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Abstract

Hardness amplification results show that for every function f there exists a function Amp(f) such
that the following holds: if every circuit of size s computes f correctly on at most a 1 − δ fraction of
inputs, then every circuit of size s′ computes Amp(f) correctly on at most a 1/2 + ϵ fraction of inputs.
All hardness amplification results in the literature suffer from “size loss” meaning that s′ ≤ ϵ · s. In this
paper we show that proofs using “non-uniform reductions” must suffer from size loss. To the best of our
knowledge, all proofs in the literature are by non-uniform reductions. Our result is the first lower bound
that applies to non-uniform reductions that are adaptive.

A reduction is an oracle circuit R(·) such that when given oracle access to any function D that
computes Amp(f) correctly on a 1/2+ϵ fraction of inputs, RD computes f correctly on a 1−δ fraction
of inputs. A non-uniform reduction is allowed to also receive a short advice string α that may depend
on both f and D in an arbitrary way. The well known connection between hardness amplification and
list-decodable error-correcting codes implies that reductions showing hardness amplification cannot be
uniform for ϵ < 1/4. A reduction is non-adaptive if it makes non-adaptive queries to its oracle. Shaltiel
and Viola (STOC 2008) showed lower bounds on the number of queries made by non-uniform reductions
that are non-adaptive. We show that every non-uniform reduction must make at least Ω(1/ϵ) queries to
its oracle (even if the reduction is adaptive). This implies that proofs by non-uniform reductions must
suffer from size loss.

We also prove the same lower bounds on the number of queries of non-uniform and adaptive reduc-
tions that are allowed to rely on arbitrary specific properties of the function f . Previous limitations on
reductions were proven for “function-generic” hardness amplification, in which the non-uniform reduc-
tion needs to work for every function f and therefore cannot rely on specific properties of the function.
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1 Introduction

1.1 Background on hardness amplification

Hardness amplification results transform functions that are hard on the worst case (or sometimes mildly
hard on average) into functions that are very hard on average. These results play an important role in
computational complexity and cryptography. There are many results of this kind in the literature depending
on the precise interpretation of “hard”. In this paper we focus on hardness against Boolean circuits and use
the following notation.

Definition 1.1. Let g : {0, 1}n → {0, 1}ℓ.

• Let C : {0, 1}n → {0, 1}ℓ. We say that C has agreement p with g if
PrX←Un [C(X) = g(X)] ≥ p.

• Let C : {0, 1}n → {0, 1}ℓ ∪{⊥}. We say that C has errorless agreement p with g if C has agreement
p with g and for every x ∈ {0, 1}n, if C(x) ̸= ⊥ then C(x) = g(x).

• We say that g is p-hard for size s if no circuit C of size s has agreement p with g. We say that g is
p-hard for errorless size s if no circuit C of size s has errorless agreement p with g.

Typical hardness amplification results start from a function f : {0, 1}k → {0, 1} that is p-hard for size
s and show that some function g : {0, 1}n → {0, 1}ℓ is p′-hard for size s′. (The reader should think of
k, n, p, p′, s, s′ and ℓ as parameters). These results “amplify hardness” in the sense that p′ is typically much
smaller than p (meaning that g is harder on average than f ). We now briefly survey some of the literature
on hardness amplification.

Worst-case to average-case. Here p = 1 (meaning that f is hard on the worst case for circuits of size s),
ℓ = 1 (meaning that g is Boolean), and p′ = 1/2 + ϵ for a small parameter ϵ (meaning that circuits
of size s′ have advantage at most ϵ over random guessing when attempting to compute g). Many such
results are known [Lip91, BFNW93, IW97, IW98, STV01, TV07, GGH+07] see [Tre04] for a survey
article.

Mildly-average-case to average case. This setup is similar to the one above except that p = 1 − δ for
some small parameter δ (meaning that f is mildly average-case hard for circuits of size s). In other
words, the setup of worst-case to average-case above can be seen as a special case in which δ < 1/2k.
An extensively studied special case is Yao’s XOR-Lemma in which g(x1, . . . , xt) = f(x1) ⊕ . . . ⊕
f(xt) [Lev87, Imp95, IW97, KS03, Tre03] see [GNW95] for a survey article. Other examples are
[O’D04, HVV06, Tre05, GK08]

Non-Boolean target function. The two setups mentioned above can also be considered when the target
function g : {0, 1}n → {0, 1}ℓ is not Boolean. In the Boolean case we set p′ = 1/2 + ϵ as it is
trivial to have agreement of 1/2. We typically consider ℓ > log(1/ϵ) and set p′ = ϵ. Namely, it
is required that no circuit of size s′ has agreement ϵ with g. An extensively studied special case
is direct-product theorems in which g(x1, . . . , xt) = (f(x1), . . . , f(xt)) [Imp95, IW97, GNW95,
GG11, IJK09a, IJK09b, IJKW10].

Errorless amplification. The three notions above are also studied when the circuits attempting to compute
f and g are errorless [BS07, Wat10].
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We are interested in proving lower bounds on hardness amplification results. We want our lower bounds
to hold for all the settings mentioned above. For this purpose we will focus on a specific setting (which we
refer to as “basic hardness amplification”) that is implied by all the settings mentioned above.

Basic hardness amplification. Let ϵ, δ > 0 and ℓ ≥ 1 be parameters. The basic hardness amplification
task is to show that if f is (1 − δ)-hard for size s then g is ϵ-hard for errorless size s′. Stated in the
contra-positive, the basic hardness amplification task is to show that if there exists a circuit D of size
s′ that has errorless agreement p′ = ϵ with g then there exists a circuit C of size s that has agreement
p = 1− δ with f .

It is easy to see that basic hardness amplification is indeed implied by all the settings considered above.1

Therefore, lower bounds on basic hardness amplification immediately apply to all the aforementioned set-
tings. We make this statement more precise in Section 1.2.

Generic hardness amplification and error-correcting codes. Most of the hardness amplification re-
sults in the literature are function-generic, meaning that they provide a map Amp mapping functions
f : {0, 1}k → {0, 1} into functions g = Amp(f) where g : {0, 1}n → {0, 1}ℓ and show that for ev-
ery f that is p-hard for size s, the function g = Amp(f) is p′-hard for size s′. In contrast, a function-specific
hardness amplification result uses specific functions f, g and the proof of the hardness amplification result is
allowed to use specific properties of these functions. Examples of function-specific hardness amplification
are [Lip91, IW98, TV07, Tre03, Tre05].

It is known that function-generic hardness amplification from worst-case to strongly average-case is
closely related to (locally) list-deocodable codes [STV01]. We elaborate on this relationship in Section 4.

Size loss in hardness amplification. A common disadvantage of all hardness amplification results sur-
veyed above is that when starting from a function that is hard for circuits of size s, one obtains a function
that is hard for circuits of smaller size s′ ≤ ϵ · s. This is a major disadvantage as it means that if one starts
from a function that is hard for size s, existing results cannot produce a function that is (1/2 + ϵ)-hard for
ϵ < 1/s. It is natural to ask whether such a loss is necessary. In order to make this question precise, we
need to consider formal models for proofs of hardness amplification results.

1.2 Non-uniform reductions for hardness amplification

We are interested in proving impossibility results on proofs for hardness amplification and therefore consider
the weakest variant of hardness amplification (which is basic hardness amplification). The notion that we
study in this paper is that of “non-uniform” reductions. As explained in Section 1.3, this notion (defined
below) captures the proofs of almost all hardness amplification results in the literature.

Definition 1.2 (non-uniform reduction). Let f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}ℓ be functions.
Let ϵ, δ and a be parameters. A non-uniform reduction showing basic hardness amplification (for f, g, ϵ, δ
and a) is an oracle circuit R(·) which takes two inputs x ∈ {0, 1}k and α ∈ {0, 1}a. It is required that for

1Note that the basic hardness amplification task is trivially implied by all the settings above in case that g is non-boolean. In
case g is Boolean, if there exists a circuit D of size s′ that has errorless agreement ϵ with g then we can easily convert this circuit
into a circuit D of size s′ +O(1) that has agreement 1/2+ ϵ/2 with g. Given input x, circuit D applies circuit D on x and outputs
the same value if it is not ‘⊥’, and a fixed bit b ∈ {0, 1} otherwise. It is easy to see that there exists a choice of b for which D has
agreement 1/2 + ϵ/2 with g.
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every function D : {0, 1}n → {0, 1}ℓ ∪ {⊥} that has errorless agreement ϵ with g, there exists a string
α ∈ {0, 1}a (which we call an “advice string”) such that the function C(x) = RD(x, α) has agreement
1− δ with f .

We say that R is semi-uniform if a = 0 (in which case R does not receive an advice string α). The size
of the reduction is the size of the oracle circuit R(·). We say that R makes at most q queries if for every
choice of oracle D and inputs x ∈ {0, 1}k, α ∈ {0, 1}a, reduction RD(x, α) makes at most q queries to
its oracle. We say that R is non-adaptive if for every choice of oracle and inputs, R makes non-adaptive
queries to its oracle.2.

In the discussion below we explain the choices made in Definition 1.2.

Usefulness of non-uniform reductions. We first note that a non-uniform reduction indeed implies a basic
hardness amplification result in the following sense: If there exists a circuit D of size s′ that has errorless
agreement ϵ with g then we have that C(x) = RD(x, α) has agreement 1 − δ with f , and furthermore, C
can be implemented by a circuit of size s = r + a + q · s′ where r is the size of R and q is the number of
queries made by R. It follows that the number of queries q made by the reduction is the dominant factor in
the ratio between s and s′. In other words, if we show that every reduction R must use at least q = Ω(1/ϵ)
queries, then we get that s = Ω(s′/ϵ) which gives that the size loss is s′ = O(s · ϵ).

What is non-uniform in this reduction? Reduction R has two sources of non-uniformity: First, R is a
circuit and therefore may be hardwired with non-uniform advice (that may depend on f ). Note that this is
the case even for semi-uniform reductions. The second (and more interesting) source of non-uniformity is
the advice string α. It is important to stress that the order of quantifiers in the definition above allows α to
depend on the choice of D (in addition to the choice of f ). This is in contrast to the non-uniformity of R
that is fixed in advance and does not depend on D.

Lower bounds for semi-uniform reductions. We now illustrate the difference between semi-uniform
reductions and general non-uniform reductions. It is not hard to show that semi-uniform reductions have to
use q = Ω(1/ϵ) queries. This follows by a folklore argument (attributed to Steven Rudich in [GNW95]).
Consider a probability distribution over oracles which is uniformly distributed over all functions D that
have errorless agreement ϵ with g. A semi-uniform reduction that makes q = o(1/ϵ) queries has probability
1 − o(1) to see only ‘⊥’ on its q queries. Therefore, such a reduction cannot expect to get meaningful
information from its oracle, and can be used to construct a small circuit (with no oracle) that has agreement
1 − δ − o(1) with f . This shows that the existence of a reduction R unconditionally implies that f is not
(1− δ − o(1))-hard. We explain this argument in more detail in Section 2.1.

We stress that the argument above critically depends on the fact that R is semi-uniform. A non-uniform
reduction is allowed to receive an advice string α that is a function of D. Such an advice string can encode
queries y ∈ {0, 1}n such that D(y) ̸= ⊥. While this does not seem to help R in having large agreement
with f , the argument of Rudich no longer applies. As we point out next, semi-uniform reductions are rare

2We make a comment about terminology. The literature on impossibility results for reductions often uses the term “black-box”
when referring to reductions. We do not use this term as the definition above allows the reduction R to get an advice string α that
may be an arbitrary function of the “oracle function” D given to it. There is no requirement that α can be computed by using few
black-box queries to D. In fact, the issue that R receives non-black-box information about its oracle is the main difficulty that we
need to solve in this paper. In contrast, semi-uniform reductions are black-box (as they only have black-box access to D). They are
not uniform as they are circuits (meaning that they may be hardwired with advice that depends on f and g)
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exceptions in the literature on hardness amplification, and the main contribution of this paper is developing
techniques to extend Rudich’s argument for non-uniform and adaptive reductions.

Non-uniform reductions for other settings of hardness amplification. Definition 1.2 is tailored for basic
hardness amplification. However, the same reasoning can be used to define all the hardness amplification
setups surveyed in Section 1.1. More precisely, we define the notion of “non-uniform reduction showing
mildly-average-case to average-case hardness amplification” similarly by replacing the requirement that “D
has errorless agreement ϵ with g” with the requirement that “D has agreement p with g” where p = 1/2+ ϵ
in case ℓ = 1 and p = ϵ in case ℓ > 1. The discussion above about usefulness of non-uniform reductions
trivially applies to this setting as well. Moreover, it trivially follows that a non-uniform reduction showing
mildly-average-case to average-case hardness amplification implies a non-uniform reduction showing basic
hardness amplification with essentially same parameters. As a consequence proving a lower bound of q =
Ω(1/ϵ) on the number of queries used by reductions showing basic hardness amplification entails the same
lower bound in all the settings described in Section 1.1.

Function-generic hardness amplification. Definition 1.2 considers specific functions f, g. Most of the
hardness amplification results in the literature are function genereic in the following sense:

Definition 1.3 (function-generic hardness amplification). Let ϵ, δ, a and ℓ be parameters. A function-generic
reduction showing basic hardness amplification (for parameters ϵ, δ, a and ℓ) is a pair (Amp,R) where
Amp is a map from functions f : {0, 1}k → {0, 1} to functions Amp(f) : {0, 1}n → {0, 1}ℓ, and for every
function f : {0, 1}k → {0, 1}, R(·) is a non-uniform reduction showing basic hardness amplification for
f, g = Amp(f), ϵ, δ and a.

We use Definition 1.3 to also define the analogous notion for mildly-average-case to average-case hard-
ness amplification. For the special case of Boolean mildly-average-case to average-case hardness amplifi-
cation Definition 1.3 is equivalent to the notion of “black-box hardness amplification” defined in [SV10].
It is known that function-generic hardness amplification is equivalent to certain variants of list-decodable
error-correcting codes. We elaborate on this connection in Section 4.

1.3 Our results

Function-generic hardness amplification. The vast majority of hardness amplification in the literature
are function-generic reductions showing worst-case to average-case hardness amplification (or mildly-average-
case to average-case hardness amplification). To the best of our knowledge, all the proofs in the literature
are captured by Definition 1.3. Moreover, by the aforementioned connection to error-correcting codes, the
reductions in these settings cannot be semi-uniform in the “list-decoding regime” (that is for ϵ < 1/4). Con-
sequently, Rudich’s argument does not apply for showing lower bounds on these reductions. Theorem 1.4
below proves lower bounds on the number of queries made by function-generic reductions showing basic
hardness amplification.

Theorem 1.4 (main theorem for function-generic reductions). There exists a constant c > 1 such that the
following holds. Let k, n, ℓ, ϵ, δ, r and a be parameters such that a, 1ϵ ,

1
δ , n, r ≤ 2k/c and δ ≤ 1/3. Let

(Amp,R) be a function-generic reduction showing basic hardness amplification (for f, g, ϵ, δ, ℓ and a) and
assume that R is of size r. Then, R makes at least 1

100ϵ queries.
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We have stated Theorem 1.4 in a general form with many parameters. In typical hardness amplification
results the parameter setting is n = poly(k), ℓ = 1, ϵ = 1/kb for some constant b (or sometimes slightly
super constant b), δ ≤ 1/3, and r, a = poly(k). Note that Theorem 1.4 holds for this choices. (In fact, the
theorem holds even when poly(k) is replaced by 2

k
c for some small constant c. This is best possible in the

sense that any function on k bits has a circuit of size 2k). We furthermore remark that the requirement on r
can in fact be removed from Theorem 1.4 as explained in the proof. We also stress that the constant 1/3 can
be replaced by any constant smaller than 1/2.

The bound in Theorem 1.4 is tight in the sense that there are function-generic reductions showing basic
hardness amplification which for δ = Ω(1) make O(1/ϵ) queries [GNW95, IJKW10, Wat10]. (In fact, some
of these reductions are for showing non-Boolean mildly-average-case to average-case hardness amplifica-
tion). For general δ, these reductions make O( log(1/δ)ϵ ) queries. We can improve the bound in Theorem 1.4
to Ω( log(1/δ)ϵ ) which is tight for every δ. However, we only know how to do this in the special case where
the reduction is non-adaptive.

By the previous discussion on the relationship between reductions showing various notions of hardness
amplification it follows that Theorem 1.4 applies also for Boolean mildly-average-case to average-case am-
plification and gives the same lower bound of Ω(1/ϵ) on the number of queries. In this setup the best known
upper bounds [Imp95, KS03] make O( log(1/δ)

ϵ2
) queries. A matching lower bound of Ω( log(1/δ)

ϵ2
) was given in

[SV10] for the special case where the reduction R is non-adaptive. The argument in [SV10] heavily relies on
the non-adaptivity of the reduction. The main contribution of this paper is developing techniques to handle
reductions that are both non-uniform and adaptive, and Theorem 1.4 is the first bound on such general re-
ductions (of any kind). Most reductions in the literature are non-adaptive, however there are some examples
in the literature of adaptive reductions for hardness amplification and related tasks [SU05, GGH+07].

Finally, we remark that the technique of [SV10] (which is different than the one used in this paper) can be
adapted to the setting of basic hardness amplification (as observed in [Wat10]) showing our aforementioned
lower bounds for the special case where the reduction is non-adaptive.

Function-specific hardness amplification. In contrast to function-generic reductions, non-uniform re-
ductions for specific functions f, g (as defined in Definition 1.2) are allowed to depend on the choice of
functions f, g and their particular properties. It is therefore harder to show lower bounds against such
reductions. Moreover, as we now explain, we cannot expect to prove that for every function f, g, every non-
uniform reduction R showing basic hardness amplification must use Ω(1/ϵ) queries. This is because if f is
a function such that there exists a small circuit C that has agreement 1− δ with f , then there exists a trivial
non-uniform reduction R that makes no queries as reduction R can ignore its oracle and set R(·)(x) = C(x).
Consequently, the best result that we can hope for in this setting is of the form: for every functions f, g and
every non-uniform reduction R(·) for f, g, if R makes o(1/ϵ) queries then there exists a circuit C (with no
oracle) of size comparable to that of R that has agreement almost 1 − δ with f . Theorem 1.5 stated below
is of this form.

Theorem 1.5 (main theorem for function-specific reductions). Let ϵ, δ and a be parameters. Let f :
{0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}ℓ be functions. Let R(·) be a non-uniform reduction for f, g, ϵ, δ
and a. If R is of size r and makes q queries then for every ρ ≥ 10ϵq there exists a circuit C of size
r + poly(a, q, n, 1/ρ) that has agreement 1− δ − ρ with f .

Theorem 1.5 says that if q = o(1/ϵ) then the mere existence of reduction R implies the existence of a
circuit C that has agreement 1− δ− o(1) with f . This can be interpreted as a lower bound on the number of
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queries in the following sense: Reductions making o(1/ϵ) queries are not useful as their existence implies
that the hardness assumption does not hold.

Function-specific hardness amplification in the literature. Function-specific hardness amplification re-
sults are less common than function-generic results. One motivation for developing such results is that
function-specific reductions can bypass the coding theoretic objection and be semi-uniform (or even com-
pletely uniform). Examples are the reductions in [IW98, TV07, Tre03, Tre05]. Another example is in
Cryptography where protocols are often constructed assuming the hardness of some specific function (e.g.,
factoring or discrete log) and properties of this function are used to improve either security or efficiency.
Theorem 1.5 shows that in these settings, reductions must make Ω(1/ϵ) queries even if they are non-uniform.

In the function-specific setting there are few examples in the literature of reductions for tasks related to
hardness amplification that have proofs not captured by Definition 1.2. It was pointed out in [GTS07] that
the techniques of [GSTS07, Ats06] (that show some worst-case to average-case reduction for NP) are not
black-box in a sense that we now explain. Semi-uniform reductions are black-box in the sense that R has
only black-box access to D. Non-uniform reductions allow R to also get some short advice string α about D.
Note that there is no requirement that α is generated using black-box access to D (and this is why we refrain
from using the term “black-box” when referring to non-uniform reductions). However, even non-uniform
reductions make no assumption about the oracle D and are required to perform for every function D (even
if D is not computable by a small circuit). The reductions used in [GSTS07, Ats06] are only guaranteed to
perform in case D is efficient, and are therefore not captured by Definition 1.2. The reader is referred to
[GTS07, GV08] for a discussion on such reductions.

1.4 Related work

We have already surveyed many results on hardness amplification. We now survey some relevant previous
work regarding limitations on proof techniques for hardness amplification. We focus on such previous work
that is relevant to this paper and the reader is referred to [SV10] for a more comprehensive survey.

The complexity of reductions showing hardness amplification was studied in [SV10, GR08]. Both pa-
pers show that function-generic reductions for mildly-average-case to average-case hardness amplification
cannot be computed by small constant depth circuits if ϵ is small. Both results fail to rule out general re-
ductions. The result of [GR08] rules out adaptive reductions but only if they use very low non-uniformity
(meaning that a = O(log(1/ϵ)) which is much smaller than k in typical settings). The result of [SV10]
rules out non-uniform reductions with large non-uniformity (allowing a = 2Ω(k)) but only if they are non-
adaptive. As mentioned earlier, our results extend previous lower bounds on the number of queries that were
proven in [SV10] for non-adaptive reductions. This suggests that our techniques may be useful in extending
the result of [SV10] regarding constant depth circuits to adaptive reductions. We stress however, that we are
studying reductions showing basic hardness amplification and there are such reductions in the literature that
can be computed by small constant depth circuits [IJKW10].

In this paper we are interested in the complexity of function-generic reductions showing hardness ampli-
fication. There is an orthogonal line of work [Vio05a, LTW08] that aims to show limitations on “fully-black-
box constructions” of hardness amplifications. In our terminology, these are function-generic non-uniform
reductions (Amp,R) with the restriction that there exists an oracle machine M (·) called construction such
that for every function f , Amp(f) is implemented by Mf . The goal in this direction is to prove lower
bounds on the complexity of M (which corresponds to encoding), whereas we focus on R (which corre-
sponds to decoding).
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There are many other results showing limitations on reductions for hardness amplification and related
tasks in various settings. A partial list includes [FF93, TV07, BT06, RTV04, Vio05b, AGGM06, LTW07].

1.5 Organization of this paper.

In Section 2 we give a high level informal overview of the proof. The formal proof of our main theorems
is presented in Section 3. In Section 4 we elaborate on the relationship between hardness amplification and
error correcting codes and point out that our results translate into lower bounds on the query complexity of
local decoders for list-decodable codes.

2 Overview of the technique

The purpose of this section is to serve as an informal overview of the formal proof. This informal presenta-
tion is quite long, and yet it is not sufficiently formal to be convincing. Nevertheless, many readers found it
helpful as it gradually explains the choices made in the formal proof, and what new ideas are introduced to
handle non-uniform and adaptive reductions. The reader can safely skip this section and go directly to the
formal proof.

We will present our approach gradually: In Section 2.1 we explain how to handle semi-uniform re-
ductions. We abstract this proof strategy in Section 2.2. In Section 2.3 we explain how to implement the
proof strategy for non-uniform reductions that are non-adaptive. Finally, in Section 2.4 we explain why the
strategy of Section 2.2 must be modified to handle adaptive reductions, and present our modifications.

The setup. Our goal is to prove Theorem 1.5. Let us recall the setup. We are given functions f : {0, 1}k →
{0, 1}, g : {0, 1}n → {0, 1}ℓ and parameters ϵ, δ and a. We consider a non-uniform reduction R(·) for
f, g, ϵ, δ and a, and let r be the size of R and q be the number of queries. Let ρ ≥ 10ϵq. We can assume that
q ≤ 1/10ϵ so that ρ ≤ 1. Our goal is to show that there exists a circuit C of size r + poly(a, q, n, 1/ρ) that
has agreement 1− δ − ρ with f .

We remark that Theorem 1.4 easily follows from Theorem 1.5 as if we choose function f at random, it
is unlikely that there is a small circuit with agreement 1− δ − o(1) ≥ 2/3 with f . This rules out function-
generic reductions making o(1/ϵ) queries as by Theorem 1.5 the existence of a function-generic reduction
implies the existence of such a circuit.

The difference of our overall approach from that of [SV10]. We stress that while our technique below
relies on some of the machinery developed in [SV10], our overall approach is very different. The approach
of [SV10] (which consider non-adaptive function-generic reductions) is to show that the existence of a
“too good” function-generic reduction implies a “too good” statistical test that can distinguish between
q independent fair coins and q independent biassed coins. In contrast, our approach is to show that the
existence of a “too good” function-specific reduction yields small circuits for the function f . We do not
attempt to mimic the approach of [SV10], as it seems difficult to extend it to adaptive and non-uniform
reductions.

2.1 The case of semi-uniform reductions

As an appetizer, let us first consider the special case that R is semi-uniform which means that a = 0 and R
does not get an advice string α. Let D : {0, 1}n → {0, 1}ℓ∪{⊥} be some function. We say that y ∈ {0, 1}n
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answers (with respect to D) if D(y) ̸= ⊥. We say that x ∈ {0, 1}k is silent (with respect to reduction R
and function D) if no query asked by RD(x) answers. We consider the following probability space.

Definition 2.1 (Random oracle). Let (V (y))y∈{0,1}n be a sequence of independent and identically dis-
tributed Boolean random variables, where for every y ∈ {0, 1}n, V (y) = 1 with probability 2ϵ and
V (y) = 0 with probability 1 − 2ϵ. We view random variable V as a function V : {0, 1}n → {0, 1}
and define a random variable D : {0, 1}n → {0, 1}ℓ ∪ {⊥} by D(y) = g(y) if V (y) = 1 and D(y) = ⊥ if
V (y) = 0.

We will use this probability space throughout this section and all expressions involving probability or
expectation refer to this space. By a Chernoff bound, with probability 1−2−Ω(2k), D has errorless agreement
ϵ with g which implies that RD(·) has agreement 1 − δ with f . For every x ∈ {0, 1}k we define a random
variable Ax indicating the event that x is silent with respect to D. We have that for every x ∈ {0, 1}k,
E[Ax] = Pr[Ax = 1] ≥ (1 − 2ϵ)q ≥ 1 − 2ϵq ≥ 1 − ρ. Let A =

∑
x∈{0,1}k Ax be the random variable

counting the number of silent inputs. By linearity of expectation E[A] ≥ 2k · (1 − ρ). By averaging, there
exists a function D′ : {0, 1}n → {0, 1}ℓ ∪ {⊥} which has errorless agreement ϵ with g and a 1− ρ fraction
of x ∈ {0, 1}k are silent with respect to D′. We have that RD′

(·) has agreement 1 − δ with f . Consider
circuit C (with no oracle) which on input x simulates RD′

(x) by answering all queries made to the oracle
by ⊥. It follows that C (which has size comparable to R) simulates RD′

correctly on all silent inputs and
therefore has agreement 1− δ − ρ with f . This concludes the proof in this case.

An advantage of the argument above is that it allows us to focus on individual x ∈ {0, 1}k and analyze
the probability that x is silent. We will try to maintain this feature in the general case.

2.2 Strategy for non-uniform reductions

We now consider non-uniform reductions that receive an advice string α ∈ {0, 1}a. The definition of
non-uniform reductions says that for every function D that has errorless agreement ϵ with g there exists
α ∈ {0, 1}a such that RD(·, α) has agreement 1− δ with f . For every such D, let α(D) to be some advice
string that is good for D. This defines a map α from oracles to advice strings.

Let us consider the probability space in Definition 2.1. We once again have that with probability 1 −
2−Ω(2k), RD(·, α(D)) has agreement 1− δ with f . However, we cannot expect to show that there are many
silent inputs. For all we know, α(D) may contain an encoding of a y′ ∈ {0, 1}n for which D(y′) ̸= ⊥.
This allows RD(x, α(D)) to ask a query that answers and note that this holds with probability one for every
x ∈ {0, 1}k. Consequently, no inputs are silent for this reduction, and the previous argument fails.

Conditioning on a fixed advice string. We would like to return to the setup where R does not ob-
tain advice about D. For this purpose, we note that there exists an advice string α′ ∈ {0, 1}a such that
Pr[α(D) = α′] ≥ 2−a. Let E denote the event

E =
{
α(D) = α′

}
∩ {D has errorless agreement ϵ with g} .

Note that Pr[E] ≥ 2−(a+1). We consider the probability space conditioned on the event E (which we
refer to as the conditioned space). In the conditioned space, R uses the same advice string α′ for every
choice of oracle D. Thus, we can think of R as being hardwired with the advice string α′ (meaning that R
does not really receive advice about D in the conditioned space). The penalty in this approach is that the
distribution over oracles D in the conditioned space is different than the distribution in the original space.
More precisely, the variables (V (y))y∈{0,1}n may become correlated, and individual variables V (y) may be
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distributed differenlty than in the original space. We can hope to control these effects as the advice string
is relatively short compared to the length of the truth table of V . Indeed, note that for the reduction R
described above, the conditioned space can have some y ∈ {0, 1}n on which the event {V (y) = 1} holds
with probability one, meaning that D(y) always answers. However the number of such bad y is bounded
by a. This suggests the following proof strategy.

Proof strategy for non-uniform reductions

• Given R and event E, identify a small set of “bad queries” B ⊆ {0, 1}n (where small means
poly(a, q, 1/ρ)).

• Say that x is almost silent if all queries y ̸∈ B asked by RD(x, α′) do not answer. Show that for every
x ∈ {0, 1}k, the probability (in the conditioned space) that x is almost-silent is at least 1− ρ.

• It follows as before (by linearity of expectation and the probabilistic method) that there exists a
function D′ such that RD′

(·, α′) has agreement 1 − δ with f , and furthermore, a 1 − ρ fraction
of x ∈ {0, 1}k are almost silent with respect to D′.

• Construct a circuit C(x) that has agreement 1 − δ − ρ with f as follows: C is hardwired with B
and the values (D′(y))y∈B . On input x, C simulates RD′

(x, α′) answering queries y to the oracle by
D′(y) if y ∈ B and by ‘⊥’ if y ̸∈ B. Note that C correctly simulates RD′

(·, α′) on almost silent
inputs, and that C can be implemented by a circuit of size r + poly(a, q, n, 1/ρ) as required.

In the special case described above where α(D) encodes queries on which D answers, we can implement
this strategy by simply setting B to be these queries. We next explain how to implement this strategy for
general non-adaptive reductions.

2.3 The case of non-uniform reductions that are non-adaptive

We now consider the special case where the non-uniform reduction R is non-adaptive. We use techniques
developed in [SV10] for handling non-adaptive reductions in the related setting of Boolean mildly-average-
case to average-case hardness amplification. (We stress once again that our overall strategy is different than
that of [SV10]). We make use of the following simple information theoretic lemma from [SV10]. (It is
explained in [SV10] that this Lemma can be seen as a generalization of a Lemma from [Raz98] and that it
also follows from the technique of [EIRS01]).

Lemma 2.2. Let L ⊆ {0, 1}n and let (V (y))y∈L be independent random variables. Let a, q and η be
parameters and let E be an event such that Pr[E] ≥ 2−a. There exists a set B ⊆ L such that |B| =
O(aq/η2) such that for every y1, . . . , yq ∈ L \ B, the distribution (V (y1), . . . , V (yq)) is η-close to the
distribution ((V (y1), . . . , V (yq))|E).3

We are planning to implement the strategy of Section 2.2. Lemma 2.2 (applied with L = {0, 1}n and
η = ρ/2) gives a way to define a set B. We are left with showing that for every x ∈ {0, 1}k, the probability
(in the conditioned space) that x is almost silent is at least 1 − ρ. Indeed, for every x ∈ {0, 1}k the non-
adaptive reduction R defines specific queries y1, . . . , yq to its oracle (and by the non-adaptivity of R these

3Two distributions P,Q over the same domain are ϵ-close if for every event A, |PrP [A]− PrQ[A]| ≤ ϵ.
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queries are fixed as a function of x). Assume w.l.o.g. that the last 0 ≤ t ≤ q queries are in B. In the original
probability space the probability that y1, . . . , yq−t don’t answer is simply

Pr[V (y1) = 0 ∧ . . . ∧ V (yq−t) = 0] = (1− 2ϵ)(q−t) ≥ 1− ρ/2.

By Lemma 2.2 we have that in the conditioned space:

Pr[V (y1) = 0 ∧ . . . ∧ V (yq−t) = 0|E] ≥ Pr[V (y1) = 0 ∧ . . . ∧ V (yq−t) = 0]− ρ/2 ≥ 1− ρ

meaning that x is almost silent with probability 1− ρ in the conditioned space. This concludes the proof by
the strategy outlined in Section 2.2.

2.4 The case non-uniform reductions that are adaptive

A counterexample to the strategy of Section 2.2. The proof strategy of Section 2.2 fails for adaptive
reductions in the sense that there exists an oracle procedure R that makes O(n) queries, and a “relatively
large” event E (namely, an event E that has probability at least 2−n log(1/ϵ)) with the following properties:
No matter how we choose a set B ⊆ {0, 1}n of size o(ϵ · 2n) of “bad queries”, for every input x, with
probability 1 − o(1) over the conditioned space, RD(x) asks a query y that answers and is not in B. This
means that we cannot hope to show that x is almost-silent with high probability as required by the strategy
of Section 2.2. As for the quantity O(ϵ · 2n), note that this is the expected number of queries that answer,
and so, the counterexample says that we might have to mark essentially all queries that answer as bad.

We now sketch this counterexample. Fix some distinct y1, . . . , yn ∈ {0, 1}n and z1, . . . , zn ∈ {0, 1}n.
We define event A = {∀i : V (yi) ̸= V (zi)}. We interpret the sequence P = (V (y1), . . . , V (yn)) as an
n bit string, and define event E = A ∩ {V (P ) = 1}. The adaptive procedure R described next makes
n + 1 queries and finds a query that answers with probability one, conditioned on E: Procedure R first
queries oracle D at y1, . . . , yn and computes P . It then queries D at P and note that query P always
answers conditioned on E. (Thinking ahead, we remark that R uses only “two levels of adaptivity”). Note
however, that conditioned on A, P is uniformly distributed. This is because before conditioning, for every
i the two events {V (yi) = 0, V (zi) = 1} and {V (yi) = 1, V (zi) = 0} are equally likely. (This is the same
observation that is made in the so called “von-Neumann extractor”). Therefore, conditioned on E, P is
uniformly distributed over queries that answer, and no matter how we choose B ⊆ {0, 1}n of size o(ϵ · 2n),
it is unlikely that P ∈ B conditioned on E. The main technical contribution of this paper is developing
an approach to handle adaptive reductions. We now describe some of the high-level ideas (ignoring many
technicalities). The precise details appear in Section 3.

Further conditioning. We start by modifying the strategy of Section 2.2. Instead of performing the anal-
ysis in the conditioned space (that is conditioned on E), we choose some event E′ ⊆ E and perform the
analysis conditioned on E′. We refer to this new probability space as the “further conditioned space”. Note
that α(D) is fixed conditioned on any event E′ ⊆ E which means that we can apply the strategy of Section
2.2 replacing E with any event E′ ⊆ E. To make this approach less abstract, consider the event E from
the counterexample above. We consider the event E′ = E ∩ {∀i : V (yi) = 1 ∧ V (zi) = 0}. This gives
that P is fixed conditioned on E′ and we can mark P as a bad query and implement the strategy of Section
2.2 against the reduction of the counterexample. We now want to extend the approach above to a general
reduction (which yields a general event E). Note that we defined E′ by choosing a small number of queries
(the queries y1, . . . , yn, z1, . . . , zn) and fixed their values. Moreover, note that when applying Lemma 2.2
on E we obtain the set B = {y1, . . . , yn, z1, . . . , zn}, and this suggests that we can use Lemma 2.2 to decide
which queries to fix. This leads to the following strategy:
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Iterative further conditioning

• Given R and event E, identify a small set B ⊆ {0, 1}n using Lemma 2.2, mark these queries as “bad”.

• Let E′ = E∩{∀y ∈ B : V (y) = cy}where (cy)y∈B are some constants (that we will need to choose).

• Set E ← E′ and repeat.

We now observe that applying two steps of this strategy “correctly handles” the event E of the counterex-
ample above in the following sense: In the first step, Lemma 2.2 identifies the set B1 = {y1, . . . , yn, z1, . . . , zn}
and fixes V on these queries to obtain event E1 in which P is fixed to some string p. In the second step,
Lemma 2.2 identifies the set B2 = {p} and we mark it as bad. Overall, after two steps we mark the queries
in B = B1 ∪ B2 as bad. Recall that the strategy of Section 2.2 requires that we bound the probability that
x is almost silent for every input x. Having fixed P to p and marked p as bad, we can indeed bound this
probability in the further conditioned space.

For a general adaptive reduction we expect to make q iterations of further conditioning (one for each
“level of adaptivity”) and it is easy to extend the counterexample to show that this is indeed necessary. The
formal proof given in Section 3 uses the iterative further conditioning strategy above. The proof is somewhat
technical as several technical difficulties arise when following this strategy. The precise details are given in
Section 3.

3 Proof of main theorems

3.1 Preparations

In this section we prove Theorem 1.4 and Theorem 1.5. We start by proving Theorem 1.5 (and later show
that Theorem 1.4 easily follows from Theorem 1.5). Let us start by recalling the setup.

The setup. We are given functions f : {0, 1}k → {0, 1}, g : {0, 1}n → {0, 1}ℓ and parameters ϵ, δ and a.
We consider a non-uniform reduction R(·) for f, g, ϵ, δ and a, and let r be the size of R and q be the number
of queries. Let ρ ≥ 10ϵq. Our goal is to show that there exists a circuit C of size r + poly(a, q, n, 1/ρ) that
has agreement 1− δ − ρ with f .

The map α(D). Let α be a map that for every D that has ϵ errorless agreement with g, assigns an advice
string α(D) ∈ {0, 1}a such that RD(x, α) has agreement 1− δ with f . Such a map exists by Definition 1.2.

Some notation. For a function V : {0, 1}n → {0, 1} and a set B ⊆ {0, 1}n we define V (B) =
(V (y))y∈B . We view V (B) as an element in {0, 1}B .

The probability space. We use the probability space of Definition 2.1 which we now specify using more
precise notation. The probability space consists of independent identically distributed random variables
(V (y))y∈{0,1}n where for each y ∈ {0, 1}n, V (y) = 1 with probability 2ϵ and V (y) = 0 with probability
1 − 2ϵ. We view random variable V as a function V : {0, 1}n → {0, 1}. We define a random variable
D : {0, 1}n → {0, 1}ℓ ∪ {⊥} by D(y) = g(y) if V (y) = 1 and D(y) = ⊥ if V (y) = 0.

We will use this probability space throughout this section and all expressions involving probability or
expectation refer to this space. The probability space is defined over the set S = {0, 1}{0,1}n of all functions
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V : {0, 1}n → {0, 1}. Events in this probability space are subsets E ⊆ S. A random variable A is a map
from S to some set. For a (fixed) function V ′ : {0, 1}n → {0, 1}, we can think of V ′ as a “point” in S and
let A[V ′] denote the value of the map A when applied on V ′. Thus, for example, D[V ′] denotes the function
obtained when the point in the probability space is V ′.

The event E. By a Chernoff bound we have that

Pr[D has errorless agreement ϵ with g] ≥ 1− 2−Ω(2−k).

There exists a string α′ ∈ {0, 1}a such that Pr[α(D) = α′] ≥ 2−a. We define

E =
{
α(D) = α′

}
∩ {D has errorless agreement ϵ with g} .

Note that Pr[E] ≥ 2−a − 2−Ω(2k) ≥ 2−(a+1) and α(D) is fixed to α′ in the event E.

An information theoretic lemma from [SV10]. In order to make this section self contained we now
restate Lemma 2.2 that was previously stated in the informal explanation in Section 2.

Lemma 3.1. [SV10] Let L ⊆ {0, 1}n and let (V (y))y∈L be independent random variables. Let a, q and
η be parameters and let E be an event such that Pr[E] ≥ 2−a. There exists a set B ⊆ L such that
|B| = O(aq/η2) such that for every y1, . . . , yq ∈ L \ B, the distribution (V (y1), . . . , V (yq)) is η-close to
the distribution ((V (y1), . . . , V (yq))|E).4

3.2 Real and canonical executions

The real execution. For every x ∈ {0, 1}k and 1 ≤ i ≤ q we define the random variable Qx
i to be the i’th

query asked by RD(x, α′). We refer to Qx
1 , . . . , Q

x
q as the “real queries”. Note that as R is adaptive, these

queries depend on D.

The canonical execution. We now define a different concept of “canonical queries” W x
1 , . . . ,W

x
q as fol-

lows. Let B1, . . . , Bq be subsets of {0, 1}n that we determine later. (We think of Bi as a set of “bad queries
at stage i”). For every 1 ≤ i ≤ q we define B̄i =

∪
1≤j≤iBj to be the set of all queries marked as “bad” at

stage ≤ i. We also define B = B̄q to be the set of all queries marked as “bad”.
For every x ∈ {0, 1}k, we define the “canonical execution” of RD(x, α′) as follows: We simulate

RD(x, α) and when the simulation asks its i’th query (denoted by W x
i , we answer it by the following

“canonical rule”: We answer the query by ‘⊥’ if y ̸∈ B̄i and by D(W x
i ) otherwise. More precisely, the

first canonical query is W x
1 = Qx

1 . At every step i ≥ 1, the canonical execution answers query W x
i by the

canonical rule above. This answer is then used by RD(x, α′) to determine its next query W x
i+1, and this

iterative process determines W x
1 , . . . ,W

x
q .

Note that as R is adaptive, the queries W x
1 , . . . ,W

x
q that are queried in the canonical execution may

differ from the “real queries” Qx
1 , . . . , Q

x
q because the answers supplied in the canonical execution may

differ from those of D.
For every x ∈ {0, 1}k and 1 ≤ i ≤ q we also define the following random variables:

• P x
i is an indicator random variable indicating the event

{
V (Qx

i ) = 1 ∧Qx
i ̸∈ B̄i

}
.

4Two distributions P,Q over the same domain are ϵ-close if for every event A, |PrP [A]− PrQ[A]| ≤ ϵ.
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• Ax
i is an indicator random variable indicating the event

{
V (W x

i ) = 1 ∧W x
i ̸∈ B̄i

}
.

At this point, we make a technical observation that will be important later on. The definition of random
variables W x

i and Ax
i relies on a choice of sets B1, . . . , Bq. Note however, that for every x ∈ {0, 1}k, the

definition of Ax
i and W x

i+1 relies only on the choice of sets B1, . . . , Bi.

Roadmap: the strategy of the proof. We now explain the intuition behind the definitions above and
sketch the argument for the proof below. The reader can safely skip this paragraph and go directly to the
formal proof if he wishes.

The reduction R is adaptive, and therefore the queries Qx
1 , . . . , Q

x
q made in the real execution on input x

may depend on the answers of D. The advantage of the canonical execution is that the queries W x
1 , . . . ,W

x
q

made in the canonical execution on input x only depend on the answers of D to queries in B and we refer
to those queries as “bad queries”. We stress that the set B is fixed, and does not depend on x or D. Thus,
we can simulate the canonical execution on all inputs x ∈ {0, 1}k without access to oracle D if we know
the answers to bad queries. This means that we can construct a circuit C (with no oracle) that simulates the
canonical execution on all inputs by hardwiring C with the answers of D to bad queries. The size of the
circuit C depends on the size of |B| and is small if |B| is small.

We stress however, that we are interested in simulating the real execution and not the canonical execu-
tion. We will say that x is almost silent if

∑
1≤i≤q P

x
i = 0 and canonically almost silent if

∑
1≤i≤q A

x
i = 0.

(Note that whether or not a fixed input x is almost silent is a random variable. We will therefore give a more
precise definition when returning to the formal proof in the next paragraph and the discussion below is just
to explain the intuition). We first observe that if x is canonically almost silent, then the answers supplied by
the canonical rule coincide with the answers of D. This means that the canonical execution coincides with
the real execution and in particular that x is almost silent. It follows that on a canonically almost silent x,
the circuit C described above correctly simulates the real execution of RD(x, α′).

We will use the probabilistic method to show that there exist sets B1, . . . , Bq such that their union B
is small, and furthermore there exists a (fixed) function V ′ ∈ E such that for V ′ and the oracle D[V ′]
determined from it, a 1 − ρ fraction of inputs x ∈ {0, 1}k are canonically almost silent. The conclusion is
that the circuit C defined above (that has no oracle) correctly simulates the real execution of RD[V ′](x, α′)
on a 1− ρ fraction of inputs x ∈ {0, 1}k and therefore C has agreement 1− δ − ρ with f .

The main technical lemma. We now continue with the formal presentation of the proof. Let V ′ :
{0, 1}n → {0, 1} be some function and let B1, . . . , Bq be some subsets of {0, 1}n. We say that an in-
put x ∈ {0, 1}k is almost silent if

∑
1≤i≤q P

x
i [V

′] = 0. We say that an input x ∈ {0, 1}k is canonically
almost silent if

∑
1≤i≤q A

x
i [V

′] = 0. We use the probabilistic method to prove the following lemma (which
is the main technical lemma in the proof).

Lemma 3.2. There exists V ′ : {0, 1}n → {0, 1} such that V ′ ∈ E and there exist sets B1, . . . , Bq ⊆ {0, 1}n
such that

• |B| = poly(a, q, 1/ρ).

• The number of canonically almost silent inputs x ∈ {0, 1}k is at least (1− ρ) · 2k.

We prove Lemma 3.2 in Section 3.5. We now show that Theorem 1.5 and Theorem 1.4 follow from
Lemma 3.2.
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3.3 Proof of Theorem 1.5

Let V ′ and B1, . . . , Bq be the function and sets guaranteed by Lemma 3.2. We first observe that:

Lemma 3.3. Every canonically almost silent x ∈ {0, 1}k is also almost silent.

Proof. Let x ∈ {0, 1}k be canonically almost silent. We will show that for every 1 ≤ i ≤ q, Qx
i [V

′] =
W x

i [V
′]. Note that this implies that for every 1 ≤ i ≤ q, P x

i [V
′] = Ax

i [V
′] and therefore x is also almost

silent. We have that Qx
1 [V

′] = W x
1 [V

′] by definition. We know that Ax
1 [V

′] = 0 and we now observe that
this implies that the query Qx

1 [V
′] is answered in the same way in both the canonical execution and the

real execution. This follows by the following case analysis. If W x
1 [V

′] ∈ B̄1 then the canonical execution
answers in the same way as the real execution by definition. If W x

1 [V
′] ̸∈ B̄1 then by definition, the

canonical execution answers it by ‘⊥′. However, as Ax
1 [V

′] = 0 we have that V ′(W x
1 [V

′]) = 0 which means
that D[V ′](W x

1 [V
′]) = ⊥. It follows that in both cases the answers coincide.5 Therefore, the next query

is the same in both executions and we have that Qx
2 [V

′] = W x
2 [V

′]. We can continue this reasoning and
conclude by induction for every 1 ≤ i ≤ q, Qx

i [V
′] = W x

i [V
′].

It follows that the number of almost silent inputs x ∈ {0, 1}k is at least (1 − ρ) · 2k. We now define
a circuit C as follows: C is hardwired with α′, the sets B1, . . . , Bq (that can be encoded by a bit string of
length |B| · (n+ q)) and (D[V ′](B) (which can be encoded as a string of length |B|). On input x ∈ {0, 1}k,
C simulates RD[V ′](x, α′) as follows. When R makes its i’th query y ∈ {0, 1}n to its oracle, C supplies the
answer according to the canonical rule. That is, C supplies answer ‘⊥’ if y ̸∈ B̄i, and C supplies answer
D[V ′](y) otherwise. Note that C(x) correctly simulates RD[V ′](x, α′) on every x that is almost silent. (This
is because on such inputs, C answers all queries in the same way as D[V ′]).

We have that V ′ ∈ E and therefore RD[V ′](·, α′) has agreement 1− δ with f . Circuit C has agreement
1 − ρ with RD[V ′](·, α′) and therefore C has agreement 1 − δ − ρ with f . The size of C is bounded by
r+ a+O(|B| · n) + poly(n, q) = r+ poly(a, q, 1/ρ, n) as required. This completes the proof of Theorem
1.5.

3.4 Proof of Theorem 1.4

Theorem 1.4 easily follows from Theorem 1.5. Let k, n, ℓ, ϵ, δ, r and a be parameters such that a, 1ϵ ,
1
δ , n, r ≤

2k/c for a constant c > 1 that we determine later and let δ ≥ 2/3. Let (Amp,R) be a function-generic
reduction showing basic hardness amplification (for f, g, ϵ, δ, ℓ and a) and assume that R is of size r. Then,
by theorem 1.5, if R makes q ≤ 1

100ϵ queries, we can set ρ = 10ϵq ≤ 1/10 and have that for every function
f , there exists a circuit C of size r + poly(a, q, 1/ρ, n) = 2O(k/c) that has agreement 1 − δ − ρ ≥ 99/100
with f . This is a contradiction for a sufficiently large constant c > 1, as a standard calculation shows that
random function is likely to not have such agreement with circuits of size 2o(k).

We remark that we can use a more careful argument to get a contradiction without requiring that r ≤
2k/c. This is because a random function f is not likely to have a string of length 2o(k) that describes a
function C that has agreement 99/100 with f . Note that if it exists, the reduction R can be used to describe
any function by a string of length poly(a, q, 1/ρ, n) and we obtain the same contradiction.

5A subtle point is that it may be the case that W x
1 [V

′] is not in B̄1 but is in B. This happens if this query is considered good
at step 1 and bad later on. Nevertheless, the fact that Ax

1 [V
′] = 0 implies that this query does not answer regardless of whether it

becomes bad later on.
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3.5 Proof of Lemma 3.2

The first step towards proving Lemma 3.2 is to define sets B1, . . . , Bq. We will do this by an iterative
process which “further conditions” the probability space to smaller events.

Iterative further conditioning. We now describe an iterative process that defines a sequence of events
E0, . . . , Eq and sets B0, . . . , Bq ⊆ {0, 1}n. Let E0 = E and B0 = ∅. Let i ≥ 0 and assume that we already
defined Ei, Bi (note that this holds for i = 0). Recall that B̄i =

∪
1≤j≤iBj is the union of the sets we

defined so far.
Recall that for every x ∈ {0, 1}k, and 1 ≤ j ≤ i the definition of Ax

j and W x
j+1 depends only on

the choice of sets B1, . . . , Bj . Thus, the random variables Ax
1 , . . . , A

x
i and W x

1 , . . . ,W
x
i+1 are well defined

at this point (even though we did not yet define the sets Bi+1, . . . , Bq). We will maintain the following
invariant throughout the iterative process.

• |Bi| = O(aq
3

ρ2
) (where the hidden constant does not depend on i).

• For every 1 ≤ j < i, Pr[
∑

x∈{0,1}k A
x
j ≤

ρ·2k
q |Ei] = 1. (Note that this holds vacuously for i = 0).

• There exist a fixed vi ∈ {0, 1}B̄i such that Ei ⊆
{
V (B̄i) = vi

}
. (Note that this vacuously holds for

i = 0 as the event
{
V (B̄0) = v0

}
is the entire probability space).

• Pr[Ei|V (B̄i) = vi] ≥ 2−(a+1+i). (Note that this holds for i = 0 as Pr[E0] ≥ 2−(a+1)).

We now show that for every i ≥ 0 we can define an event Ei+1 ⊆ Ei and a set Bi+1 ⊆ {0, 1}n that
maintain the invariant for i + 1. By iteratively repeating this process we define events E0, . . . , Eq and sets
B0, . . . , Bq that maintain the invariant for i = q and these will be used to prove Lemma 3.2.

Obtaining the event Ei+1 and set Bi+1. Let L = {0, 1}n \ B̄i be the set of queries that we did not
yet mark as “bad”. Note that V (L) has the same distribution as (V (L)|V (B̄i) = vi). (This is because
(V (y))y∈{0,1}n are independent). We apply Lemma 3.1 with the following choices: Ei plays the role of E,
q is set to one, and η = ρ/10q ≥ ϵ (where the inequality follows from the requirement on ρ in Theorem
1.5). Let Bi+1 be the set obtained from Lemma 3.1. We have that

|Bi+1| = O((a+ i+ 1)/η2) = O((a+ q)/η2) = O(aq3/ρ2)

using the fact that i ≤ q and the definition of η. Thus, Bi+1 indeed maintains the invariant. Moreover, for
every y ∈ L \Bi+1, (V (y)|V (B̄i) = vi) is η-close to (V (y)|V (B̄i) = vi) ∧Ei)) = (V (y)|Ei)) (where the
equality follows as Ei ⊆

{
V (B̄i) = vi

}
).

Note that for every x ∈ {0, 1}k, W x
i+1 (which is already defined at this point) is fixed to some constant

yx ∈ {0, 1}n in the event Ei. This is because Ei ⊆
{
V (B̄i) = vi

}
which means that all answers to

queries in B̄i are fixed, and recall that the queries W x
1 , . . . ,W

x
i+1 of the canonical execution are completely

determined by x and V (B̄i). By Lemma 3.1, for every y ∈ L \ Bi+1 (which is equivalent to saying that
y ̸∈ B̄i+1) we have that:

Pr[V (y) = 1|Ei] ≤ Pr[V (y) = 1|V (B̄i) = vi] + η ≤ 2ϵ+ η ≤ 3η

where the inequality follows because (V (y)|V (B̄i) = vi) is distributed like V (y) that has probability 2ϵ to
be one. It follows that for every x ∈ {0, 1}k:

E[Ax
i+1|Ei] = Pr[Ax

i+1 = 1|Ei] = Pr[V (W x
i+1) = 1 ∧W x

i+1 ̸∈ B̄i+1|Ei]
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= Pr[V (yx) = 1 ∧ yx ̸∈ Bi+1|Ei] ≤ 3η.

Thus, by linearity of expectation we have that:

E[
∑

x∈{0,1}k
Ax

i+1|Ei] ≤ 3η · 2k.

and by Markov’s inequality:
Pr[

∑
x∈{0,1}k

Ax
i+1 > 6η · 2k|Ei] < 1/2

We now define event E′i as follows:

E′i = Ei ∩

 ∑
x∈{0,1}k

Ax
i+1 ≤ 6η · 2k


As η = ρ/10q we have that 6η ≤ ρ/q. By the definition of E′i we have obtained that

Pr[
∑

x∈{0,1}k
Ax

i+1 ≤
ρ · 2k

q
|E′i] = 1

Our final event Ei+1 will be a subset of E′i and therefore the event above will hold with probability one
conditioned on Ei+1 as well. This means that we indeed maintain the requirement on Ai+1 in the invariant.
We have that that Pr[E′i|Ei] ≥ 1/2 and therefore

Pr[E′i|V (B̄i) = vi] ≥ Pr[Ei|V (B̄i) = vi] ·
1

2
≥ 2−(a+1+i+1) = 2−(a+1+(i+1)).

By an averaging argument there exists z ∈ {0, 1}Bi+1 for which

Pr[E′i|V (B̄i) = vi ∧ V (Bi+1) = z] ≥ Pr[E′i|V (B̄i) = vi] ≥ 2−(a+1+(i+1)).

Let vi+1 denote the pair (vi, z), so that event
{
V (B̄i) = vi ∧ V (Bi+1) = z

}
is the event

{
V (B̄i+1) = vi+1

}
.

We define Ei+1 = E′i ∩ {V (Bi+1) = z} so that Ei+1 ⊆
{
V (B̄i+1) = vi+1

}
maintains the invariant. We

also verify that
Pr[Ei+1|V (B̄i+1) = vi+1] = Pr[E′i|V (B̄i+1) = vi+1]

= Pr[E′i|V (B̄i) = vi ∧ V (Bi+1) = z] ≥ 2−(a+1+(i+1)).

At this point we have defined event Ei+1 and set Bi+1 and we already showed that they maintain the
invariant. This completes the description of the iterative process.

Finishing up. We are now ready to prove Lemma 3.2. Applying the iterative process above yields sets
B1, . . . , Bq and an event Eq ⊆ E with positive probability for which the invariant above holds. We have that
|B| = q ·O(aq3/ρ2) = O(aq4/ρ2) = poly(a, q, 1/ρ) as required in Lemma 3.2. Let V ′ : {0, 1}n → {0, 1}
be some function such that V ′ ∈ Eq ⊆ E. We have that for every 1 ≤ j ≤ q,

∑
x∈{0,1}k

Ax
j [V

′] ≤ ρ · 2k

q
.
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It follows that: ∑
1≤j≤q

∑
x∈{0,1}k

Ax
j [V

′] ≤ ρ · 2k

Therefore, there are at most ρ · 2k inputs x ∈ {0, 1}k for which
∑

1≤j≤q A
x
j [V

′] ̸= 0. We conclude that
there are at least (1 − ρ) · 2k inputs x ∈ {0, 1}k for which

∑
1≤j≤q A

x
j [V

′] = 0 meaning that these inputs
are canonically almost silent. This concludes the proof of the lemma.

4 Hardness amplification and error-correcting codes

It was pointed out in [STV01] that hardness amplification is closely related to error-correcting codes. We
now explain this relationship using our terminology. For this purpose, we identify a function f : {0, 1}k →
{0, 1} with its truth table which is a string f ∈ {0, 1}K for K = 2k.

Definition 4.1 (List-decodable codes). A map Enc : {0, 1}K → {0, 1}N is (ϵ, A)-list-decodable if for
every D ∈ {0, 1}N , there is a list of at most A strings f ∈ {0, 1}K such that D has agreement 1/2+ ϵ with
Enc(f). Enc is uniquely-decodable if A = 1.

It is well known that a map cannot be uniquely decodable for ϵ < 1/4. Let K = 2k and let δ be a
parameter. Local decoders (for uniquely-decodable codes) are randomized oracle procedures Dec(·) which
when given oracle access to D and input x ∈ {0, 1}k, returns f(x) with probability 1 − δ. In the case of
list-decodable codes, the local decoder Dec also receives a second input α which is the index in the list.
This leads to the following definition.

Definition 4.2 (Local list-decoder). Let Enc : {0, 1}K → {0, 1}N be (ϵ, A)-list-decodable. A local list-
decoder with list-size A′ and error δ for Enc is a randomized oracle procedure Dec(·) such that for every
D ∈ {0, 1}N , and every f in the list of D, there exists an 1 ≤ α ≤ A′ such that for every x ∈ {0, 1}k,
Pr[DecD(x, α) = f(x)] ≥ 1− δ where the probability is over the internal coin tosses of Dec.

The following lemma shows that local list-decoding implies function generic hardness amplification. It
follows that our lower bounds on function-generic hardness amplification also apply (with the same param-
eters) for local list-decoders (even if they make adaptive queries).

Lemma 4.3 (Local list-decoders imply function-generic hardness amplification). Let Enc : {0, 1}2k →
{0, 1}2n be (ϵ, 2a

′
)-list-decodable and let Dec be a local list decoder for Enc with list size 2a

′
and error

δ, and assume that Dec makes at most q queries and tosses at most t coins. Then, there is a function-
generic reduction showing mildly-average-case to average-case amplification for k, n, ϵ, δ with ℓ = 1 and
a = a′ + t, and furthermore the reduction makes q queries.

Proof. (of Lemma 4.3) Let Enc be (ϵ, 2a
′
)-list-decodable and let Dec be a local list-decoder for Enc with

list size 2a
′

and error δ. Let D ∈ {0, 1}n. By an averaging argument, for every f in the list of D, there exists
a fixing β ∈ {0, 1}t for the coin tosses of Dec and 1 ≤ α ≤ 2a

′
such that DecD(·, α) has agreement 1− δ

with f when its coins are fixed to β. We define Amp = Enc and D(·)(x; (α, β)) = Dec(·)(x, α) using β as
coins.6

6Note that the argument above applies even if we use a less restrictive notion of local list-decoders in which the requirement
made in Definition 4.2 that “for every x ∈ {0, 1}k...” is replaced by “for a (1−δ)-fraction of x ∈ {0, 1}k...” and then the reduction
is for δ′ = 2δ. Thus, our lower bounds apply even in this more general setting.
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It is interesting to note that even in the special case of unique decoding, Lemma 4.3 gives a function-
generic that is non-uniform. The following corollary is obtained by applying Theorem 1.4.

Corollary 4.4 (Lower bounds on number of queries of local list-decoders). There exists a constant c > 1
such that the following holds. Let Enc : {0, 1}2k → {0, 1}2n be (ϵ, 2a

′
)-list-decodable and let Dec be a

local list decoder for Enc with list size 2a
′

and error δ, and assume that Dec tosses at most t coins. If
a′, 1ϵ ,

1
δ , n, t ≤ 2k/c then Dec makes at least 1/100ϵ queries.

We remark that the main question in locally-decodable codes is how many queries are needed for
uniquely-decodable codes with constant rate. In our terminology, this corresponds to constant ϵ and δ
and our results are interesting for a different regime of parameters.

Decoding from erasures. The lower bound of Theorem 1.4 holds even for basic hardness amplification.
The corresponding coding-theoretic setting is that of list-decoding from erasures. More precisely, in Defi-
nition 4.1 we can allow D to have errorless agreement ϵ with Enc(f) (rather than agreement 1/2 + ϵ with
Enc(f)). In coding theoretic terminology this corresponds to a noisy channel that corrupts Enc(f) by
erasing a 1 − ϵ fraction of the symbols (by replacing them with the special symbol ‘⊥’) and keeping the
remaining symbols unchanged. Corollary 4.4 applies in this setting even when allowing list-decoding.

5 Conclusion and open problem

Our results rule out certain proof techniques for showing hardness amplification results with small “size
loss”. As we explain in Section 1.3, the framework of reductions that we study captures essentially all
hardness amplification results in the literature. Nevertheless, it may be possible to bypass these limitations
by developing alternative proof techniques. We remark that the techniques of [GSTS07, Ats06] are not
captured in our framework (as explained in Section 1.3).

We now mention a few open problems (continuing the discussion of Section 1.4).

• Extend the results of [SV10] regarding “necessity of majority” to adaptive reductions. More specif-
ically, show that non-uniform and adaptive function-generic reductions for mildly-average-case to
average-case hardness amplification cannot be computed by small constant depth circuits if ϵ is small.

• Extend the results of [SV10] regarding “number of queries” to adaptive reductions. More specifically,
show that non-uniform and adaptive function-generic reductions for mildly-average-case to average-
case hardness amplification must use q = Ω( log(1/δ)

ϵ2
) queries. (Note that a lower bound of q = Ω(1/ϵ)

follows from our results on basic hardness amplification).

• Our results on basic hardness amplification give a lower bound of q = Ω(1/ϵ) for δ ≤ 1/3. This
meets the known upper bounds for constant δ. However, it seems that the right lower bound should be
q = Ω( log(1/δ)ϵ ) and match the known upper bounds of [KS03]. We do not know how to show such a
bound for non-uniform and adaptive reductions.

Finally, the framework of function-specific reductions suggested in this paper captures more proof tech-
niques than those captured in earlier work. It is natural to study the questions above (as well as related
questions in the area) using this more general framework.
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