
On the Approximability of a Geometric Set Cover Problem

Valentin E. Brimkov1, Andrew Leach2, Jimmy Wu2, and Michael Mastroianni2

1 Mathematics Department, SUNY Buffalo State College, Buffalo, NY 14222, USA
2 Mathematics Department, University at Buffalo, Buffalo, NY 1426-2900, USA

Abstract. Given a finite set of straight line segments S in R2 and some k ∈ N, is there a subset
V of points on segments in S with |V | ≤ k such that each segment of S contains at least one point
in V ? This is a special case of the set covering problem where the family of subsets given can be
taken as a set of intersections of the straight line segments in S. Requiring that the given subsets
can be interpreted geometrically this way is a major restriction on the input, yet we have shown
that the problem is still strongly NP-complete. In light of this result, we studied the performance of
two polynomial-time approximation algorithms which return segment coverings. We obtain certain
theoretical results, and in particular we show that the performance ratio for each of these algorithms
is unbounded, in general.

Keyword: guarding set of segments, set cover, vertex cover, approximation algorithm, worst case perfor-
mance

1 Introduction

Given a finite set of straight line segments, we wish to find a minimum number of points so that every
segment contains at least one chosen point. Consider any physical structure that can be modeled by a finite
set of straight line segments. Some examples could be a network of streets in a city, tunnels in a mine,
corridors in a building or pipes in a factory. We want to find a minimum number of locations where to
place “guards” in a way that any point of the structure can be “seen” by at least one guard. An equivalent
problem is to find a minimum number of locations to place “terminals” so that any point of the network
has a direct access to at least one “terminal” at all times. For brevity, we call this problem Guarding a Set
of Segments (GSS).

GSS is germane to the set cover (SC), vertex cover (VC) and edge cover (EC) problems. These are
fundamental combinatorial problems that play an important role in complexity theory. It should be noted
that we can find applications of GSS anywhere that we find applications of VC where a planar embedding
of the graph is relevant or the vertices of the graph represent objects with geometric locations.

GSS can be formulated as a special case of the set cover problem (see Section 2), under certain conditions
as a vertex cover problem and under other conditions as an edge cover problem. However, in general, GSS
and VC are different, as Figure 1 demonstrates. It is well-known that both SC and VC are NP-complete
while EC is solvable in polynomial-time [3], [4]. In the special case where at most two segments intersect at
any single point, GSS is solvable in polynomial-time. This can be done by solving the edge cover problem
after reducing the problem to the graph where vertices are segments and edges are intersections (see
Section 4). In a recent work [2] we proved that GSS is NP-complete as well. For this reason, if we allow
more than two segments to intersect at a single point, it is unrealistic to expect any efficient algorithm for
finding the optimal solution.

Let us also mention that the proof of the GSS’ NP-completeness from [2] as a matter of fact demonstrates
that VC on planar cubic graphs (3PVC), which is a strongly NP-complete problem, is a special case of
GSS. Thus GSS appears to be “sandwiched” between 3PVC and SC—two NP-complete problems with
quite different approximability (constant and unbounded, respectively). This makes the question about
GSS approximability definitely interesting.

We remark that GSS also belongs to the class of the art gallery problems. A great variety of such
problems have been studied for at least four decades. The reader is referred to the monograph of Joseph
O’Rourke [7] and the more recent one of Jorge Urrutia [9]. See also [1], [5] and the bibliography therein
for a couple of examples of art-gallery problems defined on sets of segments, and [10], [11] for possible

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 19 (2011)

Fig. 1. Left: Any minimum vertex cover of the given plane graph requires four vertices. One such cover is marked
by thick dots. Right: Two vertices can guard the same set of segments. One optimal solution is exhibited.

applications of related studies to efficient wireless communication. We consider two basic greedy-type
algorithms for finding approximate solutions of GSS. We show that for each of these, theoretically the
ratio of the approximate to the optimal solution can increase without bound with the increase of the
number of segments. We also obtain other results about these algorirhms’ performance.

The paper is organized as follows. The next section includes certain preliminaries (including notation)
useful for understanding the rest of the paper. In Section 3 we present two approximation algorithms and
study their theoretical performance. We find instances of GSS where each algorithm can perform as poorly
as we choose. Section 4 details identities of a visibility function introduced in the next section as well as
some theoretical results which were obtained using these identities. These results reveal how the number
of segments intersecting at any given point affects the performance of the greedy algorithms. We conclude
with some open roblems and final remarks in Section 5.

2 Preliminaries

2.1 Vertex Cover, Set Cover, and GSS

Given a universe set U and an arbitrary family of subsets F ⊆ P(U), the optimization set cover problem
looks for a minimum cover C ⊆ F so that

⋃
s∈C s = U .

The optimization vertex cover problem has as an input a graph G = (V, E), and one looks for a
minimum set C of vertices of G, such that every edge of G is incident to at least one vertex of C. The set
C is called a minimum vertex cover of G.

Now let S = {s1, s2, . . . , sn} be a set of segments in the plane. Denote by S̄ the set of all points of
segments in S and by V the set of all intersection points of segments of S. The elements of V will be called
vertices of S̄. If A ⊆ V , let SA denote the set of segments which contain the vertices in A and S̄A denote
the set of points on segments in SA. We consider as degenerate the case of intersecting collinear segments
since it is trivial to discover such segments and merge them into one. In terms of the above notations, our
problem can be formulated as follows.
Guarding a Set of Segments (GSS)
Find a minimum subset of vertices Γ ⊆ V such that S̄Γ = S̄.

In other words, one has to locate a minimum number of guards at the vertices of S̄ so that every point
of S̄ is seen by at least one guard.

We will assume throughout that the set S̄ is connected (otherwise the problem would just be a set
of problems which do have connected segments). It is easy to see that the requirement to locate guards
at vertices is not a restriction of the generality either: every non-vertex point on a segment s can see the
points of s only, while each of the vertices on s can see s and other segments. Lastly, in the case where the
input is a single segment assign one of the endpoints as a vertex.

In view of the above remarks, GSS admits formulation in terms of a set cover problem, as follows.
Set Cover Formulation of GSS
Let S be a set of segments and V the set of their intersections, called vertices of S. Find a minimum sized
subset of vertices Γ ⊆ V such that SΓ = S.

2.2 Other Notations

For a universe set U and a subset S, by |S| and Sc we denote the cardinality of S and its complement.
A matching in a graph is any set of edges without common vertices. A matching is maximal if it is not

a proper subset of any other matching in the graph, and maximum if it has the largest possible number of
edges. Minimum maximal matching is a maximal matching of minimum size.

Now let Π be a minimization problem with a set of instances DΠ . Given an instance I ∈ DΠ , let
Opt(I) be the value of an optimal solution for I. Given an approximation algorithm A for Π , let A(I) be
the value of the approximation solution to I found by A.

Define an approximation ratio of A on I as RA(I) = A(I)
Opt(I) . Then A(I)−Opt(I)

Opt(I) = RA(I) − 1 is the
(relative) approximation error of A on I.

Now define the (worst case) performance ratio of A as RA = inf{r ≥ 1 : RA(I) ≤ r for all I ∈ DΠ}.
Clearly, RA = 1 for any algorithm A that always finds an optimal solution for an arbitrary instance

I ∈ DΠ . Otherwise, the larger RA, the poorer A’s worst-case performance.
For more details the reader is referred to [3, 8].

3 Two Approximation Algorithms for GSS and their Worst-Case
Performance

The approximation algorithms we consider can all be classified as greedy algorithms adapted from the
related set cover and vertex cover problems.

G1 Set Cover Greedy
On each iteration, this algorithm simply chooses a vertex of greatest degree (deg(v) = |S{v}|), removes
it and all incident segments from the set of segments, and repeats until there are no longer any segments
to cover.

G2 Vertex Cover Matching Greedy
The approximation algorithm for the vertex cover problem finds a maximal matching for the graph and
selects both endpoints of each edge of the matching. Because in GSS there can be multiple intersections
along a segment, we needed to make some changes before this algorithm can be correctly applied to
GSS. For this algorithm, “both endpoints of each edge” was translated to “all useful intersections along
each segment.”
On each iteration, G2 chooses a segment with fewest intersections on it, adds intersections on the
segment to the cover in order of greatest degree first, ignoring intersections that do not contribute
any new segments to the cover. It then removes all incident segments from the GSS and repeats the
previous steps of the algorithm until there are no longer any segments to cover. The segments chosen
on each iteration form a matching for the set of segments in the sense that no two of them intersect.

In this sections we study the worst-case performance of G1 and G2. We have the following theorem.

Theorem 1. The set cover greedy algorithm (G1) on GSS instances has a performance ratio that is
Ω(log |S|), where |S| is the number of segments.

Proof To show that the approximation error of algorithm G1 can be arbitrarily large with respect to
the optimal solution, we provide a nontrivial extension to an approach to a known estimation of a greedy
solution to the set cover problem (see, e.g., [8]).

We define the placement of line segments in the plane as follows. Fix an m ∈ N with m > 1, a ∈ Q

with a > 0, and place the m points a1 = (1, a), (2, a), . . . , (m, a) = am. Let n =
m∑

i=2

⌊
m
i

⌋
. Place the n points

b2,0 = (1, 0), (2, 0), . . . , (n, 0) = bm,0 partitioned into groups of size
⌊

m
2

⌋
,
⌊

m
3

⌋
, . . . ,

⌊
m

m−1

⌋
,
⌊

m
m

⌋
where each

partition is appended to the previous partition in the positive direction along the line y = 0. We index the
elements bi,j with two subscripts, i and j, where i is the index of the partitions of size

⌊
m
i

⌋
, (i = 2 . . .m),

and j is the index (starting from 0) within each partition (j = 0 . . .
⌊

m
i

⌋ − 1). The points bi,j are spaced

Fig. 2. Left: Illustration to the construction of Theorem 1 for m = 8. Middle: If each of the two sheaves of segments
contains n/2 segments (for any even n ≥ 4), then algorithm G2 finds an approximate solution of n/2+1 segments,
while the optimal solution comprises the two vertices marked by thick dots. Note that on such sort of instances G1
finds the optimal solution. Right: Illustration to the proof of Proposition 1.

exactly 1 unit apart along the positive x-axis with b2,0 having an x coordinate of 1.1 We have one row of
points on y = a which is placed on integer coordinates in the following order:

a1, a2, . . . , am

and one row on y = 0 which is placed on integer coordinates in the following order:

b2,0, b2,1, . . . , b2,�m
2 �−1, b3,0, b3,1, . . . , b3,�m

3 �−1, . . . , bm−1,� m
m−1�−1, bm,0

We will connect segments from points on y = 0 to points on y = a in such a way that a
solution is A = {a1, . . . , am} while the set cover greedy algorithm always finds the solution B =
{b2,0, b2,2, . . . , b2,�m

2 �−1, . . . , bm−1,� m
m−1�−1, bm,0}. Denoting the above constructed instance I, this will

make the approximation ratio

RG1(I) ≥ n

m
=

m∑
i=2

⌊
m
i

⌋
m

≈ m logm

m
= log m = Θ(log |S|)

The final equality follows from the obvious fact that m log m ≤ |S| ≤ m2 log m. To place the segments,
connect bi,j to all points in the set {aji+1, aji+2, . . . , aji+i} forming i segments for each bi,j . In this way,
bi,j lies on exactly i segments. Figure 2 (left) illustrates the construction for m = 8. Since all segments
in this construction have an ai as an end point for some 1 6 i 6 m, {a1, . . . , am} is a solution to GSS. It
is not necessary to show that this is an optimal solution, as this shows that m is an upperbound for the
number of guards in an optimal solution.

We will construct a set of disconnected segments. Adopt the convention of naming a segment by its
end point with smaller y value first and end point with larger y value second. Then for each partition
of B, order all segments connecting to points in this partition in lexicographic order with respect to x

coordinate (i.e., (x1, y1)(x
′
1, y

′
1) < (x2, y2)(x

′
2, y

′
2) iff x1 < x2 or x1 = x2, x

′
1 < x

′
2); pq denotes the segment

with endpoints p, q ∈ R2). Add to the set: the first segment in the first partition, second segment in the
second partition, third segment in the third partition, and so on. We end up with the set of m−1 segments
{b2,0a1, b3,0a2, b4,0a3, . . . , bm,0am−1}. Since each segment is longer than the preceding one with the imposed
ordering and none of the segments shares an end point with another, none of the segments intersect. It
follows that at least m − 1 guards are required for a solution because there must be a guard on each of
these segments to cover the entire construction. This is the best lower bound possible since an optimal
1 While not essential to our proof, the reader may be interested to know how to compute the x coordinate from

the subscripts i, j. The elements bi,j are sorted lexicographically by i first, then j. We assign to each bi,j a single
index k and note that for every bk, k is its x coordinate (where k = 1 . . . n). For any i > 2, there are

∑i−1
r=2

⌊
m
r

⌋
points in the partitions to the left of partition i. When i = 2, this number is 0, so to generalize the previous
summation for i ≥ 2, we write it as

∑i−1
r=1

⌊
m
r

⌋ − m. As previously stated, j is the 0-indexed position of bi,j

within partition i, so the expression for k becomes
∑i−1

r=1

⌊
m
r

⌋ − m + j + 1.

solution has m−1 guards for m = 2 and m = 3 (where the optimal solution is to place guards on all points
in B rather than A).

Suppose we have two distinct segments, one containing bi,j1 and the other containing bi,j2 . It is easy to
see that these two segments do not intersect unless j1 = j2 (in which case they intersect at bi,j1). In other
words, no two segments extending from the same partition intersect each other at a point different from
an end point they could share. As mentioned, in the case that j1 = j2, the two segments both contain bi,j1

and this is their intersection. Without loss of generality, assume j1 < j2. We are interested in intersections
with y coordinate 0 < y < a. Then bi,j1 is to the left of bi,j2 on the line y = 0. All segments containing bi,j1

connect to an endpoint to the left of or on a(j1+1)i (on y = a) while all segments containing bi,j2 connect
to an end point to the right of aj2i which must be to the right of or equal to a(j1+1)i. It follows that no
two distinct segments containing bi,j1 and bi,j2 , respectively, contain any intersections with y coordinate
y > 0. Since there are a total of m − 1 partitions, it is clear that all unlabeled intersection points (i.e.
intersection points with y coordinate 0 < y < a) have degree at most m − 1.

For any 1 ≤ l ≤ m and any 2 ≤ i ≤ m, {bi,0, . . . , bi,�m
i �−1} contains at most one point which connects

to al. In other words, each partition of the points on y = 0 contains at most one point which connects to
al. So each al has degree at most the number of partitions = m − 1.

Now we can say that by construction, the only point of degree m is bm,0. This is the point of highest
degree, so the set cover greedy algorithm would place a guard here and remove all segments containing
bm,0. This deletes an entire partition.

Now there are only m − 2 partitions left and the unlabeled intersections (intersections which are not
end points) as well as points on y = a now take on this as the maximum degree because of the remarks
above. The next partition of the points on y = 0 from the right are the only points of degree m − 1 so
guards are placed at each of these and another partition is removed.

Continue in this way and all points labeled b will be chosen by the set cover greedy algorithm. �	
It turns out that at worst, the performance of G2 can even be poorer than the one of G1. Figure 2

(middle) illustrates that a solution for a GSS problem on n segments found by G2 can be (n/2 + 1)/2
times the optimal, which is found by G1. The opposite can also be true: a solution found by G1 can be an
unbounded number of times worse than the optimal one found by G2, if we modify G2 to select matching
segments randomly instead of by least intersections. Note that this cannot be the case with the vertex cover
problem, for which the performance of the matching greedy algorithm is always bounded by 2. Henceforth
we refer to this modified version of G2 as RG2. More precisely, we have the following:

Proposition 1. There is a class of GSS on O(m2 log m) segments for which RG2 finds an optimal solution
of m guards while G1 finds an approximate solution of Ω(m log m) guards.

Proof Consider the construction of Theorem 1 with the only difference that an additional segment connects
all upper a-vertices (see Figure 2, right). This segment forms a maximal matching in S and assume that
this is the one used by RG2. Then obviously RG2 takes as a solution the m points on that segment, which
is the optimal solution.

By adding this segment, the degree of every a-vertex is increased by one, so both a- and b-vertices
contain ones of maximal degree. Assume that G1 starts from the lower-rightmost vertex. Removing this
vertex together with all adjacent segments, the degree of all maximal-degree a-vertices decrease by one.
So, before the next iteration of G1, both upper and lower vertices contain vertices of maximal degree.
Continuing the process, this pattern remains the same until the algorithm termination. Thus, G1’s solution
will be composed of all m logm lower points, and its performance ratio will be proportional to log m. Since
the construction and its analysis is transparent, details are omitted. �	

4 Other Approximability Results

In this section we obtain some results that help to characterize the bounds of approximation for families
of line segment sets. To this end, we first develop some mathematical tools that provide formalized set
representation of line segments and their intersection points.

Suppose S is a set of segments in the plane (not necessarily connected) and V the set of intersections
of segments in S (if a segment exists which intersects no other segments, then add one of its end points to
V). If A ⊆ V , then SA = {s ∈ S|a lies on s for some a ∈ A}.

Fact 1 SA∪B = SA ∪ SB

Proof: s ∈ SA∪B ⇐⇒ s ∈ SA or s ∈ SB ⇐⇒ s ∈ SA ∪ SB.

Fact 2 A ⊆ B ⇒ SA ⊆ SB

Fact 3 SA∩B ⊆ SA ∩ SB

Proof: A ∩ B ⊆ A and A ∩ B ⊆ B ⇒ SA∩B ⊆ SA and SA∩B ⊆ SB ⇒ SA∩B ⊆ SA ∩ SB.

Fact 4 SA\SB ⊆ SA\B

Proof: s ∈ SA\SB ⇒ s ∈ SA, s /∈ SB ⇒ ∃a ∈ A, s ∈ S{a} but ∀b ∈ B, s /∈ S{b} ⇒ a /∈ B ⇒ a ∈ A\B ⇒
s ∈ SA\B.

Fact 5 (SA)c ⊆ SAc

Fact 6 S{a} ⊆ S{b} ⇒ a = b

Proof: S{a} ⊆ S{b} ⇒ at least 2 segments that a sees are seen by b ⇒ they are both the intersection of a
common pair of segments ⇒ a = b.

Fact 7 SA = S{b} ⇒ A = {b}
Proof: A �= {b} ⇒ ∃a ∈ A, a �= b so that S{a} ⊆ S{b} ⇒ a = b.

Fact 8 |A| ≤ |SA| ≤ k|A| where k = sup{|S{a}| : a ∈ A}

Proof: |A| ≤ |SA| ≤
∑
a∈A

|S{a}| ≤
∑
a∈A

k ≤ k|A|.
The first inequality holds because of the n−gon.

Next we present three properties characteristic of many greedy-type approximation algorithms, show the
relationships between them, and present some approximability results that can be derived for algorithms
with such properties. We use the notation A to refer to a general algorithm for solving GSS, and σA for
the subset of V that A outputs as a solution.

Property 1. An algorithm A selects vertices one at a time and will only add an intersection point to its
solution set if it guards at least one segment not yet covered.

Property 2. For any subset B ⊆ σA, |B| ≤ |SB|.
Property 3.

∣∣σA
∣∣ ≤ |S|.

Proposition 2. Property 1 implies Property 2. In other words, any algorithm A that exhibits Property 1
must also exhibits Property 2.

Proof Let σA = {b1, b2, . . . , bm}, where m = |σA| and the vertices bi are listed in the order that A chose
them (b1 being the first point chosen). Let pi be the number of new segments covered by bi at the time it was
chosen (i.e. the number of segments covered by bi that are not covered by {b1, . . . , bi−1}). By Property 1,
pi ≥ 1. Let B ⊆ σA = {bi1 , . . . , bim}, where the points bij are listed by order of appearance in σA (i.e. the
order that A selected them). Now, for each bij , observe that since it covers pij segments not covered by
the set {bi1 , . . . , bij−1}, it must cover at least pij segments not covered by the set {bi1 , . . . , bij−1}. Since
each pij ≥ 1, |B| = k ≤ ∑

j∈{1,...,k} pij ≤ |SB|, the total number of segments covered by B. �	

Remark 1. Property 2 implies Property 3. This is trivial to show: simply let B = σA. We can chain these
results together to show that Property 1 also implies Property 3. Thus, we have a hierarchy of properties,
where Property 1 is the strongest since it guarantees the other two and Property 3 is the weakest and most
general. Finally, we note that since the greedy algorithm G1 as previously described exhibits Property 1
it therefore has the other two as well.

The following result shows that for any approximation algorithm exhibiting Property 3, the performance
ratio can be no greater than the maximum degree of any intersection point. For example, any greedy
algorithm with Property 3 will have a performance ratio no worse than 2 on sets of line segments with
only intersection points of degree 2 or less.

Proposition 3. For an instance I of GSS let S be the set of segments, σA the solution found by an
algorithm A, and σ∗ an optimal solution. If the algorithm satifies Property 3, and k = sup{∣∣S{v}

∣∣ : v ∈ V },
then RA ≤ k.

Proof Since placing a guard at a point removes at most k segments from the available segments to place
guards on, we have |σ∗| ≥

⌈
|S|
k

⌉
. Then

|σA| ≤ |S| ≤ k

⌈ |S|
k

⌉
≤ k|σ∗|.

Hence RA = |σA|
|σ∗| ≤ k. This becomes a strict inequality if the set of segments is connected. �	

The following theorem may be useful to provide an upper bound on the approximation ratio of G1.

Theorem 2. For any instance I of GSS with segments S and intersections V , let k = sup{|S{v}| : v ∈ V }
be the maximum degree of any point in V and l = |Vk| be the number of points with degree k.

If l ≤ k, then RG1 ≤ k − kl(2k − l + 1)
2 |S|

If l > k, then RG1 ≤ k − k3 − k2

2 |S|

Proof The beginning of the proof is identical for both cases. We use the same notation introduced in
Proposition 2. As before, let σG1 = {b1, b2, . . . , bm}, where m = |σG1| and the vertices bi are listed in
the order that G1 chose them (b1 being the first point chosen). Let pi be the number of new segments
covered by bi at the time it was chosen (i.e. the number of segments covered by bi that are not covered
by {b1, . . . , bi−1}). For brevity, in this proof the degree of a vertex will always refer to its degree in the
original segment set S, and the effective degree will mean the updated degree (after segments have been
covered and removed by G1) of the vertex at that particular point in the algorithm’s operation. At each
step, G1 always chooses a vertex with the largest effective degree in that iteration.

We know that p1 = k by the definition of G1, since k is the largest degree available. Assuming 2 ≤ l,
next we claim that p2 ≥ k−1. Choosing the first point b1 removes k segments from S, reducing the effective
degree of any other vertices by at most 1 (because any two line segments can only intersect at one point,
and that intersection is at b1). The remaining degree-k vertices must therefore have effective degree of no
less than k − 1. Continuing this argument, if i ≤ l then we have pi ≥ k − (i − 1). In other words, when
it is time to select a bi, exactly i − 1 points have been chosen before it. Therefore, all remaining vertices,
and in particular the remaining degree-k vertices (since i − 1 < l we are sure at least one remains), have
had their effective degrees reduced by at most i− 1. Thus we can guarantee the existence of a vertex with
effective degree at least k − (i − 1).

So, we obtain the following progression: p1 = k, p2 ≥ k − 1, p3 ≥ k − 2, . . . , pi ≥ k − i + 1. If we sum
the terms to obtain k + (k − 1) + · · · + (k − i + 1) = q ≤ ∑

j∈{1,...,i} pj , we can assert that
∣∣S{b1,...,bi}

∣∣ =∑
j∈{1,...,i} pj ≥ q. Thus G1 uses i points to cover at least q segments. Since, as previously stated, pj ≥ 1

for all bj ∈ σG1, to cover the remaining uncovered segments (i.e. S \ S{b1,...,bi}) we know that G1 chooses
at most

∣∣S \ S{b1,...,bi}
∣∣ ≤ |S| − q points . Therefore,

∣∣σG1
∣∣ ≤ i + |S| − q.

The details of where i ends and the subsequent value of q is where the argument diverges into two
cases depending on whether l is greater than k or not. If l ≤ k then i = l. Then, the final term in the
progression is pl ≥ k − l + 1, so q = k + (k − 1) + · · · + (k − l + 1) = (k + (k − l + 1))l/2. Substituting
values, and simplifying,

∣∣σG1
∣∣ ≤ l + |S| − l(2k−l+1)

2 . Using the fact from the proof of Proposition 3 that

|σ∗| ≥
⌈
|S|
k

⌉
≥ |S|

k , we obtain RG1 = |σG1|
|σ∗| ≤ |S| k

|S| − l(2k−l+1)
2 · k

|S| = k − kl(2k−l+1)
2|S| .

If l > k, then the final term in the progression becomes pk ≥ 1 = k − (k − 1), where i ends at k.
In this case, q = k + (k − 1) + · · · + 1 = (k + 1)k/2 = (k2 + k)/2. After substituting and simplifying,
we have

∣∣σG1
∣∣ ≤ k + |S| − (k2 + k)/2 = |S| − k2−k

2 . Finally, using the same argument for the first case,

RG1 = |σG1|
|σ∗| ≤ |S| k

|S| − k2−k
2 · k

|S| = k − k3−k2

2|S| . �	

Let W be a set of intersections and/or end points and r ∈ N be fixed. Denote

Wr− = {v ∈ W : |S{v}| ≤ r},
Wr = {v ∈ W :

∣∣S{v}
∣∣ = r},

Wr+ = {v ∈ W : |S{v}| > r}

The following theorem provides an a posteriori bound for the performance of G1.

Theorem 3. Let V be the set of intersections in some connected set of segments S, g1 the solution given by
the set cover greedy algorithm G1, and σ∗ an optimal solution for the GSS on S. If k = sup{|S{v}| : v ∈ V },
then

Rg1 ≤ inf
2≤r≤k

{r +
|Vr+|
|σ∗| }

Proof In each iteration, G1 chooses a point with the highest effective degree, and removes the segments
it covers. Consider the iteration at which all points remaining have effective degree less than or equal to
some integer r. Denote the set of points chosen by the greedy algorithm thus far as σG1

r+ .
The line segments that G1 still needs to cover are S \ SσG1

r+
but S = Sσ∗ , so we can rewrite this as

Sσ∗ \SσG1
r+

. By Fact 3 we have that Sσ∗ \SσG1
r+

⊆ Sσ∗\σG1
r+

. Note that at the iteration where we interrupted
G1 to obtain σG1

r+ , no point in σ∗ \ σG1
r+ can have an effective degree greater than r, by construction. It

follows that each point in σ∗ \ σG1
r+ can contribute no more than r line segments to the total count of

uncovered segments at that iteration. This gives |Sσ∗ \ SσG1
r+

| ≤ |Sσ∗\σG1
r+
| ≤ r|σ∗ \ σG1

r+ | ≤ r|σ∗|. Since G1
has Property 3 and treats the remaining segments, Sσ∗ \SσG1

r+
, as essentially a new GSS instance, we know

that G1 will choose no more than |Sσ∗ \ SσG1
r+
| line segments. From this and the previous inequalities we

have that the total number of points chosen by G1 after having chosen σG1
r+ must be less than or equal to

r|σ∗|.
Note that σG1

r+ is clearly a subset of Vr+ since the effective degree of a vertex at any point must always
be less than or equal to its actual degree. So, we have |σG1| ≤ σG1

r+ + r|σ∗| ≤ |Vr+| + r|σ∗|. Finally,
RG1 ≤ |vr+|+r|σ∗|

|σ∗| = r + |Vr+|
|σ∗| . �	

Remark 2. Consider, for example, a set of line segments such that two intersections have degree 5 and the
rest have degree 2. Proposition 3 would give that the approximation ratio can be no worse than 5, which
is true, but we can do better. Theorem 3 gives that a choice of r = 2 would leave 2 intersections points of
degree greater than r, yielding an approximation ratio no worse than 2 + 2

|σ∗| . Since |σ∗| is greater than 2,
we have tightened the worst approximation ratio bound to 3.

Now let S be a set of segments such that no more than two segments intersect at any point. In other
words, the maximum degree is 2. This property allows S to be tranformed into a graph G(V, E) in the
following manner. Let each segment in S become a vertex in V and every intersection of a pair of segments
become an edge in E connecting the pair of vertices that correspond to the intersecting segments. Let
n = |V | = |S|. Note the one-to-one correspondence between segments of S and the vertices in V of G, as
well as the one-to-one correspondence between intersection points of S and edges in E of G. Further, a
set of intersections is a minimum cover of S if and only if the corresponding set of edges is a minimum
edge cover on G (an edge cover in a graph is a set of edges that are incident to all vertices). Note that
since minimum edge cover is solvable in polynomial time, we can actually use this equivalence to solve this
special case of GSS in polynomial time as well.

Denote by Mmax and Mmin a maximum matching and a minimum maximal matching of G, respectively.
Then with the denotations of Theorem 3 we can state the following lemma.

Lemma 1. (a) 2 |Mmax| ≤ n (b) |Mmax| ≤ 2 |Mmin|
Proof For (a), note that each edge of |Mmax| is incident to two vertices, so the inequality is immediately
apparent.

For (b), first note that any edge in E must be incident to an edge in Mmax by the definition of maximal
matching. For every emax ∈ Mmax, let Eemax := {emin ∈ Mmin|emin is incident to emax}. Then |Eemax | ≤ 2
since no more than one edge from Mmin may be incident with each vertex of emax. This implies that
|Mmax| ≤ 2 |Mmin|, which is the desired result.

�	
Now we can obtain the following result.

Theorem 4. Greedy algorithm G1 has performance ratio of no more than 3
2 for the special case of GSS

instances in which the highest degree intersection is 2.

Proof Since the largest intersection degree is 2, the greedy algorithm G1 randomly selects degree 2 inter-
sections and removes the covered segments on each iteration. This continues until no degree 2 intersections
are left. Each chosen intersection corresponds to an edge in E, and we claim this set of edges is a maximal
matching on G. Note that at this point in the algorithm’s execution, each segment contains at most one
chosen intersection, which for the graph G means that each vertex is incident to at most one chosen edge,
i.e. that no two chosen edges are adjacent (share a vertex). This is precisely the definition of a matching.
To show that it is maximal, observe that since no degree two intersections remain in the set of segments
that have yet to be uncovered, the graph contains no edge connecting two vertices that are still uncovered
(not incident to any chosen edge). Thus, there are no edges that can be added to the matching without
destroying the matching property.

Let M be such a maximal matching in G constructed by G1 operating on corresponding GSS instance.
There are n−2|M | remaining uncovered line segments in S, and one point is needed to cover each of them
since they do not intersect. Restating the previous sentence in terms of the graph G, there are n − 2|M |
remaining uncovered vertices in V , and one edge is needed to cover each of them since no pair of them
is adjacent. So, the solution size is |M | + n − 2|M | = n − |M |. Clearly,

∣∣g1
∣∣ is maximized when |M | is

minimized. This is the case when M is a minimum maximal matching, i.e., |M | = |Mmin|.
Thus

∣∣g1
∣∣ ≤ n − |Mmin|.

It is well known that on any graph G there exists a minimum edge cover that consists of a maximum
maximal matching plus one additional edge for each uncovered vertex (see, e.g., [6], [8]). As stated pre-
viously, a minimum edge cover on G is an optimum solution for the corresponding GSS. Thus, we obtain
the following result regarding the size of the optimal solution: |σ∗| = |Mmax|+ n− 2 |Mmax| = n− |Mmax|.

Lemma 1 (a) and (b) state that 2 |Mmax| ≤ n and |Mmax| ≤ 2 |Mmin|. Combining these inequalities
with some simple algebraic transformations, we consecutively obtain

2 |Mmax| + |Mmax| ≤ n + 2 |Mmin|
−2 |Mmin| ≤ n − 3 |Mmax|

2n − 2 |Mmin| ≤ 3n − 3 |Mmax|
2(n − |Mmin|) ≤ 3(n − |Mmax|)

2
∣∣g1

∣∣ ≤ 3 |σ∗|∣∣g1
∣∣

|σ∗| ≤
3
2

Since this is true for any GSS instance in which the maximum intersection degree is 2, we have shown that
3
2 is an upper bound on the performance ratio of G1 on this special case of GSS. �	

As a final note, we remark that 3
2 is a supremum as well as an upper bound on the performance ratio

of G1 in this special case. It is easy to find examples for which G1 attains an approximation ratio of 3
2 .

5 Open Problems and Concluding Remarks

In this section we propose a few open problems whose resolution would help to characterize the relation
between GSS and other covering problems.

We have previously shown that planar vertex cover for graphs of degree at most 3 can be reduced to
GSS in polynomial time. In this sense, 3PVC is a subset of GSS and our belief is that the same can be
said for planar vertex cover in general.

Problem 1: Give a polynomial time reduction from planar vertex cover to GSS.

As previously mentioned, GSS appears to be “sandwiched” in between 3PVC and SC. Since 3PVC is
constant approximable but SC is only logarithmically approximable it is of interest to determine which
GSS is. Doing so would help to clarify why 3PVC can be approximated well or why SC can only be
approximated poorly. We have shown that some greedy type approximation algorithms do not perform
with constant approximability, yet they still did well in practice. For this reason it is difficult to conjecture
whether or not GSS admits a constant approximation.

Problem 2: Either prove that it is “hard” to obtain a better than logarithmic approximation factor for
GSS OR provide a polynomial time algorithm with a better approximation factor. For the latter case, find
the best possible approximation factor achievable by a polynomial time algorithm (and provide such an
algorithm).2

The above list of open problems is by no means comprehensive and there is certainly opportunity
for additional theoretical exploration. The study of GSS is an interesting combination of combinatorial
optimization and computational geometry that offers potential to illuminate problems in both.

Acknowledgements

This work was supported by NSF grants No 0802964 and No 0802994.

References

1. Bose, P., D. Kirkpatrick, Z. Li, Worst-case-optimal algorithm for guarding planar graphs and polyhedral sur-
faces, Computational Geometry: Theory and Applications 26(3) (2003) 209–219

2. Brimkov, V.E., A. Leach, M. Mastroianni, J. Wu, Guarding a set of line segments in the plane, Theoretical
Computer Science, in press (DOI 10.1016/j.tcs.2010.08.014)

3. Garey, M. and Johnson, D., Computers and Intractability, W.H. Freeman & Company, San Francisco, 1979
4. Karp, R., Reducibility among combinatorial problems, in R.E. Miller and J.W. Thatcher (eds.), Complexity of

Computer Computation, Plenum Press, New York, 85–103, 1972
5. Ǩaucic, B., B. Žalik, A new approach for vertex guarding of planar graphs, J. of Computing and Information

Technology 10(3) (2002) 189–194
6. Norman, R.Z., M.O. Rubin, An algorithm for minimum cover of a graph, Proc. American Math Society 10

(1959) 315–319
7. O’Rourke, J., Art Gallery Theorems and Algorithms, Oxford University Press, 1987
8. Papadimitriou, Ch., K. Steiglitz, Combinatorial Optimization, Prentice-Hall, New Jersey, 1982
9. Urrutia, J., Art Gallery and Illumination Problems, Ch. 22 in J.-R. Sack, J. Urrutia (eds.), Handbook of

Computational Geometry, North Holland, Amsterdam, 2000
10. Fabila-Monroy, R., A. Ruis Vargas, J. Urrutia, On Modem Illumination Prob-

lems, XIII Encuentros de Geometria Computacional, Zaragoza, Spain, 2009, http :
//www.matem.unam.mx/ urrutia/onlinepapers/Modems.pdf

11. Aichholzer, O., R. Fabila-Monroy, D. Flores-Pealoza, T. Hackl, C. Huemer, J. Urrutia, B. Vogtenhuber, Modem
Illumination of Monotone Polygons, In Proc. 25th European Workshop on Computational Geometry EuroCG
’09, Brussels, Belgium, 2009, pp. 167–170

2 The authors have considered some approaches such as those well-known of Lund & Yannakakis and Feige for
proving that it is hard to approximate within a logarithmic factor, but to no avail. Simply extending results for
Set Cover is not likely to be effective as the geometric construction of GSS places a challenging restriction on
the families of subsets that can be created from the universe set.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

