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Abstract

We study the communication complexity of symmetric XOR functions, namely functions
f : {0, 1}n×{0, 1}n → {0, 1} that can be formulated as f(x, y) = D(|x⊕ y|) for some predicate
D : {0, 1, ..., n} → {0, 1}, where |x⊕ y| is the Hamming weight of the bitwise XOR of x and y.
We give a public-coin randomized protocol in the Simultaneous Message Passing (SMP) model,
with the communication cost matching the known lower bound for the quantum and two-way
model up to a logarithm factor. As a corollary, this closes a quadratic gap between quantum
lower bound and randomized upper bound for the one-way model, answering an open question
raised in Shi and Zhang [SZ09].

1 Introduction

Communication complexity quantifies the minimum amount of communication needed for two
(or sometimes more) parties to jointly compute some function f . Since introduced by Yao
[Yao79], it has attracted significant attention in the last three decades, not only for its elegant
mathematical structure but also for its numerous applications in other computational models
[KN97, LS07].

The two parties involved in the computation, usually called Alice and Bob, can communicate
in different manners, and here we consider the three well-studied models, namely the two-way
model, the one-way model and the simultaneous message passing (SMP) model. In the two-way
model, Alice and Bob are allowed to communicate interactively in both directions, while in the
one-way model, Alice can send message to Bob and Bob does not give feedback to Alice. An
even weaker communication model is the SMP model, where Alice and Bob are prohibited to
exchange information directly, but instead they each send a message to a third party Referee,
who then announces a result. A randomized protocol is called private-coin if Alice and Bob each
flip their own and private random coins. If they share the same random coins, then the protocol
is called public-coin. The private coin model differs from the public coin model by at most an
additive factor of O(log n) in the two-way and one-way models [New91].

We use Rpriv(f) to denote the communication complexity of a best private-coin randomized
protocol that computes f with error at most 1/3 in the two-way protocol. Similarly, we use
the R||,priv(f) to denote the communication complexity in the private-coin SMP model, and
R1,priv(f) for the private-coin one-way model. Changing the superscript “priv” to “pub” gives
the notation for the communication complexities in the public-coin models. If we allow Alice and
Bob to use quantum protocols, then Q(f), Q1(f), Q||(f) represent the quantum communication
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complexity in two-way model, one-way model and SMP model, separately. In the quantum case
the communication complexity is evaluated in terms of the number of qubits in the communica-
tion. If Alice and Bob share prior entanglement, then we use a star in the superscript to denote
the communication complexity.

Arguably the most fundamental issue in communication complexity is to determine the
largest gap between the quantum and classical complexity. In particular, there is no super-
constant separation between quantum and classical complexities in the one-way model; actually,
it could well be the truth that they are the same up to a constant factor for all total Boolean
functions.

One way to understand the question is to study special classes of functions. An important
class of Boolean functions is that of XOR functions, namely those in the form of f(x⊕y) where
x⊕ y is the bitwise XOR of x and y. Some well studied functions such as the Equality function
and the Hamming Distance function are special cases of XOR functions. XOR functions belong
to a larger class of “composed functions”; see [LZ10] for some recent studies.

While the general XOR function seems hard to study, recently Shi and Zhang [SZ09] con-
sidered symmetric XOR functions, i.e. f(x⊕ y) = D(|x⊕ y|) for some D : {0, 1, ..., n} → {0, 1}.
Define r0 and r1 to be the minimum integers such that r0, r1 ≤ n/2 and D(k) = D(k + 2) for
all k ∈ [r0, n − r1) and set r = max{r0, r1}. Shi and Zhang proved that the quantum lower
bound for symmetric XOR functions in the two-way model is Ω(r), and on the other hand, they
also gave randomized protocol in communication of Õ(r) in the two-way model and Õ(r2) in
the one-way model. Pinning down the quantum and randomized communication complexity of
symmetric XOR functions in the one-way model was raised as an open problem.

In this work, we close the quadratic gap by proving a randomized upper bound of Õ(r),
which holds even for the SMP model. Namely,

Theorem 1 For any symmetric XOR function f ,

R‖,pub(f) = O(rlog3 r/ log log r) (1)

Combining this upper bound with Shi and Zhang’s quantum lower bound in the two-way
model, we have the following.

Corollary 2 The randomized and quantum communication complexities of symmetric XOR
functions are Θ̃(r), in the two-way, the one-way and the public-coin SMP models.

A good question for further exploration is the private-coin SMP model.

2 Preliminaries

In this part we review some known results on the randomized and quantum communication
complexity of the Hamming Distance function and the Equality function.

Let Ham(d)
n be the boolean function such that Ham(d)

n (x, y) = 1 if and only if the two n-bit
strings x and y have Hamming distance at most d. Yao [Yao03] showed a randomized upper
bound of O(d2) in the public-coin SMP model, lated improved by Gavinsky, Kempe and de Wolf
[GKdW04] to O(d log n) and further by Huang, Shi, Zhang and Zhu [HSZZ06] to O(d log d).
Let HDd,ε denote the O(d log d log(1/ε))-cost randomized protocol by repeating the [HSZZ06]
protocol for O(log(1/ε)) times so that the error probability is below ε.

The parity function Parity(x) is defined as Parity(x) = 1 if and only if |x| is odd.
A function f : {0, 1}n × {0, 1}n → {0, 1} is a symmetric XOR function if f(x, y) = S(x⊕ y)

for some symmetric function S. That is, f(x, y) = D(|x⊕ y|) where D : {0, 1, . . . , n} → {0, 1}.
Let D̃(k) = D(n−k) and S̃(x, y) = D̃(|x⊕y|). Define r0 and r1 to be the minimum integers such
that r0, r1 ≤ n/2 and D(k) = D(k+2) for all k ∈ [r0, n−r1); set r = max{r0, r1}. By definition,
D(k) only depends on the parity of k when k ∈ [r0, n − r1]. Suppose D(k) = T (Parity(k)) for
k ∈ [r0, n− r1] (for some function T ).

All the logarithms in this paper are based 2.
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3 A public-coin protocol in the SMP model

This section gives the protocol in Theorem 1. We will first give a subprocedure Pk which
computes the function in the special case of |x⊕ y| ≤ k. It is then used as a building block for
the general protocol P.

In the protocols we will use random partitions. A random k-partition of [n] is a random
function p mapping [n] to [k], i.e. mapping each element in [n] to [k] uniformly at random and
independently. We call the set {i ∈ [n] : p(i) = j} the block B(j). A simple fact about the
random partition is the following.

Lemma 3 For any string z ∈ {0, 1}n with at most k 1’s, a random k-partition has

Pr[All k blocks have less than c 1’s] ≥ 1−O(1/k2). (2)

where c = 4 log k/ log log k.

Proof Consider the complement event. There are k possible blocks to violate the condition,(
k
c

)
choices for the c 1’s (out of k 1’s) put in the “bad” block, and for each of these 1’s, the

probability of it mapped to the block is 1/k. Thus the union bound gives

Pr[There exists a block with c 1’s] ≤ k ·
(
k

c

)
· 1

kc
≤
(ek
c

)c · 1

kc−1
=
(e
c

)c · k (3)

It is easily verified that the chosen c makes this bound O(1/k2). �

Now the protocol Pk is as in Box Pk. Recall thatHDd,ε is the O(d log d log(1/ε)) randomized
protocol with error probability below ε.

Box Pk:

A public-coin randomized protocol Pk for functions f(x, y) = D(|x ⊕ y|),
with promise |x⊕ y| ≤ k, in the SMP model

Input: x ∈ {0, 1}n to Alice and y ∈ {0, 1}n to Bob, with promise |x⊕ y| ≤ k
Output: One bit f̄ by Referee satisfying f̄ = f(x, y) with probability at least 0.9.

Protocol:
Alice and Bob:

1. Use public coins to generate a common random k-partition [n] = ]ki=1B(i).

2. for i = 1 to k

for j = 0 to c = 4 log k/ log log k

run (Alice and Bob’s part of) the protocol HDj,ε on input (xB(i), yB(i))
with ε = 1/(10k log c), sending a pair of messages (ma,i,j(xB(i)),
mb,i,j(yB(i))).

Referee:

1. for i = 1 to k

(a) On receiving {(ma,i,j(xB(i)),mb,i,j(yB(i))) : j = 1, . . . , c}, run (Referee’s
part of) the protocol HDj,ε which outputs hij .

(b) Use binary search in (hi1, . . . , hic) to find the Hamming distance hi of
(xB(i), yB(i)).

2. Output D(
∑k
i=1 hi).
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Lemma 4 If |x⊕ y| ≤ k, then Referee outputs D(|x⊕ y|) with probability at least 0.9. The cost
of protocol Pk is O(k log3 k/ log log k).

Proof First, by Lemma 3, each block contains at most c different indices i s.t. xi 6= yi. Namely,
the Hamming distance of xB(i) and yB(i) is at most c. Thus running the protocols HDj,ε for
j = 0, ..., c would give information to find the Hamming distance hi of (xB(i), yB(i)). In each
block B(i), hi is correctly computed as long as each of the dlog ce values hij on the (correct)
path of the binary search is correct. Thus a union bound gives the overall error probability
upper bounded by k(log c)ε = 1/10. The cost of the protocol is O(k · c · c log c log(1/ε)) =
O(k log3 k/ log log k). �

With the protocol Pk in hand, we now construct the general protocol as in Box P.

Box P

A public-coin randomized protocol P for functions f(x, y) = S(x ⊕ y) in
the SMP model

Input: x ∈ {0, 1}n to Alice and y ∈ {0, 1}n to Bob
Output: One bit b which equals to f(x, y) with probability at least 2/3.

Protocol:

1. Run the protocol HDr0,1/10 and the protocol HDn−r1,1/10 on (x̄, y).

2. Run the protocol Pr0 for function S on (x, y) and the protocol Pr1 for function
S̃ on (x̄, y).

3. Alice: send Parity(x)

4. Bob: send Parity(y).

5. Referee:

(a) If HDr0,1/10 on (x, y) outputs 1, then output Pr0 on (x, y) and halt.

(b) If HDn−r1,1/10 on (x̄, y) outputs 1, then output Pr1 on (x̄, y) and halt.

(c) Output T (Parity(x)⊕ Parity(y)).

Theorem 5 The protocol P outputs the correct value with probability at least 2/3, and the
complexity cost is O(r log3 r/ log log r).

Proof Correctness: If |x⊕y| ≤ r0, then with probability at least 0.9, the protocolHDr0,1/10(x, y)
outputs 1, thus Referee outputs Pr0 on (x, y), which equals to f(x, y) with probability at least
0.9 by the correctness of the protocol Pr0 . Thus the overall success probability is at least
0.81 > 2/3.

If |x ⊕ y| ≥ n − r1, then |x̄ ⊕ y| ≤ r1 and with probability at least 0.9, the protocol
HDr1,1/10(x̄, y) outputs 1, thus Referee outputs Pr1(S̃, x̄, y), which equals to

S̃(x̄⊕ y) = D̃(n− |x⊕ y|) = D(|x⊕ y|) (4)

with probability at least 0.9 by the correctness of the protocol Pr1 . Thus the overall success
probability is at least 0.81 > 2/3.

If r0 < |x⊕ y| < n− r1, then the protocol proceeds to the very last step with probability at
least 1 − 0.1 − 0.1 = 0.8. And once this happens, then Referee outputs the correct value with
certainty, since f(x, y) = T (Parity(x⊕ y)) = T (Parity(x)⊕ Parity(y)).

Complexity : The cost is twice of the cost of the protocol Pr, plus twice of the cost of the
protocol HDr,1/10, plus 2, which in total is O(r log3 r/ log log r). �
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