
Advice Coins for Classical and Quantum Computation

Scott Aaronson∗ Andrew Drucker†

Abstract

We study the power of classical and quantum algorithms equipped with nonuniform advice,
in the form of a coin whose bias encodes useful information. This question takes on particular
importance in the quantum case, due to a surprising result that we prove: a quantum finite
automaton with just two states can be sensitive to arbitrarily small changes in a coin’s bias.
This contrasts with classical probabilistic finite automata, whose sensitivity to changes in a
coin’s bias is bounded by a classic 1970 result of Hellman and Cover.

Despite this finding, we are able to bound the power of advice coins for space-bounded clas-
sical and quantum computation. We define the classes BPPSPACE/coin and BQPSPACE/coin,
of languages decidable by classical and quantum polynomial-space machines with advice coins.
Our main theorem is that both classes coincide with PSPACE/poly. Proving this result turns out
to require substantial machinery. We use an algorithm due to Neff for finding roots of polynomi-
als in NC; a result from algebraic geometry that lower-bounds the separation of a polynomial’s
roots; and a result on fixed-points of superoperators due to Aaronson and Watrous, originally
proved in the context of quantum computing with closed timelike curves.

1 Introduction

1.1 The Distinguishing Problem

The fundamental task of mathematical statistics is to learn features of a random process from
empirical data generated by that process. One of the simplest, yet most important, examples
concerns a coin with unknown bias. Say we are given a coin which lands “heads” with some
unknown probability q (called the bias). In the distinguishing problem, we assume q is equal either
to p or to p+ ε, for some known p, ε, and we want to decide which holds.

A traditional focus is the sample complexity of statistical learning procedures. For example, if
p = 1/2, then t = Θ

(

log (1/δ) /ε2
)

coin flips are necessary and sufficient to succeed with probability
1 − δ on the distinguishing problem above. This assumes, however, that we are able to count the
number of heads seen, which requires log(t) bits of memory. From the perspective of computational
efficiency, it is natural to wonder whether methods with a much smaller space requirement are
possible. This question was studied in a classic 1970 paper by Hellman and Cover [13]. They
showed that any (classical, probabilistic) finite automaton that distinguishes with bounded error
between a coin of bias p and a coin of bias p + ε, must have Ω (p (1 − p) /ε) states.1 Their result
holds with no restriction on the number of coin flips performed by the automaton. This makes
the result especially interesting, as it is not immediately clear how sensitive such machines can be
to small changes in the bias.

∗MIT. Email: aaronson@csail.mit.edu. This material is based upon work supported by the National Science
Foundation under Grant No. 0844626. Also supported by a DARPA YFA grant and a Sloan Fellowship.

†MIT. Email: adrucker@mit.edu. Supported by a DARPA YFA grant.
1For a formal statement, see Section 2.5.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 8 (2011)

Several variations of the distinguishing problem for space-bounded automata were studied in
related works by Hellman [12] and Cover [10]. Very recently, Braverman, Rao, Raz, and Yehu-
dayoff [8] and Brody and Verbin [9] studied the power of restricted-width, read-once branching
programs for this problem. The distinguishing problem is also closely related to the approximate
majority problem, in which given an n-bit string x, we want to decide whether x has Hamming
weight less than (1/2 − ε)n or more than (1/2 + ε)n. A large body of research has addressed
the ability of constant-depth circuits to solve the approximate majority problem and its vari-
ants [1, 3, 4, 17, 20, 21].

1.2 The Quantum Case

In this paper, our first contribution is to investigate the power of quantum space-bounded algorithms
to solve the distinguishing problem. We prove the surprising result that, in the absence of noise,
quantum finite automata with a constant number of states can be sensitive to arbitrarily small
changes in bias:

Theorem 1 (Informal) For any p ∈ [0, 1] and ε > 0, there is a quantum finite automaton Mp,ε

with just two states (not counting the |Accept〉 and |Reject〉 states) that distinguishes a coin of bias
p from a coin of bias p + ε; the difference in acceptance probabilities between the two cases is at
least 0.01. (This difference can be amplified using more states.)

In other words, the lower bound of Hellman and Cover [13] has no analogue for quantum
finite automata. The upshot is that we obtain a natural example of a task that a quantum finite
automaton can solve using arbitrarily fewer states than a probabilistic finite automaton, not merely
exponentially fewer states! Galvao and Hardy [11] gave a related example, involving an automaton
that moves continuously through a field ϕ, and needs to decide whether an integral

∫ 1
0 ϕ (x) dx is

odd or even, promised that it is an integer. Here, a quantum automaton needs only a single qubit,
whereas a classical automaton cannot guarantee success with any finite number of bits. Naturally,
both our quantum automaton and that of Galvao and Hardy only work in the absence of noise.

1.3 Coins as Advice

This unexpected power of quantum finite automata invites us to think further about what sorts of
statistical learning are possible using a small number of qubits. In particular, if space-bounded
quantum algorithms can detect arbitrarily small changes in a coin’s bias, then could a p-biased
coin be an incredibly-powerful information resource for quantum computation, if the bias p was
well-chosen? A bias p ∈ (0, 1) can be viewed in its binary expansion p = 0.p1p2 . . . as an infinite
sequence of bits; by flipping a p-biased coin, we could hope to access those bits, perhaps to help us
perform computations.

This idea can be seen in “Buffon’s needle,” a probabilistic experiment that in principle allows one
to calculate the digits of π to any desired accuracy.2 It can also be seen in the old speculation that
computationally-useful information might somehow be encoded in dimensionless physical constants,
such as the fine-structure constant α ≈ 0.0072973525377 that characterizes the strength of the
electromagnetic interaction. But leaving aside the question of which biases p ∈ [0, 1] can be
realized by actual physical processes, let us assume that coins of any desired bias are available.
We can then ask: what computational problems can be solved efficiently using such coins? This

2See http://en.wikipedia.org/wiki/Buffon%27s needle

2

question was raised to us by Erik Demaine (personal communication), and was initially motivated
by a problem in computational genetics.

In the model that we use, a Turing machine receives an input x and is given access to a sequence
of bits drawn independently from an advice coin with some arbitrary bias pn ∈ [0, 1], which may
depend on the input length n = |x|. The machine is supposed to decide (with high success
probability) whether x is in some language L. We allow pn to depend only on |x|, not on x itself,
since otherwise the bias could be set to 0 or 1 depending on whether x ∈ L, allowing membership
in L to be decided trivially. We let BPPSPACE/coin be the class of languages decidable with
bounded error by polynomial-space algorithms with an advice coin. Similarly, BQPSPACE/coin is
the corresponding class for polynomial-space quantum algorithms. We impose no bound on the
running time of these algorithms.

It is natural to compare these classes with the corresponding classes BPPSPACE/poly and
BQPSPACE/poly, which consist of all languages decidable by BPPSPACE and BQPSPACE machines
respectively, with the help of an arbitrary advice string wn ∈ {0, 1}∗ that can depend only on the
input length n = |x|. Compared to the standard advice classes, the strength of the coin model is
that an advice coin bias pn can be an arbitrary real number, and so encode infinitely many bits;
the weakness is that this information is only accessible indirectly through the observed outcomes
of coin flips.

It is tempting to try to simulate an advice coin using a conventional advice string, which simply
specifies the coin’s bias to poly (n) bits of precision. At least in the classical case, the effect of
“rounding” the bias can then be bounded by the Hellman-Cover Theorem. Unfortunately, that
theorem (whose bound is essentially tight) is not strong enough to make this work: if the bias p
is extremely close to 0 or 1, then a PSPACE machine really can detect changes in p much smaller
than 2− poly(n). This means that upper-bounding the power of advice coins is a nontrivial problem
even in the classical case. In the quantum case, the situation is even worse, since as mentioned
earlier, the quantum analogue of the Hellman-Cover Theorem is false.

Despite these difficulties, we are able to show strong limits on the power of advice coins in both
the classical and quantum cases. Our main theorem says that PSPACE machines can effectively
extract only poly (n) bits of “useful information” from an advice coin:

Theorem 2 (Main) BQPSPACE/coin = BPPSPACE/coin = PSPACE/poly.

The containment PSPACE/poly ⊆ BPPSPACE/coin is easy. On the other hand, proving
BPPSPACE/coin ⊆ PSPACE/poly appears to be no easier than the corresponding quantum class
containment. To prove that BQPSPACE/coin ⊆ PSPACE/poly, we will need to understand the
behavior of a space-bounded advice coin machine M , as we vary the coin bias p. By applying
a theorem of Aaronson and Watrous [2] (which was originally developed to understand quantum
computing with closed timelike curves), we prove the key property that, for each input x, the ac-
ceptance probability ax (p) of M is a rational function in p of degree at most 2poly(n). It follows
that ax (p) can “oscillate” between high and low values no more than 2poly(n) times as we vary
p. Using this fact, we will show how to identify the “true” bias p∗ to sufficient precision with an
advice string of poly (n) bits. What makes this nontrivial is that, in our case, “sufficient precision”
sometimes means exp (n) bits! In other words, the rational functions ax (p) really can be sensitive
to doubly-exponentially-small changes to p. Fortunately, we will show that this does not happen
too often, and can be dealt with when it does.

In order to manipulate coin biases to exponentially many bits of precision—and to interpret our
advice string—in polynomial space, we use two major tools. The first is a space-efficient algorithm
for finding roots of univariate polynomials, developed by Neff [14] in the 1990s. The second is a

3

lower bound from algebraic geometry, on the spacing between consecutive roots of a polynomial
with bounded integer coefficients. Besides these two tools, we will also need space-efficient linear
algebra algorithms due to Borodin, Cook, and Pippenger [7].

2 Preliminaries

We assume familiarity with basic notions of quantum computation. A detailed treatment of space-
bounded quantum Turing machines was given by Watrous [22].

2.1 Classical and Quantum Space Complexity

In this paper, it will generally be most convenient to consider an asymmetric model, in which a
machine M can accept only by halting and entering a special “Accept” state, but can reject simply
by never accepting.

We say that a language L is in the class BPPSPACE/poly if there exists a classical probabilistic
PSPACE machine M , as well as a collection {wn}n≥1 of polynomial-size advice strings, such that:

(1) If x ∈ L, then Pr [M (x,wn) accepts] ≥ 2/3.

(2) If x /∈ L, then Pr [M (x,wn) accepts] ≤ 1/3.

Note that we do not require M to accept within any fixed time bound. So for example, M
could have expected running time that is finite, yet doubly exponential in n.

The class BQPSPACE/poly is defined similarly to the above, except that now M is a polynomial-
space quantum machine rather than a classical one. Also, we assume that M has a designated
accepting state, |Accept〉. After each computational step, the algorithm is measured to determine
whether it is in the |Accept〉 state, and if so, it halts.

Watrous [22] proved the following:

Theorem 3 (Watrous [22]) BQPSPACE/poly = BPPSPACE/poly = PSPACE/poly.

Note that Watrous stated his result for uniform complexity classes, but the proof carries over
to the nonuniform case without change.

2.2 Superoperators and Linear Algebra

We will be interested in S-state quantum finite automata that can include non-unitary transfor-
mations such as measurements. The state of such an automaton need not be a pure state (that
is, a unit vector in C

S), but can in general be a mixed state (that is, a probability distribution
over such vectors). Every mixed state is uniquely represented by an S × S, Hermitian, trace-1
matrix ρ called the density matrix. See Nielsen and Chuang [16] for more about the density matrix
formalism.

One can transform a density matrix ρ using a superoperator, which is any operation of the form

E (ρ) =
∑

j

EjρE
†
j ,

4

where the matrices Ej ∈ C
S×S satisfy

∑

j E
†
jEj = I.3

We will often find it more convenient to work with a “vectorized” representation of mixed states
and superoperators. Given a density matrix ρ ∈ C

S×S, let vec (ρ) be a vector in C
S2

containing
the S2 entries of ρ. Similarly, given a superoperator E , let mat (E) ∈ C

S2×S2
denote the matrix

that describes the action of E on vectorized mixed states, i.e., that satisfies

mat (E) · vec (ρ) = vec (E (ρ)) .

We will need a theorem due to Aaronson and Watrous [2], which gives us constructive access
to the fixed-points of superoperators.

Theorem 4 (Aaronson-Watrous [2]) Let E (ρ) be a superoperator on an S-dimensional system.
Then there exists a second superoperator Efix (ρ) on the same system, such that:

(i) Efix (ρ) is a fixed-point of E for every mixed state ρ: that is, E (Efix(ρ)) = E(ρ).

(ii) Every mixed state ρ that is a fixed-point of E is also a fixed-point of Efix.

(iii) Given the entries of mat (E), the entries of mat (Efix) can be computed in polylog(S) space.

The following fact, which we call the “Leaky Subspace Lemma,”will play an important role in
our analysis of quantum finite automata. Intuitively it says that, if repeatedly applying a linear
transformation A to a vector y “leaks” y into the span of another vector x, then there is a uniform
lower bound on the rate at which the leaking happens.

Lemma 5 (Leaky Subspace Lemma) Let A ∈ C
n×n and x ∈ C

n. Suppose that for all vectors
y in some compact set U ⊂ C

n, there exists a positive integer k such that x†Aky 6= 0. Then

inf
y∈U

max
k∈[n]

∣

∣

∣
x†Aky

∣

∣

∣
> 0.

Proof. It suffices to prove the following claim: for all y ∈ U , there exists a k ∈ [n] such that
x†Aky 6= 0. For given this claim, Lemma 5 follows by the fact that f (y) := maxk∈[n]

∣

∣x†Aky
∣

∣ is a
continuous positive function on a compact set U .

We now prove the claim. Let Vt be the vector space spanned by
{

Ay,A2y, . . . , Aty
}

, let
V :=

⋃

t>0 Vt, and let d = dimV . Then clearly d ≤ n and dim (Vt−1) ≤ dim (Vt) ≤ dim (Vt−1) + 1
for all t. Now suppose dim (Vt) = dim (Vt−1) for some t. Then it must be possible to write Aty as
a linear combination of Ay, . . . , At−1y:

Aty = c1Ay + · · · + ct−1A
t−1y.

But this means that every higher iterate (At+1y, At+2y, etc.) is also expressible as a linear combi-
nation of the lower iterates: for example,

At+1y = c1A
2y + · · · + ct−1A

ty.

Therefore d = dim (Vt−1). The conclusion is that B :=
{

Ay,A2y, . . . , Ady
}

is a basis for V . But
then, if there exists a positive integer k such that v†Akw 6= 0, then there must also be a k ≤ d such
that x†Aky 6= 0, by the fact that B is a basis. This proves the claim.

3This condition is necessary and sufficient to ensure that E(ρ) is a mixed state, for every mixed state ρ.

5

2.3 Coin-Flipping Finite Automata

It will often be convenient to use the language of finite automata rather than that of Turing
machines. We model a coin-flipping quantum finite automaton as a pair of superoperators E0, E1.
Say that a coin has bias p if it lands heads with independent probability p every time it is flipped.
(A coin here is just a 0/1-valued random variable, with “heads” meaning a 1 outcome.) Let $p

denote a coin with bias p. When the automaton is given $p, its state evolves according to the
superoperator

Ep := pE1 + (1 − p) E0.

In our model, the superoperators E0, E1 both incorporate a “measurement step” in which the au-
tomaton checks whether it is in a designated basis state |Accept〉, and if so, halts and accepts.
Formally, this is represented by a projective measurement with observables {ΓAcc, I − ΓAcc}, where
ΓAcc := |Accept〉 〈Accept|.

2.4 Advice Coin Complexity Classes

Given a Turing machine M , let M (x, $p) denote M given input x together with the ability to flip
$p at any time step. Then BPPSPACE/coin, or BPPSPACE with an advice coin, is defined as the
class of languages L for which there exists a PSPACE machine M , as well as a sequence of real
numbers {pn}n≥1 with pn ∈ [0, 1], such that for all inputs x ∈ {0, 1}n:

(1) If x ∈ L, then M (x, $pn
) accepts with probability at least 2/3 over the coin flips.

(2) If x /∈ L, then M (x, $pn
) accepts with probability at most 1/3 over the coin flips.

Note that there is no requirement for M to halt after at most exponentially many steps, or
even to halt with probability 1; also, M may “reject” its input by looping forever. This makes our
main result, which bounds the computational power of advice coins, a stronger statement. Also
note that M has no source of randomness other than the coin $pn

. However, this is not a serious
restriction, since M can easily use $pn

to generate unbiased random bits if needed, by using the
“von Neumann trick.”

Let q (n) be a polynomial space bound. Then we model a q (n)-space quantum Turing machine
M with an advice coin as a 2q(n)-state automaton, with state space {|y〉}y∈{0,1}q(n) and initial

state
∣

∣0q(n)
〉

. Given advice coin $p, the machine’s state evolves according to the superoperator
Ep = pE1 + (1 − p) E0, where E0, E1 depend on x and n. The individual entries of the matrix
representations of E0, E1 are required to be computable in polynomial space.

The machine M has a designated |Accept〉 state. In vectorized notation, we let vAcc :=
vec (|Accept〉 〈Accept|). Since |Accept〉 is a computational basis state, vAcc has a single coordinate
with value 1 and is 0 elsewhere. As in Section 2.3, the machine measures after each computation
step to determine whether it is in the |Accept〉 state.

We let ρt denote the algorithm’s state after t steps, and let vt := vec (ρt). If we perform a
standard-basis measurement after t steps, then the probability ax,t (p) of seeing |Accept〉 is given
by

ax,t (p) = 〈Accept| ρt |Accept〉 = v†Accvt.

Note that ax,t (p) is nondecreasing in t.
Let ax (p) := limt→∞ ax,t (p). Then BQPSPACE/coin is the class of languages L for which there

exists a BQPSPACE machine M , as well as a sequence of advice coin biases {pn}n≥1, such that for
all x ∈ {0, 1}n:

6

(1) If x ∈ L, then ax (pn) ≥ 2/3.

(2) If x /∈ L, then ax (pn) ≤ 1/3.

2.5 The Hellman-Cover Theorem

In 1970 Hellman and Cover [13] proved the following important result (for convenience, we state
only a special case).

Theorem 6 (Hellman-Cover Theorem [13]) Let $p be a coin with bias p, and let M ($p) be
a probabilistic finite automaton that takes as input an infinite sequence of independent flips of $p,
and can ‘halt and accept’ or ‘halt and reject’ at any time step. Let at (p) be the probability that
M ($p) has accepted after t coin flips, and let a (p) = limt→∞ at (p). Suppose that a (p) ≤ 1/3 and
a (p+ ε) ≥ 2/3, for some p and ε > 0. Then M must have Ω (p (1 − p) /ε) states.

Let us make two remarks about Theorem 6. First, the theorem is easily seen to be essentially
tight: for any p and ε > 0, one can construct a finite automaton with O (p (1 − p) /ε) states such
that a (p+ ε) − a (p) = Ω(1). To do so, label the automaton’s states by integers in {−K, . . . ,K},
for some K = O (p (1 − p) /ε). Let the initial state be 0. Whenever a heads is seen, increment the
state by 1 with probability 1− p and otherwise do nothing; whenever a tails is seen, decrement the
state by 1 with probability p and otherwise do nothing. If K is ever reached, then halt and accept
(i.e., guess that the bias is p + ε); if −K is ever reached, then halt and reject (i.e., guess that the
bias is p).

Second, Hellman and Cover actually proved a stronger result. Suppose we consider the relaxed
model in which the finite automaton M never needs to halt, and one defines a (p) to be the fraction
of time that M spends in a designated subset of ‘Accepting’ states in the limit of infinitely many
coin flips (this limit exists with probability 1). Then the lower bound Ω (p (1 − p) /ε) on the number
of states still holds. We will have more to say about finite automata that “accept in the limit” in
Section 5.

2.6 Facts About Polynomials

We now collect some useful facts about polynomials and rational functions, and about small-space
algorithms for root-finding and linear algebra. First we will need the following fact, which follows
easily from L’Hôpital’s Rule.

Proposition 7 Whenever the limit exists,

lim
z→0

c0 + c1z + · · · + cmz
m

d0 + d1z + · · · + dmzm
=
ck
dk
,

where k is the smallest integer such that dk 6= 0.

The next two facts are much less elementary. First, we state a bound on the minimum spacing
between zeros, for a low-degree polynomial with integer coefficients.

Theorem 8 ([5, p. 359, Corollary 10.22]) Let P (x) be a degree-d univariate polynomial, with
integer coefficients of bitlength at most τ . If z, z′ ∈ C are distinct roots of P , then

∣

∣z − z′
∣

∣ ≥ 2−O(d log d+τd).

In particular, if P is of degree at most 2poly(n), and has integer coefficients with absolute values
bounded by 2poly(n), then |z − z′| ≥ 2−2poly(n)

.

7

We will need to locate the zeros of univariate polynomials to high precision using a small amount
of memory. Fortunately, a beautiful algorithm of Neff [14] from the 1990s (improved by Neff and
Reif [15] and by Pan [18]) provides exactly what we need.

Theorem 9 ([14, 15, 18]) There exists an algorithm that

(i) Takes as input a triple (P, i, j), where P is a degree-d univariate polynomial with rational4

coefficients whose numerators and denominators are bounded in absolute value by 2m.

(ii) Outputs the ith most significant bits of the real and imaginary parts of the binary expansion
of the jth zero of P (in some order independent of i, possibly with repetitions).

(iii) Uses O (polylog (d+ i+m)) space.

We will also need to invert n × n matrices using polylog (n) space. We can do so using an
algorithm of Borodin, Cook, and Pippenger [7] (which was also used for a similar application by
Aaronson and Watrous [2]).

Theorem 10 (Borodin et al. [7, Corollary 4.4]) There exists an algorithm that

(i) Takes as input an n×n matrix A = A (p), whose entries are rational functions in p of degree
poly (n), with the coefficients specified to poly (n) bits of precision.

(ii) Computes det (A) (and as a consequence, also the (i, j) entry of A−1 for any given coordinates
(i, j), assuming that A is invertible).

(iii) Uses poly (n) time and polylog (n) space.

Note that the algorithms of [7, 14, 15, 18] are all stated as parallel (NC) algorithms. However,
any parallel algorithm can be converted into a space-efficient algorithm, using a standard reduction
due to Borodin [6].

3 Quantum Mechanics Nullifies the Hellman-Cover Theorem

We now show that the quantum analogue of the Hellman-Cover Theorem (Theorem 6) is false.
Indeed, we will show that for any fixed ε > 0, there exists a quantum finite automaton with only
2 states that can distinguish a coin with bias 1/2 from a coin with bias 1/2 + ε, with bounded
probability of error independent of ε. Furthermore, this automaton is even a halting automaton,
which halts with probability 1 and enters either an |Accept〉 or a |Reject〉 state.

The key idea is that, in this setting, a single qubit can be used as an “analog counter,” in a way
that a classical probabilistic bit cannot. Admittedly, our result would fail were the qubit subject
to noise or decoherence, as it would be in a realistic physical situation.

Let ρ0 be the designated starting state of the automaton, and let ρ1, ρ2, . . . , be defined as
ρt+1 = Epρt, with notation as in Section 2.4. Let

a (p) := lim
n→∞

〈Accept| En
p (ρ0) |Accept〉

be the limiting probability of acceptance. This limit exists, as argued in Section 2.4.
We now prove Theorem 1, which we restate for convenience.

4Neff’s original algorithm assumes polynomials with integer coefficients; the result for rational coefficients follows
easily by clearing denominators.

8

1���� ����� �	��� ���� �����
����
0

Figure 1: A quantum finite automaton that distinguishes a p = 1/2 coin from a p = 1/2 + ε coin,
essentially by using a qubit as an analog counter.

Fix p ∈ [0, 1] and ε > 0. Then there exists a quantum finite automaton M with two
states (not counting the |Accept〉 and |Reject〉 states), such that a (p+ ε) − a (p) ≥ β
for some constant β independent of ε. (For example, β = 0.0117 works.)

Proof of Theorem 1. The state ofM will belong to the Hilbert space spanned by {|0〉 , |1〉 , |Accept〉 , |Reject〉}.
The initial state is |0〉. Let

U (θ) :=

(

cos θ − sin θ
sin θ cos θ

)

be a unitary transformation that rotates counterclockwise by θ, in the “counter subspace” spanned
by |0〉 and |1〉. Also, let A and B be positive integers to be specified later. Then the finite
automaton M runs the following procedure:

(1) If a 1 bit is encountered (i.e., the coin lands heads), apply U (ε (1 − p) /A).

(2) If a 0 bit is encountered (i.e., the coin lands tails), apply U (−εp/A).

(3) With probability α := ε2/B, “measure” (that is, move all probability mass in |0〉 to |Reject〉
and all probability mass in |1〉 to |Accept〉); otherwise do nothing.

We now analyze the behavior of M . For simplicity, let us first consider steps (1) and (2) only.
In this case, we can think of M as taking a random walk in the space of possible angles between
|0〉 and |1〉. In particular, after t steps, M ’s state will have the form cos θt |0〉+ sin θt |1〉, for some
angle θt ∈ R. (As we follow the walk, we simply let θt increase or decrease without bound, rather
than confining it to a range of size 2π.) Suppose the coin’s bias is p. Then after t steps,

E [θt] = pt ·
ε

A
(1 − p) + (1 − p) t ·

(

−
ε

A
p
)

= 0.

9

On the other hand, suppose the bias is q = p+ ε. Then

E [θt] = qt ·
ε

A
(1 − p) + (1 − q) t ·

(

−
ε

A
p
)

=
ε

A
t · [q (1 − p) − p (1 − q)]

=
ε2t

A
.

So in particular, if t = K/ε2 for some constant K, then E [θt] = K/A. However, we also need to
understand the variance of the angle, Var [θt]. If the bias is p, then by the independence of the
coin flips,

Var [θt] = t · Var [θ1]

= t ·

[

p
(ε

A
(1 − p)

)2
+ (1 − p)

(ε

A
p
)2

]

≤
ε2t

A2
,

and likewise if the bias is q = p + ε. If t = K/ε2, this implies that Var [θt] ≤ K/A2 in both cases.
We now incorporate step (3). Let T be the number of steps before M halts (that is, before its
state gets measured). Then clearly Pr [T = t] = α (1 − α)t. Also, let u := K/ε2 for some K to be
specified later. Then if the bias is p, we can upper-bound M ’s acceptance probability a (p) as

a (p) =

∞
∑

t=1

Pr [T = t] · E
[

sin2 θt | t
]

≤ Pr [T > u] +

u
∑

t=1

Pr [T = t] · E
[

sin2 θt | t
]

≤ Pr [T > u] +
u

∑

t=1

Pr [T = t] · E
[

θ2
t | t

]

≤ (1 − α)u + E
[

θ2
u | u

]

≤

(

1 −
ε2

B

)B/ε2·K/B

+
ε2u

A2

≤ e−K/B +
K

A2
.

Here the third line uses sinx ≤ x, while the fourth line uses the fact that E
[

θ2
t

]

is nondecreasing
for an unbiased random walk. So long as A2 ≥ B, we can minimize the final expression by setting
K := B ln

(

A2/B
)

, in which case we have

a (p) ≤
B

A2

(

1 + ln

(

A2

B

))

.

On the other hand, suppose the bias is p+ ε. Set v := L/ε2 where L := πA/4. Then for all t ≤ v,

10

we have

Pr [|θt| > π/2 | t] ≤ Pr

[
∣

∣

∣

∣

θt −
ε2t

A

∣

∣

∣

∣

>
π

2
−
ε2t

A
| t

]

<
ε2t/A2

(π/2 − ε2t/A)2

≤
ε2v/A2

(π/2 − ε2v/A)2

=
4

πA

where the second line uses Chebyshev’s inequality. Also, let ∆t := θt − ε2t/A. Then for all t ≤ v
we have

E
[

θ2
t | t

]

= E

[

(

ε2t

A
+ ∆t

)2

| t

]

=
ε4t2

A2
+ E

[

∆2
t | t

]

+ 2
ε2t

A
E [∆t | t]

≥
ε4t2

A2
.

Putting the pieces together, we can lower-bound a (p+ ε) as

a (p+ ε) =

∞
∑

t=1

Pr [T = t] · E
[

sin2 θt | t
]

≥
v

∑

t=1

Pr [T = t] · E
[

sin2 θt | t
]

≥

v
∑

t=1

Pr [T = t] · Pr [|θt| ≤ π/2 | t] · E
[

θ2
t /3 | t

]

≥

v
∑

t=1

α (1 − α)t ·

(

1 −
4

πA

)

·
ε4t2

3A2

=

(

1 −
4

πA

)

ε4α

3A2

L/ε2
∑

t=1

(

1 −
ε2

B

)t

t2

≥

(

1 −
4

πA

)

ε4α

3A2eL/B

L/ε2
∑

t=1

t2

≥

(

1 −
4

πA

)

ε6

3A2BeL/B
·

(

L/ε2
)3

6

=

(

1 −
4

πA

)

L3

18A2BeL/B

=

(

1 −
4

πA

)

π3A

1152BeπA/4B
.

11

Here the third line uses the fact that sin2 x ≥ x2/3 for all |x| ≤ π/2. If we now choose (for
example) A = 10000 and B = 7500, then we have a (p) ≤ 0.0008 and a (p+ ε) ≥ 0.0125, whence
a (p+ ε) − a (p) ≥ 0.0117.

We can strengthen Theorem 1 to ensure that a (p) ≤ δ and a (p+ ε) ≥ 1 − δ for any desired
error probability δ > 0. We simply use standard amplification, which increases the number of
states in M to O (poly (1/δ)) (or equivalently, the number of qubits to O (log(1/δ))).

4 Upper-Bounding the Power of Advice Coins

In this section we prove Theorem 2, that BQPSPACE/coin = BPPSPACE/coin = PSPACE/poly.
We start with the easy half:

Proposition 11 PSPACE/poly ⊆ BPPSPACE/coin ⊆ BQPSPACE/coin.

Proof. Given a polynomial-size advice string wn ∈ {0, 1}s(n), we encode wn into the first s (n) bits
of the binary expansion of an advice bias pn ∈ [0, 1]. Then by flipping the coin $pn

sufficiently many
times (O

(

22s(n)
)

trials suffice) and tallying the fraction of heads, a Turing machine can recover
wn with high success probability. Counting out the desired number of trials and determining the
fraction of heads seen can be done in space O

(

log
(

22s(n)
))

= O (s (n)) = O (poly (n)). Thus we
can simulate a PSPACE/poly machine with a BPPSPACE/coin machine.

The rest of the section is devoted to showing that BQPSPACE/coin ⊆ PSPACE/poly. First we
give some lemmas about quantum polynomial-space advice coin algorithms. Let M be such an
algorithm. Suppose M uses s (n) = poly (n) qubits of memory, and has S = 2s(n) states. Let
E0, E1, Ep be the superoperators for M as described in Section 2.4. Recalling the vectorized notation
from Section 2.4, let Bp := mat (Ep). Let ρx,t (p) be the state of M after t coin flips steps on input
x and coin bias p, and let vx,t (p) := vec (ρx,t (p)). Let

ax,t (p) := v†Accvx,t (p)

be the probability that M is in the |Accept〉 state, if measured after t steps. Let ax (p) :=
limt→∞ ax,t (p). As discussed in Section 2.4, the quantities ax,t (p) are nondecreasing in t, so the
limit ax (p) is well-defined.

We now show that—except possibly at a finite number of values—ax (p) is actually a rational
function of p, whose degree is at most the number of states.

Lemma 12 There exist polynomials Q(p) and R(p) 6= 0, of degree at most S2 = 2poly(n) in p, such
that

ax (p) =
Q (p)

R (p)

holds whenever R (p) 6= 0. Moreover, Q and R have rational coefficients that are computable in
poly (n) space given x ∈ {0, 1}n and the index of the desired coefficient.

Proof. Throughout, we suppress the dependence on x for convenience, so that a (p) = limt→∞ at (p)
is simply the limiting acceptance probability of a finite automaton M ($p) given a coin with bias p.

Following Aaronson and Watrous [2], for z ∈ (0, 1) define the matrix Λz,p ∈ C
S2×S2

by

Λz,p := z [I − (1 − z)Bp]
−1 .

The matrix I − (1 − z)Bp is invertible, since z > 0 and all eigenvalues of Bp have absolute value

at most 1.5 Using Cramer’s rule, we can represent each entry of Λz,p in the form f(z,p)
g(z,p) , where f

5For the latter fact, see [19] and [2, p. 10, footnote 1].

12

and g are bivariate polynomials of degree at most S2 in both z and p, and g (z, p) is not identically
zero. Note that by collecting terms, we can write

f (z, p) = c0 (p) + c1 (p) z + · · · + cS2 (p) zS2

g (z, p) = d0 (p) + d1 (p) z + · · · + dS2 (p) zS2
,

for some coefficients c0, . . . , cS2 and d0, . . . , dS2 . Now let

Λp := lim
z→0

Λz,p. (1)

Aaronson and Watrous [2] showed that Λp is precisely the matrix representation mat (Efix) of the
superoperator Efix associated to E := Ep by Theorem 4. Thus we have

Bp (Λpv) = Λpv

for all v ∈ C
S2

.
Now, the entries of Λz,p are bivariate rational functions, which have absolute value at most 1

for all z, p. Thus the limit in equation (1) must exist, and the coeffients ck, dk can be computed
in polynomial space using Theorem 10.

We claim that every entry of Λp can be represented as a rational function of p of degree at
most S2 (a representation valid for all but finitely many p), and that the coefficients of this rational
function are computable in polynomial space. To see this, fix some i, j ∈ [S], and let (Λp)ij denote

the (i, j)th entry of Λp. By the above, (Λp)ij has the form

(Λp)ij = lim
z→0

f (z, p)

g (z, p)
= lim

z→0

c0 (p) + c1 (p) z + · · · + cS2 (p) zS2

d0 (p) + d1 (p) z + · · · + dS2 (p) zS2 .

By Proposition 7, the above limit (whenever it exists) equals ck (p) /dk (p), where k is the smallest
integer such that dk (p) 6= 0. Now let k∗ be the smallest integer such that dk∗ is not the identically-
zero polynomial. Then dk∗ (p) has only finitely many zeros. It follows that (Λp)ij = ck∗ (p) /dk∗ (p)
except when dk∗ (p) = 0, which is what we wanted to show. That the coefficients are rational and
computable in polynomial space follows by construction: we can loop through all k until we find
k∗ as above, and then compute the coefficients of ck∗ (p) and dk∗ (p).

Finally, we claim that we can write A’s limiting acceptance probability a (p) as

a (p) = v†AccΛpv0, (2)

where v0 is the vectorized initial state of A (independent of p). It will follow from equation (2)

that a (p) has the desired rational-function representation, since the map Λp → v†AccΛpv0 is linear
in the entries of Λp and can be performed in polynomial space.

To establish equation (2), consider the Taylor series expansion for Λz,p,

Λz,p =
∑

t≥0

z(1 − z)tBt
p,

valid for z ∈ (0, 1) (see [2] for details). The equality

∑

t≥0

z(1 − z)t = 1, z ∈ (0, 1),

13

implies that v†AccΛz,pv0 is a weighted average of the t-step acceptance probabilities at (p), for t ∈
{0, 1, 2, . . .}. Letting z → 0, the weight on each individual step approaches 0. Since limt→∞ at(p) =
a(p), we obtain equation (2).

The next lemma lets us “patch up” the finitely many singularities, and show that ax (p) is a
rational function in the entire open interval (0, 1).6

Lemma 13 ax (p) is continuous for all p ∈ (0, 1).

Proof. Once again we suppress the dependence on x, so that a (p) = limt→∞ at (p) is just the
limiting acceptance probability of a finite automaton M ($p).

To show that a (p) is continuous on (0, 1), it suffices to show that a (p) is continuous on every
closed subinterval [p1, p2] such that 0 < p1 < p2 < 1. We will prove this by proving the following
claim:

(*) For every subinterval [p1, p2] and every δ > 0, there exists a time t (not depending
on p) such that at (p) ≥ a (p) − δ for all p ∈ [p1, p2].

Claim (*) implies that a (p) can be uniformly approximated by continuous functions on [p1, p2],
and hence is continuous itself on [p1, p2].

We now prove claim (*). First, call a mixed state ρ dead for bias p if M ($p) halts with
probability 0 when run with ρ as its initial state. Now, the superoperator applied by M ($p) at
each time step is Ep = pE1 + (1 − p) E0. This means that ρ is dead for any bias p ∈ (0, 1), if and
only if ρ is dead for bias p = 1/2. So we can simply refer to such a ρ as dead, with no dependence
on p.

Recall that Bp := mat (Ep). Observe that ρ is dead if and only if

v†AccB
t
1/2 vec (ρ) = 0

for all t ≥ 0. In particular, it follows that there exists a “dead subspace” D of C
S , such that a

pure state |ψ〉 is dead if and only if |ψ〉 ∈ D. (A mixed state ρ =
∑

i pi |ψi〉 〈ψi| is dead if and only
if |ψi〉 ∈ D for all i such that pi > 0.) By its definition, D is orthogonal to the |Accept〉 state.
Define the “live subspace,” L, to be the orthogonal complement of |Accept〉 and D.

Let P be the projector onto L, and let vLive := vec (P). Also, recalling that v0 is the vectorized
initial state of M , let

gt (p) := v†LiveB
t
pv0

be the probability that M ($p) is “still alive” if measured after t steps—i.e., that M has neither
accepted nor entered the dead subspace. Clearly a (p) ≤ at (p) + gt (p).

Thus, to prove claim (*), it suffices to prove that for all δ > 0, there exists a t (not depending
on p) such that gt (p) ≤ δ for all p ∈ [p1, p2]. First, let U be the set of all ρ supported only on
the live subspace L, and notice that U is compact. Therefore, by Lemma 5 (the “Leaky Subspace
Lemma”), there exists a constant c1 > 0 such that, for all ρ ∈ U ,

(

v†Acc + v†Dead

)

BS2

p1
vec (ρ) ≥ c1

6Note that there could still be singularities at p = 0 and p = 1, and this is not just an artifact of the proof! For
example, consider a finite automaton that accepts when and only when it sees ‘heads.’ The acceptance probability
of such an automaton satisfies a (0) = 0, but a (p) = 1 for all p ∈ (0, 1].

14

and hence
v†LiveB

S2

p1
vec (ρ) ≤ 1 − c1.

Likewise, there exists a c2 > 0 such that, for all ρ ∈ U ,

v†LiveB
S2

p2
vec (ρ) ≤ 1 − c2.

Let c := min {c1, c2}. Then by convexity, for all p ∈ [p1, p2] and all ρ ∈ U , we have

v†LiveB
S2

p vec (ρ) ≤ 1 − c,

and hence
v†LiveB

S2t
p vec (ρ) ≤ (1 − c)t

for all t ≥ 0. This means that, to ensure that gt (p) ≤ δ for all p ∈ [p1, p2] simultaneously, we just

need to choose t large enough that (1 − c)t/S2

≤ δ. This proves claim (*).
We are now ready to complete the proof of Theorem 2. Let L be a language in BQPSPACE/coin,

which is decided by the quantum polynomial-space advice-coin machine M (x, $p) on advice coin
biases {pn}n≥1. We will show that L ∈ BQPSPACE/poly = PSPACE/poly.

It may not be possible to perfectly specify the bias pn using poly (n) bits of advice. Instead, we
use our advice string to simulate access to a second bias rn that is “almost as good” as pn. This is
achieved by the following lemma.

Lemma 14 Fixing L,M, {pn} as above, there exists a classical polynomial-space algorithm R, as
well as a family {wn}n≥1 of polynomial-size advice strings, for which the following holds. Given

an index i ≤ 2poly(n), the computation R (wn, i) outputs the ith bit of a real number rn ∈ (0, 1), such
that for all x ∈ {0, 1}n,

(i) If x ∈ L, then Pr [M (x, $rn
) accepts] ≥ 3/5.

(ii) If x /∈ L, then Pr [M (x, $rn
) accepts] ≤ 2/5.

(iii) The binary expansion of rn is identically zero, for sufficiently large indices j ≥ h(n) = 2poly(n).

Once Lemma 14 is proved, showing the containment L ∈ BQPSPACE/poly is easy. First, we
claim that using the advice family {wn}, we can simulate access to rn-biased coin flips, as follows.
Let rn = 0.b1b2 . . . denote the binary expansion of rn.

given wn

j := 0
while j < h (n)

let zj ∈ {0, 1} be random

bj := R (wn, j)
if zj < bj then output 1
else if zj > bj then output 0

else j := j + 1
output 0

Observe that this algorithm, which runs in polynomial space, outputs 1 if and only if

0.z1z2 . . . zh(n) < 0.b1b2 . . . bh(n) = rn,

15

and this occurs with probability rn. Thus we can simulate rn-biased coin flips as claimed.
We define a BQPSPACE/poly machine M ′ that takes {wn} from Lemma 14 as its advice. Given

an input x ∈ {0, 1}n, the machine M ′ simulates M (x, $rn
), by generating rn-biased coin flips using

the method described above. Then M ′ is a BQPSPACE/poly algorithm for L by parts (i) and (ii)
of Lemma 14, albeit with error bounds (2/5, 3/5). The error bounds can be boosted to (1/3, 2/3)
by running several independent trials. So L ∈ BQPSPACE/poly = PSPACE/poly, completing the
proof of Theorem 2.
Proof of Lemma 14. Fix an input length n > 0, and let p∗ := pn. For x ∈ {0, 1}n, recall
that ax (p) denotes the acceptance probability of M (x, $p). We are interested in the way ax (p)
oscillates as we vary p. Define a transition pair to be an ordered pair (x, p) ∈ {0, 1}n × (0, 1) such
that ax (p) ∈ {2/5, 3/5}. It will be also be convenient to define a larger set of potential transition
pairs, denoted P ⊆ {0, 1}n× [0, 1), that contains the transition pairs; the benefit of considering this
larger set is that its elements will be easier to enumerate. We defer the precise definition of P.

The advice string wn will simply specify the number of distinct potential transition pairs (y, p)
such that p ≤ p∗. We first give a high-level pseudocode description of the algorithm R; after
proving that parts (i) and (ii) of Lemma 14 are met by the algorithm, we will fill in the algorithmic
details to show that the pseudocode can be implemented in PSPACE, and that we can satisfy part
(iii) of the Lemma.

The pseudocode for R is as follows:

given (wn, i)
for all (y, p) ∈ P

s := 0
for all (z, q) ∈ P

if q ≤ p then s := s+ 1
next (z, q)
if s = wn then

let rn := p+ ε (for some small ε = 2−2poly(n)
)

output the ith bit of rn
end if

next (y, p)

We now prove that parts (i) and (ii) of Lemma 14 are satisfied. We call p ∈ [0, 1) a transition
value if (y, p) is a transition pair for some y ∈ {0, 1}n, and we call p a potential transition value if
(y, p) ∈ P for some y ∈ {0, 1}n. Then by definition of wn, the value rn produced above is equal
to p0 + ε, where p0 ∈ [0, 1) is the largest potential transition value less than or equal to p∗. (Note
that 0 will always be a potential transition value, so this is well-defined.)

When we define P, we will argue that any distinct potential transition values p1, p2 satisfy

min {|p1 − p2| , 1 − p2} ≥ 2−2poly(n)
. (3)

It follows that if ε = 2−2poly(n)
is suitably small, then rn < 1, and there is no potential transition

value lying in the range (p0, rn]. Also, there are no potential transition values in the interval
(p0, p

∗).
Now fix any x ∈ {0, 1}n∩L. Since M is a BQPSPACE/coin machine for L with bias p∗, we have

ax (p∗) ≥ 2/3. If ax (rn) < 3/5, then Lemma 13 implies that there must be a transition value in
the open interval between p∗ and rn. But there are no such transition values. Thus ax (rn) ≥ 3/5.
Similarly, if x ∈ {0, 1}n \ L, then ax (rn) ≤ 2/5. This establishes parts (i) and (ii) of Lemma 14.

16

Now we formally define the potential transition pairs P. We include (0n, 0) in P, guaranteeing
that 0 is a potential transition value as required. Now recall, by Lemma 12, that for each x ∈
{0, 1}n, the acceptance probability ax (p) is a rational function Qx (p) /Rx (p) of degree 2poly(n), for
all but finitely many p ∈ (0, 1). Therefore, the function (ax (p) − 3/5) (ax (p) − 2/5) also has a
rational-function representation:

Ux (p)

Vx (p)
=

(

ax (p) −
3

5

)(

ax (p) −
2

5

)

,

valid for all but finitely many p. We will include in P all pairs (x, p) for which Ux (p) = 0. It
follows from Lemmas 12 and 13 that P contains all transition pairs, as desired.

We can now establish equation (3). Fix any distinct potential transition values p1 < p2 in [0, 1).
Since p2 6= 0 is a potential transition value, there is some x2 such that (x2, p2) ∈ P. If p1 = 0, then

p1, p2 are distinct roots of the polynomial pUx2(p), whence |p1 − p2| ≥ 2−2poly(n)
by Theorem 8.

Similarly, if p1 > 0, then (x1, p1) ∈ P for some x1. We observe that p1, p2 are common roots of

Ux1 (p)Ux2 (p), from which it again follows that |p1 − p2| ≥ 2−2poly(n)
. Finally, 1 − p2 ≥ 2−2poly(n)

follows since 1 and p2 are distinct roots of (1 − p)Ux2 (p). Thus equation (3) holds.
Next we show that the pseudocode can be implemented in PSPACE. Observe first that the

degrees of Ux, Vx are 2poly(n), with rational coefficients having numerator and denominator bounded
by 2poly(n). Moreover, the coefficients of Ux, Vx are computable in PSPACE from the coefficients
of Qx, Rx, and these coefficients are themselves PSPACE-computable. To loop over the elements
of P as in the for-loops of the pseudocode, we can perform an outer loop over y ∈ {0, 1}n and an
inner loop over the zeros of Uy. These zeros are indexed by Neff’s algorithm (Theorem 9) and can
be looped over with that indexing. The algorithm of Theorem 9 may return duplicate roots, but
these can be identified and removed by comparing each root in turn to all previously visited roots.
For each pair of distinct zeros of Uy differ in their binary expansion to a sufficiently large 2poly(n)

number of bits (by Theorem 8), and Theorem 9 allows us to compare such bits in polynomial space.
Similarly, if (y, p) , (z, q) ∈ P then we can determine in PSPACE whether q ≤ p, as required.

The only remaining implementation step is to produce the value rn in PSPACE, in such a way that
part (iii) of Lemma 14 is satisfied. Given the value p chosen by the inner loop, and the index

i ≤ 2poly(n), we need to produce the ith bit of a value rn ∈
(

p, p+ 2−2poly(n)
)

, such that the binary

expansion of rn is identically zero for sufficiently large j ≥ h(n) = 2poly(n). But this is easily done,
since we can compute any desired jth bit of p, for j ≤ 2poly(n), in polynomial space.

5 Distinguishing Problems for Finite Automata

The distinguishing problem, as described in Section 1, is a natural problem with which to investigate
the power of restricted models of computation. The basic task is to distinguish a coin of bias p from
a coin of bias p+ ε, using a finite automaton with a bounded number of states. Several variations
of this problem have been explored [13, 10], which modify either the model of computation or the
mode of acceptance. A basic question to explore in each case is whether the distinguishing task
can be solved by a finite automaton whose number of states is independent of the value ε (for fixed
p, say).

Variations of interest include:

(1) Classical vs. quantum finite automata. We showed in Section 3 that, in some cases, quantum
finite automata can solve the distinguishing problem where classical ones cannot.

17

�
�����

Figure 2: Graphical depiction of the proof of Theorem 2, that BQPSPACE/coin = PSPACE/poly.
For each input x ∈ {0, 1}n, the acceptance probability of the BQPSPACE/coin machine is a rational
function ax (p) of the coin bias p, with degree at most 2poly(n). Such a function can cross the
ax (p) = 2/5 or ax (p) = 3/5 lines at most 2poly(n) times. So even considering all 2n inputs x,
there can be at most 2poly(n) crossings in total. It follows that, if we want to specify whether
ax (p) < 2/5 or ax (p) > 3/5 for all 2n inputs x simultaneously, it suffices to give only poly (n) bits
of information about p (for example, the total number of crossings to the left of p).

(2) ε-dependent vs. ε-independent automata. Can a single automaton M distinguish $p from
$p+ε for every ε > 0, or is a different automaton Mε required for different ε?

(3) Bias 0 vs. bias 1/2. Is the setting p = 0 easier than the setting p = 1/2?

(4) Time-dependent vs. time-independent automata. An alternative, “nonuniform” model of
finite automata allows their state-transition function to depend on the current time step
t ≥ 0, as well as on the current state and the current bit being read. This dependence on t
can be arbitrary; the transition function is not required to be computable given t.

(5) Acceptance by halting vs. 1 -sided acceptance vs. acceptance in the limit. How does the finite
automaton register its final decision? A first possibility is that the automaton halts and
enters an |Accept〉 state if it thinks the bias is p + ε, or halts and enters a |Reject〉 state if
it thinks the bias is p. A second possibility, which corresponds to the model considered for
most of this paper, is that the automaton halts and enters an |Accept〉 state if it thinks the
bias is p+ε, but can reject by simply never halting. A third possibility is that the automaton
never needs to halt. In this third model, we designate some subset of the states as “accepting
states,” and let at be the probability that the automaton would be found in an accepting state,
were it measured at the tth time step. Then the automaton is said to accept in the limit if
lim inft→∞(a1+. . .+at)/t ≥ 2/3, and to reject in the limit if lim supt→∞(a1+· · ·+at)/t ≤ 1/3.
The automaton solves the distinguishing problem if it accepts in the limit on a coin of bias
p+ ε, and rejects in the limit on a coin of bias p.

For almost every possible combination of the above, we can determine whether the distinguishing
problem can be solved by an automaton whose number of states is independent of ε, by using the
results and techniques of [13, 10] as well as the present paper. The situation is summarized in the
following two tables.

18

Classical case Coin distinguishing task
1
2 vs. 1

2 + ε 0 vs. ε
Type of automaton Halt 1-Sided Limit Halt 1-Sided Limit
Fixed No No No No Yes (easy) Yes
ε-dependent No No No [13] Yes (easy) Yes Yes
Time-dependent No Yes [10] Yes No Yes Yes
ε,time-dependent Yes [10] Yes Yes Yes Yes Yes

Quantum case Coin distinguishing task
1
2 vs. 1

2 + ε 0 vs. ε
Type of automaton Halt 1-Sided Limit Halt 1-Sided Limit
Fixed No No (here) ? No Yes Yes
ε-dependent Yes (here) Yes Yes Yes Yes Yes
Time-dependent No Yes Yes No (easy) Yes Yes
ε,time-dependent Yes Yes Yes Yes Yes Yes

Let us briefly discuss the possibility and impossibility results.

(1) Hellman and Cover [13] showed that a classical finite automaton needs Ω (1/ε) states to
distinguish p = 1/2 from p = 1/2+ ε, even if the transition probabilities can depend on ε and
the automaton only needs to succeed in the limit.

(2) By contrast, Theorem 1 shows that an ε-dependent quantum finite automaton with only two
states can distinguish p = 1/2 from p = 1/2 + ε for any ε > 0, even if the automaton needs
to halt.

(3) Cover [10] gave a construction of a 4-state time-dependent (but ε-independent) classical finite
automaton that distinguishes p = 1/2 from p = 1/2+ε, for any ε > 0, in the limit of infinitely
many coin flips. This automaton can even be made to halt in the case p = 1/2 + ε.

(4) It is easy to modify Cover’s construction to get, for any fixed ε > 0, a time-dependent, 2-state
finite automaton that distinguishes p = 1/2 from p = 1/2 + ε with high probability and that
halts. Indeed, we simply need to look for a run of 1/ε consecutive heads, repeating this 21/ε

times before halting. If such a run is found, then we guess p = 1/2 + ε; otherwise we guess
p = 1/2.

(5) If we merely want to distinguish p = 0 from p = ε, then even simpler constructions suffice.
With an ε-dependent finite automaton, at every time step we flip the coin with probability
1 − ε; otherwise we halt and guess p = 0. If the coin ever lands heads, then we halt and
output p = ε. Indeed, even an ε-independent finite automaton can distinguish p = 0 from
p = ε in the 1-sided model, by flipping the coin over and over, and accepting if the coin ever
lands heads.

(6) It is not hard to show that even a time-dependent, quantum finite automaton cannot solve
the distinguishing problem, even for p = 0 versus p = ε, provided that (i) the automaton
has to halt when outputting its answer, and (ii) the same automaton has to work for every
ε. The argument is simple: given a candidate automaton M , keep decreasing ε > 0 until M

19

halts, with high probability, before observing a single heads. This must be possible, since
even if p = 0 (i.e., the coin never lands heads), M still needs to halt with high probability.
Thus, we can simply wait for M to halt with high probability—say, after t coin flips—and
then set ε ≪ 1/t. Once we have done this, we have found a value of ε such that M cannot
distinguish p = 0 from p = ε, since in both cases M sees only tails with high probability.

6 Open Problems

(1) Our advice-coin computational model can be generalized significantly, as follows. Let
BQPSPACE/dice (m,k) be the class of languages decidable by a BQPSPACE machine that
can sample from m distributions D1, . . . ,Dm, each of which takes values in {1, . . . , k} (thus,
these are “k-sided dice”). Note that BQPSPACE/coin = BQPSPACE/dice(1, 2).

We conjecture that

BQPSPACE/dice (1,poly (n)) = BQPSPACE/dice (poly (n) , 2) = PSPACE/poly.

Furthermore, we are hopeful that the techniques of this paper can shed light on this and
similar questions.7

(2) Not all combinations of model features in Section 5 are well-understood. In particular, can
we distinguish a coin with bias p = 1/2 from a coin with bias p = 1/2 + ε using a quantum
finite automaton, not dependent on ε, that only needs to succeed in the limit?

(3) Given any degree-d rational function a (p) such that 0 ≤ a (p) ≤ 1 for all 0 ≤ p ≤ 1,
does there exist a d-state (or at least poly (d)-state) quantum finite automaton M such that
Pr [M ($p) accepts] = a (p)?

7 Acknowledgments

We thank Erik Demaine for suggesting the advice coins problem to us, and Piotr Indyk for pointing
us to the Hellman-Cover Theorem.

References

[1] S. Aaronson. BQP and the polynomial hierarchy. In Proc. ACM STOC, 2010. arXiv:0910.4698.

[2] S. Aaronson and J. Watrous. Closed timelike curves make quantum and classical computing
equivalent. Proc. Roy. Soc. London, (A465):631–647, 2009. arXiv:0808.2669.

[3] M. Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24:1–48, 1983.

[4] K. Amano. Bounds on the size of small depth circuits for approximating majority. In S. Albers,
A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas, and W. Thomas, editors, ICALP (1),
volume 5555 of Lecture Notes in Computer Science, pages 59–70. Springer, 2009.

[5] S. Basu, R. Pollack, and M. Roy. Algorithms in Real Algebraic Geometry. Springer, 2006.

7Note that the distinguishing problem for k-sided dice, for k > 2, is addressed by the more general form of the
theorem of Hellman and Cover [13], while the distinguishing problem for read-once branching programs was explored
by Brody and Verbin [9].

20

[6] A. Borodin. On relating time and space to size and depth. SIAM J. Comput., 6(4):733–744,
1977.

[7] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings and
space-bounded probabilistic machines. Information and Control, 58(1-3):113–136, 1983.

[8] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff. Pseudorandom generators for regular
branching programs. In Proc. IEEE FOCS, 2010.

[9] J. Brody and E. Verbin. The coin problem, and pseudorandomness for branching programs.
In Proc. IEEE FOCS, 2010.

[10] T. M. Cover. Hypothesis testing with finite statistics. Ann. Math. Stat., 40(3).

[11] E. F. Galvao and L. Hardy. Substituting a qubit for an arbitrarily large number of classical
bits. Phys. Rev. Lett., 90(087902), 2003. quant-ph/0110166.

[12] M. E. Hellman. Learning with finite memory. PhD thesis, Stanford University, Department of
Electrical Engineering, 1969.

[13] M. E. Hellman and T. M. Cover. Learning with finite memory. Ann. of Math. Stat., 41:765–782,
1970.

[14] C. A. Neff. Specified precision polynomial root isolation is in NC. J. Comput. Sys. Sci.,
48(3):429–463, 1994.

[15] C. A. Neff and J. H. Reif. An efficient algorithm for the complex roots problem. J. Complexity,
12(2):81–115, 1996.

[16] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[17] R. O’Donnell and K. Wimmer. Approximation by DNF: examples and counterexamples. In
Proc. Intl. Colloquium on Automata, Languages, and Programming (ICALP)), pages 195–206,
2007.

[18] V. Y. Pan. Optimal (up to polylog factors) sequential and parallel algorithms for approximating
complex polynomial zeros. In Proc. ACM STOC, pages 741–750, 1995.

[19] B. Terhal and D. DiVincenzo. On the problem of equilibration and the computation of corre-
lation functions on a quantum computer. Phys. Rev. A, 61:022301, 2000. quant-ph/9810063.

[20] E. Viola. On approximate majority and probabilistic time. In Proc. IEEE Conference on
Computational Complexity, pages 155–168, 2007. Journal version to appear in Computational
Complexity.

[21] E. Viola. Randomness buys depth for approximate counting. Electronic Colloquium on Com-
putational Complexity (ECCC), 17:175, 2010.

[22] J. Watrous. Space-bounded quantum complexity. J. Comput. Sys. Sci., 59(2):281–326, 1999.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

