoning in the theory V TC
0 we sometimes abuse notation and write v · u

or 〈v,u〉 instead of innerprod(u,v), and Mv instead of Matvecprod(M,v), and utMv instead of
〈u,Mv〉.

3.2.3 Counting in V TC
0

Here we present basic statements involving counting of certain objects and sets, provable in V TC
0.

Notation: When reasoning in the theory V TC
0, we will say that a family of ΣB

0 -definable in
V TC

0 sets B0, . . . , B` forms a partition of
⋃`

i=0Bi := {r : ∃i ≤ `, Bi(r)} whenever V TC
0 proves

that (i)
⋃`

i=0Bi = B, and (ii) Bi ∩Bj = ∅, for all 0 ≤ i 6= j ≤ `.

Proposition 3.17 (Some counting in V TC
0) Let B1, . . . , B` be family of ΣB

0 -definable sets in
V TC

0 that partition the set B (` may be a variable). Then, V TC
0 proves:

numones(B) =
∑̀

i=1

numones(Bi) .

Proof: We proceed by induction on ` to show that for every 0 ≤ y ≤ max{B1, . . . , B`}:

numones(y,B1 ∪ . . . ∪B`) =
∑̀

i=1

numones(y,Bi).

Base case: ` = 1. Thus, B = B1 and so we need to prove only numones(y,B1) =∑
i=1 numones(y,Bi). Since V TC

0 proves that a summation that contains only one summand
B1 equals B1 we are done.

Induction step: ` > 1. We have B =
⋃`

i=1Bi = (
⋃`−1

i=1 Bi)∪B`. Assume by way of contradiction that

22

(
⋃`−1

i=1 Bi)∩B` 6= ∅. Then V TC
0 can prove that this contradicts the assumption that Bi ∩Bj = ∅,

for all i 6= j (which holds since the Bi’s form a partition of B). Hence, (
⋃`−1

i=1 Bi) ∩B` = ∅, and by
Claim 3.18 (proved below):

numones(y,B) = numones(y,
`−1⋃

i=1

Bi) + numones(y,B`) (13)

=
`−1∑

i=1

numones(y,Bi) + numones(y,B`) (by induction hypothesis) (14)

=
∑̀

i=1

numones(y,Bi). (15)

It remains to prove the following:

Claim 3.18 (In V TC
0) let A,B be two sets such that A ∩ B = ∅, then for all 0 ≤ y ≤

max{|A|, |B|}:
numones(y,A ∪B) = numones(y,A) + numones(y,B).

Proof of claim: We proceed by induction on y, using the defining axiom of numones (stating the
existence of a counting sequence for the input string variable; see Equations (11) and (9)).

Base case: y = 0. The counting sequence Z for numones(A ∪ B) is defined such that Z[0] = 0.
Thus,

0 = numones(0, A ∪B) = numones(0, A) + numones(0, B) = 0 + 0 = 0.

Induction step: 0 < y ≤ max{|A|, |B|}. By the defining axiom of numones we have:

numones(y,A ∪B) =

{
numones(y − 1, A ∪B) + 1, y ∈ A ∪B;
numones(y − 1, A ∪B), otherwise.

(16)

We have to consider the following three cases:
Case 1: y ∈ A. Thus, by assumption that A and B are disjoint, we have y 6∈ B. Also, we have
y ∈ A ∪B. Therefore:

numones(y,A) + numones(y,B)

= numones(y − 1, A) + 1 + numones(y,B) (since y ∈ A)

= numones(y − 1, A) + 1 + numones(y − 1, B) (since y 6∈ B)

= numones(y − 1, A ∪B) + 1 (by induction hypothesis)

= numones(y,A ∪B) (since y ∈ A ∪B).

Case 2: y ∈ B. This is the same as Case 1.
Case 3: y 6∈ A ∪B. This is similar to the previous cases. We omit the details. Claim

23

Proposition 3.19 (More counting in V TC
0) Let ϕ(x) be a ΣB

0 formula (possibly in an ex-
tended language of V TC

0). The theory V TC
0 can prove that if Z = {0 ≤ i < m : ϕ(i)} and for

any 0 ≤ i < m,

γi =

{
a, ϕ(i);
b, ¬ϕ(i),

then ∑

i<m

γi = a · numones(Z) + b · (m− numones(Z)).

Proof: Since ϕ(x) is a ΣB
0 formula, by Section 3.2.1, we can use the comprehension axiom scheme

to define, for any 0 ≤ k ≤ m− 1, the set:

Zk := {i ≤ k : ϕ(i)} .
The claim is proved by induction on k.

Base case: k = 0. If ϕ(0) is true, then Z0 = {0}, and so numones(Z0) = 1. By assumption we
have γ0 = a = a · numones(Z0) + b · (1 − numones(Z0)). Otherwise, ϕ(0) is false and so Z0 = ∅,
implying that numones(Zk) = 0. By assumption again we have γ0 = b = a · numones(Z0) + b(1 −
numones(Z0)).

Induction step: k > 0.
Case 1: ϕ(k) is true. Thus Zk(k) is true and also

numones(Zk) = numones(Zk−1) + 1, (17)

and by assumption γk = a. Therefore,

k∑

i=0

γi =
k−1∑

i=0

γi + γk =
k−1∑

i=0

γi + a

= a · numones(Zk−1) + b · (k − 1 − numones(Zk−1)) + a (by induction hypothesis)

= a · (numones(Zk−1) + 1) + b · (k − 1 − numones(Zk−1)) (rearranging)

= a · numones(Zk) + b · (k − numones(Zk)) (by (17)).

Case 2: ϕ(k) is false. This is similar to Case 1. Specifically, Zk(k) is false and also

numones(Zk) = numones(Zk−1), (18)

and by assumption γk = b. Therefore

k∑

i=0

γi =
k−1∑

i=0

γi + γk =
k−1∑

i=0

γi + b

= a · numones(Zk−1) + b · (k − 1 − numones(Zk−1)) + b (by induction hypothesis)

= a · numones(Zk−1) + b · (k − 1 − numones(Zk−1) + 1) (rearranging)

= a · numones(Zk) + b · (k − numones(Zk)) (by (18)).

We shall use the following proposition in Section 5 (Lemma 5.8).

24

Proposition 3.20 The theory V TC
0 proves the following statement. Let F (x) be a string func-

tion. Let d < t be a natural number and assume that any number in any set F (1), . . . , F (t)
occurs in at most d many sets in F (1), . . . , F (t). Let g(x) be a number function such that
g(1), . . . , g(t) are (not necessarily distinct) numbers with g(i) ∈ F (i) for all i ∈ [t]. Then
numones({g(i) : i ∈ [t]}) ≥ dt/de.

Proof: Let Img(g(x)) := {i : g(x) ∈ F (i)} be a string function (it is ΣB
0 -definable in V0). By

assumption
∀z ∈ [t] (numones(Img(g(z))) ≤ d) . (19)

Since for any i ∈ [t], g(i) ∈ F (i), we can prove in V TC
0 that

⋃
z∈[t] Img(g(z)) equals {1, 2, . . . , t},

and so V TC
0 proves:

numones



⋃

z∈[t]

Img(g(z))


 = t. (20)

Claim 3.21 (Under the assumptions of the proposition) V TC
0 proves:

numones



⋃

z∈[t]

Img(g(z))


 ≤ d · numones({g(i) : i ∈ [t]}).

Proof of claim: The proof follows from (19), by induction on t.
Base case: t = 1. We have

numones(∪z∈[t]Img(g(z))) = numones(Img(g(1)))

≤ d (by assumption)

= d · numones({g(1)})
= d · numones({g(i) : i ∈ [t]}).

Induction step:
Case 1: g(t) ∈ {g(i) : i ∈ [t− 1]}. Thus,

{g(i) : i ∈ [t− 1]} = {g(i) : i ∈ [t]} and
⋃

i∈[t−1]

Img(g(i)) =
⋃

i∈[t]

Img(g(i)). (21)

Thus,

numones



⋃

i∈[t]

Img(g(i))


 = numones



⋃

i∈[t−1]

Img(g(i))




≤ d · numones ({g(i) : i ∈ [t− 1]}) (by induction hypothesis)

= d · numones ({g(i) : i ∈ [t]}) (by (21)).

25

Case 2: g(t) 6∈ {g(i) : i ∈ [t− 1]}. Thus,

numones({g(i) : i ∈ [t− 1]}) + 1 = numones({g(i) : i ∈ [t]}. (22)

we have

numones



⋃

z∈[t]

Img(g(z))


 ≤ numones




⋃

z∈[t−1]

Img(g(z))


+ numones (Img(g(t)))

and by induction hypothesis

≤ d · numones ({g(i) : i ∈ [t− 1]}) + numones (Img(g(t)))

≤ d · (numones({g(i) : i ∈ [t]}) − 1) + numones (Img(g(t))) (by (22))

≤ d · (numones({g(i) : i ∈ [t]}) − 1) + d (by assumption)

= d · numones({g(i) : i ∈ [t]}).

Claim

Thus, by Claim 3.21 and by (20), we get:

t ≤ d · numones({g(i) : i ∈ [t]}),

which leads to t/d ≤ numones({g(i) : i ∈ [t]}), and since numones({g(i) : i ∈ [t]}) is an integer
number we get:

dt/de ≤ dnumones({g(i) : i ∈ [t]})e = numones({g(i) : i ∈ [t]}).

3.2.4 Manipulating big sums in V TC
0

We need to prove basic properties of summation (having a non-constant number of summands) like
commutativity, associativity, distributivity, substitution in big sums, rearranging etc., in V TC

0,
to be able to carry out basic calculations in the theory. As a consequence of this section we will
be able to freely derive inequalities and equalities between big summations (using rearranging,
substitutions of equals, etc.) in V TC

0.

Proposition 3.22 (Basic properties of sums in V TC
0) In what follows we consider the the-

ory V TC
0 over an extended language (including possibly new ΣB

1 -definable function symbols in
V TC

0 and their defining axioms). The function f(i) is a number function symbol mapping to the
rationals or naturals (possibly with additional undisplayed parameters). The theory V TC

0 proves
the following statements:

Substitution: Assume that u(i), v(i) are two terms (possibly with additional undisplayed parame-
ters), such that u(i) = v(i) for any i ≤ n, then

n∑

i=0

f(u(i)) =
n∑

i=0

f(v(i)).

26

Distributivity: Assume that u is a term that does not contain the variable i, then

u ·
n∑

i=0

f(i) =
n∑

i=0

u · f(i).

Rearranging: Assume that I = {0, . . . , n} and let I1, . . . , Ik be a definable partition of I (specifi-
cally, the sets I1, . . . , Ik are all ΣB

0 -definable in V TC
0 and V TC

0 proves that the Ij’s form
a partition of I). Then

n∑

i=0

f(i) =
k∑

j=1

∑

i∈Ij

f(i),

where
∑

i∈Ij
f(i) denotes the term

∑|Ij |−1
i=0 f(δ(i)) where δ(i) is the function that enumerates

(in ascending order) the elements in Ij.

Inequalities: Let g(i) be a number function mapping to the rationals or naturals (possibly with
additional undisplayed parameters), such that f(i) ≤ g(i) for all 0 ≤ i ≤ n, then

n∑

i=0

f(i) ≤
n∑

i=0

g(i).

Proof:
Substitution: When we work in the theory V TC

0 we implicitly assume that we have equality
axioms stating that if t = t′, for any two terms t, t′, then F (t) = F (t′), for any function F (including
functions F that are from the extended language of V TC

0). Since we assume that f(i) is a ΣB
1 -

definable number function in V TC
0, the function g(n) :=

∑n
i=0 f(i) is also ΣB

1 -definable in V TC
0,

and so we also have the equality axiom for g(n), from we can derive that u(i) = v(i) for any i ≤ n
implies g(u(n)) = g(v(n)).

Distributivity: This is proved simply by induction on n. We omit the details.

Rearranging: Because I1, . . . , Ik are ΣB
0 -definable sets in V TC

0 we can define the family of
sequences S1, . . . , Sk, each of length n+ 1, such that

Sj [i] :=

{
f(i), i ∈ Ij ;
0, otherwise.

The theory V TC
0 proves, by induction on n, that

k∑

j=1

n∑

i=0

Sj [i] =
n∑

i=0

f(i).

For any j = 1, . . . , k, we can ΣB
1 -define in V TC

0 the function δj : {0, . . . , |Ij | − 1} → {0, . . . , n}
such that δj(`) = i iff i is the (` + 1)th element in Ij (when the elements in Ij are ordered in
ascending order). In other words, the δj ’s functions enumerate the elements in Ij .

We can now prove in V TC
0 that

n∑

i=0

Sj [i] =

|Ij |−1∑

i=0

f(δj(i)),

27

from which, by Substitution (proved above), we can prove:

k∑

i=1

n∑

i=0

Sj [i] =

k∑

i=1

|Ij |−1∑

i=0

f(δj(i)).

Inequalities: This can be proved in V TC
0 simply by induction on n. We omit the details.

All the equalities and inequalities which contain big summations that we will derive in the
theory, can be proved using Proposition 3.22. We shall not state this explicitly in the text, but
continue to derive such equalities and inequalities freely.

3.2.5 The relation between V TC
0 and TC

0-Frege

In this section we show how one can translate a ΣB
0 formula ϕ into a family of propositional formulas

JϕK. We then state the theorem showing that if the universal closure of a ΣB
0 formula ϕ is provable

in V TC
0 then the propositional translation JϕK has a polynomial-size proof in TC

0-Frege.

Definition 3.23 (Propositional translation J·K of ΣB
0 formulas) Let ϕ(~x, ~X) be a ΣB

0 for-
mula. The propositional translation of ϕ is a family

JϕK = {JϕK~m;~n | mi, ni ∈ N}

of propositional formulas in variables pXi
j for every Xi ∈ ~X. The intended meaning is that JϕK is

a valid family of formulas if and only if the formula

∀~x∀ ~X
(
(
∧

|Xi| = ni) → ϕ(~m, ~X)
)

is true in the standard model N2 of two sorted arithmetic, where n denotes the nth numeral, for
any n ∈ N.

For given ~m,~n ∈ N we define JϕK by induction on the size of the formula JϕK~m;~n. We denote
the value of a term t by val(t).

Case 1: Let ϕ(~x, ~X) be an atomic formula.

• If ϕ(~x, ~X) is > (or ⊥), then JϕK~m,~n := > (or ⊥).

• If ϕ(~x, ~X) is Xi = Xi, then JϕK~m,~n := >.

• If ϕ(~x, ~X) is Xi = Xj for i 6= j, then (using the fact that V0contains the extensionality axiom
SE) instead of translating ϕ, we translate the V0-equivalent formula

|Xi| = |Xj | ∧ ∀k ≤ |X| (Xi(k) ↔ Xj(k))).

• If ϕ(~x, ~X) is t1(~y, |~Y |) = t2(~z, |~Z|) for terms t1, t2, number variables ~y, ~z and string variables
~Y , ~Z, where ~y ∪ ~z = ~x and ~Y ∪ ~Z = ~X, and ~my, ~mz and ~nY , ~nZ denote the corresponding
assignments of numerals ~m,~n to the ~y, ~z and ~Y , ~Z variables, respectively. Then

JϕK~m,~n :=

{
> if val(t1(~m

Y , ~nY)) = val(t2(~m
Z , ~nZ)) and

⊥ otherwise.

28

• If ϕ(~x, ~X) is t1(~y, |~Y |) ≤ t2(~z, |~Z|) for terms t1, t2, number variables ~y, ~z and string variables
~Y , ~Z, then

JϕK~m,~n :=

{
> if val(t1(~m

Y , ~nY)) ≤ val(t2(~m
Z , ~nZ)) and

⊥ otherwise.

• If ϕ(~x, ~X) is Xi(t(~x, | ~X|)), then

JϕK~m,~n := ⊥ if ni = 0

and otherwise

JϕK~m,~n :=





pXi

val(t(~m,~n)) if val(t(~m,~n)) < ni − 1,

> if val(t(~m,~n)) = ni − 1,

⊥ if val(t(~m,~n)) > ni − 1.

Case 2: The formula ϕ is not atomic.

• If ϕ ≡ ψ1 ∧ ψ2 we let
JϕK~m,~n := Jψ1K~m,~n ∧ Jψ2K~m,~n.

• If ϕ ≡ ψ1 ∨ ψ2 we let
JϕK~m,~n := Jψ1K~m,~n ∨ Jψ2K~m,~n.

• If ϕ ≡ ¬ψ we let
JϕK~m,~n := ¬JψK~m,~n.

• If ϕ ≡ ∃y ≤ t(~x, | ~X|)ψ(y, ~x, ~X) then

JϕK~m,~n :=

val(t(~m,~n))∨

i=0

Jψ(i, ~x, ~X)K~m,~n.

• If ϕ ≡ ∀y ≤ t(~x, | ~X|)ψ(y, ~x, ~X) then

JϕK~m,~n :=

val(t(~m,~n))∧

i=0

Jψ(i, ~x, ~X)K~m,~n.

This concludes the translation for ΣB
0 formulas.

Proposition 3.24 (Lemma VII.2.2 [13]) For every ΣB
0 formula ϕ(~x, ~X) there exists a con-

stant d ∈ N and a polynomial p(~m,~n) such that for all ~m,~n ∈ N, the propositional translation
Jϕ(~x, ~X)K~m,~n has depth at most d and size at most p(~m,~n).

We can now state the relation between provability of an arithmetical statement ϕ in V TC
0 to

the provability of the family JϕK in TC
0-Frege as follows.

Theorem 3.25 (Section X.4.3. [13]) Let ϕ(~x, ~X) be a ΣB
0 formula. Then, if V TC

0 proves
ϕ(~x, ~X) then there is a polynomial size family of TC

0-Frege proofs of JϕK.

29

4 Feige-Kim-Ofek witnesses and the main formula

In this section we define the main formula we are going to prove in the theory. We are concerned
with proofs of 3CNF formulas. Let us fix the following notation. With n we will denote the
number of propositional variables x1, . . . , xn and with m we will denote the number of clauses
appearing in the 3CNF denoted C =

∧m−1
α=0 Cα. Each clause Cα is of the form x`1

i ∨ x`2
j ∨ x`3

k , for

`1, `2, `3 ∈ {0, 1}, where x1
i abbreviates xi and x0

i abbreviates ¬xi. A clause Cα is represented by
the sequence 〈i, j, k, 〈`1, `2, `3〉, α〉. The defining ΣB

0 formula of the relation is:

Clause(x, n,m) ↔ ∃i, j, k ≤ n∃α < m∃` ≤ 8

(i > 0 ∧ j > 0 ∧ k > 0 ∧ 〈x〉51 = i ∧ 〈x〉52 = j ∧ 〈x〉53 = k ∧ 〈x〉54 = ` ∧ 〈x〉55 = α).

A 3CNF C ≡ ∧m−1
α=0 Cα is represented by the sequence (C0, . . . , Cm−1). Since m is non-constant,

we use a string variable to code C. The defining ΣB
0 formula of this relation is

3CNF(C, n,m) ↔ ∀i < m
(
Clause(C[i], n,m) ∧ 〈C[i]〉55 = i

)
.

For a number variable x, we ΣB
0 -define Even(x) by the formula ∃y ≤ x(2 · y = x) (meaning

that x is an even number). Accordingly, we define Odd(x) by ¬even(x).
For some clause C and a string variable A (interpreted as a Boolean assignment), we ΣB

0 -define
the following predicate, stating that C is not satisfied under the assignment A:

NotSAT(C,A) ≡∃i, j, k ≤ n
(
〈C〉51 = i ∧ (A(i) ↔ 〈〈C〉54〉31 = 0)

)

∧
(
〈C〉52 = j ∧ (A(j) ↔ 〈〈C〉54〉32 = 0)

)

∧
(
〈C〉53 = k ∧ (A(k) ↔ 〈〈C〉54〉33 = 0)

)
.

We need the following notations and definitions to facilitate the formalization of certain sets
and objects:

Notation:

1. When considering a set of clauses, then a clause in C will be referred to only by its index
0 ≤ i < m. Thus, a set of clauses from C is a set of natural numbers less than m.

2. A set of literal positions from C will be coded as a set of numbers 〈a, b〉, where 0 ≤ a < m is
the index of a clause in C and b = 1, 2, 3 is the index of a literal in the clause.

3. For 0 ≤ i < m and ε = 0, 1 and a sequence S of 3-clauses we define LitPos(S, i, ε) to be the
string function that outputs the set of (positions of) literals xε

i in S. In other words, we have:

LitPos(S, i, ε) :=
{
〈j, `〉 : j < length(S) ∧ ` ≤ 3 ∧ 〈S[j]〉5` = i ∧ 〈〈S[j]〉54〉3` = ε

}
.

4. Let satLit(A,C) be the string function that outputs the set of all literal positions in C that
are satisfied by A.

5. The function Lit(C, i) returns the ith literal xε
j of the clause C, for i = 1, 2, 3, in the form of

a pair 〈j, ε〉.

30

6. If the literals of a clause are not all true or not all false under A, then we say that the clause
is satisfied as NAE (standing for “not all equal”) by A. We can easily ΣB

0 -define the predicate
SatL(z,A), stating that the literal z is satisfied by the assignment A in V TC

0. Let:

NAE(C,A) ↔ Clause(C) ∧
∨

i=1,2,3

SatL (Lit(C, i), A) ∧
∨

i=1,2,3

¬SatL (Lit(C, i), A)

be the ΣB
0 relation that states that the assignment A satisfies the 3-clause C as NAE. Let

satNAE(A,C) be the string function that outputs the set of clauses in C that are satisfied as
NAE by A.

The functions LitPos(S, i, ε), satLit(A,C) and satNAE(A,C) above are all AC0-reducible to the
language L2

A and so we can assume that we have these functions (along with their defining axioms)
in V TC

0 (see Section 3.1.2). All the functions in this section will be AC0-reducible to L2
A ∪

{numones}, and all the relations in this section will have ΣB
0 definitions in the language L2

A extended
to include both our new function symbols and numones.

Definition 4.1 (Even k-tuple) For any given k, a sequence S of k clauses is an even k-tuple iff
every variable appears an even number of times in the sequence. Formally, the predicate is denoted
TPL(S, k):

TPL(S, k) ↔ length(S) = k∧
∀i ≤ n, Even (numones(LitPos(S, i, 0)) + numones(LitPos(S, i, 1))) .

(23)

Observe that if S is an even k-tuple then k is even (since the total number of variable occurrences
N is even, by assumption that each variable occurs an even number of times; and k = N/3, since
each clause has three variables).

Definition 4.2 (Inconsistent k-tuple) An even k-tuple is said to be inconsistent if the total
number of negations in its clauses is odd. Formally, the predicate is denoted by ITPL(S, k):

ITPL(S, k) ↔ TPL(S, k) ∧ Odd

(
n∑

i=1

numones(LitPos(S, i, 1))

)
.

Definition 4.3 (The imbalance Imb(S, y)) For a 3CNF S we define the function i-imbalance
iImb(S, i) to be the absolute value of the difference of negated occurrences of xi and non-negated
occurrences of xi in the 3CNF S (where x1, . . . , xn are considered to be all the variables in S). It
is defined simply by the term:

iImb(S, i) := abs(numones(LitPos(i, 0, S)) − numones(LitPos(i, 1, S))).

For a 3CNF S, the predicate imbalance of S, denoted Imb(S, y), is true iff y equals the sum over
the i-imbalances of all the variables, that is:

Imb(S, y) ↔ y =
n∑

i=1

iImb(S, i).

31

Definition 4.4 ((t, k, d)-collection) A (t, k, d)-collection D of a 3CNF C with m clauses is an
array (coded as in Definition 3.10) of t many inconsistent k-tuples, which contain only clauses from
C, and each clause appears in at most d many such inconsistent k-tuples. The predicate is denoted
Coll(t, k, d,C,D) and is defined by the following formula:

length(D) = t∧
∀i < t ITPL(D [i], k)∧
∀i < t∀` < k∃j < |C| (D [i][`] = C[j])∧

∀j < |C|
t−1∑

i=0

k−1∑

`=0

χ=(〈D [i][`]〉55, j) ≤ d.

Definition 4.5 (Mat(M,C)) We define the predicate Mat(M,C) that holds iff M is an n × n
rational matrix such that Mij equals 1

2 times the number of clauses in C where xi and xj appear with
different polarity minus 1

2 times the number of clauses where they appear with the same polarity.
More formally, we have

Mij :=
m−1∑

k=0

E
(k)
ij , for any i, j ∈ [n], (24)

where E
(k)
ij corresponds to the kth clause in C as follows:

E
(k)
ij :=





1
2 , xεi

i , x
εj

j ∈ C[k] and εi 6= εj, for some εi, εj ∈ {0, 1} and i 6= j;

−1
2 , xεi

i , x
εj

j ∈ C[k] and εi = εj, for some εi, εj ∈ {0, 1} and i 6= j;

0, otherwise.

(25)

Note that E
(k)
ij is definable by a ΣB

0 formula (in L2
A), and so Mat(M,C) is a ΣB

0 -definable

relation in V TC
0.

Finally, we need a predicate EigValBound(M,~λ, V) that ensures that ~λ is a collection of n
rational approximations of the eigenvalues of the matrix M and that V is the rational matrix
whose rows are the rational approximations of the eigenvectors of M (where the ith row in V is the
approximation of the approximate eigenvector λi). For the sake of readability we defer the formal
definition of the predicate EigValBound(M,~λ, V) and all the lemmas that relate to it, including
the proofs in the theory making use of this predicate, to Section 6.

Notation: 1. The notation o(1) appearing inside a formula in the proof within the theory, and
specifically in Definition 4.6 below, stands for a term of the form b/nc, for b a number symbol
greater than 0, and c some positive constant (and where a rational number is encoded in the way
described in Section 3.1.2).

2. Given two terms t and f(n) in the language L2
A, where n is a number variable, we say that

V TC
0 proves t = O(f(n)), to mean that there exists some constant c (independent of n) such that

V TC
0 proves t ≤ c · f(n), where c is a term without variables in the language L2

A.

We can now state the main formula that we are going to prove in V TC
0. It says that if the

Feige-Kim-Ofek witness fulfills the inequality t > d·(I+λn)
2 + o(1) then there exists a clause in C

that is not satisfied by any assignment A (one can think of all the free variables in the formula as
universally quantified):

32

Definition 4.6 (The main formula) The main formula is the following formula (~λ
denotes n distinct number parameters λ1, . . . , λn):

(
3CNF(C, n,m) ∧ Coll(t, k, d,C,D) ∧ Imb(C, I) ∧ Mat(M,C)∧

EigValBound(M,~λ, V) ∧ λ = max{λ1, . . . , λn} ∧ t >
d · (I + λn)

2
+ o(1)

)

−→ ∃i < mNotSAT(C[i], A).

5 Proof of the main formula

In this section we prove our key theorem:

Theorem 5.1 (Key) The theory V TC
0 proves the main formula (Definition 4.6).

Proof: We reason inside V TC
0. Assume by way of contradiction that the premise of the implica-

tion in the main formula holds and that there is an assignment A ∈ {0, 1}n (construed as a string
variable of length n) that satisfies every clause in C. Recall that satLit(A,C) is the set of all literal
positions that are satisfied by A.

Lemma 5.2 (Assuming the premise of the main formula) the theory V TC
0 proves:

numones(satLit(A,C)) ≤ 3m+ I

2
.

Proof: First observe that for any assignment A and any 1 ≤ i ≤ n the set of satisfied literals of xi

is defined by LitPos(C, i, A(i)). Therefore, the sets LitPos(C, 1, A(1)), . . . , LitPos(C, n, A(n)) form
a partition of satLit(A,C) (provably in V TC

0), and thus by Proposition 3.17, V TC
0 proves that

numones(satLit(A,C)) =
n∑

i=1

numones(LitPos(C, i, A(i))). (26)

By (26) we get

numones(satLit(A,C)) ≤
n∑

i=1

max{numones(LitPos(C, i, 0)),numones(LitPos(C, i, 1))}. (27)

For any 1 ≤ i ≤ n, define the term

LitPos(C, i) := LitPos(C, i, 0) ∪ LitPos(C, i, 1).

Then by

iImb(C, i) + numones(LitPos(C, i))

2
=

iImb(C, i) + numones(LitPos(C, i, 0)) + numones(LitPos(C, i, 1))

2
,

33

and since, by Definition 4.3, iImb(C, i) = abs (numones(LitPos(C, i, 0)) − numones(LitPos(C, i, 1))),
the theory V TC

0 proves that for any 1 ≤ i ≤ n:

max{numones(LitPos(C, i, 0)),numones(LitPos)(C, i, 1)} =
iImb(C, i) + numones(LitPos(C, i))

2
.

(28)

Claim 5.3 (Assuming the premise of the main formula) the theory V TC
0 proves:

n∑

i=1

iImb(C, i) + numones(LitPos(C, i))

2
=
I + 3m

2
.

Proof of claim: First recall the definition of imbalance (Definition 4.3) I =
∑n

i=1 iImb(C, i). Thus
it remains to prove that

∑n
i=1 numones(LitPos(C, i)) = 3m. For this, note that LitPos(C, i), for

i = 1, . . . , n, partition the set of all literal positions in C. In other words, we can prove that:
(i) if H is the set of all literal positions in C (this set is clearly ΣB

0 -definable in V TC
0) then

H = ∪n
i=1LitPos(C, i); and (ii) LitPos(C, i) ∩ LitPos(C, j) = ∅, for all 1 ≤ i 6= j ≤ n. Therefore, by

Proposition 3.17 we can prove that:

numones(H) =
n∑

i=1

numones(LitPos(C, i)). (29)

Now, the set H of all literal position in C can be partitioned (provably in V TC
0) by the sets

T1, . . . , Tm, where each Tj , for 0 ≤ j < m, is the set of the three literals in the jth clause in C.
Thus, again by Proposition 3.17, we can prove that numones(H) = 3m. By (29) we therefore have

n∑

i=1

numones(LitPos(C, i)) = 3m.

Claim

We conclude that:

numones(satLit(A,C))

≤
n∑

i=1

max{numones(LitPos(C, i, 0)),numones(LitPos(C, i, 1)) (by (27))

=

n∑

i=1

iImb(C, i) + LitPos(C, i)

2
(by (28))

=
I + 3m

2
. (by Claim 5.3).

We now bound the number of clauses in C that contain exactly two literals satisfied by A. We
say that a 3-clause is satisfied by a given assignment as NAE (which stands for not all equal) if the
literals in the clause do not all have the same truth values. That is, if either exactly one or exactly
two literals in the clause are satisfied by the assignment.

34

For a definable set R in V TC
0 we denote by PR the powerset of R (we do not use PR as an

object in the formal proof in the theory itself—this is just a convenient notation). Also, recall that
satNAE(A,C) is the function that returns the set of all clauses (formally, indices < m) that are
satisfied as NAE by A.

Lemma 5.4 (Assuming the premise of the main formula) the theory V TC
0 proves: let h be the

number of clauses in C that contain exactly two literals satisfied by A. Then

h ≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)) .

Proof: For i = 0, 1, 2, 3, let Bi be the set of clauses in C that contain exactly i literals satisfied
by A. For i = 0, 1, 2, 3, let Fi be the string function that maps a clause (index) C to the set of
literal positions that are satisfied by A in case there are exactly i such literals and to the empty
set otherwise:

Fi(j) =

{
{l1, . . . , li}, if j ∈ Bi ;
∅, otherwise

(where a literals lk is coded, as before, by the pair 〈a, b〉 for a an index of a clause in C and b
the position of the literal in the clause). Every such function Fi is ΣB

0 -defined in V TC
0. We also

ΣB
0 -define the image of Fi as follows:

Img(Fi) := {x : ∃y < m (Fi(y))(x)}.

Claim 5.5 (Assuming the premise of the main formula) the theory V TC
0 proves:

numones(satLit(A,C)) =

3∑

i=1

numones(Img(Fi)).

Proof of claim: In light of Proposition 3.17, it suffices to prove that satLit(A,C) is partitioned
by Img(F1), Img(F2), Img(F3) (note that Img(F0) = ∅ by definition), in the sense that:

(i) satLit(A,C) = Img(F1) ∪ Img(F2) ∪ Img(F3), and

(ii) Img(Fi) ∩ Img(Fj) = ∅, for all 1 ≤ i 6= j ≤ 3.

We prove (i): consider a literal x ∈ satLit(A,C), and let x = 〈a, b〉. We know that the clause Ca

contains the literal x. Now, either zero, or one, or two of the remaining literals in Ca are satisfied
by A. So x must be in either F1(a) or in F2(a) or in F3(a), respectively. Item (ii) is easy to prove
by the definition of the Fi’s. We omit the details. Claim

Claim 5.6 For any i = 1, 2, 3, numones(Img(Fi)) = i · numones(Bi).

Proof of claim: Fix some i = 1, 2, 3. We prove the claim by induction on the number of clauses
j < m (we can consider the sets Bi and the functions Fi having an additional parameter that
determines until which clause to build the sets. That is, Bi(z) is the set of clauses from 0 to z that
have i literals satisfied by A; and similarly we add a parameter for the Fi’s). In the base case j = 0
there is only one clause C0. Depending on A we know how many literals in C0 are satisfied by A.

35

And so 0 ∈ Bi iff i literals are satisfied by A in C0 iff numones(Fi(0)) = i = i · 1 = i ·numones(Bi).
The induction step is similar and we omit the details. Claim

By Claim 5.5 and Claim 5.6 we get:

numones(satLit(A,C)) =
∑

i=1,2,3

numones(Img(Fi))

=
∑

i=1,2,3

i · numones(Bi) . (30)

It is easy to show (in a similar manner to Claim 5.5) that B1 ∪ B2 ∪ B3 = {0, . . . ,m − 1} and
Bi ∩ Bj = ∅, for any 1 ≤ i 6= j ≤ 3. From this, using Proposition 3.17, we get that m =
numones(B1) + numones(B2) + numones(B3), and so:

numones(B1) = m− numones(B2) − numones(B3) . (31)

Thus, by (30):

numones(satLit(A,C)) = m− numones(B2) − numones(B3) + 2 · numones(B2) + 3 · numones(B3)

= m+ 2 · numones(B3) + numones(B2) ,

and so

numones(B2) =numones(satLit(A,C)) −m− 2 · numones(B3) . (32)

The set of clauses in C that are NAE satisfied by A (i.e., satNAE(A,C)) is equal to the set of
clauses having either one or two literals satisfied by A; the latter two sets are just B1 and B2, and
since they are (provably in V TC

0) disjoint we have (using also (31)):

numones(B3) = m− (numones(B1) + numones(B2)) = m− numones(satNAE(A,C)) .

Plugging this into (32), and using Lemma 5.2, we get:

numones(B2) = numones(satLit(A,C)) − 3m+ 2 · numones(satNAE(A,C))

≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)).

This concludes the proof of Lemma 5.4

The following lemma provides an upper bound on the number of clauses in C that can be
satisfied as NAE by the assignment A.

Lemma 5.7 (Assuming the premise of the main formula) the theory V TC
0 proves:

numones(satNAE(A,C)) ≤ (nλ+ 3m)/4 + o(1).

The proof of this lemma involves a spectral argument. Carrying out this argument in the
theory is fairly difficult because one has to work with rational approximations (as the eigenvalues
and eigenvectors might be irrationals, and so undefined in the theory) and further the proof must
be sufficiently constructive, in the sense that it would fit in the theory V TC

0. We thus defer to
a separate section (Section 6) all treatment of the spectral argument. Given the desired spectral
inequality, we can prove Lemma 5.7—this is done in Section 5.2.

We can now finish the proof of the key theorem:

36

Concluding the proof of the theorem (Theorem 5.1). In V TC
0 (and assuming the premise

of the main formula), let h be the number of clauses in C that contain exactly two literals satisfied
by A. We have:

h ≤ 3m+ I

2
− 3m+ 2 · numones(satNAE(A,C)) (by Lemma 5.4)

≤ 3m+ I

2
− 3m+

3m+ λn

2
+ o(1) (by Lemma 5.7)

=
I + λn

2
+ o(1) . (33)

Since we assumed that A satisfies C, then every clause in C has at least one literal satisfied by
A. Thus, the clauses in C that are not satisfied as 3XOR by A are precisely the clauses that have
exactly two literals satisfied by A. By (33), the number of clauses that have exactly two literals
satisfied by A is at most I+λn

2 + o(1). We now use Lemma 5.9 (proved in the next subsection) to
prove the following lemma:

Lemma 5.8 (Assuming the premise of the main formula) the theory V TC
0 proves that the number

of clauses in C that are not satisfied as 3XOR by A is at least dt/de.

Proof: Consider the collection Coll(t, k, d,C,D) in the premise of the main formula. Then, D

is a sequence of t inconsistent k-tuples from C, and every pair of k-tuples in D intersect6 on at
most d clauses from C. By Lemma 5.9, each of the t inconsistent k-tuples contains a clause which
is unsatisfied as 3XOR by A. Since each such clause may appear in at most d other inconsistent k
tuples, using Proposition 3.20 the theory V TC

0 proves that the total number of distinct clauses
not satisfied as 3XOR by A is at least dt/de.

Using this Lemma, we can finish the proof of the key Theorem 5.1, as follows: by Lemma 5.8
and the fact that the number of clauses in C that are not satisfied as 3XOR by A is at most
I+λn

2 + o(1), we get

t = d · t
d
≤ d ·

⌈
t

d

⌉
≤ d · I + λn

2
+ o(1) , (34)

which contradicts our assumption (in the main formula) that t > d(I+λn)
2 + o(1). Formally, we

need to take care here for the “o(1)” notation. Recall that o(1) stands for a term b/nc for some
constants number term b and a constant c. Therefore, it is enough to require that if our assumption
(in the premise of the main formula) is t > d(I+λn)

2 + b/nc, then in (34) above we have t ≤ d ·
⌈

t
d

⌉
≤

d · I+λn
2 + b′/nc′ , so that b/nc ≤ b′/nc′ . (This requirement will be easily satisfied when applying

our theorem (see Corollary 7.3).)

5.1 Formulas satisfied as 3XOR

Here we prove the missing lemma that was used in the proof of Lemma 5.8.

Notation: For a sequence S of k many 3-clauses, and for 0 ≤ α < k, we denote the three variables
in the clause S[α] by xiα , xjα , xhα , and abbreviate 〈〈S[α]〉54〉3t , which is the polarity of the tth variable

6Where a clause is identified with its index 0, . . . ,m− 1 in C, so that two identical clauses with a different index
are considered as two different clauses.

37

in S[α], by `αt , for t = 1, 2, 3. Thus, x
`α
1

i , x
`α
2

j , x
`α
3

h , are the three literals in S[α] and the values of

¬A(i) ⊕ `α1 ,¬A(j) ⊕ `α2 ,¬A(h) ⊕ `α3 are the values that A assigns to x
`α
1

i , x
`α
2

j , x
`α
3

h , respectively,
where ⊕ is the XOR operator. We also abuse notation and write ¬A(i) inside a term to mean the
characteristic function of the predicate ¬A(i), that is, the function that returns 1 if ¬A(i) is true,
and 0 otherwise.

For a clause C and an assignment A the predicate 3XOR(C,A) says that A satisfies exactly
one or three of the literals in C. If we denote by xi, xj , xh the three variables in C and by `1, `2, `3
their respective polarities, we have:

3XOR(C,A) iff ¬A(i) ⊕ `1 + ¬A(j) ⊕ `2 + ¬A(h) ⊕ `3 = 1 mod 2 ,

and formally the predicate 3XOR is ΣB
0 -definable by the following formula:

3XOR(C,A) := Odd(¬A(i) + `1 + ¬A(j) + `2 + ¬A(h) + `3) .

Lemma 5.9 The theory V TC
0 proves that if S is an inconsistent (even) k-tuple, then for every

assignment A to its variables there exists α ≤ k such that A satisfies exactly zero or exactly two
literals in the clause S[α]. More formally, V TC

0 proves:

∀A ≤ n ∀k ≤ n∀S ≤ p(n)∃α < k (|A| = n ∧ ITPL(S, k) → ¬3XOR (S[α], A)) ,

for some (polynomial) term p(·).

Proof: We need the following claim:

Claim 5.10 Let f(y) be a number function definable in V TC
0. Then V TC

0 proves the following
statements:

1. (∀α < k,Odd(f(α))) ∧ Even(k) → Even

(∑k−1
α=0 f(α)

)
;

2. (∀α < k,Even(f(α))) → Even

(∑k−1
α=0 f(α)

)
;

3. (∀α < k,Odd(f(α))) ∧ Odd(k) → Odd

(∑k−1
α=0 f(α)

)
.

Proof of claim: Consider Item 1 (the other items are similar). The proof is by induction on k,
showing that

((∀α < k∃y(2y + 1 = f(α))) ∧ ∃y(2y = k)) → ∃y
k−1∑

α=0

f(α) = 2y ,

and using the fact that V0 proves that Odd(x) ↔ ∃y ≤ x(2y + 1 = x) (e.g., by induction on x).
We omit the details. Claim

Now, assume by way of contradiction that A satisfies all the clauses in S as 3XORs. Thus, for
any α < k, if we define f(α) := ¬A(iα)+ `α1 +¬A(jα)+ `α2 +¬A(hα)+ `α3 , then Odd(f(α)). Hence,
because Even(k), by Claim 5.10 we can prove that:

k−1∑

α=0

(¬A(iα) ⊕ `α1 + ¬A(jα) ⊕ `α2 + ¬A(hα) ⊕ `α3) = 0 mod 2. (35)

38

Recall that every variable appears an even number of times in S. Thus, if a variable has an odd
number of negative appearances then it also has an odd number of positive appearances. Similarly,
if a variable has an even number of negative appearances then it also has an even number of positive
appearances. Let I0 ∈ {0, . . . , n− 1} be the indices of variables having an even number of positive
(and thus negative) appearances in S and let I1 = {0, . . . , n − 1} \ I0 be the indices of variables
having an odd number of positive (and thus negative) appearances in S. Thus, the left hand side
of (35), can be written as follows (for ε = 0, 1, we denote by xε

i (A) the truth value of the literal xε
i

under A):

∑

i∈I0


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

even times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
even times


+

∑

i∈I1


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

odd times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
odd times


 .

(36)

Claim 5.11 For any i ∈ I0 (and any string variable A of size n) the theory V TC
0 proves that

x1
i (A) + . . .+ x1

i (A)︸ ︷︷ ︸
even times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
even times

is an even number.

Proof of claim: Reason in V TC
0 as follows: assume that A(i) = 0. Then x1

i (A) = 0 and
x0

i (A) = 1 and so by Claim 5.10 the sum of evenly many x1
i (A)’s is even and the sum of evenly

many x0
i (A)’s is also even. The sum of two even numbers is even, and so we are done. (The case

where A(i) = 1 is similar.) Claim

By Claims 5.10 and 5.11, the theory V TC
0 proves

Even



∑

i∈I0


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

even times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
even times




 . (37)

Similarly to the above claims we have:

Claim 5.12 For any i ∈ I1 (and any string variable A of size n) the theory V TC
0 proves that

x1
i (A) + . . .+ x1

i (A)︸ ︷︷ ︸
odd times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
odd times

is an odd number.

Since by assumption S is an inconsistent k-tuple, the number of negative literals is odd (Defini-
tion 4.2), and so (provably in V TC

0) the number of variables that has an odd number of negative
appearances must be odd, in other words, |I1| is odd. Therefore, by Claims 5.12 and 5.10, V TC

0

proves:

39

Odd



∑

i∈I1


x1

i (A) + . . .+ x1
i (A)︸ ︷︷ ︸

odd times

+x0
i (A) + . . .+ x0

i (A)︸ ︷︷ ︸
odd times




 . (38)

Since V TC
0 proves both (37) and (38), V TC

0 proves that (36) is odd, which contradicts (35).
This implies that not all the clauses in S are satisfied as 3XOR by the assignment A.

5.2 Bounding the number of NAE satisfying assignments

Here we prove Lemma 5.7 used to prove the key theorem (Theorem 5.1). Recall that satNAE(A,C)
is the string function that outputs the set of clauses in C that are satisfied as NAE by A (see
Section 4). The proof of the following lemma is based on the spectral inequality proved in Section
6.

Lemma 5.7 (Assuming the premise of the main formula) V TC
0 proves

numones(satNAE(A,C)) ≤ (nλ+ 3m)/4 + o(1).

Proof: Let a be a vector from {−1, 1}n such that a(i) = 2A(i) − 1. Thus, a(i) = 1 if A(i) = 1
and a(i) = −1 if A(i) = 0. We can prove in V TC

0 (by definition of inner products and a product
of a matrix and a vector—innerprod and Matvecprod function symbols, respectively, as defined in
Section 3.2.2) the following:

atMa =
n∑

i=1

n∑

j=1

Mija(i)a(j). (39)

By assumption Mat(M,C) holds (see Definition 4.5) and so by definition 4.5 and by (39) we can
prove in V TC

0 that:

atMa =
n∑

i=1

n∑

j=1

m−1∑

k=0

E
(k)
ij a(i)a(j), (40)

where E
(k)
ij , for any i, j ∈ [n], is:

E
(k)
ij :=





+1
2 , xεi

i , x
εj

j ∈ C[k] and εi 6= εj , for some εi, εj ∈ {0, 1} and i 6= j;

−1
2 , xεi

i , x
εj

j ∈ C[k] and εi = εj , for some εi, εj ∈ {0, 1} and i 6= j;

0, otherwise.

(41)

By rearranging (40) we get

atMa =

m−1∑

k=0

n∑

i=1

n∑

j=1

E
(k)
ij a(i)a(j),

40

and since E
(k)
ij = 0 whenever either xi 6∈ C[k] or xj 6∈ C[k], we get

=
m−1∑

k=1

∑

i,j∈{r : xr∈C[k]}

E
(k)
ij a(i)a(j),

and further, since E
(k)
ij = 0 if i = j, and E

(k)
ij = E

(k)
ji , for any i, j, we have

=

m−1∑

k=0

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j). (42)

Claim 5.13 The theory V TC
0 (in fact already V0) proves that for any k = 0, . . . ,m− 1:

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) =

{
+1, NAE(C[k], A);
−3, ¬NAE(C[k], A).

Proof of claim: For any i < j ∈ {r : xr ∈ C[k]}, if A(i) 6= A(j) (which means that a(i) 6= a(j))
then a(i)a(j) = −1, and if A(i) = A(j) (which means that a(i) = a(j)) then a(i)a(j) = 1. Thus,
by (41), For any i < j ∈ {r : xr ∈ C[k]}:

E
(k)
ij =

{
+1

2 , if xεi
i 6= x

εj

j under a;

−1
2 , if xεi

i = x
εj

j under a.
(43)

Note that if NAE(C[k], A) is true then there are exactly two pairs of literals xεi
i , x

εj

j , i < j, for

which xεi
i and x

εj

j get different values under the assignment a (if A assigns 1 (i.e., >) to one literal
and 0 (i.e., ⊥) to the other two literals, then two pairs have different values and one pair has the
same value; and similarly if A assigns 0 to one literal and 1 to the other two literals). Therefore, if
NAE(C[k], A) is true then

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) = 2

(
1

2
+

1

2
− 1

2

)
= 1.

On the other hand, if NAE(C[k], A) is false then all pairs of literals xεi
i , x

εj

j , i < j, get the same
value under the assignment A, and so:

∑

i<j∈{r : xr∈C[k]}

2E
(k)
ij a(i)a(j) = 2

(
−1

2
− 1

2
− 1

2

)
= −3.

Claim

Let Z = {i < m : NAE (C[i], A)} (note that Z = satNAE(A,C)), and for any k = 0, . . . ,m− 1,

let γk =
∑

i<j∈{r : xr∈C[k]} 2E
(k)
ij a(i)a(j). Then, by Claim 5.13 and Proposition 3.19:

m−1∑

i=0

γi = 1 · numones(Z) − 3 · (m− numones(Z))

= 4 · numones(Z) − 3m

= 4 · numones(satNAE(A,C)) − 3m.

(44)

41

By (42) we have
m−1∑

i=0

γi = atMa, (45)

and by the spectral inequality proved in Lemma 6.7 in the next section, we have:

atMa ≤ λn+ o(1).

By (44) we thus get
4 · numones(satNAE(A,C)) − 3m ≤ λn+ o(1),

which leads to

numones(satNAE(A,C)) ≤ λn+ 3m

4
+ o(1).

6 The spectral bound

In this section we show how to prove inside V TC
0 the desired spectral inequality, used in the proof

of the key theorem (Theorem 5.1; specifically, it was used in Lemma 5.7 in Section 5.2).
Since the original matrix associated to a 3CNF is a real symmetric matrix, and its eigenvectors

and eigenvalues also might be real, and thus cannot be represented in our theory V TC
0, we

shall need to work with rational approximations of real numbers. We will work with polynomially
small approximations. Specifically, a real number r in the real interval [−1, 1] is represented with
precision 1/nc, where n is the number of variables in the 3CNF and c is a constant natural number
independent of n (that is, if r̃ is the approximation of r, we shall have |r − r̃| ≤ 1/nc). Recall that
we will assume that all rational numbers have in fact the same denominator n2c for some specific
global constant c (see the Preliminaries, Section 3.1.2 on this).

Idea of proving the eigenvalue bound in V TC
0. We explain here informally how we proceed

to prove the eigenvalue bound atMa ≤ λn, for any a ∈ {−1, 1}n, in the theory V TC
0, assuming

that Mat(M,C) and EigValBound(M,~λ, V) hold (Lemma 6.7). The idea of the proof of this
inequality is as follows: in the predicate EigValBound(M,~λ, V) we certify that the rows of a
given matrix V are rational approximations of the normalized eigenvector basis of M . Since M
is symmetric and real, V will approximate an orthonormal matrix, and V t will approximate V −1

(this is where we circumvent the need to prove the correctness of inverting a matrix in the theory
V TC

0). Thus, V −1 approximates the matrix of the basis transformation from the standard basis
to the eigenvector basis. Note that a (as a {−1, 1} vector) is already almost described in the
standard basis. Hence, it will be possible to prove in the theory that V ta is the representation
of a in the (approximate) eigenvector basis, i.e., we shall have an equality a =

∑n
i=1 γivi + o(1),

for vi’s the approximate eigenvectors of M and rationals γi’s. After plugging-in this equality in
atMa, to prove (54) we only need to validate computations—using also the fact that we know
the inequalities Mvi ≤ λvi + o(1), for any i ∈ [n] (since this will be witnessed in the predicate
EigValBound(M,~λ, V) as well).

42

6.1 Notations

Here we collect the notation we use in this section. We denote by e1, . . . , en the standard basis
vectors spanning Qn. That is, for any 1 ≤ i ≤ n the vector ei ∈ Qn is 1 in the ith coordinate
and all other coordinates are 0. For a vector v we denote by v(j) the jth entry in v. Given a
real symmetric matrix M we denote by u1, . . . ,un ∈ Rn the normalized eigenvectors of M . It is
known that the collection of normalized eigenvectors of a symmetric n×n real matrix M forms an
orthonormal basis for Rn, called the eigenvector basis of M (cf. [24]). The (rational) approximation
of the eigenvectors will be denoted v1, . . . ,vn ∈ Qn and we define vij := vi(j). Recall that for a
real or rational vector v = (v1, . . . , vn) we denote by ‖v‖2 the squared Euclidean norm of v, that
is, ‖v‖2 = v2

1 + . . .+ v2
n. We also define ‖v‖∞ := max{vi : 1 ≤ i ≤ n}.

6.2 Rational approximations of real numbers, vectors and matrices

Definition 6.1 (Rational ε-approximation of a real number) For r ∈ R, we say that q ∈ Q

is a rational ε-approximation of r (or just ε-approximation), if |r − q| ≤ ε.

Claim 6.2 For any real number r ∈ [−1, 1] and any natural number m there exists a 1/m-
approximation of r whose numerator and denominator have values linearly bounded in m.

Proof of claim: By assumption, there exists an integer 0 ≤ k < 2m, such that r ∈[
−1 + k

m
,−1 + k+1

m

]
. Then −1 + k

m
is a rational 1/m-approximation of r. Claim

In a similar fashion we have:

Definition 6.3 (Rational ε-approximation of (sets of) real vectors) Let 0 < ε < 1. For
u ∈ Rn, we say that v ∈ Qn is an ε-approximation of u, if v(i) is an ε-approximation of u(i), for
all i = 1, . . . , n. Accordingly, for a set U = {u1, . . . ,uk} ⊆ Rn, we say that V = {v1, . . . ,vk} ⊆ Qn

is a (rational) ε-approximation of U if every vi ∈ Qn is an ε-approximation of the vector ui,
i = 1, . . . , n.

6.3 The predicate EigValBound

We define the predicate EigValBound(M,~λ, V) which is meant to express the properties needed
for the main proof. Basically, EigValBound(M,~λ, V) expresses the fact that V is a rational 1/nc-
approximation (Definition 6.3) of the eigenvector basis of M , whose 1/nc-approximate eigenvalues
(in decreasing order with respect to value) are ~λ, for a sufficiently large constant c ∈ N.

Note: For a number or a number term in the language, we sometimes use |t| to denote the absolute
value of t. This should not be confused with the length |T | of a string term T .

Definition 6.4 (EigValBound predicate) The predicate EigValBound(M,~λ, V) is a ΣB
0 -

definable relation in V TC
0 that holds (in the standard two-sorted model) iff all the following

properties hold (where c ∈ N is a sufficiently large global constant):

1. V is a sequence of n vectors v1, . . . ,vn ∈ Qn with polynomially small entries. That is, for
any 1 ≤ i, j ≤ n, the rational number

vij := vi(j) ∈ Q

43

is polynomial in n (meaning that both its denominator and numerator are polynomially
bounded in n).

2. For any 1 ≤ i, j ≤ n it holds that the absolute value |vij | ≤ 2.

3. For any 1 ≤ i ≤ n, define:

ẽi :=
n∑

j=1

vij · vj .

Then, there exists ri ∈ Qn for which

ẽi = ei + ri and ‖ri‖∞ = O(1/nc−1).

To formalize the existence of such an ri we do not use an existential second-sort quantifier
here; instead, we simply assert that for any ` = 1, . . . , n:

|ẽi(`) − ei(`)| = O(1/nc−1).

4. The vectors in V are “almost” orthonormal, in the following sense:

〈vi,vj〉 = O(1/nc−1) , for all 1 ≤ i 6= j ≤ n,

〈vi,vi〉 = 1 +O(1/nc−1) , for all 1 ≤ i ≤ n .

5. The parameter ~λ is a sequence λ1 ≥ λ2 ≥ . . . ≥ λn of rational numbers such that for every
1 ≤ i ≤ n, there exists a vector ti ∈ Qn for which ‖ti‖∞ = O(1/nc−3), and

Mvi = λivi + ti .

(Similar to Item 3 above, we do not use an existential second-sort quantifier for ti here.)

It should be easy to check that EigValBound(M,~λ, V) is a ΣB
0 -definable relation in V TC

0.

Now we show that there exist objects M,~λ, V that satisfy the predicate
EigValBound(M,~λ, V).

Proposition 6.5 (Suitable approximations of eigenvector bases exist) Let M be an n× n
real symmetric matrix whose entries are quadratic in n. Let U = {u1, . . . ,un} ⊆ Rn be the
orthonormal basis consisting of the eigenvectors of M , let c ∈ N be positive and constant (in-
dependent of n). If V = {v1, . . . ,vn} ⊆ Qn is an 1/nc-approximation of U (Definition 6.3),
~λ = {λ1, . . . , λn} is the collection of rational 1/nc-approximations of the real eigenvalues of M such
that λ1 ≥ λ2 ≥ . . . ≥ λn, then EigValBound(M,~λ, V) holds (as before, the predicate holds in the
standard two-sorted model, for the appropriate encodings of its parameters).7

Proof: Let uij be an abbreviation of ui(j), that is, the jth element in the vector ui, and similarly
for vij . We proceed by checking each of the conditions in Definition 6.4.

7This is an existence statement. We do not claim that the statement of the proposition is provable in the theory
(although some of the computations can be carried out inside the theory).

44

Condition (1): Holds by the definition of an approximation of a real vector and by Claim 6.2,
stating that the ε-approximation of a real number in [−1, 1] is a rational number whose both
denominator and numerator are of value O(nc).

Condition (2): Since vij is a rational 1/nc-approximation of uij , and |uij | ≤ 1 (because ‖ui‖ = 1)
for any 1 ≤ i, j ≤ n, we have |vij | ≤ 2 .

Condition (3): By orthonormality of the real matrix U , we have that U t = U−1, that is:

n∑

i=1

uijui = ej , for any j = 1, . . . , n , (46)

By assumption, for any 1 ≤ i ≤ n there exists si = (si1, . . . , sin) ∈ Rn such that ‖si‖∞ ≤ 1/nc and
vi = ui + si. Therefore, for any 1 ≤ j ≤ n, we have:

ẽj :=
n∑

i=1

vijvi =
n∑

i=1

(uij + sij) · (ui + si)

=
n∑

i=1

uijui

︸ ︷︷ ︸
=ej by (46)

+
n∑

i=1

uijsi +
n∑

i=1

sij · (ui + si) . (47)

We define

rj :=
n∑

i=1

uijsi +
n∑

i=1

sij · (ui + si) ,

which gives us
ẽj = ej + rj .

Note that since
∑n

i=1 vijvi = ẽj is a rational vector then rj is also a rational vector.
It remains to show that ‖rj‖∞ = O(1/nc−1). Since 1 = ‖ui‖2 =

∑n
j=1 u

2
ij , we have

|uij | ≤ 1. By this, and by the fact that ‖si‖∞ ≤ 1/nc, we get ‖∑n
i=1uijsi‖∞ = O(1/nc−1) ,

and ‖∑n
i=1 sij · (ui + si)‖∞ = O(1/nc−1). This means that ‖rj‖∞ = O(1/nc−1).

Condition (4): This is similar to the proof of Condition (3). By assumption, for any 1 ≤ i ≤ n
there exists si = (si1, . . . , sin) ∈ Rn such that ‖si‖∞ ≤ 1/nc, and vi = ui + si. Thus, we have

〈vi,vj〉 = 〈ui + si,uj + sj〉
= 〈ui,uj〉 + 〈si,uj + sj〉 + 〈ui, sj〉 . (48)

The first term in (48) is 0 since U is an orthonormal basis, and the second and third terms in (48)
are both O(1/nc−1) (by calculations similar to that in the proof of Condition (3)).

The proof of 〈vi,vi〉 = 1 +O(1/nc−1) , for all 1 ≤ i ≤ n , is similar.

45

Condition (5): Similar to the proof of previous conditions, we define si = (si1, . . . , sin) ∈ Rn

such that ‖si‖∞ ≤ 1/nc, and vi = ui + si, for any 1 ≤ i ≤ n. We have

Mvi = M(ui + si)

= Mui +Msi. (49)

Since ui ∈ Rn is the eigenvector of M and λi is a 1/nc-approximation of the eigenvalue of ui, we
have that (49) equals

(λi + ε)ui +Msi (50)

for some |ε| ≤ 1/nc,

= λiui + εui +Msi

= λi(vi − si) + εui +Msi

= λivi − λisi + εui +Msi .

We put
ti := −λisi + εui +Msi.

It remains to show that ‖ti‖∞ = O(1/nc−3).

Claim 6.6 For every 1 ≤ i ≤ n, λi = O(n3).

Proof of claim: Since ‖ui‖∞ = 1 and, by assumption, every entry in M is O(n2), we have:

‖Mui‖∞ = O(n3). (51)

Observe that
Mui = (λi + ε)ui = λiui + εui. (52)

Because |ε| ≤ 1/nc and ‖ui‖∞ = 1, we have ‖εui‖∞ = O(1/nc). Therefore, by (51) and (52) we
have λi = O(n3). Claim

We have ‖si‖∞ ≤ 1/nc, and so by Claim 6.6 we get that ‖ − λisi‖∞ = O(1/nc−3). Now,
‖εui‖∞ = O(1/nc) and since M has entries which are O(n2) we have ‖Msi‖∞ = O(1/nc−3). We
conclude that

‖ti‖∞ = ‖ − λisi + εui +Msi‖∞
≤ ‖−λisi‖∞ + ‖εui‖∞ + ‖Msi‖∞
= O(1/nc−3).

6.4 Certifying the matrix identity

In this section we show that the theory V TC
0 can prove that, if EigValBound(M,~λ, V) holds,

then the desired eigenvalue inequality also holds.

46

Note on coding and formalizing the proof in V TC
0: In what follows we will write freely

terms such as matrices, vectors, inner products, products of a matrix by a vector (of the appropriate
dimensions), addition of vectors, and big sums. We also use freely basic properties of these objects;
like transitivity of inequalities, distributivity of a product over big sums, associativity of addition
and product, etc. We showed how to formalize these objects, and how to prove their basic properties
within V TC

0 in Sections 3.2.2 and 3.2.4 (see Proposition 3.22).

For an assignment A ∈ {0, 1}n we define its associated vector a ∈ {−1, 1}n such that a(i) = 1
if A(i) = 1 and a(i) = −1 if A(i) = 0. In other words we define a(i) = 2A(i) − 1. Note that

a =
n∑

i=1

a(i) · ei .

We define

ã :=
n∑

i=1

a(i) · ẽi , (53)

and recall that ẽi :=
∑n

j=1 vij · vj is a rational approximation of ei (Definition 6.4). We let atMa

abbreviate 〈a,Ma〉 (which is ΣB
1 -definable in V TC

0, by Section 3.2.2).

Lemma 6.7 (Main spectral bound) The theory V TC
0 proves that if A is an assignment to n

variables (that is, A is a string variable of length n+ 1) and EigValBound(M,~λ, V) holds, then

atMa ≤ λn+ o(1) . (54)

This is a corollary of Lemma 6.8 and Lemma 6.11 that follow.

Lemma 6.8 The theory V TC
0 proves that for any assignment A to n variables,

EigValBound(M,~λ, V) implies:

atMa ≤ ãtM ã +O(1/nc−5),

where c is the constant from the EigValBound(MK , ~λ, V) predicate.

Proof: First note that A is a string variable of length n. By Definition 6.4 for any 1 ≤ j ≤ n there
exists a vector rj ∈ Qn such that ẽj = ej + rj , and where ‖rj‖∞ = O(1/nc−1). Therefore, by (53):

ã =
n∑

i=1

a(i)ẽi =
n∑

i=1

a(i)(ei + ri) =
n∑

i=1

a(i)ei +
n∑

i=1

a(i)ri .

Note that
∑n

i=1 a(i)ei = a, and let

r :=
n∑

i=1

a(i)ri .

Then,
ã = a + r ,

47

and since a(i) ∈ {−1, 1}, we have ‖r‖∞ = O(1/nc−2). Now, proceed as follows:

atMa = (ã − r)tM(ã − r)

= ãtM ã − ãtMr − rtM ã + rtMr . (55)

We now claim that (provably in V TC
0) the three right terms in (55) are o(1):

Claim 6.9 The theory V TC
0 proves that for any assignment A to n variables,

EigValBound(M,~λ, V) implies:

−ãtMr − rtM ã + rtMr = O
(
1/nc−5

)
.

Proof of claim: Consider −ãtMr. Since ‖ã‖∞ ≤ 2 and since (by construction) each entry
in M is at most O(n2), we have ‖ãtM‖∞ = O(n3) . Therefore, since ‖r‖∞ ≤ 1/nc−2, we get
−ãtMr = O

(
1

nc−5

)
. Similarly, we have −rtM ã = O

(
1

nc−5

)
.

Considering rtMr, we have ‖rtM‖∞ = O(1/nc−4) and so rtMr = O(1/nc−5 · 1/nc−2 · n) =
O(1/n2c−8) = O(1/nc−5). Claim

Claim 6.9 concludes the proof of Lemma 6.8.

Claim 6.10 There is a constant c′ such that the theory V TC
0 proves that

EigValBound(M,~λ, V) implies that:

〈ẽi, ẽi〉 = 1 +O(1/nc′), for any 1 ≤ i ≤ n, and

〈ẽi, ẽj〉 = O(1/nc′), for any 1 ≤ i 6= j ≤ n.

Proof of claim: By assumption for any 1 ≤ i ≤ n, ẽi = ei +ri for some ‖ri‖∞ = O(1/nc−1). Thus

〈ẽi, ẽi〉 = 〈ei + ri, ei + ri〉
= ‖ei‖2 + 2〈ei, ri〉 + ‖ri‖2 (56)

= 1 + o(1), (57)

where the last equation holds since 2〈ei, ri〉 and ‖ri‖2 can be easily proved to be o(1) in V TC
0.

Proving 〈ẽi, ẽj〉 = O(1/c′) for any 1 ≤ i 6= j ≤ n, is similar. Claim

Lemma 6.11 The theory V TC
0 proves that for any assignment A to n variables,

EigValBound(M,~λ, V) implies:
ãtM ã ≤ λn+ o(1) . (58)

48

Proof: We have:

ãtM ã = ãtM

(
n∑

i=1

a(i)ẽi

)
(by definition of ã)

= ãtM




n∑

i=1


a(i) ·

n∑

j=1

vjivj




 (by definition of ẽi)

= ãt
n∑

i=1


a(i) ·

n∑

j=1

vjiMvj


 (rearranging)

= ãt
n∑

i=1


a(i) ·

n∑

j=1

vji(λjvj + rj)


 (by Definition 6.4)

= ãt
n∑

i=1


a(i) ·

n∑

j=1

λjvjivj


+ ãt

n∑

i=1


a(i) ·

n∑

j=1

vjirj




︸ ︷︷ ︸
①

(rearranging) (59)

We claim (inside V TC
0) that the second term above, denoted ①, is of size o(1):

Claim 6.12 The theory V TC
0 proves that for any assignment A to n variables,

EigValBound(M,~λ, V) implies

ãt
n∑

i=1


a(i) ·

n∑

j=1

vjirj


 = O(1/nc−6) .

Proof of claim: The proof is similar to the proof of Claim 6.9. Specifically, by Definition 6.4,
for any 1 ≤ j ≤ n, we have ‖rj‖∞ ≤ 1/nc−1, and for any 1 ≤ i, j ≤ n, we have |vji| ≤ 2. Thus,
V TC

0 proves that ‖∑n
j=1 vjirj‖∞ = O(1/nc−2) , for any 1 ≤ i ≤ n. Since a(i) ∈ {−1, 1}, for any

1 ≤ i ≤ n, the theory V TC
0 proves ‖a(i) ·∑n

j=1 vjirj‖∞ = O(1/nc−2), for any 1 ≤ i ≤ n, and
therefore also proves ∥∥∥∥∥∥

n∑

i=1


a(i) ·

n∑

j=1

vjirj




∥∥∥∥∥∥
∞

= O(1/nc−3). (60)

Now consider ã =
∑n

i=1 a(i)ẽi =
∑n

i=1

(
a(i) ·∑n

j=1 vjivj

)
. Since, for any 1 ≤ i, j ≤ n we have

|vji| ≤ 2 we have ‖∑n
j=1 vjivj‖∞ = O(n). Thus, since a(i) ∈ {−1, 1}, V TC

0 can prove that

ã = O(n2), and so by (60) the theory can finally prove

ãt
n∑

i=1


a(i) ·

n∑

j=1

vijrj


 = O(1/nc−6).

Claim

49

It remains to bound the first term in (59):

ãt ·




n∑

i=1

a(i)

n∑

j=1

λjvjivj


 . (61)

By the definition of ã in (53) and the definition of the ẽi’s, we get that (61) equals:



n∑

i=1

a(i)
n∑

j=1

vjiv
t
j


 ·




n∑

i=1

a(i)
n∑

j=1

λjvjivj


 . (62)

We can prove in V TC
0 that for any vectors b1, . . . ,b` ∈ Qn and any rational numbers c1, . . . , c`

and ζ1, . . . , ζ`, such that ζ = max{ζi : 1 ≤ i ≤ `}, we have
〈
∑̀

i=1

cibi,
∑̀

i=1

ζicibi

〉
≤ ζ ·

〈
∑̀

i=1

cibi,
∑̀

i=1

cibi

〉
.

Therefore, we can prove in V TC
0 that (62) is at most:

λ ·




n∑

i=1

a(i)
n∑

j=1

vjiv
t
j


 ·




n∑

i=1

a(i)
n∑

j=1

vjivj




= λ ·
(

n∑

i=1

a(i)ẽti

)
·
(

n∑

i=1

a(i)ẽi

)
(by definition of ẽi)

= λ ·
〈

n∑

i=1

a(i)ẽi ,
n∑

i=1

a(i)ẽi

〉

= λ ·
n∑

i=1

〈a(i)ẽi , a(i)ẽi〉 + λ ·
n∑

1≤i6=j≤n

〈a(i)ẽi,a(i)ẽj〉 (by rearranging)

= λ ·
n∑

i=1

a(i)2〈ẽi , ẽi〉 + λ ·
n∑

1≤i6=j≤n

a(i)a(j)〈ẽi, ẽj〉 (by rearranging again)

= λ ·
n∑

i=1

1 · (1 + o(1)) + λ ·
n∑

1≤i6=j≤n

a(i)a(j)o(1) (by Claim 6.10)

= λn+ o(1) (for sufficiently large constant c).8 (63)

This concludes the proof of Lemma 6.11.

7 Wrapping up the proof: TC
0-Frege refutations of random

3CNFs

In this section we establish the main result of this paper, namely, polynomial-size TC
0-Frege

refutations for random 3CNF formulas with Ω(n1.4) clauses.

8The constant c here is the global constant power of n (appearing in the 1/nc-approximation in Definition 6.4).

50

7.1 Converting the main formula into a ∀Σ
B
0 formula

Note that the main formula (Definition 4.6) is a ΣB
0 (L) formula, where the language L contains

function symbols not in L2
A, and in particular it contains the numones function. Since Theorem

3.25 relates V TC
0 proofs of ΣB

0 formulas to polynomial-size TC
0-Frege proofs, in order to use this

theorem we need to convert the main formula into a ΣB
0 formula (in the language L2

A). It suffices
to show that V TC

0 proves that the main formula is equivalent to a ∀ΣB
0 formula, since if V TC

0

proves a ∀ΣB
0 formula ∀Φ, it also proves the ΣB

0 formula Φ obtained by discarding all the universal
quantifiers in ∀Φ.

Lemma 7.1 The theory V TC
0 proves that the main formula is equivalent to a ∀ΣB

0 formula ∀Φ
where the universal quantifiers in the front of the formula all quantify over string variables that
serve as counting sequences. Specifically,

∀Φ := ∀Z1 ≤ t1 . . .∀Zr ≤ tr Φ(Z1, . . . , Zr), (64)

where t1, . . . , tr are number terms and Φ(Z1, . . . , Zr) has also free variables other then the Zi’s, and
every occurrence of every Zi appears in Φ in the form (δNUM(|T | , T, Zi)∧Zi[t] = s), for some string
term T and number terms t, s, and where δNUM(|T | , T, Zi) states that Zi is a counting sequence
that counts the number of ones in T until position |T | (see Definition 3.12).

Proof: The following steps convert the main formula into a ∀ΣB
0 formula which is equivalent

(provably in V TC
0) to the main formula:

1. All the functions in the main formula are AC0-reducible to L2
A ∪ {numones} (see Section

3.2.1). Thus, the defining axioms of all the function symbols in the main formula can be
assumed to be ΣB

0 (numones) formulas. Now, it is a standard procedure to substitute in the
main formula all the function symbols by their ΣB

0 (numones)-defining axioms.9 The resulting
formula is ΣB

0 (numones), and provably in V TC
0 is equivalent to the original main formula.

2. We now substitute all the numones function symbols by their ΣB
1 -defining axioms. Specif-

ically, every occurrence of numones(t, T) in the formula, for t, T number and string terms,
respectively, occurs inside some atomic formula Ψ := Ψ(. . .numones(t, T) . . .). And so we
substitute Ψ by the existential formula

∃Z ≤ 1 + 〈|T | , |T |〉 (δNUM(|T | , T, Z) ∧ Z[t] = z ∧ Ψ(. . . z . . .)) .

3. Note that all the numones function symbols appear in the premise of the implication in
the main formula, so we can take all these existential quantifiers out of the premise of the
implication and obtain a universally quantified formula, where the universal quantifiers in the
front of the formula all quantify over string variables that serve as counting sequences (as in
Item 2 above).

9When the defining axiom of a string function F (~x, ~X) is a bit-definition i < r(~x, ~X) ∧ ψ(i, ~x, ~X), we substitute
an atomic formula like F (~x, ~X)(z), by z < r(~x, ~X) ∧ ψ(z, ~x, ~X) (cf. Lemma V.4.15 in [13]).

51

7.2 Propositional proofs

We need to restate the main probabilistic theorem in [17]:

Theorem 7.2 ([17], Theorem 3.1) Let C be a random 3CNF with n variables and m = β · n
clauses (β = c · n0.4, c some fixed large constant). Then, with probability converging to 1, the
following holds:

• The imbalance of C is at most O(n
√
β) = O(n1.2).

• The largest eigenvalue λ satisfies λ = O(
√
β) = O(n0.2).

• There are k = O(n
β2) = O(n0.2), t = Ω(nβ) = Ω(n1.4), d = O(k) = O(n0.2) and C with |C| = t

such that Coll(t, k, d, n,m,C, C) holds.

We need to rephrase the theorem in a manner that suites our needs, as follows:

Corollary 7.3 Let C be random 3CNF with n variables and m = c · n1.4 clauses where c is
sufficiently large constant. Then, with probability converging to 1, the following holds:10

• There exists an I = O(n1.2) such that Imb(C, I).

• The 1/nc′-rational approximation λ of the largest eigenvalue of M satisfies λ = O(n0.2), where
c′ > 6 is some constant. I.e., EigValBound(M,~λ, V) and Mat(M,C) hold.

• There are natural numbers k = O(n0.2), t = Ω(n1.4), d = O(k) = O(n0.2) and a sequence D

of t inconsistent k-tuples such that Coll(t, k, d, n,m,C,D) holds, and such that:

t >
d(I + λn)

2
+ o(1) .

The last inequality concerning t stems from direct computations, using the bounds in Theorem 7.2
with β = n0.4.

Recall that that premise in the implication in the main formula:

3CNF(C, n,m)∧Coll(t, k, d, n,m,C,D) ∧ Imb(C, I) ∧ Mat(M,C)∧

EigValBound(M,~λ, V) ∧ λ = max{~λ} ∧ t >
d · (I + λn)

2
+ o(1).

(65)

Let PREM(C, n,m, t, k, d,D , I, ~λ, V,M, λ, ~Z) be the formula obtained from (65) after transforming
the main formula into a ∀ΣB

0 formula, where the ~Z string variables are the variables for counting
sequences added after the transformation (as described in Lemma 7.1).

Claim 7.4 If a ΣB
0 formula ϕ(~x, ~X) can be evaluated to a true sentence in N2 by assigning numbers

~x and sets ~X to the appropriate variables, then the translation JϕK
~x, ~|X|

is satisfiable.

10Formally speaking, we mean that the following three items hold in the standard two-sorted model N2, when all
the second-sort objects (like C and D) are in fact finite sets of numbers (encoding C and D), natural numbers are
treated as natural numbers in the standard two-sorted model and rational numbers are the corresponding natural
numbers that encode them as pairs of natural numbers (as described in Section 3.1.2).

52

Lemma 7.5 For every m,n ∈ N and every unsatisfiable 3CNF formula C with m clauses and n
variables such that PREM(C, n,m, . . .) is true for some assignment to the remaining variables
(i.e. to the unspecified variables denoted by . . . ; this also implies that JPREM(C, n,m, . . .)K is
satisfiable), there exists a polynomially bounded TC

0-Frege proof of ¬C (i.e. the sequent −→ ¬C
can be derived).

Proof: Recall that for given m,n ∈ N, 3CNF formula C = (C[α])α<m and assignment A, the
formula ∃α ≤ mNotSAT(C[i], A) (which is the consequence of the implication in the main formula
4.6) is the statement:

∃α < m∃i, j, k ≤ n
(

〈C[α]〉51 = i ∧ (A(i) ↔ 〈〈C[α]〉54〉31 = 0)

∧ 〈C[α]〉52 = j ∧ (A(j) ↔ 〈〈C[α]〉54〉32 = 0)

∧ 〈C[α]〉53 = k ∧ (A(k) ↔ 〈〈C[α]〉54〉33 = 0)
)
.

The propositional translation of this formula (Definition 3.23) contains the variables pC〈i,j,k,`,α〉

with i, j, k ≤ n, α < m. Additionally it contains variables pA
i for i ≤ n stemming from the

assignment A. It is not necessary to show the full translation of the formula, since we intend
to plug-in propositional constants (>,⊥) for some of the variables. In other words, parts of the
formula will consist of only constants and so it is unnecessary to give these parts in full detail.
Having this in mind, the translation J∃α < mNotSAT(C[α], A)Km,n is

m−1∨

α=0

n∨

i,j,k=1

((J〈C[α]〉51 = iKm,n ∧ (pA
i ↔ J〈〈C[α]〉54〉31 = 0Km,n))

∧ (〈J〈C[α]〉52 = jKm,n ∧ (pA
j ↔ J〈〈C[α]〉54〉32 = 0Km,n))

∧ (〈J〈C[α]〉53 = kKm,n ∧ (pA
k ↔ J〈〈C[α]〉54〉33 = 0Km,n))).

(66)

Here, the variables pC〈i,j,k,`,α〉 all implicitly appear in the parts inside J·K.
Now assume we have a fixed 3CNF C with n variables and m clauses. Then for every α < m

there exists 1 ≤ i, j, k ≤ n such that the formulas J〈C[α]〉51 = iKm,n and J〈C[α]〉52 = jKm,n and

J〈C[α]〉53 = kKm,n are all satisfied (in fact they are polynomial-size in n propositional tautologies
consisting of only constants >,⊥). From now on we will only concentrate on the disjuncts where this
is the case (as the other disjuncts are falsified, or in other words they are propositional contradictions
consisting of only constants).

By plugging C into J〈〈C[α]〉54〉31 = 0Km,n and J〈〈C[α]〉54〉32 = 0Km,n and J〈〈C[α]〉54〉33 = 0Km,n we
get that J∃α < mNotSAT(C[α], A)Km,n is evaluated to

∨

α<m

(
(pA

i)`α
1 ∧ (pA

j)`α
2 ∧ (pA

k)`α
3

)
, (67)

where `αr is an abbreviation of J〈〈C[α]〉54〉3r = 0Km,n, and thus we can observe that (67) gets evaluated

to ¬C(pA
1 /x1, . . . , p

A
n /xn), where pA

i /xi means substitution of xi by pA
i .

By Theorem 5.1 the theory V TC
0 proves the main formula and so by Lemma 7.1 there is a

V TC
0 proof of

PREM(C, n,m, t, k, d,D , I, ~λ, V,M, λ, ~Z) → ∃i < mNotSAT(C[i], A).

53

Thus, by Theorem 3.25 we can derive a polynomially bounded TC
0-proof of the formula

JPREM(C, . . .)Km,n → J∃α < mNotSAT(C[α], A)Km,n

and thus also of the sequent

JPREM(C, . . .)Km,n −→ J∃α < mNotSAT(C[α], A)Km,n.

By Claim 7.4 and the assumption that PREM(C, n,m, . . .) is true in N2 for an assignment to the
remaining variables we know that JPREM(C, . . .)Km,n is satisfiable. Plugging-in such a satisfying
assignment ~a into JPREM(C, . . .)Km,n, Lemma 2.7 yields a polynomially bounded TC

0-Frege proof
of

JPREM(C,~a)Km,n

and of the sequent

JPREM(C,~a)Km,n −→ J∃α < mNotSAT(C[α], A)Km,n.

Using the Cut rule (Definition 2.4) we get a polynomially bounded TC
0-Frege proof of the formula

J∃α < mNotSAT(C[α], A)Km,n.

As we showed before, this gets evaluated to

¬C(pA
1 /x1, . . . , p

A
n /xn)

as desired. Because of Claim 2.7, this proof is only polynomially longer than the one of the
translation of the main formula. Since that proof was polynomially bounded, the above proof of
¬C(pA

i /xi) also is.

We can now conclude:

Corollary 7.6 With probability converging to 1, a random 3CNF C with n variables and m ≥ c·n1.4

clauses, c a sufficiently large constant, ¬C has polynomially bounded TC
0-Frege proofs, while C

has no sub-exponential size resolution refutations (as long as m = O(n1.5−ε), for 0 < ε < 1/2).

Proof: By Corollary 7.3, with probability converging to 1 there exists an assignment of numbers
and strings ~α (including also the appropriate counting sequences assigned to the Zi string vari-
ables introduced in Lemma 7.1) such that PREM(C, ~α) holds (in the standard two-sorted model).
Therefore, with probability converging to 1 we can apply Lemma 7.5 to establish that ¬C has a
short TC

0-Frege proof. That with probability converging to 1 there are no sub-exponential size
resolution refutations of C follows from [11, 5, 8].

Acknowledgments

We wish to thank Jan Kraj́ıček for very helpful discussions on the topic of this paper and Emil
Jeřabek and Neil Thapen for answering many of our questions about theories of weak arithmetic
and for many other insightful comments.

54

References

[1] Michael Alekhnovich. Lower bounds for k-DNF resolution on random 3-CNFs. In Proceedings
of the Annual ACM Symposium on the Theory of Computing, pages 251–256, 2005.

[2] Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:
non-binomial case. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science (Las Vegas, NV, 2001), pages 190–199. IEEE Computer Soc., Los Alamitos, CA, 2001.

[3] Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable unless W[P]
is tractable. SIAM J. Comput., 38(4):1347–1363, 2008.

[4] A. Atserias, Maria Luisa Bonet, and J. Esteban. Lower bounds for the weak pigeonhole
principle and random formulas beyond resolution. Information and Computation, 176:152–
136, August 2002.

[5] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution
and Davis-Putnam procedures. SIAM J. Comput., 31(4):1048–1075 (electronic), 2002.

[6] Eli Ben-Sasson. Expansion in Proof Complexity. PhD thesis, Hebrew University, Jerusalem,
Israel, September 2001.

[7] Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the polynomial calculus.
Computational Complexity, pages 1–19, 2010.

[8] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J. ACM,
48(2):149–169, 2001. (A preliminary version appeared in Proceedings of the 31th Annual ACM
Symposium on the Theory of Computing (Atlanta, GA, 1999)).

[9] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
Frege systems. SIAM J. Comput., 29(6):1939–1967, 2000.

[10] Samuel R. Buss and Peter Clote. Cutting planes, connectivity, and threshold logic. Arch.
Math. Logic, 35(1):33–62, 1996.

[11] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. Assoc. Comput.
Mach., 35(4):759–768, 1988.

[12] Stephen Cook. Theories for Complexity Classes and Their Propositional Translations, pages
175–227. Complexity of computations and proofs, Jan Kraj́ıček, ed. Quaderni di Matematica,
2005.

[13] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. ASL
Perspectives in Logic. Cambridge University Press, 2010. Draft available at url:
http://www.cs.toronto.edu/~sacook/.

[14] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7), 1962.

[15] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

55

[16] Uriel Feige. Refuting smoothed 3CNF formulas. In Proceedings of the IEEE 48th Annual
Symposium on Foundations of Computer Science, pages 407–417. IEEE Computer Society,
2007.

[17] Uriel Feige, Jeong Han Kim, and Eran Ofek. Witnesses for non-satisfiability of dense ran-
dom 3CNF formulas. In Proceedings of the IEEE 47th Annual Symposium on Foundations of
Computer Science, 2006.

[18] Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3cnf formulas. Theory
of Computing, 3(1):25–43, 2007.

[19] Joel Friedman, Andreas Goerdt, and Michael Krivelevich. Recognizing more unsatisfiable
random k-SAT instances efficiently. SIAM J. Comput., 35(2):408–430, 2005.

[20] Nicola Galesi and Massimo Lauria. Optimality of size-degree trade-offs for polynomial calculus.
ACM Trans. Comput. Log., 12(1), 2011 (to appear).

[21] A. Goerdt and M. Krivelevich. Efficient recognition of random unsatisfiable k-SAT instances
by spectral methods. In Annual Symposium on Theoretical Aspects of Computer Science, pages
294–304, 2001.

[22] Andreas Goerdt and André Lanka. Recognizing more random unsatisfiable 3-SAT instances
efficiently. Electronic Notes in Discrete Mathematics, 16:21–46, 2003.

[23] Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-3):297–308, 1985.

[24] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[25] Jan Kraj́ıček. Lower bounds to the size of constant-depth propositional proofs. The Journal
of Symbolic Logic, 59(1):73–86, 1994.

[26] Alexis Maciel and Toniann Pitassi. On ACC0[pk] Frege proofs. In Proceedings of the Annual
ACM Symposium on the Theory of Computing 1997 (El Paso, TX), pages 720–729 (electronic).
ACM, New York, 1999.

[27] Phuong Nguyen. Proving infinitude of prime numbers using binomial coefficients. In 22nd
International Workshop on Computer Science Logic, (Bertinoro, Italy), volume 5213 of Lecture
Notes in Computer Science, pages 184–198. Springer, 2008.

[28] Phuong Nguyen and Stephen A. Cook. Theories for TC0 and other small complexity classes.
Logical Methods in Computer Science, 2(1), 2006.

[29] Robert Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, University
of Toronto, 1976. Technical Report No . 87.

[30] Nathan Segerlind, Samuel R. Buss, and Russel Impagliazzo. A switching lemma for small re-
strictions and lower bounds for k-DNF resolution. In Proceedings of the 43rd IEEE Symposium
on Foundations of Computer Science, pages 604–613. 2002.

[31] Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Ann. Pure Appl.
Logic, 130(1-3):277–323, 2004.

56

[32] Domenico Zambella. Notes on polynomially bounded arithmetic. The Journal of Symbolic
Logic, 61(3):942–966, 1996.

57

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

