
Pseudorandom Generators with Long Stretch and Low locality

from Random Local One-Way Functions

Benny Applebaum∗

January 17, 2011

Abstract

We continue the study of pseudorandom generators (PRG) G : {0, 1}n → {0, 1}m in NC0.
While it is known that such generators are likely to exist for the case of small sub-linear stretch
m = n + n1−ε, it remains unclear whether achieving larger stretch such as m = 2n or even
m = n + n2 is possible. The existence of such PRGs, which was posed as an open question in
previous works (e.g., [Cryan and Miltersen, MFCS 2001], [Mossel, Shpilka and Trevisan, FOCS
2003], and [Applebaum, Ishai and Kushilevitz, FOCS 2004]), has recently gained an additional
motivation due to several interesting applications.

We make progress towards resolving this question by obtaining NC0 constructions of linear-
stretch PRGs and polynomial-stretch weak-PRGs (where the distinguishing advantage is 1/poly(n)
rather than negligible). These constructions are based on the one-wayness of “random” NC0

functions – a variant of an assumption made by Goldreich (ECCC 2000). Our techniques also
show that some of the previous heuristic candidates can be based on one-way assumptions.
We interpret these results as an evidence for the existence of NC0 PRGs of polynomially-long
stretch.

We also show that our constructions give rise to strong inapproximability results for the
densest-subgraph problem in d-uniform hypergraphs for constant d. This allows us to improve
the previous bounds of Feige (STOC 2002) and Khot (FOCS 2004) from constant inapproxima-
bility factor to nε-inapproximability, at the expense of relying on stronger assumptions.

∗School of Electrical Engineering, Tel-Aviv University, benny.applebaum@gmail.com. Work done while a postdoc
at the Weizmann Institute of Science, supported by Koshland Fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 7 (2011)

1 Introduction

The question of minimizing the parallel time complexity of cryptographic primitives has been the
subject of an extensive body of research. (See, e.g., [2] and references therein.) At the extreme, one
would aim for an ultimate level of efficiency at the form of constant-parallel time implementation.
Namely, the goal is to have “local” cryptographic constructions in which each bit of the output
depends only on a small constant number of input bits, and so, each output can be individually
computed with complexity that does not grow with the total input length or the level of security;
Such functions are captured by the complexity class NC0.

This strong efficiency requirement seems hard to get as, at least intuitively, such form of locality
may lead to algorithmic attacks. However, in the last few years, it was shown that, perhaps
surprisingly, many cryptographic tasks can be implemented by NC0 functions under standard
intractability assumptions [5, 4]. This includes basic primitives such as one-way functions, as well
as highly complicated primitives such as public-key encryption schemes, digital signatures, and
non-interactive zero-knowledge proofs.

A notable exception, for which such a result is unknown, is pseudorandom generators with large
stretch. A pseudorandom generator (PRG) G : {0, 1}n → {0, 1}m is a deterministic function that
expands a short random n-bit string (aka “seed”) into a longer “pseudorandom” string of length
m > n, such that the output cannot be distinguished from a truly random m-bit string with more
than negligible probability. Our main focus with respect to PRGs is the difference between its
output length m and its input length n, namely its stretch m − n. While it is known that PRGs
with sub-linear stretch (i.e., m = n + n1−ε) are likely to exist in NC0 [5], it is unclear whether
better stretch is possible. Specifically, several previous works (e.g., [10, 21, 5, 6, 17]) posed the
following question:

How long can be the stretch of NC0 pseudorandom generators? Can it be linear, e.g.,
m > (1 + ε)n, or even polynomial, e.g., m > n1+ε?

This basic question is possibly the most important feasibility result left open in the field of parallel
cryptography. It is also motivated by several concrete applications. For example, such PRGs would
lead to highly efficient stream-ciphers that can be implemented by fast parallel hardware. They
also lead to secure computation protocols with constant computational overhead [17] – a fascinating
possibility which is not known to hold under any other cryptographic assumption. Finally, as
shown in [6], such PRGs can be used to obtain strong (average-case) inapproximability results for
constraint satisfaction problems such as Max3SAT, and thus provide simpler alternatives to the
traditional PCP-based approach by relying on stronger assumptions.

Previous works. Despite previous efforts, there has been no convincing theoretical evidence
supporting either a positive or a negative resolution of this question. On the negative side, it is
well known [20] that pseudorandom functions (which can be viewed as PRGs with exponential
stretch and direct access) cannot be implemented in AC0, which is strictly larger than NC0.
However, this result does not extend to the case of polynomial stretch PRGs (PPRGs). Cryan and
Miltersen [10] conjectured that PPRGs cannot be constructed in NC0, but were able to prove this
only for the special case of 3-local functions (i.e., functions that each of their outputs depends on
at most 3 inputs). This impossibility result was extended to 4-local functions by Mossel et al. [21].
For general locality d, the best upper-bound on the stretch is nd/2 [21].

1

On the positive side, it is known that PRGs with sub-linear stretch are likely to exist in NC0 [5];
however, it is unknown how to expand the stretch of these PRGs without increasing their locality.
Candidates for PPRGs were suggested in [21] and [3], and it was shown that these candidates
resist some restricted non-trivial families of attacks (e.g., they generate ε-biased distribution [22]).
However, none of them was proven to be secure via a reduction to a different, more established,
cryptographic assumption. In fact, to the best of our knowledge, even the class AC0 does not
contain any provably-secure PPRG, and only in TC0, which is strictly more powerful, such con-
structions are known to exist [23]. Finally, let us mention that even in the case of linear-stretch
PRGs (LPRG), the only known NC0 construction [6] relies on an indistinguishability assump-
tion (of [1]), rather than on a one-wayness assumption which is typically considered to be more
conservative.

1.1 Our results

1.1.1 Constructions

We make progress towards resolving the question by obtaining local (NC0) constructions of LPRGs
and weak-PPRGs, where in the latter the distinguishing advantage is upper-bounded by an arbitrary
fixed inverse polynomial 1/nδ rather than negligible. Our constructions are based on the one-
wayness of “random” local functions.

Random local one-way functions. For a length parameter m = m(n) and a d-ary predicate
Q : {0, 1}d → {0, 1}, we define the distribution FQ,m over d-local functions f : {0, 1}n → {0, 1}m

as follows: choose a random d-uniform hypergraph G with n nodes and m hyperedges by choosing
each hyperedge uniformly and independently at random. (We refer to such graph as a random
(m,n, d) graph). Then, define the d-local function f = fG,Q : {0, 1}n → {0, 1}m to be the function
whose i-th output is computed by applying the predicate Q to the d inputs that are indexed by
the i-th hyperedge. We say that the predicate Q is sensitive if some of its coordinates i has full
influence, that is flipping the value of the i-th variable always changes the output of Q.

Our main hardness assumption asserts that, for proper choice of predicate Q, a random member
of the collection is hard to invert – technically, this means that FQ,m is a collection of one-way
functions [14, Sec. 2.4.2]. We will later discuss the plausibility of this assumption, but for now let
us just mention that it was presented by Goldreich [13] for the case of m = n, and was further
studied by several other works [24, 21, 9, 8, 3] for different ranges of parameters. We can now state
our main theorem:

Theorem 1.1 (main theorem). Suppose that the d-local collection FQ,m is one-way.

1. (LPRG in NC0) If m > c · n for some constant c = c(d) > 1, then there exists a collection
of LPRGs in NC0.

2. (weak-PPRG in NC0) If m > n1+δ for an arbitrary small constant δ > 0 and Q is sensitive,
then, for every constant b, there exists a weak collection of PPRGs of output length nb and
distinguishing gap at most 1/nb with constant locality d′ = d′(d, b).

3. (Random local functions are weak-PRGs) If m > n3a+2b and Q is sensitive, then the
collection FQ,na is a weak-PPRG with distinguishing gap at most n−b.

2

The first item shows that LPRGs can be constructed based on the one-wayness of FQ,m for an
arbitrary predicate Q, and linear output length. The second item shows that the one-wayness of
FQ,m with super-linear output length and sensitive predicate, leads to a weak-PPRG in NC0 with
an arbitrary fixed polynomial stretch and an arbitrary inverse fixed polynomial security. In fact,
we will prove a more general trade-off between locality, stretch and security which allows to obtain
a standard PPRG with an arbitrary polynomial stretch at the expense of letting the locality be
an (arbitrarily slowly) increasing function of n, e.g., d′ = log∗(n). Finally, observe that in the last
item we show that FQ,m′ itself is weakly pseudorandom.

Let us elaborate on some of the aspects raised by this theorem.

Plausibility of the assumption. In general, FQ,m becomes tractable when m is too large. In
particular, it is not hard to see that the function can be efficiently inverted for m = Ω(nd). On
the other hand, when m is linear, i.e., m = cn for arbitrary constant c > 1, it is unknown how to
invert the function (with respect to a general predicate) in complexity smaller than 2Ω(n).1 It seems
reasonable to assume that for every constant c > 1 there exists a sufficiently large locality d and
a predicate Q for which FQ,nc cannot be inverted in polynomial time or even subexponential (i.e.,
2nε

) time. In fact, even for the case of, say, m = nd/100, no polynomial-time inversion algorithm is
known. We also mention that our theorems hold even if the level of one-wayness is quite weak (e.g.,
the collection cannot be inverted with probability better than 1/n or even 1/10 in the first item).
Finally, even if our assumptions may seem strong, the new results strictly improve the previous state,
as all known heuristic candidates rely on stronger assumptions – i.e., on the pseudorandomness of
random local functions. As a side note, we mention that our techniques also show that the security
of some of these candidates (e.g., [21, 6]) can be based on one-way assumptions.

The gap between one-wayness and pseudorandomness. We would like to stress that there
is a considerable gap between the hypothesis and the implication, since pseudorandomness is much
more fragile than one-wayness. This is especially true in our local setting, as with low locality,
even the task of avoiding simple regularities in the output is highly challenging.2 In contrast, it
seems much easier to find a “reasonable” candidate one-way functions (i.e., one that resists all
basic/known attacks). The proof of the main theorem (and item 3 by itself), shows that in this
case, despite the existence of non-trivial regularities in the outputs, one-way functions achieve some
form of pseudoentropy (i.e., weak unpredictability).

Weak pseudorandomness. Our polynomial stretch PRGs are weak, i.e., their security is only
inverse polynomial, rather than inverse super-polynomial as per the standard cryptographic defini-
tion. It is important to stress that this weakness refers only to the distinguishing advantage rather
than to the running-time of the adversaries, which is super-polynomial or even sub-exponential,
depending on the exact hardness of FQ,m as a one-way function. (The overhead added by our re-
ductions is minor.) Let us also mention that other heuristic candidates for NC0 PPRG suffer from
a similar limitation. This can be partially explained by the fact that pseudorandomness requires the
dependencies graph G to satisfy non-trivial expansion properties (see [6]), but when m = n1+Ω(1)

1In [8] it is shown that if the predicate satisfies some “simplicity” property, then it is possible to efficiently invert
FQ,m for m > cn where c = c(d) is some constant. However, nothing is known for general predicate.

2This even led to the belief that weak non-cryptographic forms of pseudorandomness, e.g., ε-bias, cannot be
achieved [10], which was refuted in a non-trivial way by [21].

3

and d = O(1) it is unknown how to sample such a good (m,n, d) expander with negligible failure
probability. The lack of such explicit constructions currently forms a natural “barrier” towards
realizing strong PPRGs with constant locality.3

The work of [3] (ABW). Our work is inspired by the recent results of [3] which showed a
reduction from weak pseudorandomness to one-wayness for Goldreich’s function instantiated with
a specific “randomized” predicate. Specifically, this was shown for the case of the noisy-linear
predicate Q⊕(x1, . . . , xd) which outputs the xor of the inputs and flips the result with some small
probability. While this result has several interesting applications (see [3]), it falls short of providing
polynomial-stretch PRGs with low locality due to the use of internal randomness. From a technical
point of view, many of the ideas used in [3] heavily rely on the linear structure of Q⊕, and so part
of the challenge in proving Thm. 1.1 is to find analogues which work in the general case of arbitrary
predicates. (See Section 2 for an overview of our proofs.)

1.1.2 Hardness of the Densest-Subgraph Problem

Theorem 1.1 also leads to new inapproximability results. This continues the line of research started
by Feige [11] in which inapproximability follows from average-case hardness.

For a d-uniform hypergraph G, we say that a set of nodes S contains an edge e = (v1, . . . , vd)
if all the endpoints of e are in S, i.e., v1, . . . , vd ∈ S. In the following think of d as a constant and
n < m < poly(n). For a parameter p ∈ (0, 1), the p Densest-Sub-hypergraph Problem (p−DSH) is
the promise problem in which we are given an (m,n, d) graph G and should distinguish between:

• No case (“Random”). Every set S of nodes of density p (i.e., size pn) in G contains at
most pd(1 + o(1)) fraction of the edges.

• Yes case (“Pseudorandom”). There exists a set S of nodes of density p in G that contains
at least pd−1(1− o(1)) fraction of the edges.

Observe that a random graph is likely to be a No-instance. In the above, p is a single parameter
which controls both the approximation ratio and the gap-location (i.e., size of the dense subgraph).
This formulation of p−DSH was explicitly presented by Khot [19] (under the term “Quasi-random
PCP”), and was implicit in the work of Feige [11]. These works showed that for some constant d, the
problem is hard with p = 1

2 , assuming that NP cannot be solved in probabilistic sub-exponential
time. The constant p can be improved by taking graph products, however, this increases the degree
d. Hence, for a constant degree, the best known inapproximability ratio was constant. We prove
the following result:

Theorem 1.2. Let d be a constant, Q be a d-ary predicate and m ≥ nc+3 where c > 0 is a constant.
If Fm,Q is 1

n -pseudorandom, then for every n−c/2d ≤ p ≤ 1
2 the p-Densest-Subhypergraph problem

is intractable with respect to d-uniform hypergraphs.4

3A secondary limitation of our results is the fact that they yield NC0 collections rather than single explicit NC0

function. This is a minor technical issue with no actual effect on the applications, as the collection is indexed by a
public-index (basically the graph) which can be sampled once and then fixed for all future usages. A similar restriction
holds for heuristic constructions as well.

4We did not attempt to optimize the constraints and parameters and some of them can be improved.

4

By taking p = 1
2 , we obtain the same parameters as in [11, 19]. More interestingly, we can

obtain much stronger inapproximability ratio of, say, p = n−1/(2d) for a fixed locality d, assuming
that Fn4,Q is 1

n -pseudorandom (say when m = n4). As shown in Item 3 of Thm. 1.1, the latter
assumption follows from the one-wayness of Fm′,Q for sufficiently large polynomial m′(n) (e.g., n14).

Another advantage of Theorem 1.2, is that it yields average-case hardness over samplable dis-
tributions. Namely, we construct a pair of distributions Dyes and Dno over hypergraphs which are
indistinguishable and such that Dyes (resp., Dno) outputs whp a yes instance (resp., no instance).
Specifically, Dno will be a distribution over random graphs (whose number of edges is chosen from
the binomial distribution), and Dyes will be a distribution with a planted dense-subgraph which
essentially encodes a preimage of the pseudorandom generator.

The source of improvement. In a nutshell, the source of improvement over previous results
is due to the strong nature of pseudorandomness which allows us to apply some form of product
amplification for “free” without increasing the degree. In more detail. Pseudorandomness means
that for a random graph G, the pair (G, y) is indistinguishable from the pair (G, fG,Q(x)), where y
is a random m-bit string and x is a random n-bit string. We define a mapping ρ that given a graph
G and an m-bit string z, outputs a new graph G′ by throwing away all edges which are indexed by
0 under z. It can be shown that ρ maps the “random” distribution to No-instances of 1

2 − DSH,
and the pseudorandom distribution to Yes instances of 1

2 − DSH. Intuitively, the latter follows by
noting that, assuming that Q(1d) = 1, the set of nodes which are indexed by ones under x, does
not lose any hyperedge.

This leads to a basic hardness for p = 1
2 . Now, by a standard hybrid argument, one can

show that the graph – which is a public index – can be reused, and so the tuple (G, y1, . . . , y(t))
is indistinguishable from the tuple (G, fG,P (x(1)), . . . , fG,Q(x(t))) where the y’s are random m-bit
strings and the x’s are random n-bit strings. Roughly speaking, each of these t copies allows us to
re-apply the mapping ρ and further improve the parameter p by a factor of 2. (See full proof in
Section 7.)

It is instructive to compare this to Feige’s refutation assumption. The above distributions can
be viewed as distributions over satisfiable and unsatisfiable CSPs where in both cases the graph G
is randomly chosen. In contrast, Feige’s refutation assumption, is weaker as it essentially asks for
distinguishers that work well with respect to arbitrary (worst-case) distribution over the satisfiable
instances. Hence the graph cannot be reused and this form of amplification is prevented.

More on DSH. DSH is a natural generalization of the notoriously hard Densest k-Subgraph
(DSG) problem (e.g., [12]) whose exact approximation ratio is an important open question. The
best known algorithm achieves O(n1/4)-approximation [7], while known hardness results only rule
out PTAS [19]. Naturally, DSH, which deals with hypergraphs, only seems harder. DSH has
also a special role as a starting point for many other inapproximability results for problems like
graph min-bisection, bipartite clique, and DSG itself [11, 19]. Recently, it was shown how to use
the average-case hardness of DSH to plant a trapdoor in FQ,m, and obtain public-key encryption
schemes [3]. This raises the exciting possibility that, for random local functions, there may be
a “path” from one-wayness to public-key cryptography: first assume one-wayness of FQ,m, then
use Thm. 1.1 to argue that this collection is actually pseudorandom, then employ Thm. 1.2 to
argue that DSH is hard over a planted distribution, and finally, use [3] to obtain a public-key

5

cryptosystem. Unfortunately, the parameters given in Thm. 1.2 do not match the ones needed
in [3]; still we consider the above approach as an interesting research direction.

2 Our Techniques

To illustrate some of our techniques, let us outline the proof of Thm. 1.1.

2.1 Constructing Weak-PPRGs (Thm. 1.1– second item)

The basic procedure. Due to the known reduction from pseudorandomness to unpredictability
(aka Yao’s theorem [25]), it suffices to reduce the task of inverting FQ,m to the task of predicting the
next bit in the output of FQ,k with probability 1

2 + ε. Let us see how a prediction algorithm can be
used to recover some information on the input. Assume that the first input of Q has full influence,
and that we are given an ε-predictor P. This predictor is given a random (k, n, d) graph G, whose
hyperedges are labeled by the string y = fG,Q(x), and it should predict the label yk = Q(xS) of
the last hyperedge S = (i1, . . . , id). Given such a pair (G, y), let us replace the first entry i1 of S
with a random index ` ∈ [n] (hereafter referred to as “pivot”), and then invoke P on the modified
pair. If the predictor succeeds and outputs Q(xS′), then, by comparing this value to yk, we get to
learn whether the input bits x` and xi1 are equal. Since the predictor may err, we can treat this
piece of information as a single 2-LIN noisy equation of the form x` ⊕ xi1 = b where b ∈ {0, 1}.

A problematic approach. In order to recover x, we would like to collect many such equations
and then solve a Max-2-LIN problem. To this end, we may partition the graph G and the output
string y to many blocks (G(i), y(i)) of size k each, and then apply the above procedure to each block
separately. This approach faces a serious difficulty due to the low quality of the prediction. Recall
that we plan to employ Yao’s theorem, and therefore our reduction should work with prediction
advantage ε which is smaller than 1/k < 1/n. Hence, the 2-LIN equations that we collect are
highly noisy. One may try to “purify” the noise by collecting many (say n2/ε2) equations, and
correcting the RHS via majority vote, however, this approach is doomed to fail as the noise is not
random, and can be chosen arbitrarily by the adversary in a way that depends on the equations.
To see this, consider the trivial predictor which predicts well only when the output depends on x1,
and otherwise outputs a random guess. This predictor satisfies our condition (i.e., its prediction
advantage is 1/n) but it seems to be totally useless as it “gives only one bit of information”.

Partial re-randomization. We fix the problem by “flattening” the distribution of the predic-
tion errors over all possible hyperedges. This is done by re-randomizing the blocks (G(i), y(i)).
Specifically, we will permute the nodes of each G(i) under a random permutation π(i) : [n] → [n],
and invoke our basic procedure on the pairs (π(i)(G(i)), y(j)). This is essentially equivalent to shuf-
fling the coordinates of x. Furthermore, this transformation does not affect the distribution of the
graphs as edges were chosen uniformly at random any way. This yield a partial form of “random-
self-reducibility”: any input x is mapped to a random input of the same Hamming weight.

To show that the basic procedure succeeds well in each of the blocks, we would like to argue that
the resulting pairs are uniformly and independently distributed. This is not true as all the x(j) share
the same weight. Still we can show that this dependency does not decrease the success probability
too much. In fact, to reduce the overhead of the reduction, we introduce more dependencies.

6

For example, we always apply the basic procedure with the same “pivot” `. Again, the random
permutation ensures that this does not affect the output too much. This optimization (and others)
allow us to achieve a low overhead and take k = m · ε2.

2.2 Constructing LPRGs

Let us move to the case of LPRGs (the first item of Thm. 1.1). We would like to use the “basic
procedure” but our predicate is not necessarily sensitive. For concreteness, think of the majority
predicate. In this case, when recovering a 2-LIN equation, we are facing two sources of noise: one
due to the error of the prediction algorithm, and the other due to the possibility that the current
assignment xS is “stable” – flipping its i-location does not change the value of the predicate (e.g., in
the case of majority, any assignment with less than bd/2c ones). Hence, this approach is useful only
if the predictor’s success probability is larger than the probability of getting a stable assignment.
Otherwise, our predictor, which may act arbitrarily, may decide to predict well only when the
assignments are stable, and make a random guess otherwise. Therefore, we can prove only ε-
unpredictability for some constant ε < 1.5 This seems problematic as the transformation from
unpredictability to pseudorandomness (Yao’s theorem) fail for this range of parameters.

The solution is to employ a different transformation. Specifically, it turns out that the re-
cent transformation of [16] (HRV), which is based on randomness extractors, works well in this
range of parameters. The only problem is that, in general, one can show that NC0 cannot com-
pute good randomness extractors. Fortunately, it turns out that for the special case of constant
unpredictability and linear stretch, the HRV construction can be instantiated with low-quality ex-
tractors for which there are (non-trivial) NC0 implementations [21, 6]. This allows us to transform
any Ω(n)-long sequence with constant ε-unpredictability into an LPRG, while preserving constant
locality.

Let us return to the first step in which prediction is used for inversion. In the LPRG setting
we would like to base our construction on one-wayness with respect to O(n) output-length (rather
than super-linear length). Hence, the overhead of the reduction should be small, and we cannot
apply the basic procedure to independent parts of the output as we did in the PPRG case. Our
solution is to iterate the basic procedure n times with the same graph G, hyperedge S, and m-bit
string y, where in each iteration a different pivot j ∈ [n] is being planted in S. We show that,
whp, this allows to find a string x′ which agrees with x on more than 1

2 of the coordinates. At this
point we employ the recent algorithm of [8] which recovers x given such an approximation x′ and
fG,Q(x).

Organization. Some preliminaries are given in Section 3 including background on Goldreich’s
function and cryptographic definitions. Sections 4– 6 are devoted to the proof of Thm. 1.1, where
Sections 4 and 5 describe the reductions from inversion to prediction (for the LPRG setting and
for the PPRG setting), and Section 6 completes the proof of the main theorem based on additional
generic transformations. Finally, in Section 7, we prove Thm. 1.2.

5We show that the actual bound on ε depends on a new measure of “matching” sensitivity µ(Q) defined as follows:
Look at the subgraph of the d-dimensional combinatorial hypercube whose nodes are the sensitive assignments of
Q (i.e., the boundary and its neighbors), let M be a largest matching in the graph, and let µ(Q) = |M |/2d. For
example, for majority with an odd arity d, it can be shown that all the assignments of Hamming weight dd/2e and
bd/wc are in the matching and so the matching sensitivity is exactly 2

(
d

bd/2c
)
/2d.

7

3 Preliminaries

Basic notation. We let [n] denote the set {1, . . . , n} and [i..j] denote the set {i, i + 1, . . . , j} if
i ≤ j, and the empty set otherwise. For a string x ∈ {0, 1}n we let x⊕i denote the string x with its
i-th bit flipped. We let xi denote the i-th bit of x. For a set S ⊆ [n] we let xS denote the restriction
of x to the indices in S. If S is an ordered set (i1, . . . , id) then xS is the ordered restriction of x,
i.e., the string xi1 . . . xid . The Hamming weight of x is defined by wt(x) = | {i ∈ [n]|xi = 1} |. The
uniform distribution over n-bit strings is denoted by Un.

Hypergraphs. An (n, m, d) graph is a hypergraph over n vertices [n] with m hyperedges each
of cardinality d. We assume that each edge S = (i1, . . . , id) is ordered, and that all the d members
of an edge are distinct. We also assume that the edges are ordered from 1 to m. Hence, we can
represent G by an ordered list (S1, . . . , Sm) of d-sized (ordered) hyperedges. For indices i ≤ j ∈ [m]
we let G[i..j] denote the subgraph of G which contains the edges (Si, . . . , Sj). We let Gn,m,d denote
the distribution over (n,m, d) graphs in which a graph is chosen by picking each edge uniformly
and independently at random from all the possible n(d) def= n · (n − 1) · . . . · (n − d + 1) ordered
hyperedges.

Goldreich’s function. For a predicate Q : {0, 1}d → {0, 1} and an (n,m, d) graph G =
([n], (S1, . . . , Sm)) we define the function fG,Q : {0, 1}n → {0, 1}m as follows: Given an n-bit
input x, the i-th output bit yi is computed by applying Q to the restriction of x to the i-th hy-
peredge Si, i.e., yi = Q(xSi). For m = m(n), d, and a predicate Q : {0, 1}d → {0, 1}, we let
FQ,m : {0, 1}∗ → {0, 1}∗ be the mapping that for each length parameter n takes as an input a pair
of an (n,m, d) graph G and an n-bit string x, and outputs the pair (G, fG,Qn(x)).

Sensitivity and influence measures. Let Q : {0, 1}d → {0, 1} be a predicate. We associate
with Q a bipartite graph GQ = (V0∪V1, E) where Vb =

{
w ∈ {0, 1}d|Q(w) = b

}
and (u, v) ∈ V0×V1

is an edge if there exists an i ∈ [d] for which u = v⊕i. We define the following measures of Q. We
let ∂(Q) = Pr

w
R←{0,1}d

[w ∈ V1] denote the boundary of Q and let ∂̄(Q) = 1 − ∂(Q). A matching

M ⊆ V0 × V1 is a set of pair-wise distinct edges in GQ, i.e., for every pair (u, v) and (u′, v′) in M
we have u 6= u′ and v 6= v′. We will be interesting in the probability that a randomly selected node
lands inside a maximal matching:

Match(Q) = max
M

Pr
w

R←{0,1}d

[∃u s.t. (w, u) ∈ M or (u,w) ∈ M] = max
M

|M |/2n−1,

where the maximum is taken over all matchings in GQ. The matching density Match(Q) will be used
to measure the “sensitivity” of Q. We also rely on more traditional measures of sensitivity as follows.
The influence of the i-th coordinate of Q is defined by Infi(Q) = Pr

w
R←{0,1}d

[Q(w) 6= Q(w⊕i)]. We

let Infmax(Q) denote the maximal influence of a single coordinate maxi∈[d] Infi(Q). The following
simple proposition relates the different sensitivity measures.

Proposition 3.1. For any predicate Q : {0, 1}d → {0, 1} we have:

Infmax(Q) ≤ Match(Q) ≤ 2min(∂(Q), ∂̄(Q)) ≤
∑

i

Infi(Q) ≤ 2d∂(Q).

8

Proof. Consider the graph GQ and color each edge (u, v) by the color i ∈ [d] for which u = v⊕i.
The inequalities follow by counting edges while noting that Infmax(Q) measures the cardinality of
the largest monochromatic matching (in nodes),

∑
i Infi(Q) measures the sum of degrees, and d is

an upper bound on the maximal degree.

Also, recall that by [18], if Q is balanced then we also have c log d/d ≤ Infmax(Q) where c is a
universal constant.

3.1 Cryptographic definitions

Collection of Functions. Let s = s(n) and m = m(n) be integer-valued functions which are
polynomially bounded. A collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m takes two inputs
a public collection index k ∈ {0, 1}s and an input x ∈ {0, 1}n, the output F (k, x) consists of the
evaluation Fk(x) of the point x under k-th function in the collection. We always assume that the
collection is equipped with two efficient algorithms: a index-sampling algorithm K which given 1n

samples a index k ∈ {0, 1}s, and an evaluation algorithm which given (1n, k ∈ {0, 1}s, x ∈ {0, 1}n)
outputs Fk(x). We say that the collection is in NC0 if there exists a constant d (which does
not grow with n) such that for every fixed k the function Fk has output locality of d. All the
cryptographic primitives in this paper are modeled as collection of functions. We will always
assume that the adversary that tries to break the primitive gets the collection index as a public
parameter. Moreover, our constructions are all in the “public-coin” setting, and so they remain
secure even if the adversary gets the coins used to sample the index of the collection.

In the following definitions we let F : {0, 1}s × {0, 1}n → {0, 1}m be a collection of functions
where K is the corresponding index-sampling algorithm. We also let ε = ε(n) ∈ (0, 1) be a
parameter which measures the security of the primitive. All probabilities are taken over the explicit
random variables and in addition over the internal coin tosses of the adversary algorithms.

One-way functions. Informally, a function is one-way if given a random image y it is hard
to find a preimage x. We will also use a stronger variant of approximate one-wayness in which
even the easier task of finding a string which approximates the preimage is infeasible. Formally,
for a proximity parameter δ = δ(n) ∈ (0, 1

2) and security parameter ε = ε(n) ∈ (0, 1), we say
that a collection of functions F : {0, 1}s×{0, 1}n → {0, 1}m is (ε, δ) approximate one-way function
(AOWF) if for every efficient adversaryA which outputs a poly(n) list of candidates, and sufficiently
large n’s we have that

Pr
k

R←K(1n),x
R←Un,y=Fk(x)

[∃z ∈ A(k, y), z′ ∈ F−1
k (y) s.t. dist(z, z′) ≤ δ(n)] < ε(n),

where dist denotes the relative Hamming distance. In the special case of δ = 0, the collection F is
referred to as ε one-way, or simply one-way if in addition ε is a negligible function.6

6Note that in the case, of δ = 0, we can assume that the list contains a single candidate, as the algorithm can
efficiently check which of the candidates (if any) is a preimage. Hence, the notion of (0, ε)-approximate one-wayness
is indeed equivalent to the standard notion of ε one-wayness.

9

Indistinguishability. Let Y = {Yn} and Z = {Zn} be a pair of distribution ensembles. We say
that a pair of distribution ensembles Y = {Yn} and Z = {Zn} is ε-indistinguishable if for every
efficient adversary A, |Pr[A(1n, Y) = 1]− Pr[A(1n, Z) = 1]| < ε(n). We say that the ensembles
are ε statistically-close (or statistically-indistinguishable) if the above holds for computationally
unbounded adversaries.

Pseudorandom and unpredictability generators. Let m = m(n) > n be a length parameter.
A collection of functions F : {0, 1}s×{0, 1}n → {0, 1}m is ε pseudorandom generator (PRG) if the
ensemble (K(1n), FK(1n)(Un)) is ε-indistinguishable from the ensemble (K(1n),Um(n)). When ε is
negligible, we refer to F as a pseudorandom generator. The collection F is ε unpredictable generator
(UG) if for every efficient adversary A and every sequence of indices {in}, where in ∈ [m], we have
that

Pr
k

R←K(1n),x
R←Un,y=Fk(x)

[A(k, y[1..in−1]) = Fk(x)in] < ε(n).

We say that F is ε last-bit unpredictable if the above is true for the sequence of indices in = m(n).
We refer to m(n) − n as the stretch of the PRG (resp., UG), and classify it as sublinear if

m(n)− n = o(n), linear if m(n)− n = Ω(n) and polynomial if m(n)− n > n1+Ω(1).

Remark 3.2 (Uniform unpredictability). One may consider a uniform version of the unpredictabil-
ity definition where the sequence of indices {in} should be generated in polynomial-time by an effi-
cient algorithm which is given 1n (and is allowed to err with negligible probability). We prefer the
non-uniform version as it will be easier to work with. However, it is not hard to show that the two
definitions are essentially equivalent. Formally, for any inverse polynomials ε, and δ the notion of
ε-unpredictability (as per the above definition) implies uniform (ε+δ)-unpredictability. To see this,
consider an efficient adversary A that contradicts non-uniform unpredictability, and let us construct
an efficient algorithm B that generates a “good” sequence of indices. The idea is to estimate the
quantity pi which is the success probability of A in predicting the i-th bit of the sequence FK(1n)(Un)
based on the i− 1 prefix. By standard Chernoff bound, we can efficiently estimate each of the pi’s
(for i ∈ [n]) with an additive error of δ with all but exponentially small failure probability, and then
choose the best index.

3.2 Properties of Goldreich’s function

The following propositions shows that for the ensemble FQ,m last-bit unpredictability and standard
unpredictability are equivalent, and so are approximate one-wayness and standard one-wayness.

Proposition 3.3. For every constant locality d ∈ N and predicate Q : {0, 1}d → {0, 1}: If FQ,m

is ε last-bit unpredictable then FQ,m is also ε(1 + o(1))-unpredictable, for every m = poly(n) and
every ε = 1/poly(n).

Proof. The proof follows easily from the symmetric structure of F . Assume towards a contradiction
that FQ,m can be predicted with success probability ε. Suppose that there exists a next-bit predictor
P and a sequence of indices {in} such that

α(n) = Pr
x

R←Un,G
R←Gn,m,d,y=fG,Q(x),in

R←[m]

[P(G, y[1..in−1]) = yin].

10

We construct a last-bit predictor P′ with success probability of α − o(α) as follows. First, use
Remark 3.2 to efficiently find an index j ∈ [m] such that, with probability 1 − neg(n) over the
coins of P′, it holds that Pr[P(G, y1..j) = yj+1] > α(n)− α(n)2 where the probability is taken over
a random input and random coin tosses of P. Now given an input (G, y[1..m−1]), construct the
graph G′ by swapping the j-th edge Sj of G with its last edge Sm. Then, P′ invokes P on the
input (G′, y[1..j−1]) and outputs the result. It is not hard to verify that this transformation maps

the distribution (G R← Gn,m,d, fG,Q(Un)[1..m−1]) to (G R← Gn,m,d, fG,Q(Un)[1..j]), and so the claim
follows.

Proposition 3.4. For every constant locality d ∈ N, predicate Q : {0, 1}d → {0, 1}, and fixed
proximity parameter δ ∈ (0, 1

2) (which may depend on d), there exists a constant c = c(d, δ), such
that for every inverse polynomial ε = ε(n) the following hold.

1. For m > cn, if FQ,m is ε one-way then FQ,m is also (ε′ = ε + o(1), δ) approximate one-way.

2. If FQ,m+cn is ε one-way then FQ,m is (ε′ = ε(1 + o(1)), δ) approximate one-way.

Proof. Assume, without loss of generality, that Q is a non-constant d local predicate (otherwise, the
theorem is trivially true), and let 0 < δ < 1

2 be a fixed proximity parameter (that may depend on
d). In Thm. 2 of [8] it is shown that there exists a constant c = c(d, δ) and an efficient algorithm A
that inverts Fm,Q given a δ-approximation of the preimage x, for every fixed proximity parameter
δ ∈ (0, 1

2). More precisely, it is shown that for a fraction of 1− o(1) of all (m, n, d) hypergraphs G,
we have that

Pr
x

R←Un,y=fG,Q(x)

[∀x′ s.t. dist(x, x′) ≤ δ,A(y, x′) ∈ f−1
G,Q(y)] > 1− neg(n). (1)

We can now prove the proposition. Suppose that FQ,m is not (ε′, δ) approximate one-way. That
is, there exists an algorithm B which given (G, y = fG,Q(x)), where G is a random (m,n, d) graph

and x
R← Un, finds a string x′ which δ-approximates x with probability ε′ (for infinitely many

n’s). To prove the first item (where m > cn) invoke B, obtain an approximation x′ w.p. ε′, feed
the algorithm A with G, y and x′ and output its result. By a union bound, the overall success
probability is ε = ε′ − o(1) as required.

We move to the second item, and construct an ε-inverter for FQ,m+cn. Given an input (G, y =
fG,Q(x)), partition G and y into two pairs (G1, y1) and (G2, y2) where G1 (resp., y1) consists of
the first m hyperedges of G (resp., bits of y), and G2 (resp., y2) consists the last cn hyperedges
(resp., bits) of G (resp. of y). Now first apply B to (G1, y1) to obtain an approximation x′ and
then apply A to (G2, y2, x

′). Let us condition on the event that B succeeds, and the event that G2

is a “good” graph for A, i.e., that G2 satisfies Eq. 1. The two events are independent and so the
probability that they both happen is ε′(1 − o(1)). Conditioned on this, the algorithm A succeeds
with probability 1− neg(n), and so by a union bound we get that the overall success probability is
ε = ε′(1− o(1))− neg(n) = ε′(1− o(1)), as needed.

4 Random Local Functions with Constant Unpredictability

We will prove the following theorem:

11

Theorem 4.1 (one-way ⇒ somewhat-unpredictable). For every constants ε and d ∈ N there exists
a constant c > 0 such that the following holds. For every predicate Q : {0, 1}d → {0, 1} and m > cn
if the collection FQ,m is ε-one-way then it is also ε′-unpredictable for some constant ε′ < 1. (In
particular, ε′ = 1−Match(Q)/2 + Θ(ε).)

By Propositions 3.3 and 3.4 (part 1), we can replace next-bit prediction with last-bit predictor
and exact inversion with approximate inversion. Hence, it suffices to prove the following:

Theorem 4.2 (approximate one-way⇒ last-bit unpredictability). For every polynomial m = m(n),
constant d ∈ N, predicate Q : {0, 1}d → {0, 1}, and constant 0 < ε < µ = Match(Q), if the collection
FQ,m is (ε/4, 1

2 +ε/6) approximate-one-way then it is (1−µ/2+ε)-last-bit unpredictable generator.

Recall, that µ > 2−d for a non-fixed predicate and µ > Ω(log d/d) if the predicate is balanced.
The proof of the theorem is given in Section 4.1.

4.1 Proof of Thm. 4.2

To prove the theorem we consider the following algorithm (see Figure 1) which makes calls to a
last-bit predictor P. Syntactically, P takes as an input an (m − 1, n, d) graph G, an (m − 1)-bit
string y (supposedly y = fG,Q(x)), and an hyperedge S, and outputs its guess for Q(xS).

• Input: an (n,m, d) graph G and a string y ∈ {0, 1}m.

• Randomness: Choose uniformly at random a set S = (i1, . . . , id), and an index ` ∈ [d],
as well as random coins r for P.

1. For every i ∈ [n]: Let x̂i = P(G, y, S`←i; r), where S`←i is the set obtained by replacing
the `-th entry in S with the index i, and P is always invoked with the same fixed
sequence of coins r.

2. Output the candidate x̂ and its complement.

Figure 1: Basic Algorithm.

We analyze the algorithm. In order to succeed we intuitively need two conditions (1) sensitivity:
flipping the `-th entry of xS should change the value of the predicate Q; and (2) correctness: The
predictor should predict well over many of the i’s. We will prove that conditions of this spirit
indeed guarantee success, and then argue that the conditions hold with good enough probability
(taken over a random input and the random coins of the algorithm).

We begin by formalizing these conditions. We say that the tuple (x,G, r, S, `) is good if the
following two conditions hold

Q(xS) 6= Q(x⊕`
S) (2)

where z⊕i denotes the string z with its i-th bit flipped, and, in addition, for at least (1
2 + ε/6)

fraction of the i ∈ [n]
P(G, fG,Q(x), S`←i; r) = Q(xS`←i

). (3)

It is not hard to see that a good tuple leads to a good approximation of x.

12

Lemma 4.3. If the tuple (x,G, r, S, `) is good then either x̂ or its complement agrees with x for a
fraction of (1

2 + ε/6) of the indices.

Proof. Let j` be the `-th entry of S. Then, by Eq. 2, we can write

Q(xS`←i
) = Q(xS)⊕ xj`

⊕ xi.

Hence, for every i ∈ [n] for which Eq. 3 holds we have that

x̂i = P(G, y, S`←i; r) = Q(xS`←i
) = Q(xS)⊕ xj`

⊕ xi = b⊕ xi,

where b = Q(xS)⊕ xj`
. Hence, if b = 0 the output x̂ agrees with x on a fraction of (1

2 + ε/6) of its
coordinates, and otherwise, the complement 1− x̂ has such an agreement.

In the next section, we will prove that for many of the triples (x,G, r), a randomly chosen (S, `)
forms a good tuple with probability Ω(εµ/d).

Lemma 4.4. For at least ε− neg(n) fraction of the pairs (x,G), we have that

Pr
S,`,r

[(x,G, r, S, `) is good] > Ω(εµ/d)). (4)

We can now prove Thm. 4.2.

Proof of Thm. 4.2. Given an input G and a string y = fG,Q(x), invoke the basic algorithm O(d/(εµ))
times each time with a randomly chosen coins, and output all the O(d/(εµ)) candidates. Let us
condition on the event that the pair (G, x) satisfies Eq. 4, which, by Lemma 4.4, happens with
probability at least ε/2. In this case, by Lemmas 4.3 and 4.4, in each iteration we will output with
probability Ω(εµ/d) a good candidate whose agreement with x is (1

2 + ε/6)n. Since the success
probability of each iteration is independent of the others, we can make sure that at least one it-
eration succeeds with probability ε/4, and so, by a union bound, the overall success probability is
ε/2− ε/4 = ε/4.

4.2 Proof of Lemma 4.4

Call x balanced if wt(x) ∈ (n/2± n2/3). We call a triple (x,G, r) good if x is balanced and

Pr
S

[P(G, fG,Q(x), S; r) = Q(xS)] > 1− µ/2 + ε/2. (5)

Claim 4.5. A random triple (x,G, r) is good with probability ε− neg(n).

Proof. By our assumption on P we have that

Pr
G,S,x,r

[P(G, fG,Q(x), S; r) = Q(xS)] > 1− µ/2 + ε.

Hence, by Markov’s inequality and the fact that ε < µ,

Pr
G,x,r

[(x, G) satisfy Eq. 5] > ε/(µ− ε) > ε.

Finally, by a Chernoff bound, a random x is balanced with probability 1−neg(n), and so can write

Pr
G,x is balanced,r

[(x,G) satisfy Eq. 5] > ε− neg(n),

and the claim follows.

13

Fix a good triple (x, G, r). Let us define for every set S the event A(S) which happens if
P(G, fG,Q(x), S; r) = Q(xS). To prove Lemma 4.4 it suffices to show that

Lemma 4.6. For a fraction of at least εµ
3d · (1− o(1)) of the pairs (S, `), the following hold:

Q(xS) 6= Q(x⊕`
S) (6)

Pr
i∈[n]

[A(S`←i)] >
1
2

+ ε/6 (7)

Proof. First, we will need some definitions. For a set S let xS ∈ {0, 1}d be the “label” of the
set. Let M be a maximal matching of the predicate Q whose cardinality is µ2d. We restrict our
attention to sets S for which xS ∈ M . For such S, we define the index `(S) to be the single integer
` ∈ [n] for which the pair (xS , x⊕`

S) is an edge in M . (Since M is a matching, S will have exactly
one index.) Observe, that by definition, we have that Q(xS) 6= Q(x⊕`

S), where ` is the index of S.
Hence, to prove the lemma, it suffices to show that the following probabilistic event E:

xS ∈ M
∧

` = `(S)
∧

Pr
i∈[n]

[A(S`←i)] >
1
2

+ ε/6,

happens with probability at least εµ
3d · (1 − o(1)) over a random choice of S and `. PrS,`[E] is

lower-bounded by

Pr
S

[xS ∈ M] · Pr
`

R←[d]

[` = `(S)] · Pr
S s.t. xS∈M

[
Pr

i
R←[n]

[A(S`(S)←i)] >
1
2

+ ε/6

]
.

Clearly, we have that Pr
`

R←[d]
[` = `(S)] = 1/d and so it suffices to show that

Pr
S

[xS ∈ M] > µ− o(1) (8)

Pr
S s.t. xS∈M

[
Pr

i
R←[n]

[A(S`(S)←i)] >
1
2

+ ε/6

]
> ε/3. (9)

Before we prove Eq. 8 and 9, we need the following simple observation. Note that the labels
of S (which are d-bit strings) induce a partition over all the n(d) sets to 2d classes. For a label
z ∈ {0, 1}d, let pz denote the probability that a random set S is labeled by z. Note that pz depends
only in the Hamming weight of z (and x). In particular, since x is balanced and d is small, we have

Claim 4.7. For every z ∈ {0, 1}d, pz ∈ 2−d ± o(1).

Proof. Since x is balanced (n/2−n2/3−d
n)d < pz < (n/2+n2/3

n−d)d, and the claim follows as d < o(n1/3).

Hence, Eq. 8 follows as

Pr
S

[xS ∈ M] =
∑

z∈M

pz =
(
µ2d · 2−d(1± o(1))

)
= (µ± o(1)).

From now on, we focus on proving Eq. 9. We begin by showing that P succeeds well with
respect to a set S chosen uniformly over all S’s for which xS is a node in M .

14

Claim 4.8. PrS s.t. xS∈M [A(S)] > 1
2 + ε/3.

Proof. By Bayes’ theorem and the goodness of (x, G) we have

1− µ/2 + ε < Pr
S

[A(S)] = Pr
S

[xS /∈ M] · Pr
S s.t. xS /∈M

[A(S)] + Pr
S

[xS ∈ M] · Pr
S s.t. xS∈M

[A(S)],

by rearranging the equation and by noting that PrS s.t. xS /∈M [A(S)] is at most 1, we get

Pr
S s.t. xS∈M

[A(S)] >

(
Pr
S

[A(S)]− Pr
S

[xS /∈ M]
)
· 1
PrS [xS ∈ M]

>
1− µ/2 + ε− 1 + PrS [xS ∈ M]

PrS [xS ∈ M]
.

Recall that PrS [xS ∈ M] = (µ± o(1)), hence, we conclude that

Pr
S s.t. xS∈M

[A(S)] >
1− µ/2 + ε− 1 + µ− o(1)

µ + o(1)

=
µ/2 + ε/2− o(1)

µ + o(1)

>
1
2

+ ε/2− o(1),

and the claim follows.

Note that in Eq. 9, we are actually interested in prediction over a random “neighbor” S`(S)←i

of S. To analyze this, we need one final observation. We use the graph M to define a larger graph
H over all the sets S for which xS ∈ M . The edges of H are defined as follows: each S is connected
to n nodes where the i-th node is S`←i where ` is the index of S. We put forward some basic facts
about the graph H:

Claim 4.9. The graph H is undirected and each node has exactly n distinct neighbors including
one self loop.

Proof. We show that the graph is undirected. Fix an edge (S, T = S`←i) where xS = z and ` be
the index of S, i.e., (z, z⊕`) is an edge in M . We claim that ` is also the index of T . Indeed, by
definition xT is either z or z⊕` and therefore T ’s index is `. It follows that for every j the pair
(T, T`←j) is also an edge in H and by taking j to be the `-th entry of S we get that (T, T`←j = S)
is an edge. The rest of the claim follows directly from the definition of H.

In fact, it is not hard to verify that the edges form an equivalence relation and therefore the
graph is composed of n-sized cliques. We can now prove Eq. 9. Namely, that P predicts well over
a set S′ which is a random neighbor of a random set S (for which xS ∈ M):

Claim 4.10. For at least ε/3 fraction of all sets S for which xS ∈ M we have

Pr
i

R←[n]

[A(S`(S)←i)] >
1
2

+ ε/6.

15

Proof. First note that

Pr
S s.t. xS∈M,i

R←[n],T=S`(S)←i

[A(T)] = Pr
S s.t. xS∈M

[A(S)]. (10)

Indeed, the set T is chosen by first choosing a random node S in the regular graph H and then
letting T be a random neighbor of S in H. Hence, since H is a regular graph, T is just a random
node (uniformly distributed over all S for which xS ∈ M). Now by Claim 4.8, the rhs of Eq. 10 is
at least 1

2 + ε/3, and so the current claim (4.10) follows from Markov’s inequality.

This completes the proof of Lemma 4.6.

5 Random Local Functions with (1
2 + 1/poly)-Unpredictability

In this section we prove the following theorem:

Theorem 5.1 (one-way ⇒ (1
2 +1/poly)-unpredictable). Let d ∈ N be a constant locality parameter

and Q : {0, 1}d → {0, 1} be a sensitive predicate. Then, for every m ≥ n and inverse polynomial ε,
if FQ,m/ε2 is ε-one-way then FQ,m is (1

2 + cε)-unpredictable, for some constant c = c(d) > 0.

For simplicity, and, without loss of generality, we assume that the first variable of Q has maximal
influence, i.e., Inf1(Q) = 1. We rely on the following notation. For a permutation π : [n] → [n] and
an ordered set S = {i1, . . . , id} ⊆ [n] we let π(S) denote the ordered set {π(i1), . . . , π(id)} ⊆ [n].
For an (m,n, d) graph G = (S1, . . . , Sm) we let π(G) denote the (m,n, d) graph (π(S1), . . . , π(Sm)).
For a string x ∈ {0, 1}n, the string π(x) is the string whose coordinates are permuted according to
π.

To prove the theorem, assume towards a contradiction that we have a predictor P that predicts
the last output with probability 1

2 + ε for infinitely many n’s where ε is an inverse polynomial. (A
standard next-bit predictor can be transformed to such predictor by Prop. 3.3.) Syntactically, P
takes as an input an (m− 1, n, d) graph G, an (m− 1)-bit string y (supposedly y = fG,Q(x)), and
an hyperedge S, and outputs its guess for Q(xS). Consider the algorithm Invert (see Figure 2),
which is parameterized with t, and makes calls to the subroutine Vote (Figure 3).

Analysis. From now on fix a sufficiently large input length n for which P is successful. Let us
focus on the way our algorithm recovers one fixed variable i ∈ [n]. First we will show that in
each call to the subroutine Vote, whenever the predictor predicts correctly, we get a “good” vote
regarding whether xi and x` agree. Hence, if our global guess b for x` is correct, and most of the
predictions (in the i-th iteration of the outer loop) are good, we successfully recover xi. In order
to show that the predictor succeeds well, we should analyze the distribution on which it is invoked.
In particular, we should make sure that the marginal distribution of each query to P is roughly
uniform, and, that the dependencies between the queries (during the i-th iteration of the outer
loop) are minor. This is a bit subtle, as there are some dependencies due to the common input x
and common pivot `. To cope with this, we will show (in Lemma 5.2) that these queries can be
viewed as independent samples, alas taken from a “modified” distribution which is different from
the uniform. Later (in Lemma 5.3) we will show that, whp, P predicts well over this distribution
as well.

16

• Input: an (n, tm, d) graph G and a string y ∈ {0, 1}tm, where t is a parmeter.

1. Partition the input (G, y) to t blocks of length m where y(j) = y[(j−1)m+1..jm] and
G(j) = G[(j−1)m+1..jm].

2. Choose a random pivot `
R← [n], and a random bit b (our guess for x`).

3. For each i ∈ [n] we recover the i-th bit of x as follows:

(a) For each j ∈ [t], invoke the subroutine Vote on the input (G(j), y(j), i) with global
advice `, and record the output as vi,j .

(b) Set vi to be the majority vote of all vi,j ’s.

4. If b = 0 output v; otherwise output the complement 1− v.

Figure 2: Algorithm Invert.

• Input: an (n,m, d) graph G, a string y ∈ {0, 1}m, an index i ∈ [n].

• Global advice: index ` ∈ [n].

1. Choose a random hyperedge S = (S1, . . . , Sd) from G subject to the constraint S1 = i
and ` /∈ {S2, . . . , Sd}. Let s denote the index of S in G, i.e., S = Gs. (If no such edge
exist abort with a failure symbol.)

2. Let G′ be the same as G except that the hyperedge S is removed. Similarly, let y′ be
the string y with its s-th bit removed. Define the hyperedge S′ = (`, S2, . . . , Sd).

3. Choose a random permutation π : [n] → [n], and let (H = π(G′), y′, T = π(S′)).

4. Output P(H, z, T)⊕ ys.

Figure 3: Algorithm Vote.

17

The modified distribution. Let Xk denote the set of all n-bit strings whose Hamming weight
is exactly k. For k ∈ [n] and a bit σ ∈ {0, 1} define the distribution Dk,σ over tuples (G, r, y, T) as
follows: the graph G is sampled from Gn,m−1,d, the string r is uniformly chosen from Xk, the string
y equals to fQ,G(r), and the hyperedge T = {T1, . . . , Td} is chosen uniformly at random subject to
rT1 = σ. In Section 5.1, we prove the following lemma:

Lemma 5.2. Let (G, y, `, i) be the input to Vote where G
R← Gn,m,d, the indices ` ∈ [n] and i ∈ [n]

are arbitrarily fixed and y = fQ,G(x) for an arbitrary fixed x ∈ {0, 1}n. Consider the random
process Vote(G, y, `, i) induced by the internal randomness and the distribution of G. Then, the
following hold:

1. The process fails with probability at most 1/2.

2. Conditioned on not failing, the random variable (H,π(x), y′, T) is distributed according to
Dk,x`

, where k is the Hamming weight of x.

3. Conditioned on not failing, if the outcome of the predictor P(H, y′, T) equals to Q(π(x)T)
then the output of Vote is xi ⊕ x` (with probability 1).

Our next goal is to show that with good probability over x and the pivot `, the predictor P
predicts well on the distribution Dwt(x),x`

. In Section 5.2, we prove the following lemma:

Lemma 5.3. With probability Ω(ε) over a random choice of the input x
R← Un and the pivot `

R← [n],
we have that

Pr
(G,r,y,T)

R←Dwt(x),x`

[P(H, y, T) = Q(rT)] >
1
2

+ ε/2.

We can now prove the theorem.

Proof of Thm. 5.1 given the lemmas. Let us condition on the event that x and ` satisfy the equation
of Lemma 5.3, and that our guess b for x` was successful. By Lemma 5.3, this event happens with
probability Ω(ε) · 1

2 = Ω(ε). From now on, we assume that x, ` and b are fixed. Let us now upper-
bound the probability that the output of Invert disagrees with x on the i-th bit for a fixed index
i ∈ [n]. Define a random variable αj which takes the value 1 if the vote vi,j is good i.e., vi,j = xi⊕x`,
takes the value −1 if the vote is incorrect, and takes the value 0 if the subroutine Vote fails. Observe
that we recover xi correctly if

∑
αj is positive (as our guess b for x` is assumed to be correct).

By Lemmas 5.2 and 5.3, the αj ’s are identically and independently distributed random variables
which takes the value 0 with probability at most 1/2, and conditioned on not being zero take the
value 1 with probability at least 1

2 + Ω(ε). We claim that the probability of
∑

αj ≤ 0 is at most
exp(−Ω(tε2)). Indeed, first observe that, by a Chernoff bound, the probability of seeing at most
2t/3 zeroes is at least 1−exp(−Ω(t)). Now, conditioned this event, the t′ > t/3 remaining non-zero
αi’s are i.i.d random variables that take the value ±1 w/p 1

2±Ω(ε). Hence, by Hoefding’s inequality,
the probability that their sum is negative is at most exp(−Ω(t′ε2)) = exp(−Ω(tε2)). Overall, by a
union bound, the probability that the i-th bit of x is badly recovered (i.e.,

∑
αj ≤ 0) is at most

exp(−Ω(tε2)) + exp(−Ω(t)) < exp(−Ω(tε2)).
This already implies a weaker version of Thm. 5.1, as by taking t = O(lg n/ε2) we get that each

bit of x is recovered with probability 1 − 1/n2 and so by, a union bound, we recover all the bits

18

of x with overall probability of Ω(ε)(1− o(1)) > Ω(ε). This shows that FQ,O(m lg n/ε2) is Ω(ε)-one-
way. To obtain the stronger version (without the lg n overhead), we employ Prop. 3.4. Namely,
we let t = O(1/ε2), and so with probability Ω(ε) each bit of x is recovered with probability 3/4.
These predictions are not independent. However, by Markov (conditioned on the above) at least
2/3 of the indices are recovered correctly with some constant probability, and overall we get an
inverter that finds a 1/3-approximation of x with probability Ω(ε), which, by Prop. 3.4 (part 2),
contradicts the Ω(ε)-one-wayness of FQ,O(m/ε2)+cdn, where cd is a constant that depends only in
the locality d. Overall, we showed that if FQ,m′ is ε′-one-way then FQ,m is 1

2 + ε hard to predict,
for m′ = O(m/ε2) + cdn and ε′ = Ω(ε). By letting ε′ = c′ε for some constant c′ = c′(d), we can set
m′ = m/ε′2 (as m ≥ n), and derive the theorem.

In Section 5.3 we will show that the above theorem generalizes to variants of FQ,m that capture
some of the existing heuristic candidates.

5.1 Proof of Lemma 5.2

First item. We lower-bound the probability of failure. First, the probability that G has no
hyperedge whose first entry equals to i is (1− 1/n)m < (1− 1/n)n < 2/5. Conditioned on having
an hyperedge whose first entry is i, the probability of having ` as one of its other entries is at most
O(d/n). Hence, by a union bound, the failure probability is at most 2/5 + O(d/n) < 1/2.

Second item. Fix x and let k be its Hamming weight. Let x+ be the support of x, i.e., set of
indices j such that xj = 1. Consider the distribution of the pair (G,S) defined in Step 1. This
pair can be sampled independently as follows: first choose a random hyperedge S whose first entry
is i and ` does not appear in its other entries, then construct G by choosing a random graph R
from Gn,m−1,d and by planting S in a random location at R. From this view, it follows that the

pair (G′, S′) (defined in Step 2) is independently distributed such that G′ R← Gn,m−1,d and S′ is a
random hyperedge whose first entry is `. Since x is fixed and y′ = fQ,G′(x), we have now a full
understanding of the distribution of the tuple (G′, x, y′, S′).

We will now analyze the effect of the permutation π. Let x′ = π(x) and H = π(G′). First,
observe that for every fixed permutation π the tuple (H, x′, y′) satisfies y′ = fQ,H(x′) since y′ =
fQ,G′(x). Moreover, since G′ is taken from Gn,m−1,d, so is H = π(G) even when π is fixed. Let us
now pretend that the random permutation π is selected in two steps. First, choose a random set
A ⊆ [n] of size k and then, in the second step, choose a random permutation πA subject to the
constraint that π(x+) = A.

Consider the distribution of x′ which is induced by the random choice of A, i.e., before the
second step was performed. Already in this phase we have that x′ is uniformly and independently
distributed according to Xk. Hence, (H R← Gn,m−1,d, x

′ R← Xk, y
′ = fQ,H(x′)).

Let us now fix both H and A (and therefore also x′) and so the only randomness left is due
to the choice of πA. We argue that the hyperedge T = πA(S′) is uniformly and independently
distributed under the constraint that the first entry τ of T satisfies x′τ = x`. To see this, recall that
S′1 = `, and so the entry T1 = πA(`) is mapped to a random location in the set

{
j : x′j = x`

}
, also

recall that the last d− 1 entries of S′ are random indices (different than `) and so for every fixing
of πA the d− 1 last entries of T are still random. This completes the proof as we showed that the
tuple (H, x′, y′, T) is distributed properly.

19

Third item. Let us move to the third item. Suppose that P outputs the bit Q(π(x)T). Then,
since T = π(S′), the result equals to Q(xS′), which, by definition, can be written as Q(xS)⊕x`⊕xi.
Hence, when this bit is XOR-ed with Q(xS), we get x` ⊕ xi, as required.

5.2 Proof of Lemma 5.3

We define a set X of “good” inputs by taking all the strings of weight k ∈ K for some set K ⊂ [n].
We will show that X captures Ω(ε) of the mass of all n-bit strings, and that for each good x the
predictor P predicts well with respect to the cylinder Xwt(x). Specifically, let pk = Pr[Un ∈ Xk]
and let qk be

Pr
x

R←Xk,G
R←Gn,m−1,d,S

R←([n]
d)

[P(G, fQ,G(x), S) = Q(xS)].

We let X =
⋃

k∈K Xk where K is defined via the following claim.

Claim 5.4. There exists a set K ⊆ {
n/2− n2/3, . . . , n/2 + n2/3

}
for which:

∑

k∈K

pk > ε/3 (11)

∀k ∈ K, qk >
1
2

+ ε/2 (12)

Proof. By definition, we have
n∑

k=1

pk · qk >
1
2

+ ε.

By a Chernoff bound, for all k 6∈ (n/2± n2/3) we have pk < neg(n), and therefore,
∑

k∈(n/2±n2/3)

pk · qk >
1
2

+ ε− neg(n).

Let K ⊆ (n/2 ± n2/3) be the set of indices for which qk > 1
2 + ε/2. By Markov’s inequality,∑

k∈K pk > ε/3, as otherwise,

1
2
+ε−neg(n) <

∑

k∈(n/2±n2/3)

pk ·qk =
∑

k∈K

pk ·qk+
∑

k∈(n/2±n2/3)\K
pk ·qk < ε/3+

(
1
2

+ ε/2
)

=
1
2
+5ε/6,

and, since ε is an inverse polynomial, we derive a contradiction for all sufficiently large n’s.

For a bit σ ∈ {0, 1} let qk,σ be

Pr
x

R←Xk,G
R←Gn,m−1,d,S

R←([n]
d)

[P(G, fQ,G(x), S) = Q(xS)|xS1 = σ],

where S1 denotes the first entry of S. Observe that for every k there exists a σk ∈ {0, 1} for which
qk,σk

≥ qk. Hence, by the above claim, we have that with probability Ω(ε) over a random choice of

the input x
R← Un, we have that x ∈ X and so

Pr
(G,r,y,T)

R←Dwt(x),σwt(x)

[P(H, y, T) = Q(rT)] >
1
2

+ ε/2.

20

To complete the proof of the lemma, observe that for every x ∈ X, since x is balanced, the
probability that a random pivot `

R← [n] satisfies x` = σwt(x) is at least (n/2− n2/3)/n = 1
2 − o(1).

Hence, with probability Ω(ε) over the random choice of x and `, we have that qwt(x),x`
> 1

2 + ε/2
as required.

5.3 Generalization to the noisy case

Let Q be a sensitive predicate. Consider the collection F ′Q,m which is indexed by a random (m,n, d)
graph G, and given x it outputs (G, fG,Q(x)⊕E), where E is a “noise” distribution over {0, 1}m with
the following properties: (1) it is independent of G and x; (2) it is invariant under permutations:
for every π : [m] → [m] the random variable π(E) is identically distributed as E; and (3) it
can be partitioned to t blocks E = (Ei) of length b each, such that each block is identically and
independently distributed. We may also slightly generalize this and allow E to have an index k
which is sampled and given as part of the index of the collection F ′Q,m. One-wayness is defined
with respect to x, that is, we say that F ′Q,m is ε-one-way if it is hard to recover x with probability
ε. Theorem 5.1 can be generalized to this setting as follows.

Theorem 5.5 (Thm. 5.1: generalization). Let d ∈ N be a constant locality parameter and Q :
{0, 1}d → {0, 1} be a sensitive predicate. Let m ≥ n be the block length of the noise E. Then, for
every inverse polynomial ε, if F ′Q,m lg n/ε2 is ε-one-way then F ′Q,m is (1

2 + Ω(ε))-unpredictable.

The proof is the essentially the same as the proof of Thm. 5.1. Algorithm Invert is being used,
and its analysis does not change due to the symmetry and independence of the noise. The only
difference is that we do not know whether the reduction from approximate one-wayness to one-
wayness holds and so we employ the algorithm invert with t = lg n/ε2 overhead to ensure inversion
rather than approximate inversion.

This generalization can capture the case of noisy-local-parity construction ([1, 6, 3]) where Q
is linear (i.e., “exclusive-or”) and each bit of E is just an independently chosen noisy bit taken to
be one with probability p < 1

2 (e.g., 1/4). It also captures a variant of the MST construction [21],
and so in both cases we prove weak pseudorandomness from one-wayness.

6 From Unpredictability to Pseudorandomness

We will prove the main theorem by combining our “one-wayness to unpredictability” reductions
(proved in Sections 4 and 5) with several generic transformations.

First we will need the well-known theorem of Yao [25] which shows that sufficiently strong
unpredictability leads to pseudorandomness:

Fact 6.1 (Good UG ⇒ PRG). A UG of output length m(n) and unpredictability of 1
2 + ε, is a

PRG with m · ε pseudorandomness.

By combining this fact with Thm. 5.1 we obtain item 3 of Thm. 1.1:

Corollary 6.2 (Thm. 1.1, item 3 restated). For every constant d, sensitive predicate Q : {0, 1}d →
{0, 1}, length parameter m(n) ≥ n, and an inverse polynomial δ(n) ∈ (0, 1), if FQ,m3/δ2 is one-way
then FQ,m is cδ-pseudorandom, for some constant c = c(d) > 0.

21

Proof. By Thm. 5.1, if FQ,m3/δ2 is one-way then FQ,m is (1
2 +Ω(δ/m))-unpredictable, and by Yao’s

theorem (Fact 6.1) the latter is Ω(δ)-pseudorandom.

Recall that in Thm. 4.1 we showed that for constant ε and sufficiently large m = Ω(n) if FQ,m

is ε-one-way then it is also ε′-unpredictable for some related constant ε′ < 1. We would like to
use this theorem to obtain a linear stretch PRG. However, in this case Yao’s theorem (Fact 6.1)
is useless as we have only constant unpredictability. For this setting of parameters we give an
alternative new NC0 transformation from UG to PRG which preserves linear stretch.

Theorem 6.3. For every constant 0 < ε < 1
2 , there exists a constant c > 0 such that any NC0

unpredictable generator G : {0, 1}n → {0, 1}cn which is (1
2 + ε)-unpredictable, can be transformed

into an NC0 pseudorandom generator with linear stretch (e.g., that maps n bits to 2n bits).

The theorem is proved by combining the techniques of [16] with non-trivial NC0 randomness
extractors from [6]. The proof of this theorem is deferred to Section 6.1.

As a corollary of the above theorem and Thm. 4.1 we get:

Corollary 6.4 (Thm. 1.1, item 1 restated). Let d ∈ N be an arbitrary constant and Q : {0, 1}d →
{0, 1} be a predicate. Then there exists a constant c = cd such that if FQ,cn is 1

2 -one-way then there
exists a collection of PRGs which doubles its input in NC0.

We mention that by standard techniques (see Fact 6.5 below), we can obtain any fixed linear
stretch at the expense of increasing the locality to a different constant.

We will now show that for sensitive Q if FQ,n1+δ is one-way then one get get arbitrary polynomial
stretch and arbitrary (fixed) inverse polynomial security in NC0 (i.e., prove Thm. 1.1, item 2). For
this purpose, we will need the following amplification procedures (together with Thm. 5.1):

Fact 6.5 (Amplifying unpredictability and stretch). For every polynomials t = t(n) and s = s(n):

1. A d-local UG G : {0, 1}n → {0, 1}m(n) with unpredictability of 1
2 + ε(n), can be transformed

into a (td)-local UG G′ : {0, 1}n·t → {0, 1}m(n) with unpredictability of ε′ = (ε(n))Ω(t)+neg(n).

2. A d-local PRG G : {0, 1}n → {0, 1}nb
with pseudorandomness ε(n), can be transformed into

a (ds)-local PRG G′ : {0, 1}n → {0, 1}n(bs)
with pseudorandomness sε(n).

The above fact also holds with respect to collections. The first part is based on Yao’s XOR-
lemma, and may be considered to be a folklore, and the second part is based on standard compo-
sition. A proof is given in Section A for completeness.

We can prove Thm. 1.1, item 2.

Corollary 6.6 (Thm. 1.1, item 2 restated). For every constant d, sensitive predicate Q : {0, 1}d →
{0, 1}, and constant δ > 0. If FQ,n1+δ is one-way then for every stretch parameter 1 < a < O(1)
and security parameter 1 < b < o(n) there exists a collection of PRGs of output length na and
pseudorandomness of 1/nb + neg(n) with locality d′ = (bd/δ)O(lg a

δ
).

Note that for fixed δ > 0, we can have PPRG with arbitrary fixed polynomial stretch and
security with constant locality. Alternatively, by setting b = b(n) = ω(1) (e.g., b = log∗(n)), we get
a standard PPRG with slightly super constant locality.

22

Proof. Fix d,Q and δ, and assume that FQ,n1+δ is one-way. With out loss of generality, δ ≤ 1.
Then, by Thm. 5.1, FQ,n1+δ/4 is (1

2 + n−δ/4)-unpredictable. We can now amplify unpredictability
via Fact 6.5, part 1.

Specifically, by taking t = Ω(b/δ) we get a new generator G with input length ` = tn, output
length n1+δ/4 = `1+δ/5, locality td and unpredictability of n−(b+4) = `−(b+3). By Yao’s theorem
(Fact 6.1) the resulting collection is pseudorandom with security `−(b+3) ·`1+δ/5 = `−(b+1) (as δ ≤ 1).

Finally, increase the stretch of the PRG by applying s-composition (Fact 6.5, part 2), for
s = lg(a)/ lg(1 + δ/5). This leads to a PRG which stretches `-bits to `(1+δ/5)s

= `a bits, with
pseudorandomness of s · `−(b+1) < `−b, and locality of (td)s = (bd/δ)O(lg a

δ
).

6.1 Proof of Thm. 6.3

We will prove the following weaker version of Thm. 6.3.

Theorem 6.7. There exist constants 0 < ε0 < 1
2 and c0 > 0 such that if there exists an NC0 UG

(resp., collection of UG) G : {0, 1}n → {0, 1}c0n which is (1
2 + ε0)-unpredictable, then there exists

an NC0 PRG (resp., collection of PRG) with linear stretch.

Note that this version implies Thm. 6.3, as for any fixed ε > 0 given (1
2 + ε)-unpredictable gen-

erator G : {0, 1}n → {0, 1}cn with sufficiently large constant c = cε, we can amplify unpredictability
(via Fact 6.5, part 2) and obtain a new UG in NC0 and unpredictability of (1

2 + ε0) and stretch
c0n.

To prove the theorem we will employ NC0 randomness extractors.

Extractors. The min-entropy of a random variable X is at least k if for every element x in the
support of X we have that Pr[X = x] ≤ 2−k. A mapping Ext : {0, 1}`×{0, 1}n → {0, 1}N is a (k, µ)
randomness extractor (or extractor in short), if for every random variable X over {0, 1}n with min-
entropy of k, we have that Ext(U`, X) is µ statistically-close to the uniform distribution. We refer to
µ as the extraction error, and to the first argument of the extractor as the seed. We typically write
Extr(x) to denote Ext(r, x). We will use the following fact which follows by combining Lemma 5.7
and Thm. 5.12 of [6]:

Fact 6.8 (Non-trivial extractors in NC0). For some constants α, β < 1 there exists an NC0

extractor Ext that extracts n bits from random sources of length n and min-entropy α · n, by using
a seed of length βn. Furthermore, the error of this extractor is exponentially small in n.

Construction 6.9. Let G : {0, 1}n → {0, 1}cn be a UG, and Ext : {0, 1}βn × {0, 1}n → {0, 1}n

be the extractor of Fact 6.8. We define the following function H : {0, 1}n2(1+cβ) → {0, 1}cn2
as

follows.

• Input: n independent seeds x = (x(1), . . . , x(n)) ∈ ({0, 1}n)n for the generator, and cn inde-
pendent seeds for the extractor z = (z(1), . . . , z(cn)) ∈ ({0, 1}βn)cn.

• Output: Compute the n × cn matrix Y whose i-th row is G(x(i)). Let Yi denote the i-th
column of Y , and output (Extz(1)(Y1), . . . , Extz(cn)(Ycn)).

Note that H has linear stretch if c > 1/(1 − β). Also, the locality of H is the product of the
localities of G and Ext, and so it is constant. Let ε be a constant which is strictly smaller than
(1− α)/2.

23

Lemma 6.10. If G is (1
2 + ε)-unpredictable, then the mapping H is a pseudorandom generator.

Proof. The proof follows (a special case of) the analysis of [16]. We sketch it here for completeness.
First, by Proposition 4.8 of [16], we have that G being a (1

2 + ε)-UG has next-bit pseudo-entropy
in the following sense. For every sequence of efficiently computable index family {in} and efficient
distinguisher A there is a random binary variable W , jointly distributed with G(Un), such that:
(1) the Shannon entropy of W given the in − 1 prefix of G(Un) is at least µ, where µ = 1 − 2ε;
and (2) A cannot distinguish between G(Un)[1..in] and (G(Un)[1..in−1],W) with more than negligible
advantage, even when A is given an oracle which samples the joint distribution (G(Un),W).

Then, we use Claim 5.3 of [16], to argue that the n-fold direct product G(n) which outputs the
matrix Y (defined in Construction 6.9) has block pseudo-min-entropy of n(µ−o(1)) in the following
sense. For every sequence of efficiently computable index family {in} and efficient distinguisher A
there is a random variable W ∈ {0, 1}n jointly distributed with G(Un), such that: (1) the min-
entropy of W given the first in−1 columns of Y is at least n(µ−o(1)); and (2) A cannot distinguish
between Y[1..in] and (Y[1..in−1],W) with more than negligible advantage, even when A is given an
oracle which samples the joint distribution (Y,W).

This means that for every family {in} the distribution (Y[1..in−1],ExtUβn
(Yin)) is indistinguish-

able from (Y[1..in−1],Un). Otherwise, an adversary B that contradicts this statement can be used to
construct an adversary A which contradicts the previous claim. Specifically, A(M, v) chooses
a random seed s for the extractor and invokes B on (M, Exts(v)). If v is chosen from Yin

then B gets a sample from (Y[1..in−1], ExtUβn
(Yin)), and if v is chosen from W , B gets a sample

from (Y[1..in−1], ExtUβn
(W)) which is statistically close to (Y[1..in−1],Un), as W has min-entropy of

n(µ− o(1)) > αn. Hence, A has the same distinguishing advantage as B (up to a negligible loss).
Finally, the above statement implies that for every family {in} the distributions H(Un2(1+cβ))[1..in]

is indistinguishable from (H(Un2(1+cβ))[1..in−1],U1), and so H is (1
2 + δ)-unpredictable generator for

negligible δ, and by Yao’s theorem (Fact 6.1), it is pseudorandom.

7 Inapproximability of the Densest-Subgraph Problem

We will prove the following theorem:

Theorem 7.1 (Thm. 1.2 restated). Let d ∈ N be a constant, Q be a d-ary predicate, and m ≥ nc,
where c > 3 is a constant. If Fm,Q is ε = o(1/(

√
n · log n))-pseudorandom, then for every 1/n

c−3
2d ≤

p ≤ 1
2 the p-Densest-Subhypergraph problem is intractable with respect to d-uniform hypergraphs.7

Note that the larger c gets, the better inapproximaility ratio we obtain. Clearly, c cannot be
larger than c(d) where nc(d) is the maximal stretch of d-local pseudorandom generators. Currently,
the best upper-bound on c(d) is roughly d/2 due to [21].

From now on, we assume, without loss of generality, that Q(1d) = 1, otherwise we can negate
it, and use 1−Q as our predicate. (It is not hard to see that pseudorandomness still holds.) Let p
the parameter chosen in Theorem 7.1 and assume that there exists an integer t for which 2−t = p,
i.e., 1 ≤ t ≤ O(log n). We define an operator ρ as follows. Given an (m,n, d) graph G, and a t×m
binary matrix Y ∈ {0, 1}t×m, we view the i-th column of Y as a t-bit label for the i-th edge of G.

7We did not attempt to optimize the parameters and constraints, and some of them (e.g., c > 3) can be slightly
improved.

24

Then, the operator ρ(G,Y) outputs the (m′, n, d) subgraph G′ whose edges are those edges of G
which are indexed under Y by the all-one string 1t.

We construct a pair of distributions Dyes and Dno over hypergraphs which are indistinguishable,
but Dyes (resp., Dno) outputs whp a yes instance (resp., no instance):

• The distribution Dno. Choose a random (m,n, d) graph G, and a random t × m binary
matrix Y

R← Ut×m. Output the subgraph G′ = ρ(G,Y).

• The distribution Dyes. Choose a random (m,n, d) graph G, and a random t × n binary

matrix X
R← Ut×n. Let x(i) be the i-th row of X, and define a t×m binary matrix Y whose

i-th row is fG,Q(x(i)). Output the subgraph G′ = ρ(G,Y).

First, we show that Dno and Dyes are weakly-indistinguishable.

Claim 7.2. If Fm,Q is ε-pseudorandom then the ensembles Dno and Dyes (indexed by n) are t · ε =
o(1/

√
n)-indistinguishable.

Proof. A tε-distinguisher immediately leads to a tε-distinguisher between the distributions (G, y(1),
. . . , y(t)) and (G, fG,Q(x(1)), . . . , fG,Q(x(t))) where G is a random (m,n, d) graph, the y’s are random
m-bit strings and the x’s are random n-bit strings. By a standard hybrid argument this leads to
an ε distinguisher for Fm,Q.

Let us analyze Dno. Since Y and G are independent, we can redefine Dno as follows: (1) choose
Y uniformly at random, (2) determine which of the columns of Y equal to the all one string, and (3)
then choose the corresponding hyperedge uniformly at random. Hence, G′ is just a random Gm′,n,d

graph where m′ is sampled from the binomial distribution Bin(p, m), where p = 2−t. Therefore,
standard calculations show that

Lemma 7.3. With all but negligible probability neg(n), the graph G′ chosen from Dno satisfies the
following: (1) It has m′ = (p± 1/n)m edges; and (2) Every set S of nodes of density p contains at
most pd + o(pd) fraction of the edges.

Proof. The first item follows from an additive Chernoff bound: define m Bernoulli r.v.’s, where the
i-th variable is 1 if the i-th hyperedge is chosen. Since the number of r.v.’s is m, the probability of
having m′ = (p± 1/n)m is 1− neg(m) = 1− neg(n).

To prove the second item, let us condition on the event m′ > nc−1, which by the previous
argument happens w/p 1 − neg(n). (Recall that c < d and so 1/n < p). Fix such an m′, and
let G′ R← Gm′,n,d. Consider a fixed set of nodes S of size pn in G′. Every edge of G′ falls in S
with probability pd. Hence, by an additive Chernoff bound, the probability that S contains a set
of edges of density pd + 1/n(c/2)−1 is bounded by exp(−2m′/nc−2) = exp(−2n). Therefore, by a
union bound, the probability that this happens for some set S is at most exp(−2n + n) = neg(n).
Finally, observe that our choice of p gurentess that 1/n(c/2)−1 = o(pd).

On the other hand, we prove that Dyes has a “large” planted dense sub-graph.

Lemma 7.4. With probability at least 1/
√

n, a graph G chosen from Dyes has a sub-graph of density
pd that contains a fraction of at least pd−1(1− o(1)) edges.

We mention that a tighter analysis can be used to improve the quantity 1/
√

n.

25

Proof. Label the i-th node of G by t-bit column of the matrix X, and let S be the set of nodes
which are labeled by the all-one string. Consider the following event E in which: (1) S is of density
exactly p; (2) At least pd − 1/n(c/2)−1 fraction of the edges of the original graph G fall in S; (3)
The number of remaining edges m′ in G′ is at most (p + 1/n)m.

First observe that edges which fall into S are labeled by the all-one strings as Q(1d) = 1, and
so they also appear in G′. Hence, if E happens, then in G′ the p-dense set S contains a set of
edges of density at least (pd− 1/n(c/2)−1)m/m′ > pd−1/n(c/2)−1

p+1/n . Observe that the restriction of p to

1/n
c−3
2d ≤ p ≤ 1

2 , implies that the “error” terms 1/n(c/2)−1 and 1/n are o(pd) and o(p), respectively.
Hence, the density of the set of edges that fall into S can be written as pd−1 · 1−o(1)

1+o(1) > pd−1(1−o(1)).
Now, let us bound the probability of the event E. First, since each node falls in S independently

with probability p, we have (by standard properties of the binomial distribution) that the sub-
event (1) holds with probability at least Ω(1/

√
n). Conditioned on (1), the sub-event (2) happens

with all but negligible probability due to additive Chernoff bound. Hence, (1) and (2) happen
simultaneously w/p Ω(1/

√
n).

Finally, we argue that the probability β that (3) holds is at least 1−neg(n)−t ·ε = 1−o(1/
√

n).
Indeed, consider the algorithm which attempts to distinguish Dno from Dyes by looking at m′ and
accepting iff it m′ ≤ (p + 1/n)m. By Lemma 7.3 this leads to a distinguisher with advantage
1− neg(n)− β, which, by Claim 7.2, can be at most t · ε.

To complete the proof, observe, that, by a union bound, we have that (3) holds together with
(1) and (2) with probability Ω(1/

√
n).

Let us now prove Theorem 7.1.

Proof of Thm. 7.1. Lemma 7.3 guarantees that a graph sampled from Dno is almost always a NO
instance, whereas, by Lemma 7.4, a graph sampled from Dyes is a YES instance with probability at
least Ω(1/

√
n). Hence, an algorithm that solves p−DSH for d-uniform hypergraphs can distinguish

between the two distributions with advantage at least Ω(1/
√

n), in contradiction to Claim 7.2.

Acknowledgement. The author is grateful to Oded Goldreich for closely accompanying this
research, and for countless insightful comments and conversations that significantly affected the
results of this paper. We would also like to thank Uri Feige, Yuval Ishai and Alex Samorodnitsky
for many valuable conversations.

References

[1] M. Alekhnovich. More on average case vs approximation complexity. pages 298–307. IEEE
Computer Society, 2003.

[2] B. Applebaum. Cryptography in Constant Parallel Time. Phd thesis, Technion, Israel Institute
of Technology, Augost 2007.

[3] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assump-
tions. In 42nd ACM Symposium on Theory of Computing, (STOC 2010), pages 171–180,
2010.

26

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz. Computationally private randomizing polynomials
and their applications. Journal of Computational Complexity, 15(2):115–162, 2006.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM Journal on Com-
puting, 36(4):845–888, 2006.

[6] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with linear stretch
in NC0. Journal of Computational Complexity, 17(1):38–69, 2008.

[7] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high
log-densities: an (1/4) approximation for densest -subgraph. In STOC, pages 201–210, 2010.

[8] A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. In APPROX-
RANDOM, pages 392–405, 2009.

[9] J. Cook, O. Etesami, R. Miller, and L. Trevisan. Goldreich’s one-way function candidate and
myopic backtracking algorithms. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes
in Computer Science, pages 521–538. Springer, 2009.

[10] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc. 26th MFCS,
2001.

[11] U. Feige. Relations between average case complexity and approximation complexity. In STOC,
pages 534–543, New York, May 19–21 2002. ACM Press.

[12] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410–
421, 2001.

[13] O. Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium
on Computational Complexity (ECCC), 7(090), 2000.

[14] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[15] O. Goldreich, N. Nisan, and A. Wigderson. On yao’s XOR-lemma. Electronic Colloquium on
Computational Complexity (ECCC), 2(50), 1995.

[16] I. Haitner, O. Reingold, and S. P. Vadhan. Efficiency improvements in constructing pseudo-
random generators from one-way functions. In Proceedings of 42nd STOC, pages 437–446,
2010.

[17] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant compu-
tational overhead. In R. E. Ladner and C. Dwork, editors, STOC, pages 433–442. ACM,
2008.

[18] Kahn, Kalai, and Linial. The influence of variables on boolean functions. In FOCS: IEEE
Symposium on Foundations of Computer Science (FOCS), 1988.

[19] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In
FOCS, pages 136–145, 2004.

27

[20] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learn-
ability. J. ACM, 40(3):607–620, 1993. Preliminary version in Proc. 30th FOCS, 1989.

[21] E. Mossel, A. Shpilka, and L. Trevisan. On ε-biased generators in NC0. In Proc. 44th FOCS,
pages 136–145, 2003.

[22] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM J. Comput., 22(4):838–856, 1993. Preliminary version in Proc. 22th STOC, 1990.

[23] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. J. ACM, 51(2):231–262, 2004. Preliminary version in Proc. 38th FOCS, 1997.

[24] S. K. Panjwani. An experimental evaluation of goldreich’s one-way function. Technical report,
IIT, Bombay, 2001.

[25] A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd FOCS, pages 80–91,
1982.

A Omitted proofs

A.1 Amplifying unpredictability and stretch

We will prove Fact 6.5.

Part 1: unpredictability amplification. Define the UG collection F t⊕ : {0, 1}st × {0, 1}nt →
{0, 1}m to be the bit-wise xor of t independent copies of F , i.e., for k1, . . . , kt ∈ {0, 1}s and
x1, . . . , xt ∈ {0, 1}n let F t⊕

k1,...,kt
(x1, . . . , xt) = Fk1(x1)⊕ . . .⊕ Fkt(xt).

Fix some t = t(n), and assume, towards a contradiction, that there exists an algorithm A and
a sequence of indices {in} such that

Pr[A(Y t(⊕)
[1..in−1]) = Y

t(⊕)
in

] >
1
2

+ δ,

for infinitely many m’s and δ = εΩ(t) + neg(n). Then, there exists another adversary A′

Pr[A′(Y (1)
[1..in−1], . . . , Y

(t))
[1..in−1]) = Y

t(⊕)
in

] >
1
2

+ δ,

for the same input lengths. Define a randomized predicate Pn which given an in − 1 bit string y
samples a bit b from the conditional distribution Ym|Y1..in−1 = y. Then, the last equation can be
rewritten as

Pr[A′(y(1), . . . , y(t)) =
⊕

j∈[t]

Pn(y(j))] >
1
2

+ δ,

where each y(j) is sampled uniformly and independently from Y[1..in−1]. By Yao’s XOR lemma
(cf. [15]), such an efficient adversary A′ implies an adversary A′′ for which

Pr[A′′(Y[1..in−1]) = Pn(Y[1..in−1]) = Yin] >
1
2

+ ε,

for the same input lengths, in contradiction to the unpredictability of Y .

28

Uniformity. In order to apply the above argument in a fully uniform setting we should make
sure that pairs Y[1..in−1], Yin are efficiently samplable. Since Y is efficiently samplable it suffices to
show that the sequence {in} is uniform, i.e., can be generated in time poly(n). In fact, to get our
bound, it suffices to have a uniform sequence {i′n} for which A achieves prediction probability of
1
2 + δ −

√
δ. Hence, we can use Remark 3.2.

Part 2: stretch amplification. Let G be the original collection of PRGs with key sampling
algorithm K. We define the s-wise composition of G as follows. The collection G

(s)
~k

(x) is indexed

by s-tuple of “original” indices ~k = (k0, . . . , ks) where the i-th entry is sampled uniformly and

independently by invoking the original index sampling generator K on (1n(bi)
). We define G

(0)
~k

(x)

to be Gk0(x), and for every i > 0 we let G
(i)
~k

(x) = Gki(G
(i−1)
~k

(x)). Clearly, the resulting collection

has output length of n(bs) and locality ds. A standard hybrid argument shows that the security is
sε(n). (See [14, Chp. 3, Ex. 19].)

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

