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Abstract. In [She82], it is shown that four basic functional properties
are enough to characterize plain Kolmogorov complexity, hence obtain-
ing an axiomatic characterization of this notion. In this paper, we try
to extend this work, both by looking at alternative axiomatic systems
for plain complexity and by considering potential axiomatic systems for
other types of complexity. First we show that the axiomatic system given
by Shen cannot be weakened (at least in any natural way). We then give
an analogue of Shen’s axiomatic system for conditional complexity. In a
the second part of the paper, we look at prefix-free complexity and try
to construct an axiomatic system for it. We show however that the natu-
ral analogues of Shen’s axiomatic systems fails to characterize prefix-free
complexity.

1 Introduction

The Kolmogorov complexity concept have been introduced independently by
Kolmogorov (in [Kol65]) and Chaitin, the aim of the theory of Kolmogorov com-
plexity is to quantify the amount of “information” contained in finite objects,
such as binary strings. This idea can use to try to give an answer to the philo-
sophical question “what does it mean for a single real number to be random?”
Kolmogorov complexity theory has also had a key role in computability theory.
The basic definition of Kolmogorov complexity involves Turing machines (see be-
low). However, most of the work done in computability theory use computable
functions as the basic object, not Turing machines. Therefore, it would be inter-
esting to give an axiomatic system characterizing Kolmogorov complexity only
via its functional properties. This would give us another point of view on this
concept and to get a better understanding of the fundamental properties for this
notion. And of course, as with any axiomatic system, we want the axiomatic
system to be minimal, i.e. to contain no superfluous axiom.

Such a characterization was given by Shen in section [She82] for plain com-
plexity. In 2 we recall this characterization. An extension of this set of char-
acteristic properties provide an axiomatic set for the conditional complexity.
We can show that this system can be extended to characterize the conditional
complexity. A natural question is whether can we weakened hypotheses of plain
complexity’s characterization theorem in a natural way, we show that it is not
possible. More precisely one of the hypothesis in the theorem state that the com-
plexity of a string cannot increase more than a constant by the application of a
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computable function we can ask if the theorem remains true if we weakened these
hypotheses for just total computable functions. To show that we need the power
of partial computable functions to characterize plain complexity we introduce a
notion of complexity for functions total in a initial segment. This construction
is a new approach to define a notion of complexity on total function.

A second natural question would be “is there a similar axiomatic system for
prefix-free complexity ?” Unlike plain complexity case we show that the classical
properties on prefix-free complexity are not sufficient to characterize it. Since
prefix-free complexity is bigger than plain complexity we have to chose a larger
upper bound and a tighter lower bound to characterize K (where K(x) is prefix-
free complexity of the string x, see below). Actually all basic upper bounds on
prefix-free complexity fail to characterize it. To show that our properties are not
characteristic we construct the counter example defined by A = K + f with f a
very slow growing function. To have a function slow enough we define an operator
to slow down sub-linear non-decreasing functions, this construction is general and
keep some nice properties (particularly on the computability properties).

In all the paper we will identify positive integers and finite strings in a natural
way (the set of finite strings are denoted by 2<ω). We denote log(x) the discrete
binary logarithm of x. We fix an effective enumeration of the Turing machines
and we denote by ψe the eth machine. For each machine T and a string x the
complexity of x relatively to T is:

CT (x) = min{n|∃y ∈ 2<ω such that |y| = n and T (y) = x}

and in all the paper we denote U an optimal machine (i.e. a machine such that
for all machines T we have CU ≤ CT +O(1), see [Nie09] for a existence proof of
a such function) and the complexity function C = CU . And in the same way we
denote U′ a prefix-free optimal machine (i.e. a machine with prefix-free domain)
and K = KU′ . So C(x) and K(x) are respectively plain complexity and prefix-free
complexity of x. The conditional complexity is a means to quantify the indepen-
dence of two string in therm of information. More precisely the complexity of x
knowing y relatively to the machine T is:

CT (x|y) = min{n|∃z ∈ 2<ω such that |z| = n and T (〈z, y〉) = x}

as above we can define C(.|.) = CU(.|.) and K(.|.) = CU′(.|.) (without more
precision C and K refers respectively to plain and prefix-free complexity).

2 Plain complexity

As mentioned above, Shen showed in [She82] that four basic properties are suf-
ficient to fully characterize plain Kolmogorov complexity:

1. Upper-semicomputability: C not computable but it is upper semi-computable
(i.e. the predicate C(x) ≤ k is uniformly (in x and y) computably enumer-
able).



2. Stability: a recursive function cannot increase the complexity of a string
more than a constant.

3. Explicit description: the length of the smallest description of a string (i.e.
his plain complexity) is not much bigger than the string itself.

4. Counting: no more than a fraction 2−k of the strings of a given length n are
compressible by k bits (i.e. have complexity at most n− k).

Formally, Shen’s theorem states the following.

Theorem 1. [She82] Let A be a function of 2<ω → N. If A satisfies the four
properties

1. A is upper semi-computable.
2. For every partial computable function f : 2<ω → 2<ω there exists a constant

cf such that for each A(f(x)) ≤ A(x) + cf for each x ∈ 2<ω

3. A(x) ≤ |x|+O(1) for all x ∈ 2<ω.
4. |{x|A(x) ≤ n}| = O(2n)

Then A(x) = C(x) +O(1)

Proof. The detailed proof is given in appendix but we sketch it here.
To show A ≤ C + O(1), let x∗ denote the shortest description of x (for the

complexity C ), with the hypotheses (2 and 3) we have:

A(x) = A(U(x∗)) ≤ A(x∗) +O(1) ≤ |x∗|+O(1) = C(x) +O(1).

To show C ≤ A + O(1) we consider y and n such that A(y) = n. Since A is
upper semi-computable the set {x|A(x) ≤ n} is uniformly recursively enumer-
able. Since there exists a uniform d such that |{x|A(x) ≤ n}| = 2n+d we can
describe y with only n+d bits (this description y such that |y| = n+d represents
the rank of y in an enumeration of {x|A(x) ≤ |y| − d}). So, for all y we have
C(y) ≤ n+ d+O(1) = A(y) +O(1).

ut
Remark 1: Authors in [USV10] show that the pair of conditions 3 and 4 can
be replaced by: there exists a constant c such that |{x|A(x) ≤ n}| ∈ [2n−c, 2n+c].
We can also replace points 2 and 3 by “for every partial computable function f
there exists a constant cf such that for each A(f(x)) ≤ |x|+cf for each x ∈ 2<ω”.
An finally points 4 can be replaced by the stronger version |{x|A(x) ≤ n−k}| =
O(2n−k).
Remark 2: With essentially the same proof, one can show a similar result
for conditional plain complexity. The following system is characteristic of the
conditional plain complexity:

• Uniformly in x, y ∈ 2<ω, B(x|y) is computable from above.
• For all x, y ∈ 2<ω, B(x|y) ≤ |x|+O(1).
• For each y ∈ 2<ω we have |{x|B(x|y) ≤ n}| = O(2n).
• For all y and for every partial computable function f from 2<ω to 2<ω there

exists a constant cf such that for each x ∈ 2<ω:

B(f(x)|y) ≤ B(x|y) + cf .



And to characterize the conditional aspect we add to the four previous items
the hypothesis: “B(〈x, y〉|y) ≤ B(x|y) +O(1)”.

Note however that replacing the last condition by B(x|x) = O(1) would
not be sufficient to characterize the plain conditional complexity. We give the
complete proof of these results in the appendix.

2.1 Weakening the hypotheses

Shen’s theorem raises a natural question: are all conditions of Shen’s theorem
actually needed? This is what we discuss here. First, it is not hard to see that
none of the hypotheses can be removed.

• We need the hypothesis 3 because the function 2C verifies the three others
hypotheses.

• The hypothesis 4 is necessary because the function 0 verifies the three others
hypotheses.

• The hypothesis 1 cannot be removed since C∅
′

(plain Kolmogorov complex-
ity relativised to the halting problem oracle) satisfies each of three others
hypotheses (and clearly differs from the unrelativized version C).

• The hypothesis 2 cannot be removed because the identity function satisfies
the three others hypotheses.

It could however be the case that hypothesis 2 be replaced by the weaker “for
all total computable functions f there exists cf such that A(f(x)) ≤ A(x) + cf”.
Our first main result is that this is not case.

Theorem 2. There exists a function A : 2<ω → N verifying hypotheses 1, 3, 4
(of Theorem 4) and:

• For every total computable function f from 2<ω to 2<ω there exists a constant
cf such that for each A(f(x)) ≤ A(x) + cf for each x ∈ 2<ω.

• |A(x)− C(x)| is not bounded.

Proof. In [MMSV10], the authors define a notion of total conditional complexity
C(x|y) as the smallest length of a program for a total function f code such that
f(y) = x. Of course, C is stable by total computable functions (i.e. C(f(x)|y) ≤
C(x|y) + cf for all total computable functions f) and the authors show that C
significantly differ from the plain conditional complexity. However, the function
C is not quite suitable for our purposes, for two reasons. First, it is not upper
semi-computable and second, its non-conditional version C(x|λ) is equal to C up
to a constant.

In order to construct our counter-example, we first define a way to encode
compositions of partial computable functions by a set of strings having the prefix-
free property. This encoding is not at all optimal, which is precisely what will
make our proof work. We define:

P = {1p10001p2000 . . . 1pi01| ∀k, k > 0}.



Notice that P is a prefix-free set. For τ = 1p10001p2000 . . . 1pi01 ∈ P we now
denote by ϕτ the function ϕτ = ψp1 ◦ ψp2 ◦ · · · ◦ ψpi where (ψi) is a standard
enumeration of partial computable functions. We now define a function V , as
follows. For all x ∈ 2<ω and τ ∈ P , set

V (τx) =

{
ϕτ (x) if for all y such that |y| ≤ |x| we have ϕτ (y) ↓
↑ otherwise

P is prefix-free so V is defined without ambiguity and of course V is a (partial)
computable function. If ϕτ is not a total function there are only a finite number of
strings x such that V (τx) ↓. We shall prove that A = CV satisfies the conditions
of the theorem. First, CV is upper semi-computable and satisfies the counting
condition as it is just the Kolmogorov complexity function associated to the
machine V . Moreover, let i be an index for the identity function (i.e. ψi = id).
By definition of V , one has V (1i01x) = x, hence A(x) ≤ |x|+(i+2). To see that
A is stable by total computable function, let f be a total computable function,
and let e be an index for f . Now, for any string x, let τy be such the shortest
description of x for V , with τ ∈ P . By definition of V , this means that ϕτ (z) ↓
for all |z| ≤ |y|. And since f = ψe is total, we also know that ψe ◦ϕτ (z) ↓ for all
|z| ≤ |y|. Therefore σ = 1e000τ is a description of x for V . We have proven that
CV (f(x)) ≤ CV (x) + e+ 3 for all x.

It remains to prove that CV differs from C, i.e. that CV −C takes arbitrarily
large values. We prove this by contradiction and we now suppose that |A(x) −
C(x)| is bounded by a constant. For x ∈ 2<ω we denote by x̂ the smallest
description of x for V (by definition this means that CV (x) = |x̂|).

Let x be a string and

x̂ = 1p10001p20000 . . . 1pk01y.

It is easy to see that

C(x̂) ≤ 2 log(p1) + 2 log(p2) + · · ·+ 2 log(pk) + 2k + |y|+O(1)

and since x can be computed from x, this implies a fortiori:

C(x) ≤ 2 log(p1) + 2 log(p2) + · · ·+ 2 log(pk) + 2k + |y|+O(1).

Moreover, by definition of V ,

CV (x) = |x̂| = p1 + p2 + · · ·+ pk + 3(k − 1) + 2 + |y|.

Thus, since we have assumed that CV (x)−C(x) bounded, this shows two things:

• the (pi) appearing in the x̂’s are bounded

• the number of pi’s used in each x̂ is bounded



Formally, we have proven that {τ ∈ P |∃x ∈ 2<ω such that x̂ = τy} is a finite
set and that for each τ in this set, either ϕτ is a total function or for y large
enough, τy is not in the domain of V and so this τ appears only in a finite
number of x̂.

Finally for |x̂| large enough (and hence for |x| large enough because {x|A(x) ≤ n}
is finite for all n) x̂ = τx with τ ∈ P and ϕτ is a total computable function. So

Q = {τ ∈ P |∃∞x ∈ 2<ω such that x̂ = τy}.

is a finite set of codes of total functions and there is only a finite number of
τ ∈ P in the prefixes of x̂’s.

Therefore, for x large enough, x̂ is of the form τy with τ ∈ Q and hence:

A(x) = min{|τy| | τ ∈ Q and ϕτ (y) = x}.

Since Q is finite and all (ϕτ )τ∈Q are total, this makes A computable, contradict-
ing A = C +O(1).

ut

3 An axiomatic system for prefix complexity

As we have seen in the last section there exists a minimal set of simple charac-
teriztic properties for plain complexity. One may ask whether it is possible to
obtain a similar characterization of prefix-free complexity K .

A natural candidate is to keep the hypotheses 1 and 2. For the the other
two hypotheses need to be adapted. Indeed, hypothesis 3 fails to hold for K
(i.e. K(x) � |x| + O(1)), and the sharpest classical upper bound is K(x) ≤
|x|+ K(|x|) +O(1) (see [DH10]).

Accordingly, the hypothesis 4 (ie. |{x|K(x) ≤ n}| = O(2n)) is too weak. The
analogue of that counting argument for K is the classical

|{x||x| = n and K(x) ≤ n+ K(n)− k}| = O(2n−k).

Another property of K that is very often used is
∑
x∈2<ω 2−K(x) < ∞ (in fact,

any upper semi-computable function A satisfying
∑
x∈2<ω 2−A(x) < ∞ is such

that K ≤ A + O(1)). Perhaps surprisingly, this set of properties alone is not
enough to characterize K.

Theorem 3. There exists a function A such that:

1. A is upper semi-computable
2. For every partial computable function f from 2<ω to 2<ω there exists a con-

stant cf such that for each A(f(x)) ≤ A(x) + cf for each x ∈ 2<ω

3.
∑
x∈2<ω 2−A(x) <∞

4. A(x) ≤ |x|+ A(|x|) +O(1) for each x ∈ 2<ω

5. |{x ∈ 2n | A(x) ≤ |n|+ A(n)− b}| ≤ O(2n−b)



And |A−K| is not bounded.

Remark: Since hypothesis 3 guarantees the inequality K ≤ A +O(1), it would
be sufficient, in order to obtain a full characterization of K, to add the property:
“For every f partial computable prefix-free function there exists cf such that:
A(f(x)) ≤ |x| + cf”. Indeed, for all x if we denote by x∗ a shortest string such
that U′(x∗) = x then A(x) = A(U′(x∗)) ≤ |x∗| + cU′ = K(x) + cU′ . However,
such a system would not be very satisfactory because it use prefix-freeness of
functions and thus is mostly a rewording of the definition of K.

Proof. We will define A by A = K + β with β an unbounded function with
nice properties. The function β will be upper semi-computable, non-decreasing,
unbounded, such that

β(x) = β(|x|) +O(1)

and such that for f partial computable function, there is cf such that:

β(f(n)) ≤ β(n) + cf . (1)

Simple considerations show that β has to have a very low increasing speed. First
let us define the Solovay’s α-function:

Definition 1. The Solovay’s α-function is defined by:

α(n) = min{K(i)|i > n}.

We call order a total, non-decreasing and unbounded (not necessarily com-
putable) function f : N→ N.

Equivalently α(n) is the length of the shortest string τ such that U′(τ) > n
since U′ is the optimal optimal prefix-free machine chosen to define K.

α is an order with a very low increasing speed, actually we can show that it
has a increasing speed lower than each computable order.

Lemma 1. For each h computable order:

(i) for all n, α(h(n)) = α(n) +O(1)
(ii) for all n, α(n) ≤ h(n) +O(1)

Proof. To prove this lemma, we need the following list of trivial facts.

• By definition of α there exists j > n such that α(n) = K(j)
• There exists ch such that for all n, K(h(n)) ≤ K(n) + ch
• We have K(n) ≥ α(n) for all n.
• Since h and α are order functions, h(j) ≥ h(n) and α(h(j)) ≥ α(h(n))

Now, one can apply these facts in order to get:

α(n) = K(j) ≥ K(h(j))− cf ≥ α(h(j))− cf ≥ α(h(n))− cf .



To prove α(n) ≤ α(h(n)) +O(1) it suffice to consider a inverse order ĥ of the

order function h defined by: ĥ(n) = max{i|h(i) ≤ n}. Since ĥ is a computable
order we have:

α(n) ≤ α(f̂(h(n))) ≤ α(h(n)) + c.

To show that α(n) ≤ h(n) +O(1), notice that K(n) ≤ n+O(1) and so there
exists c such that α(n) ≤ n+ c. Finally, by the previous point, we have:

α(n) ≤ α (h(n)) + ch ≤ h(n) + d.
ut

We can show (see in the appendix of this article) that α satisfies (1) for each
total computable function but there exists some partial computable functions
such that α does not verify (1). In the same way we can show that K + α does
not satisfies theorem’s point 2. However we have a weaker version for the partial
functions:

Lemma 2. For each f : N→ N partial computable function there exists cf such
that for all n

α(α(f(n))) ≤ α(n) + cf .

Proof. This fact is a corollary of a simple fact. For each f there exists cf such
that:

α(f(n)) ≤ K(f(n)) ≤ K(n) + cf ≤ n+ cf .

Since α is a sub-linear order:

α(α(f(n))) ≤ α(n+ cf ) ≤ α(n) + cf +O(1).
ut

As say before the partial computable functions can increase too fast to verify
theorem’s point 2. For this reason we introduce a general operator to slow down
sub-linear and upper semi-computable order:

Definition 2 (Star-operator). Let f be a sub-linear (i.e. o(n)) order function.
First, we set

pf = max{n|f(n) ≥ n}

which is well-defined by sub-linearity of f . Then, define f∗ by:

f∗(n) = min{k|f̂ (k)(n) ≤ pf}.

This operator is a general construction used to define the standard iterated
logarithm denoted by log∗.

Remark: A simpler definition could be f∗(n) = min{k|f (k)(n) = f (k+1)(n)}
but for small values of n and for some function f (for functions with more than
one fixed point for example) this definition is not exactly the same and is in fact
less natural. This star operator will suit our purposes because it possesses some
nice properties.



Lemma 3. Let f a sub-linear order function. The following properties hold:

1. f∗ is a sub-linear order function
2. If f is a computable function then so is f∗

3. If f is a upper semi-computable function then so is f∗

4. 0 ≤ f∗(n)− f∗(f (i)(n)) ≤ i
5. f∗(n) ≤ f (i)(n) + i+O(1) for all n.

Proof. (1) The point 5 shows the sub-linearity. To see that f∗ is non-decreasing,
if x ≤ y so f (i)(x) ≤ f (i)(y) for all i because f is non-decreasing. Finally, f∗ is
non-decreasing. If f∗ have a finite limit d so f (d) is bounded but it is no possible
because f̂ is unbounded.

(2) If f is computable then to determine f∗(n) we can compute the sequence
f (1)(n), f (2)(n), . . . , f (k)(n), . . . and we stop for the first j such that f (j)(n) ≤ pf
and we return j. The other properties come from the above point.

(3) If f is upper semi-computable then we compute in parallel the approxi-
mations of f (k)(n) for all k, and we return the least k such that f (k)(n) ≤ pf .

(4) If f∗(n) ≤ i then f∗(f (i))(n) = 0 because necessary f (i)(n) ≤ pf . So
f∗(n) = f∗(f (i)(n)) + i.

If f∗(n) > i then f∗(n) = f∗(f (i))(n) + i by definition of the star-operator.
And in both cases f∗(n) ≥ f∗(f (i)(n)).

(5) For f a sub-linear non-decreasing function then in the last point it is
clear that f∗(n) ≤ f(n) +O(1) ≤ n+O(1). And therefore:

f∗(n) = f∗(f (i))(n) + i ≤ f (i)(n) + i+O(1).
ut

We shall use Solovay’s α function transformed by the star-operator. We will
show that the function A(x) = K(x) + α∗(x) has all the necessary properties to
prove the theorem.

With Proposition 3 the function α∗ is upper semi-computable, and thus
K + α∗ is.

With Lemma 2 and Lemma 3.5 we have: for each f : N → N partial com-
putable function there exists cf such that for all n

α∗(f(n)) ≤ α∗(n) + cf .

This point proves theorem’s property 2.
The property 3 is clear because we have

∑
x∈2<ω 2−K(x) < ∞ and A(x) ≥

K(x) (because α∗(x) ≥ 0).
Finally, since |.| is a computable order function with Lemma 1 we have α(x) =

α(|x|) +O(1). With point 4 of Lemma 3 the equality

α∗(x) = α∗(|x|) +O(1)

is true. This equality show that A satisfies hypotheses 4 and 5.
ut



It is interesting to notice that the counter-example we produced also invali-
dates several similar attempts for an axiomatization.

For example, one could replace 4 or 5 by:

K(xy) ≤ K(x, y) ≤ K(x) + K(y) +O(1).

But K + α∗ verify also this property. In the same way we can define α(x|y) by

α(n|m) = min{K(i|m)|i > n}

we can define α∗(.|y) for each y and so on we have α∗(x|y) for each x and y. We
can easily show that

A(x, y) ≤ A(x) + K(x|y) + α∗(x|y)

this fact show that if this basic property seem to be more precise than the
unconditional one this property does not characterize the conditional and un-
conditional complexities.

Theorem 3 and the previous remark show that the situation is more complex
in the prefix-free complexity case than in the plain complexity case. Finding a
natural characteriztic set of properties for K is left as an open question.
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Appendix

4.1 Theorem 4’s full proof

Theorem 4. [She82] Let A be a function of 2<ω → N. If A verifies:

1. A is computable from above.
2. For every partial computable function f : 2<ω → 2<ω there exists a constant

cf such that for each A(f(x)) ≤ A(x) + cf for each x ∈ 2<ω

3. A(x) ≤ |x|+O(1) for all x ∈ 2<ω.
4. |{x|A(x) ≤ n}| = O(2n)

Then A(x) = C(x) +O(1)

This theorem shows that these four properties define exactly plain Kol-
mogorov complexity (up to an additive constant, of course).

Proof. First we show C(x) ≤ A(x) + O(1). We set Sn = {x|A(x) ≤ n}. A is
computable from above hence Sn is a uniformly computably enumerable set.
And by property 4 there exists d independent of n) such that |Sn| < 2n+d−1.

For each y such that A(y) = n we can describe y in Sn with a string y of
length exactly n + d, this string represents the rank of y in an enumeration of
Sn (y is this number with a padding if number does not use n+ d bits).

Now we describe an algorithm E to compute y from y. E(y) is the yth element
in the enumeration of S|y|−d. To compute E we enumerate the set {〈n, x〉|x ∈ Sn}
and count only elements of with the form 〈|y| − d, x〉 and output x for the yth.
So we have a machine E such that for all x there exists p such that E(p) = x
and |p| ≤ A(x) +O(1). By optimality of C we have C(x) ≤ A(x) +O(1).

Now we prove that A(x) ≤ C(x) + O(1). If we apply properties 2 and 3 in
this order we have the next inequalities (we note x∗ the shortest string such that
U(x∗) = x):

A(x) = A(U(x∗)) ≤ A(x∗) + cU ≤ |x∗|+O(1) = C(x) +O(1).

ut

4.2 Conditional complexity

In this section we give a more general axiomatic system for conditional plain
complexity.

Theorem 5. Let B : 2<ω × 2<ω → N. If B satisfies:

1. Uniformly in x, y, B(x|y) is upper semi-computable.
2. For all x, y ∈ 2<ω, B(x|y) ≤ |x|+O(1).
3. For each y ∈ 2<ω we have |{x|B(x|y) ≤ n}| = O(2n).
4. B(〈x, y〉|y) ≤ B(x|y) +O(1).



5. For all y and for every partial computable function f from 2<ω to 2<ω there
exists a constant cf such that for each x ∈ 2<ω:

B(f(x)|y) ≤ B(x|y) + cf .

Then |B(x|y)− C(x|y)| = O(1).

Proof.
For C(x|y) ≤ B(x|y) + c the proof is very similar to the unconditional version
(theorem 4). In the enumeration of {〈n, x〉|B(x|y) < n} if we know y, then we
can find x given its index in the set hence C(x|y) ≤ n+O(1).

For the converse. We define x∗y to be the shortest (and first in lexicographic
order) string such that U(〈y, x∗y〉) = x so C(x|y) = |x∗y|. And if we apply 5, 4
and 2 (in this order for each inequality) we have:

B(x|y) = B(U(〈x∗y, y〉)|y) ≤ B(〈x∗y, y〉|y) +O(1)

≤ B(x∗y|y) +O(1) ≤ |x∗y|+O(1) = C(x|y) +O(1)

ut
One can ask whether this theorem can be proven with slightly weaker hy-

potheses. For example we can hope that the hypothesis B(x|x) = O(1) instead of
hypothesis 4 would be sufficient to show the theorem. The next theorem shows
that this is not the case.

Theorem 6. There exists a function B : 2<ω×2<ω → 2<ω such that B satisfies
the hypotheses 1, 2, 3, 5 (in theorem 5), B(x|x) = O(1) and |B(x|y)−C(x|y)| is
not bounded.

Proof.
We will show that

B(x|y) = min(C(x), 2C(x|y))

verifies all these properties but of course |B(x|y)− C(x|y)| 6= O(1).

• B(x|y) is upper semi-computable because it is the min of two functions that
are upper semi-computable.
• We know that C(x) ≤ |x|+O(1) so B(x|y) ≤ |x|+O(1).
• We have |{x|C(x|y) ≤ n}| = O(2n) so we have |{x|2C(x|y) ≤ n}| = O(2n/2).

And |{x|C(x) ≤ n}| = O(2n) hence we have |{x|B(x|y) ≤ n}| = O(2n).
• B(x|x) = O(1) comes from 2C(x|y) ≤ 2O(1) = O(1).
• For f : 2<ω → 2<ω we must show that there exists cf such that B(f(x)|y) ≤

B(x|y) + cf . We know already that there exists cf such that C(f(x)) ≤
C(x) + cf and 2C(f(x)|y) ≤ 2C(x|y) + cf so we have:
• If B(f(x)|y) = C(f(x)) then by definition of B (it is a min):

B(f(x)|y) = C(f(x)) ≤ 2C(f(x)|y) ≤ 2C(x|y) + cf .

In that case we have B(f(x)|y) = C(f(x)) ≤ B(x|y) +O(1)



• In a same way, if B(f(x)|y) = 2C(f(x)|y) by definition of B we have:

B(f(x)|y) = 2C(f(x)|y) ≤ C(f(x)) ≤ C(x) + cf .

So in that case B(f(x)|y) = 2C(f(x)|y) ≤ B(x|y) +O(1)
So B(f(x)|y) ≤ B(x|y) + cf

So B verifies the hypotheses of the theorem and |B(x|y) − C(x|y)| is un-
bounded. ut

Properties of the Solovay’s α-function

In the paper we have shown that for each h computable order:

• for all n, α(h(n)) = α(n) +O(1)
• for all n, α(n) ≤ h(n) +O(1)

More generally the proof the proof show that for each total computable
function f :

α(f(n)) ≤ α(n) +O(1)

because it suffice to consider the total computable order hf defined by:

hf (n) = max{f(k)|n ≥ k ≥ 0}

with the non-decreasing property of α and Lemma 1 we have:

α(f(n)) ≤ α(hf (n)) ≤ α(n) + chf
.

As mentioned in the paper this property is not true for partial functions.

Proposition 1 (Folklore).
There exists a partial computable function f : N→ N such that

∀k ∈ N ∃xk ∈ 2<ω α(f(xk)) ≥ α(xk) + k.

Proof. We prove this proposition by contradiction. Let f be a partial computable
function such that:

f(n) =

{
time of the computation of U′(n) if U′(n) ↓
↑ otherwise

where U′ be an optimal machine for K . Let nk be the integer i ∈ [0, 2k − 1]
such that the computation time of U′(i) is maximal (but finite) among all i ∈
Dom(U′) ∩ [0, 2k − 1].

With m such that m ≥ f(nk) we can compute a string x such that K(x) ≥ k
because we can compute Dom(U′)∩ [0, 2k−1] (because we know an upper bound
of the biggest computation time) and take x 6∈ (Dom(U′) ∩ [0, 2k − 1]), let a
function such that g(m, k) = x.



Hence for m ≥ f(nk) we have:

K(m) + K(k) +O(1) ≥ K(g(m, k)) ≥ K(x) ≥ k

and
K(m) ≥ log(nk)−O(log(log(k))).

And finally by definition of α we have α(f(nk)) ≥ log(nk)−O(log(log(k)))
So we cannot have

log(nk)−O(log(log(k))) ≤ α(f(nk)) ≤ α(nk) + cf

because α(n) ≤ log(log(n)) (with Lemma 1 in the proof of Theorem 3).
ut

With the same idea we can show that A = K + α do not verifies A(f(x)) ≤
A(x) + cf because for nk:

K(f(nk)) = K(nk) +O(1).
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