
A Kolmogorov Complexity Proof of the

Lovász Local Lemma for Satis�ability ∗

Jochen Messner Thomas Thierauf

Aalen University

Dep. Elektronik und Informatik

73430 Aalen

{jochen.messner,thomas.thierauf}@htw-aalen.de

Abstract

Recently, Moser and Tardos [MT10] came up with a constructive

proof of the Lovász Local Lemma. In this paper, we give another
constructive proof of the lemma, based on Kolmogorov complexity.
Actually, we even improve the Local Lemma slightly.

1 Introduction

The Lovász Local Lemma applied to the satis�ability problem states that
a k-CNF formula is satis�able if each clause has common variables with at
most 2k/e−1 other clauses. The original proof of the Local Lemma was non-
constructive: it didn't give a hint on how to e�ciently compute a satisfying
assignment of the given formula.

Starting with a paper by Beck [Bec91] there appeared a series of pa-
pers [Alo91, Sri08, Mos08] that came up with constructive proofs of the
lemma, with stronger bounds on the clause neighborhood however. Then
Moser [Mos09] made a big step ahead and came up with a randomized algo-
rithm that �nds a satisfying assignment if the neighborhood of each clause
is bounded by 2k/8. In his conference talk on [Mos09], Moser presented an
ingeniously simple argument based on Kolmogorov complexity (see [For09]).
Thereafter, Moser and Tardos [MT10] improved this to the bound claimed
by the Local Lemma, 2k/e − 1, with a di�erent proof however that uses
involved probabilistic arguments.

∗Research supported by DFG grant TH 472/4-1

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2011)

The main contribution of this paper is to provide again a very elegant
constructive proof for the Local Lemma via Kolmogorov complexity (Sec-
tion 4). Actually, for certain values of k we even improve the Local Lemma
slightly and show in Section 5 a bound somewhat better than (2k − 1)/e.
Our method also applies to the more general con�icting neighborhood setting,
also called the lopsided version, with the same bounds.

In the next section we give a more detailed introduction to the Local
Lemma for satisfyability. In Section 3 we introduce the concepts and tools
we use, like Kolmogorov complexity, binary entropy bounds on binomial
coe�cients, and the number of d-ary trees.

2 The Lovász Local Lemma

Throughout this paper, ϕ is a k-CNF formula with n variables and m clauses,
where every clause has exactly k ≥ 2 variables. The variables of a clause

are the variables that occur in a clause, positive or negative. A literal is
a variable or the negation of a variable. We de�ne a dependence relation

or neighborhood relation Γ = Γϕ on the clauses of ϕ as follows: for clauses
C 6= D,

(C,D) ∈ Γ if C and D have a common variable.

For satis�ability, it often su�ces to consider the con�icting neighborhood

relation or lopsided relation Γ′ = Γ′ϕ,

(C,D) ∈ Γ′ if C has a literal that occurs negated in D.

We also write D ∈ Γ(C) and D ∈ Γ′(C) instead of (C,D) ∈ Γ and
(C,D) ∈ Γ′, respectively.

The neighborhood graphs Gϕ and G′
ϕ are given by the m clauses as nodes

and Γ and Γ′ as edges, respectively. Crucial parameters in the following are
the maximum degrees dϕ = maxC |Γ(C)| and d′ϕ = maxC |Γ′(C)|. Clearly
we have Γ′ ⊆ Γ, and therefore d′ϕ ≤ dϕ.

The Lovász Local Lemma shows that if Γ (resp. Γ′) is not too dense
then ϕ is satis�able. In its symmetric form the formulation is given by
an upper bound on the maximal degree dϕ, respectively d′ϕ. Moreover the
symmetric form only applies to k-CNF formulas ϕ where every clause C has
exactly k ≥ 2 variables. Therefore, when we make a random assignment to
the variables, every clause has the same probability of being not satis�ed,
namely 2−k. We will consider only the symmetric version of the Lemma in
the following (see also [GMSW09] for an overview on the symmetric version).

2

The Local Lemma was introduced by Erd®s and Lovász [EL75]. The
generalization to the con�icting neighborhood setting, the lopsided version,
is due to Erd®s and Spencer [ES91]. The version presented here uses the
improved bounds from [ASE92] for dϕ and from [McD97] for d′ϕ.

Theorem 1 (Symmetric Local Lemma) Let ϕ be a k-CNF formula.

Then ϕ is satis�able if

d′ϕ ≤ 2k

e
− 1 .

Here e denote the Euler number.
Moser and Tardos [MT10] got a constructive proof of Theorem 1, i.e.

they showed that one can e�ciently computed a satisfying assignmend for ϕ
provided that ϕ ful�lls the conditions in the theorem. Their algorithm to
compute a satisfying assignment of a k-CNF-formula ϕ is randomized and
goes as follows.

Search(ϕ)
Pick a random assignment for the variables of ϕ
while there is a clause in ϕ that is not satis�ed do

. Choose an unsatis�ed clause C

. Reassign the variables in C independently at random
output the satisfying assignment

We can use any deterministic way to choose an unsatis�ed clause in the
while-loop, for example the smallest one according to some �xed ordering of
the clauses.

Clearly, there is a chance that Search(ϕ) runs forever. However if d′ϕ ≤
2k/e− 1, the expected running time is linear in m, and when it halts, it has
computed a satisfying assignment [MT10]. A very good exposition of the
result is from Spencer [Spe10]. He considers the non-lopsided version and
in fact, gives a slightly better bound on d = dϕ to guarantee satis�ability,
namely

(d + 1)d+1

dd
≤ 2k. (1)

Note that
(d + 1)d+1

dd
= (d + 1)

(
1 +

1
d

)d

< (d + 1)e .

Therefore d ≤ 2k

e − 1 implies inequality (1).

3

In Section 4 we show how to obtain Theorem 1, i.e. the lopsided version,
but with the bound (1). In Section 5 we improve the bound and show for
d = d′ϕ that algorithm Search will still �nd a satisfying assignment for ϕ if

dd

(d− 1)d−1
≤ 2k − 1. (2)

A similar calculation as above shows that inequality (2) holds if d ≤ 2k−1
e .

Theorem 2 Let ϕ be a k-CNF formula. If

d′ϕ ≤ 2k − 1
e

(3)

then ϕ is satis�able, and Search �nds a satisfying assignment for ϕ in

expected time O(m).

Let us mention a very weak bound shown by Gebauer et al. [GMSW09]
with a non-constructive argument: ϕ is satis�able if

d′ϕ ≤ d3(k − 1)/2e . (4)

However, this bound is pretty good for small values of k. To give an impres-
sion for these bounds, the table below shows the maximal integral values for
d′ϕ that we get from the above bounds for k = 2, . . . , 10.

k b2k/ec − 1 Eq. (1) b2k−1
e c Eq. (2) d3(k − 1)/2e

2 0 1 1 1 2
3 1 2 2 3 3
4 4 5 5 6 5
5 10 11 11 11 6
6 22 23 23 23 8
7 46 46 46 47 9
8 93 93 93 94 11
9 187 187 187 188 12
10 375 376 376 376 14

For k = 2, bound (4) is better than ours and it is not known whether
Search e�ciently �nds satisfying assignments for ϕ in 2-CNF with dϕ = 2.
But clearly, this case is not our main focus because 2-SAT is e�ciently
solvable anyway.

Already for k = 3 we achieve the same bound as in (4), but now with
a constructive argument. That is, we show that Search e�cienly �nds
satisfying assignments in this case.

4

Let us also note that the new bound b2k−1
e c is larger by one than the

bound b2k/ec−1 for in�nitely many k. To see this, observe that b2k/e+(1−
1/e)c ≥ b2k/ec+ 1 if a 1 appears in the binary expansion of 1/e at position
−(k + 1).

Is further improvement possible? Trivially, the formula ϕ in k-CNF with
k variables that contains all possible 2k clauses is unsatis�able and we have
dϕ = d′ϕ = 2k − 1 in this case. Therefore the bound d′ϕ ≤ 2 is optimal
for k = 2. For k ≥ 3 the optimal bounds are not known. In [GST11] it is
shown that for some constant c there are unsatis�able k-CNF formulas ϕ
with dϕ ≤ 2k(1

e + c√
k
). This shows that the factor 1/e in inequality (3)

cannot be replaced by a larger constant factor. However there is still room
for additive improvements.

3 Preliminaries

Kolmogorov Complexity For an algorithm A that computes a function
A : {0, 1}∗ → {0, 1}∗ and a �xed pairing function 〈·, ·〉 let

KA(x | y) = min({|w| | A(〈y, w〉) = x} ∪ {∞}) .

Since there are at most 2l − 1 strings w ∈ {0, 1}∗ of length less than l, we
have for any l ∈ R, all y ∈ {0, 1}∗, and any set S ⊆ {0, 1}∗

|{x ∈ S | KA(x | y) ≥ l}| ≥ |S| − 2l + 1 .

This implies that for any c ∈ R

|{x ∈ S | KA(x | y) ≥ log |S| − c}| ≥ |S| − 2log |S|−c + 1
> (1− 2−c)|S| . (5)

In particular, with c = 0 and S = {0, 1}s we have some x ∈ {0, 1}s with
KA(x | y) ≥ |x| .

It is known that there are (universal) algorithms U such that for every A
there is a constant cA such that

KU (x | y) ≤ KA(x | y) + cA

We �x such an U and denote KU (x | y) by K(x | y). Let us brie�y write
K(x | y, z) instead of K(x | 〈y, z〉). See e.g. [LV93, Cal02] for more details
on Kolmogorov complexity.

5

Binomials and Entropy By h we denote the the binary entropy, h(p) =
−p log p − (1 − p) log(1 − p) for 0 < p < 1. We use following well known
upper bound for

(
ds
s

)
(see e.g. [Sch01]). For d ≥ 2, and s ≥ 1(

ds

s

)
< 2dh(1/d)s . (6)

The number of d-ary trees An important tool in our argument below
is an estimate on the number of d-ary trees with s nodes, denoted by Td(s).
Well known is the case of binary trees, i.e. when d = 2, where T2(s) are the
Catalan numbers,

T2(s) =
1

s + 1

(
2s

s

)
.

In general, we have Td(0) = 1, and for s > 0 the numbers Td(s) obey the
recursion

Td(s) =
∑

s1+s2+...+sd=s−1

Td(s1)Td(s2) · · ·Td(sd),

because a d-ary tree has one node as root and the remaining s− 1 nodes are
split into d subtrees of the root, where each subtree is again a d-ary tree.

In closed form Td(s) is given by the Fuss-Catalan numbers (see [GKP94])

Td(s) =
1

(d− 1)s + 1

(
ds

s

)
.

Actually we consider not only trees, but forests that consists of up to
m d-ary trees. Let us call this a (d, m)-forest. The number Fd,m(s) of such
forests with s nodes is given by (see [GKP94])

Fd,m(s) =
m

ds + m

(
ds + m

s

)
.

Using inequality (6) we have for d ≥ 2 and s,m ≥ 1

Fd,m(s) < 2(ds+m)h(1
d+m/s

)

< 2(ds+m)h(1
d
). (7)

4 The Kolmogorov Argument

The core of the Kolmogorov argument is to reconstruct the random bits used
by Search from an input as small as possible. The size of this input will
then give a bound on the running time of Search.

6

4.1 The LOG

The sequence of clauses that is chosen by algorithm Search during the
execution of the while-loop is called the LOG [MT10]. Clearly, the LOG
depends on the random choices in each iteration. Also, the LOG could be an
in�nite sequence in the case that Search doesn't halt. Therefore we cut o�
the LOG after a �nite number of iterations: let s ≥ 1 be some integer and
assume that Search makes ≥ s iterations, then the LOG up to this point
is a sequence of clauses (C1, . . . , Cs). Note that Search consumes exactly
n + ks random bits up to this point: n for the initial assignment and k for
each iteration.

We start by showing that we can reconstruct the random bits used by
Search from the LOG (C1, . . . , Cs) and the assignment of the n variables
after iteration s.

Lemma 3 Given the the LOG (C1, . . . , Cs) and the assignment α after it-

eration s, we can reconstruct the random bits used by Search.

Proof. A variable xi gets reassigned by Search (possibly with the same
value) each time it occurs in some clause Cj of the LOG. We compute si,
the number of clauses in the LOG that contain xi. Hence xi gets reassigned
si times. Because in every iteration precisely k variables get reassigned, we
have s =

∑n
i=1 si/k.

Let α
(j)
i ∈ {0, 1} denote the j-th assignment given to xi for 1 ≤ j ≤ si.

Hence α
(1)
i is the initial assignment to xi, and α

(si)
i is the assignment to xi

after iteration s. That is, (α(s1)
1 , . . . , α

(sn)
n) = α.

We show how to obtain the random bits by going the LOG backwards,
starting with Cs. Since Search chooses Cs in iteration s, clause Cs is
violated before. Moreover the assignment after iteration s− 1 di�ers only in

the values assigned to the variables in Cs. Therefore the bits α
(si)
i from the

variables that occur in Cs are the k random bits used by Search in the last

iteration, and we obtain α
(si−1)
i as

α
(si−1)
i =

{
0, if xi in Cs,

1, if xi in Cs.

Now we repeat this recursively on the LOG (C1, . . . , Cs−1) with si−1 instead
of si for the variables xi that occur in Cs, until we arrive in the �rst iteration
where we obtain the initial assignment picked by Search.

7

If we �x an ordering of the m clauses, each clause is determined by its
rank i ∈ [m] in this ordering. Hence we can code the LOG (and by Lemma 3
the random bits) with n + s log m bits, given ϕ. However, this encoding is
too long for our purpose.

A crucial observation is that we don't need the precise LOG: we call two
clauses C and D independent if they have no opposite literals in common i.e.
(C,D) /∈ Γ′ϕ. We claim that when we permute the LOG by sequentially com-
mutating independent pairs of neighboring clauses, we still can reconstruct
the random bits used by Search.

Lemma 4 Given a sequence of clauses (D1, . . . , Ds) obtained by several

commutations of independent clauses, starting with the LOG, and the as-

signment α after iteration s, we can reconstruct the random bits used by

Search.

Proof. Consider the LOG and let us commutate two indepen-
dent clauses Cj and Cj+1, i.e. we consider the commutated LOG
(C1, . . . , Cj−2, Cj , Cj−1, Cj+1, . . . , Cs). Then the reconstruction algorithm

presented in the proof of Lemma 3 still produces the same values α
(j)
i : this

is obvious for the variables that occur in only one of two clauses. If Cj and
Cj+1 have variable xi in common, then we have

α
(l−1)
i = α

(l−2)
i =

{
0, if xi in Cj and Cj+1,

1, if xi in Cj and Cj+1,

where l is the number of times the variable xi appears in C1, . . . , Cj , i.e. α
(l)
i

is the assignment to xi after iteration j. Note that we don't have the case
xi in Cj and xi in Cj+1 or vice versa, since (Cj , Cj+1) 6∈ Γ′ϕ.

Inductively, we can commutate arbitrarily many independent pairs of

clauses and still get the same values α
(j)
i for 1 ≤ i ≤ n, 1 ≤ j ≤ si.

To reconstruct the random bit string used by Search we start Search

using the values α
(j)
i for the successive assignments to the variables. Recall

that the choice of the next clause in Search is deterministic. This yields the
assignment to the clauses and in turn the random bits, and also the original
LOG produced by the algorithm.

4.2 Witness forests

From the LOG we will next de�ne a witness forest (cf. the witness trees
in [MT10]). Our �nal algorithm to reconstruct the random bits used by

8

Search will have a coding of these witness forests as input. From the witness
forest we will not directly get the LOG of Search, but a permutation of
the LOG as described in Lemma 4. As we have just seen in the lemma, this
su�ces for our purpose.

We construct the witness forest of a LOG (C1, . . . , Cs) iteratively by
inserting Cj for j = 1, . . . , n into the initially empty forest. To insert Cj we
proceed as follows:

(i) If there is a node in the forest labeled with a clause D ∈ {Cj}∪Γ′ϕ(Cj),
then select a node in the forest with such a label that is at the lowest
level in the forest and append to it a node with label Cj as child.

(ii) Otherwise create a new tree in the forest that consists of a node as
root with label Cj .

The witness forest has the following important properties:

1. It is a (d + 1,m)-forest for d = d′ϕ: (i) there are at most m roots, one
for each clause of ϕ, and (ii) each node has at most d + 1 children.
The children of a node with label Ci have labels from {Ci} ∪ Γ′ϕ(Ci).
Recall that d′ϕ = maxj |Γ′ϕ(Cj)|.

2. If Cj ∈ {Ci} ∪ Γ′ϕ(Ci) and i < j then the node added for Cj is lower
in the tree than the node added for Ci.

3. If Ci and Cj are in the same depth of the forest, then they are inde-
pendent.

Therefore, if we output the labels of the nodes by increasing depth in any
order, we obtain a a sequence (D1, . . . , Ds) of clauses that can be obtained
from the LOG by commutating independent clauses.

The next observation is crucial: we don't need to store the labels of the
nodes, because we can compute the labels from the precise structure of the
forest! Namely, we can use the order of the clauses as they appear in ϕ as an
order on the clauses. This induces an order on all the sets Γ′ϕ(Ci). Hence, in
the witness forest, we can think of every node as having d + 1 slots reserved
in a certain order, one for each child to come. That is, we can for example
distinguish the tree with a node with label, say, C1 with a child with label C2

from the tree where the child of C1 has label C3. Similar, for the potential
roots of the trees, we have m slots reserved. When Ci becomes the root of
a tree, we put it at slot j, if j is the rank of Ci in the order of all clauses.
Therefore, if we know the precise structure of the forest, we can reconstruct
the labels of the nodes.

9

Since we can enumerate all (d+1,m)-witness forests with s nodes we can
encode a witness forest by its index in the enumeration which, by inequal-
ity (7), needs dlog Fd+1,m(s)e < d((d + 1)s + m)h(1/(d + 1))e bits.

Lemma 5 Given s and ϕ, and the index of a (d + 1,m)-witness forest rep-
resenting the LOG and the assignment after iteration s we can reconstruct

the random bits used by Search.

4.3 Putting things together

Now we have all the tools for the Kolmogorov complexity argument.

Theorem 6 Let ϕ be a formula in k-CNF and d = d′ϕ. If

(d + 1)d+1

dd
≤ 2k

then Search �nds a satisfying assignment for ϕ in expected time O(m).

Proof. Assume that Search makes ≥ s iterations of the while-loop. Fix a
Kolmogorov random string w ∈ {0, 1}n+ks with

K(w | ϕ, s) ≥ n + ks− c (8)

for some constant c > 0, and let Search use the bits of w as its random bits.
That is, the �rst n bits are used for the initial assignment and k bits each
are used to replace the assignment of the clause variables in each iteration
of the while-loop.

By Lemma 5 we can construct w from the assignment after iteration s
and an index of the witness forest. Hence, for some constant cA > 0,

K(w | ϕ, s) ≤ n + dlog Fd+1,m(s)e+ cA

< n + ((d + 1)s + m) h

(
1

d + 1

)
+ 1 + cA .

Combined with inequality (8) this implies(
k − (d + 1) h

(
1

d + 1

))
s < m h

(
1

d + 1

)
+ c + cA + 1 .

An easy calculation shows that the assumption (d+1)d+1

dd ≤ 2k is equivalent

to 0 < k − (d + 1)h
(

1
d+1

)
for integral d ≥ 2. Therefore we get

s <
mh
(

1
d+1

)
+ c + cA + 1

k − (d + 1)h
(

1
d+1

) = O(m). (9)

10

This shows that the algorithm halts after this number of iterations and then
outputs a satisfying assignment. Using inequality (5) it follows that (8) (and
therefore (9)) holds for a fraction of 1− 2−c of the possible strings w.

Now assume that w is choosen at random by the algorithm and let S be
the random variable denoting the number of iterations of Search. We have
just shown that for any c ≥ 0

Pr

S <
m h

(
1

d+1

)
+ c + cA + 1

k − (d + 1) h
(

1
d+1

)
 ≥ 1− 2−c. (10)

Hence, at this point we can already conclude that Search �nds a satisfying
assignment with high probability in O(m) steps. We show next that this is
also the expected time, i.e. E[S] = O(m).

Let K = k − (d + 1)h(1/(d + 1)) be the denominator in the fraction in

equation (10) and de�ne s0 = mh(1/(d+1))+cA+1
K = O(m).

E[S] =
∑
s≥0

Pr[S ≥ s]

=
∑

0≤s<s0

Pr[S ≥ s] +
∑
s≥s0

Pr[S ≥ s]

≤ s0 +
∑
s≥0

Pr[S ≥ s0 + s]

= s0 +
∑
s≥0

(1− Pr[S < s0 + s]) .

For s ≥ 0 de�ne c = sK. Then s = c
K and inequality (10) becomes

Pr[S < s0 + s] ≥ 1− 2−c = 1− 2−sK .

Therefore (since 2K > 1)∑
s≥0

(1− Pr[S < s0 + s]) ≤
∑
s≥0

2−sK =
1

1− 2−K
= O(1) ,

and hence E[S] ≤ s0 + 1
1−2−K = O(m).

5 An Improvement

In the previous section we said that the trees in the witness forest are (d+1)-
ary trees for d = d′ϕ, because the children of a node with label C can be from

11

{C}∪Γ′ϕ(C), a set of size ≤ d+1. However, by the construction of the trees,
no node will actually have d + 1 children: if a node with label C has a child
with label C this is its only child, because the labels of the other children
would be dependent on C. Moreover, we can easily avoid that a node with
label C has a child with label C: this happens only when Search picks as
the next random assignment for C the same assignment as it had before. We
modify Search such that the choosen clauses will get satis�ed.

Modified-Search(ϕ)
Pick a random assignment for the variables of ϕ
while there is a clause in ϕ that is not satis�ed do

. Choose an unsatis�ed clause C

. Choose a random i ∈ {1, . . . , 2k − 1}

. Assign variables in C by the i-th satisfying assignment for C
output the satisfying assignment

Note that Search and Modified-Search are essentially identical algo-
rithms: if Search chooses an unsatis�ed clause C and accidentally reas-
signs the variables such that C stays unsatis�ed, it will choose C again in
the next iteration, because the selection method is deterministic. This will
be repeated until the reassignment satis�es C. The expected number of it-
erations until this happens is 2k/(2k − 1) ≤ 2. Then both algorithm proceed
again the same way.

Lemma 7 Let (C1, . . . , Cs) be the LOG of a run ofModified-Search over

s iterations. Then in the witness forest constructed from (C1, . . . , Cs) no node
will have a child with the same label.

Proof. If a clause C is picked more than once in a run ofModified-Search

we have C = Ci = Cj for some i < j. Let y be a literal in C that is satis�ed
after iteration i and consider the smallest l, such that i < l ≤ j and either
y or y is in Cl. Actually it can not be the case that y is in Cl since the
assignments in the iterations i, . . . , l satisfy y, and the algorithm only picks
unsatis�ed clauses. Thus y is in Cl and therefore l < j and Cl ∈ Γ′ϕ(C). This
shows that in the constructed witness tree, the node added for Cj is lower
in the tree than the one for Cl which is again lower than the one for Ci. So
Cj will not be a child of Ci.

Since there are less (d, m)-forests than (d + 1,m)-forests, we can im-
prove the bounds given in Theorem 6. On the other hand, in s iterations
Modified-Search uses random sequences w = w0w1, where w0 ∈ {0, 1}n

12

and w1 ∈ {1, . . . , 2k−1}s. Since there are only 2n(2k−1)s such sequences we
just can guarantee the existence of a w with K(〈w〉 | ϕ, s) ≥ n+s log(2k−1),
where 〈·〉 is a suitable binary encoding of these sequences.

Theorem 8 Let ϕ be a formula in k-CNF and d = d′ϕ. If

dd

(d− 1)d−1
≤ 2k − 1.

then Search and ModifiedSearch �nd a satisfying assignment for ϕ in

expected time O(m).

Proof. Due to linearity of expectation, the expected number of iterations
of Search on ϕ is 2k/(2k − 1) times the expected number of iterations of
ModifiedSearch. Therefore it su�ces to show thatModifiedSearch will
�nd a satisfying assignment for ϕ with O(m) expected number of iterations.

Assume that ModifiedSearch makes at least s iterations of the while-
loop. Fix a random sequence w = w0w1, where w0 ∈ {0, 1}n and w1 ∈
{1, . . . , 2k − 1}s such that

K(〈w〉 | ϕ, s) ≥ n + s log(2k − 1)− c (11)

We can reconstruct w from the (d, m)-witness forest de�ned by the LOG of
Modified-Search. Hence for some cA ≥ 0

K(〈w〉 | ϕ, s) ≤ n + dlog Fd,m(s)e+ cA

< n + (ds + m)h
(

1
d

)
+ 1 + cA .

Combined with (11) this implies(
log(2k − 1)− d h

(
1
d

))
s < m h

(
1
d

)
+ c + cA + 1 .

Note that dd

(d−1)d−1 ≤ 2k − 1 is equivalent to 0 < log(2k − 1)− d h
(

1
d

)
for

integral d ≥ 2. Therefore we get

s <
m h

(
1
d

)
+ c + cA + 1

k − d h
(

1
d

) = O(m).

This shows that the algorithms outputs a satisfying in less than this number
of iterations. Notice that a fraction of 1 − 2−c of the possible sequences w
ful�lls this condition (by equation (5)).

13

Now assume that w is choosen at random by the algorithm. Let S be the
random variable denoting the number of iterations of ModifiedSearch.
For any constant c ≥ 0 we have

Pr

(
S <

m h
(

1
d

)
+ c + cA + 1

k − d h
(

1
d

))
≥ 1− 2−c.

Similar to the proof of Theorem 6 we obtain E[S] = O(m).

Note that Theorem 2 follows from Theorem 8.

Acknowledgments

We want to thank Patrick Scharpfenecker and Uwe Schöning for helpfull
discussions.

References

[Alo91] N. Alon. A parallel algorithmic version of the Local Lemma.
Random Structures and Algorithms, 2(4):367�378, 1991.

[ASE92] N. Alon, J. Spencer, and P. Erd®s. The probabilistic method.
Wiley, 1992.

[Bec91] J. Beck. An algorithmic approach to the Lovász Local Lemma.
Random Structures and Algorithms, 2(4):343�366, 1991.

[Cal02] C. Calude. Information and Randomness. An Algorithmic Per-

spective, 2nd ed. Springer, 2002.

[EL75] P. Erd®s and L. Lovász. Problems and results on 3-chromatic hy-
pergraphs and some related questions. In A. Hajnal and V. Sós,
editors, In�nite and Finite Sets, pages 609�627. North-Holland,
1975.

[ES91] P. Erd®s and J. Spencer. Lopsided Lovász Local Lemma and
latin transversals. Discrete Applied Mathematics, 30:151�154,
1991.

[For09] L. Fortnow. A Kolmogorov complexity proof of the
Lovász Local Lemma. Computational Complexity Blog,
http://blog.computationalcomplexity.org/2009/06/kolmogorov-
complexity-proof-of-lov.html, 2009.

14

[GKP94] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathemat-

ics. Addison-Wesley, 2nd edition, 1994.

[GMSW09] H. Gebauer, R. Moser, D. Scheder, and E. Welzl. The Lovász
Local Lemma and satis�ability. In E�cient Algorithms, LNCS
5760, pages 30�54. Springer, 2009.

[GST11] H. Gebauer, T. Szabó, and G. Tardos. The Local Lemma is
tight for SAT. In Accepted for SODA 2011, 22nd ACM-SIAM

Symposium an Discrete Algorithms, 2011.

[LV93] M. Li and P. Vitányi. An introduction to Kolmogorov complexity

and its applications. Springer, 1993.

[McD97] C. McDiarmid. Hypergraph coloring and the Lovász Local
Lemma. Discrete Mathematiks, 167/168:481�486, 1997.

[Mos08] Robin A. Moser. Derandomizing the Lovász Local Lemma more
e�ciently. Technical Report arXiv:0807.2120v2, arXive.org,
http://arxiv.org/abs/0807.2120, 2008.

[Mos09] Robin A. Moser. A constructive proof of the Lovász Local
Lemma. In 41th Symposium on Theory on Computing (STOC),
pages 343�350, 2009.

[MT10] R. Moser and G. Tardos. A constructive proof of the general
Lovász Local Lemma. Journal of the ACM, 57(2):11:1�11:15,
2010.

[Sch01] U. Schöning. Algorithmik. Spektrum, 2001.

[Spe10] J. Spencer. Robin Moser makes Lovász Local Lemma algorith-
mic! http://cs.nyu.edu/spencer/moserlovasz1.pdf, 2010.

[Sri08] A. Srinivasan. Improved algorithmic versions of the Lovász Local
Lemma. In 9th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 611�620, 2008.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

