
Listings and logics

Yijia Chen
Department of Computer Science

Shanghai Jiaotong University
yijia.chen@cs.sjtu.edu.cn

Jörg Flum
Mathematisches Institut

Albert-Ludwigs Universität Freiburg
joerg.flum@math.uni-freiburg.de

December 20, 2010

Abstract

There are standard logics DTC, TC, and LFP capturing the complexity classes L, NL, and P on
ordered structures, respectively. In [5] we have shown that LFPinv, the “order-invariant least fixed-point
logic LFP,” captures P (on all finite structures) if and only if there is a listing of the P-subsets of the
set TAUT of propositional tautologies. By a thorough analysis of this relationship between listings and
logics we are able to extend the result to listings of the L-subsets (NL-subsets) of TAUT and the logic
DTCinv (TCinv). As a byproduct we get that LFPinv captures P if DTCinv captures L.

Furthermore, we show that the existence of a listing of the L-subsets of TAUT is equivalent to the
existence of an almost space optimal algorithm for TAUT. To obtain this result we have to derive a space
version of a theorem of Levin on optimal inverters.

1. Introduction

It is well-known that for standard complexity classes C (as L, NL and P) the existence of a logic capturing
C is equivalent to the existence of a listing (or effective enumeration) of the classes of structures closed
under isomorphism in C by means of Turing machines of type C that decide them (or equivalently, to such
a listing of the classes of graphs closed under isomorphism). Recently [5] we have shown for C = P that
such a listing exists if there is a listing of the P-subsets of the set TAUT of propositional tautologies; more
explicitly, a listing of the subsets in P of TAUT by means of polynomial time Turing machines deciding
them. Even more, it is shown in [5] that the following two statements are equivalent:

(i) There is a listing of the P-subsets of TAUT.

(ii) The logic LFPinv, the “order-invariant least fixed-point logic LFP,” 1 captures P.

In the course of the proof a further statement (in [15] shown to be) equivalent to (ii) played a prominent
role:

(iii) There is an algorithm deciding for every nondeterministic Turing machine M and every natural
number n whether M accepts the empty input tape in ≤ n steps and which for fixed M runs in
time polynomial in n.

The starting point for the investigations which led to this paper were an observation and a question:

The observation. One easily verifies (cf. Proposition 2.3) that one gets a listing of the P-subsets of TAUT
if one assumes that there is a listing of its L-subsets. In particular, then LFPinv captures P. Thus, we asked
ourselves whether then we even get that DTCinv, the “order-invariant deterministic transitive closure logic
DTC,” 1 captures L.

The question. It is known that E = NE implies (i)–(iii) are true. Nevertheless, as already done in [7, 13] we
also conjecture that (i)–(iii) are false (under reasonable complexity-theoretic assumptions); in particular,

1It is well-known that LFP captures P on ordered structures and that deterministic transitive closure logic DTC captures L on
ordered structures.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 20 (2011)

there is no algorithm deciding the acceptance problem for Turing machines mentioned in (iii), which for
fixed M runs in time polynomial in n. As we were not able to prove this conjecture, we asked ourselves
whether assuming, say, P 6= L, we can at least show that there is no algorithm deciding this acceptance
problem which for fixed M runs in space logarithmic in n.

At the end we realized that the equivalence of (i), (ii), and (iii) lifts to their L-analogues and to their
NL-analogues.

For complexity classes C and C′ we consider listings of the C-subsets of TAUT by means of Turing
machines of type C′; we write LIST(C, TAUT, C′) if such a listing exists. For the classes P and NP such
listings were already considered and put to good use by Sadowski in [16]. This more general notion
is also meaningful in the context of logics (for P and NP already remarked in [4]); loosely speaking, if
LIST(C, TAUT, C′), then in the order-invariant logic corresponding to C we can axiomatize the classes of
structures in C and we can show that there is an algorithm solving its satisfaction relation of type C′. By
this general approach we get further new insights (cf. Corollary 3.9), among others, we show:

If there is an algorithm solving the satisfaction relation for DTCinv, which for fixed DTCinv-
sentence runs in polynomial time, then LFPinv captures P.

In particular, LFPinv captures P if DTCinv captures L. Note that it is not known whether the existence of a
logic capturing P is implied by the existence of a logic capturing L.

The relationship between listings and logics is also fruitful for the side of the listings (cf. Corol-
lary 3.10), e.g., we get

If LIST(L, TAUT, L), then LIST(NL, TAUT, NL). (1)

As already indicated the concept of a listing of subsets of TAUT is also relevant in the context of proposi-
tional proof systems. In fact, the existence of a listing of P-subsets of TAUT is equivalent to the existence
of a p-optimal propositional proof system (cf. [16, 2]) and hence to the existence of an almost optimal
algorithm for TAUT (cf. [13]). We show the analogues for L in Section 4. There we introduce the con-
cepts of space optimal logspace proof system and of almost space optimal algorithm for arbitrary problems
Q. For Q with padding it turns out that they exist if and only if there is a listing of the L-subsets of Q
by L-machines. In particular, by (1), we get the following, perhaps surprising relationship between space
optimal and time optimal algorithms:

Assume Q has padding. If Q has an almost space optimal algorithm, then it has an almost
(time) optimal algorithm.

The content of the different sections is the following. We start (Section 2) by introducing the concept
of listing for arbitrary problems Q (and not only for TAUT) and by studying the relationship between
different types of listings. In Section 3, we analyze the connection between listings and logics and prove a
general result (cf. Theorem 3.8) which yields the different results concerning listings and logics mentioned
above. In Section 4 we derive the space versions of results relating listings with optimal proof systems and
almost optimal algorithms. To prove them, (more or less explicitly) we need a space version of a result of
Levin [14] on the existence of optimal inverters (cf. Theorem 4.10). We have deferred its proof to the last
section. As for listings, also for optimal proof system and almost optimal algorithms there are variants of
our result taking into account two complexity classes. In order not to get lost in generalizations we do not
get into this matter.

We have organized the material in such a way that a reader only interested in the relationship between
listings and optimal proof system and almost optimal algorithms may skip Section 3.

2. Listings

In this section we introduce the notion of listing and derive some of their basic properties. We start by
recalling some notions from complexity theory and fixing our notation.

2.1. Some Preliminaries. We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted
by |x|. We identify problems with subsets Q of Σ∗. We denote by P and L the classes of problems Q such
that x ∈ Q is solvable by a deterministic Turing machine in time polynomial in |x| and in space O(log |x|),

2

respectively. By NP and NL we denote the corresponding nondeterministic classes. Let C be a complexity
class and Q a problem. We say that X is a C-subset of Q if X ⊆ Q and X ∈ C.

A problem Q ⊆ Σ∗ has padding if there is a function pad : Σ∗ × Σ∗ → Σ∗ having the following
properties:

(i) It is computable in logarithmic space.

(ii) For any x, y ∈ Σ∗, pad(x, y) ∈ Q if and only if x ∈ Q.

(iii) For any x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y|.

(iv) There is a logspace algorithm which, given pad(x, y) recovers y.

By 〈. . . , . . . , . . .〉 we denote some standard logspace computable tupling functions with logspace com-
putable inverses.

All deterministic and nondeterministic Turing machines have Σ as their alphabet. If necessary we
will not distinguish between an algorithm and a Turing machine and also between a Turing machine and
its code, a string in Σ∗. If M is a Turing machine, we denote by |M| the length of its code. If M is a
deterministic or nondeterministic Turing machine, then L(M) denotes the language accepted by M.

By PROP and TAUT we denote the class of all propositional formulas and the class of propositional
formulas that are tautologies.

In this paper, C, C′, C0, . . . will always denote one of the complexity classes L, P, NL or NP.

2.2. Listings. Effective enumerations of problems by means of Turing machines have been used to
characterize promise classes possessing complete languages (e.g., see [8, 12]). In the context of optimal
proof systems, listings of subsets of TAUT have been used systematically by Sadowski (see [16]).

Definition 2.1. Let C and C′ be complexity classes. For Q ⊆ Σ∗ a listing of the C-subsets of Q by C′-
machines is an algorithm L that, once having been started, eventually yields as outputs Turing machines of
type C′

M1, M2, . . .

such that {
L(Mi) | i ≥ 1

}
=

{
X ⊆ Q | X ∈ C

}
.

Often we speak of the listing M1, M2, . . . (instead of the listing L). We write LIST(C, Q, C′) if there is a
listing of the C-subsets of Q by C′-machines.

By systematically adding polynomial time clocks (if C′ is a time class) or devices controlling the space
used, if necessary we may assume that all runs of the machines Mi on any input satisfy the time or space
bound characteristic for C′.

For Q = TAUT part (c) of the next proposition has already been shown in [16] by completely different
means.

Proposition 2.2. (a) Let C, C′, and C′′ be complexity classes with C′ ⊆ C′′. If LIST(C, Q, C′), then
LIST(C, Q, C′′).

(b) Let C, C′, and C0 be complexity classes with C0 ⊆ C ⊆ C′. If LIST(C, Q, C′), then LIST(C0, Q, C′).

(c) Assume Q has padding. Then

LIST(NP, Q, NP) ⇐⇒ LIST(P, Q, NP).

In particular, LIST(P, Q, P) implies LIST(NP, Q, NP).

Proof: (a) is trivial. (b) Let M′ be a Turing machine of type C′ and M0 one of type C0. Let M′(M0) be the
Turing machine that on input x, first, by brute force, checks whether M′ and M0 accept the same strings of

3

length ≤ log log |x|; if so, then it simulates M′ on x (and answers accordingly), otherwise it rejects. One
easily verifies that M′(M0) is a machine of type C′; furthermore

L(M′(M0)) =

{
L(M′), if L(M0) = L(M′)
a finite subset of L(M′), otherwise.

Therefore, if M′
1, M′

2, . . . is a listing of the C-subsets of Q by C′-machines and M1, M2, . . . an enumeration
of all Turing machines of type C0, then the listing (M′

i(Mj))i≥1, j≥1 witnesses that LIST(C0, Q, C′).

(c) Let pad be a padding function for Q. By (b) it suffices to show the implication from right to left. Hence,
we assume that LIST(P, Q, NP). For a nondeterministic Turing machine M, we set

Comp(M) :=
{

pad(x, c) | x ∈ Σ∗ and c is a computation 2 of M accepting x
}
.

Clearly, Comp(M) ∈ P; moreover

Comp(M) ⊆ Q ⇐⇒ L(M) ⊆ Q. (2)

Hence, if M1, M2, . . . is a listing of the P-subsets of Q by NP-machines, then M∗
1, M∗

2, . . . is a listing of
the NP-subsets of Q by NP-machines, where M∗

i on input x guesses a string c and simulates Mi on input
pad(x, c). 2

For the set Comp(M) introduced for any nondeterministic Turing machine in the previous proof of (c),
we even have Comp(M) ∈ L. We use this to obtain the following observation that, as already mentioned
in the Introduction, was one of our starting points.

Proposition 2.3. (a) If Q has padding and LIST(L, Q, L), then LIST(P, Q, P).

(b) If Q has padding and LIST(NL, Q, NL), then LIST(NP, Q, NP).

Proof: (a) For deterministic Turing machines D and D′ let D(D′) be the deterministic machine that on
input x, first by simulating D′ on input x stores its computation c and then runs D on input pad(x, c).
By (2), if D1, D2, . . . is a listing of the L-subsets of Q by L-machines and D′

1, D′
2, . . . an enumeration of

all deterministic polynomial time Turing machines, then the enumeration (Di(D′
j))i≥1, j≥1 witnesses that

LIST(P, Q, P).
The proof of (b) is obtained by obvious modifications. 2

We were unable to prove the logspace analogue of Proposition 2.2(c), however as a byproduct of
our main result relating listings and logics (Theorem 3.8) we get that (c) holds for Q = TAUT, that is,
LIST(L, TAUT, NL) implies LIST(NL, TAUT, NL).

3. Listings and logics

In [5] we have shown that the logic LFPinv is a P-bounded logic for P if and only if LIST(P, TAUT, P). Here,
among others, we show the L-analogue and the NL-analogue of this result. We have remind the reader only
interested in the relationship between listings and optimal proof system and almost optimal algorithms that
he may skip this section.

3.1. Some preliminaries. We start by recalling some concepts from logic and complexity.

Structures. A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. A
structure A of vocabulary τ , or τ -structure (or, simply structure), consists of a nonempty set A called the
universe, and an interpretation RA ⊆ Ar of each r-ary relation symbol R ∈ τ . All structures in this paper
are assumed to have finite universe.

For a structureA we denote by ‖A‖ the size ofA, that is, the length of a reasonable encoding ofA as a
string in Σ∗. We only consider properties of structures that are invariant under isomorphisms, so it suffices
that from the encoding of A we can recover A up to isomorphism.

2That is, c is the sequence of configurations of a run of M on x.

4

Logics. For our purposes a logic L consists

– for every vocabulary τ of a set L[τ] of strings, the set of L-sentences of vocabulary τ and of an
algorithm that for every vocabulary τ and every string ξ decides whether ξ ∈ L[τ] (in particular,
L[τ] is decidable for every τ);

– of a satisfaction relation |=L; if (A, ϕ) ∈ |=L, writtenA |=L ϕ, thenA is a τ -structure and ϕ ∈ L[τ]
for some vocabulary τ ; furthermore for each ϕ ∈ L[τ] the class ModL(ϕ) :=

{
A | A |=L ϕ

}
of

models of ϕ is closed under isomorphism.

Recall that C and C′ always range over the complexity classes L, P, NL, and NP.

Definition 3.1. Let L be a logic and C a complexity class.

(a) L is a logic for C if for all vocabularies τ and all classes D (of encodings) of τ -structures closed
under isomorphism we have

D ∈ C ⇐⇒ D = ModL(ϕ) for some ϕ ∈ L[τ].

(b) Let C′ be a deterministic (nondeterministic) complexity class. L is a C′-bounded logic for C if L is a
logic for C and if there is a a deterministic (nondeterministic) algorithm A deciding (accepting) |=L,
which for fixed ϕ witnesses that ModL(ϕ) ∈ C′.

Clearly, if L is a C′-bounded logic for C, then C ⊆ C′. If C′ = C, then property (b) yields the
implication from right to left in part (a). One expects from a logic L capturing the complexity class C that
it is C′-bounded for C with C′ = C. In fact, one expects that L can be viewed as a higher programming
language for C, that is, that for fixed L-sentence ϕ the algorithm A in (b) witnesses that ModL(ϕ) ∈ C.

However we use this more liberal, a little bit artificial notion as in this way we obtain some nontrivial
consequences from the main theorem (see Corollary 3.9(d)).

It is well-known that there are NP-bounded logics for NP while for C = L, C = P, and C = NL it is
open whether there is a C-bounded logic for C.

For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation symbol not in τ chosen in
some canonical way. A τ<-structureA is ordered if <A is a (total, linear) ordering of the universe A ofA.

We say that a logic L is a C′-bounded logic for C on ordered structures if (a) and (b) of the previous
definition hold for classes D of ordered structures and for ordered structures A, respectively. In (b), for
fixed ϕ ∈ L[τ<] the algorithm A must witness that the class of ordered models of ϕ is in C′.

We denote by FO, DTC, TC, and LFP first-order logic, deterministic transitive closure logic, transitive
closure logic, and least fixed-point logic, respectively. Essentially we only need the following properties of
these logics due to Immerman [10, 11] and the last one to Immerman [9] and Vardi [17]

Theorem 3.2. (1) DTC is an L-bounded logic for L on ordered structures.

(2) TC is an NL-bounded logic for NL on ordered structures.

(3) LFP is a P-bounded logic for P on ordered structures.

If C is L, NL, or P, then we let L(C) be the logic DTC, TC, and LFP, respectively.

Invariant sentences and the logic Linv. We start by introducing the notion of (order-)invariant sentence.

Definition 3.3. Let L be a logic.

– Let ϕ be an L[τ<]-sentence and n ≥ 1. We say that ϕ is ≤ n-invariant if for all τ -structures A with
|A| ≤ n and all orderings <1 and <2 on A we have

(A, <1) |=L ϕ ⇐⇒ (A, <2) |=L ϕ.

5

– L-INV:=
{
(ϕ, n) | ϕ L-sentence, n ≥ 1 and ϕ ≤ n-invariant

}
.

Now we define the logic Linv. For every vocabulary τ we set

Linv[τ] := L[τ<]

and we define the satisfaction relation by

A |=Linv ϕ ⇐⇒
(
(ϕ,≤ |A|) ∈ L-INV and (A, <) |=L ϕ for some ordering < on A

)
. (3)

Assume that for every L-sentence ϕ, say, of vocabulary τ there is a sentence ¬ϕ of the same vocabulary
such that MOD(¬ϕ) =

{
A | A τ -structure and A /∈ MOD(ϕ)

}
. As

(ϕ, ≤ n) ∈ L-INV ⇐⇒ (¬ϕ, ≤ n) ∈ L-INV,

we get for every structure A

(ϕ, ≤ |A|) ∈ L-INV ⇐⇒ (A |=Linv ϕ or A |=Linv ¬ϕ). (4)

Using Theorem 3.2 it is easy to see:

Proposition 3.4. If C is one of the classes L, NL, and P, then L(C)inv is a logic for C.

Some further complexity classes. We will consider the complexity of the following acceptance problem
for nondeterministic Turing machines:

ACC≤
Instance: A nondeterministic Turing machine M and n ∈ N in unary.
Question: Does M accept the empty input tape in ≤ n steps?

Hence, ACC≤ ⊆ Σ∗×N. Similarly, we have L-INV ⊆ Σ∗×N for any logic L. In the following definition
we assume that the natural numbers, the second components of the input instances, are given in unary.

Definition 3.5. Let C be a deterministic (nondeterministic) complexity class. A problem R ⊆ Σ∗ × N
is in the class XCuni if there is a deterministic (nondeterministic) algorithm deciding (accepting) R and
witnessing for every k ∈ N that the problem

Rk :=
{
(x, n) ∈ R | |x| = k

}
,

is in C. For example, R is in the class XLuni if there is a deterministic algorithm A deciding R and requiring
for (x, n) ∈ R space at most f(|x|) · log n for some function f : N → N. And R is in the class XNLuni

if there is a nondeterministic algorithm A accepting R such that for some function f : N → N and every
(x, n) ∈ R there is an accepting run requiring space at most f(|x|)·log n. Finally, the problem R ⊆ Σ∗×N
is in the class co-XCuni if its complement (Σ∗ × N) \R is in XCuni. 3

It is not hard to adapt the proof of the corresponding reduction in Theorem 1 of [3] showing the follow-
ing result due to [15]

if ACC≤ ∈ co-XPuni, then LFP-INV ∈ XPuni (5)

in order to get
if ACC≤ ∈ co-XNPuni, then LFP-INV ∈ XNPuni (6)

and to get the following result generalizing (5):

Proposition 3.6. Let C be one of the classes L, NL, or P. If ACC≤ ∈ co-XCuni, then L(C)-INV ∈ XCuni.

3These are classes of so-called uniform parameterized complexity theory. In our type of problems R ⊆ Σ∗ × N the parameter of
an instance (x, n) of R is |x|.

6

We will use the following lemma.

Lemma 3.7. Let C be one of the classes L, NL, or P and C ⊆ C′. The following statements are equivalent:

(i) L(C)inv is a C′-bounded logic for C.

(ii) L(C)-INV ∈ XC′
inv.

Proof: By Proposition 3.4, we already know that L(C)inv is a logic for C, that is, condition (a) in Def-
inition 3.1 is fulfilled. By (3) and (4), the second condition of this definition is fulfilled if and only if
L(C)-INV ∈ XC′

inv. 2

3.2. Logics and listings. We start by stating the main result of this section.

Theorem 3.8. Let C be one of the classes L, NL, or P and C ⊆ C′.

(a) If LIST(L, TAUT, C), then L(C)inv is a C-bounded logic for C.

(b) Let C ⊆ C′. If L(C)inv is a C′-bounded logic for C, then LIST(C, TAUT, C′).

The strength of this result is indicated by the following corollaries, where we list some consequences:

Corollary 3.9. (a) DTCinv is an L-bounded logic for L if and only if LIST(L, TAUT, L).

(b) TCinv is an NL-bounded logic for NL if and only if LIST(NL, TAUT, NL).

(c) If DTCinv is an L-bounded logic for L, then TCinv is an NL-bounded logic for NL and LFPinv is a
P-bounded logic for P.

(d) If DTCinv is a P-bounded logic for L, then LFPinv is a P-bounded logic for P.

Proof: (a)–(b) are immediate consequences of Theorem 3.8 and of the fact that LIST(NL, TAUT, NL)
implies LIST(L, TAUT, NL) (by Proposition 2.2(b)).

(c) If DTCinv is an L-bounded logic for L, then LIST(L, TAUT, L) and hence, LIST(L, TAUT, NL) and
LIST(L, TAUT, P) (by Proposition 2.2(a)). Now the claims follow from Theorem 3.8(a).

(d) If DTCinv is a P-bounded logic for L, then LIST(L, TAUT, P) (by Theorem 3.8(b)) and therefore, LFPinv
is a P-bounded logic for P by Theorem 3.8(a). 2

And also for the listings, we get new insights, for example:

Corollary 3.10. If LIST(L, TAUT, L), then LIST(NL, TAUT, NL).

Proof: If LIST(L, TAUT, L), then DTCinv is an L-bounded logic for L and hence by part (c) of the previous
corollary, TCinv is an NL-bounded logic for NL. Therefore, LIST(NL, TAUT, NL) by Theorem 3.8(b). 2

Proof of Theorem 3.8: (a) Assume that LIST(L, TAUT, C). We show that ACC≤ ∈ co-XCuni. Then
L(C)-INV ∈ XCuni by Proposition 3.6; thus Lemma 3.7 yields our claim.

The problem ACC≤ is in NP. Hence there is a logspace reduction (M, n) 7→ α(M, n) from ACC≤ to
SAT; in particular, we have

(M, n) ∈ ACC≤ ⇐⇒ α(M, n) ∈ SAT,

or, equivalently,

(M, n) /∈ ACC≤ ⇐⇒ ¬α(M, n) ∈ TAUT. (7)

Moreover we may assume that from α(M, n) we can recover (M, n) in logarithmic space. It follows that:

7

Claim 1. Let M be a nondeterministic Turing machine that does not accept the empty input tape. Then{
¬α(M, n) | n ≥ 1

}
is an L-subset of TAUT. a

Let S be the algorithm that on input M by systematically going through all runs of length 1, all of length
2,. . . computes

n(M) := the least n such that M accepts the empty input in n steps.

If M does not accept the empty input tape at all, then S does not stop and n(M) is not defined.
By the assumption LIST(L, TAUT, C) there is a listing L of the L-subsets of TAUT by C-machines. We

give the proof for the case that C is a space class (that is, C = L or C = NL). The proof for P is similar.
Using (7) it is easy to verify that the following algorithm A accepts co-ACC≤.

A(M, n)

1. d← 1;

2. In parallel simulate S with input M and the listing algorithm L using at most
space d · log n;

3. if S stops with output n(M) then
4. if n(M) > n then accept else reject;

5. if L lists a machine M′ then simulate M′ on input ¬α(M, n) using
at most space d · log n

6. if M′ accepts then accept;

7. if S or L needs space > d · log n then d← d + 1; goto 2.

We still have to show that for fixed M the algorithm A, on input (M, n) /∈ ACC≤, accepts in space O(log |n|).

Case “M accepts the empty input tape:” Then S will stop eventually, the space it uses only depends on its
input M. Hence, A only needs space O(log |n|).

Case “M does not accept the empty input tape:” By Claim 1, the set
{
¬α(M,m) | m ≥ 1

}
is a L-subset

of TAUT. Therefore, a machine M′ accepting this set in logarithmic space will eventually be listed by L.
Then, one easily sees that A accepts such inputs in space O(log |n|).

(b) Now we turn to the proof of the converse (this proof is a generalization of the proof of Lemma 7 in [5]).
We assume that C ⊆ C′ and that L(C)inv is a C′-bounded logic for C. It is easy to introduce a vocabulary
τ such that in logarithmic space we can associate with every propositional formula α a τ -structure A(α)
such that

(i) every propositional variable X of α corresponds to two distinct elements aX , bX of A(α) and there
is a unary relation symbol P ∈ τ such that PA(α) =

{
aX | X variable of α

}
;

(ii) the class {
B | B ∼= A(α) for some α ∈ PROP

}
of τ -structures is axiomatizable by a DTC[τ]-sentence and therefore by an L(C)[τ]-sentence ϕ(PROP);

(iii) if B |= ϕ(PROP), then one can determine the unique α ∈ PROP with B ∼= A(α) in logarithmic
space.

Note that an ordered τ<-structure of the form (A(α), <) yields an assignment of the variables of α, namely
the assignment sending a variable X to TRUE if and only if aX < bX . As in logarithmic space we can
check whether this assignment satisfies α there is a DTC[τ<]-sentence and hence an L(C)[τ<]-sentence

8

ϕ(sat) that for every α ∈ PROP expresses in (A(α), <) that the assignment given by < satisfies α. We
introduce the L(C)[τ<]-sentence

ϕ0 :=
(
ϕ(PROP)→ ϕ(sat)

)
.

Then ϕ0 is an L(C)inv[τ]-sentence. Every assignment of α can be obtained by some ordering < of A(α).
Hence, by the definition of |=L(C)inv , we see that for every α ∈ PROP and every L(C)inv[τ]-sentence ϕ

if A(α) |=L(C)inv (ϕ0 ∧ ϕ), then α ∈ TAUT. (8)

For ϕ ∈ L(C)inv[τ] we consider the class of models of (ϕ0 ∧ ϕ), more precisely, the set

Q(ϕ) :=
{
α ∈ PROP | A(α) |=L(C)inv (ϕ0 ∧ ϕ)

}
.

We claim that the class of sets Q(ϕ), where ϕ ranges over all L(C)inv-sentences coincides with the C-
subsets of TAUT.

First let Q be a C-subset of TAUT. If Q is finite, it is easy to see that Q = Q(ϕ) for some ϕ ∈ L(C)inv.
Now let Q be infinite. The class {

B | B ∼= A(α) for some α ∈ Q
}

is in C (by (ii) and (iii) as L ⊆ C), and therefore it is axiomatizable by an L(C)inv[τ]-sentence ϕ. As the
class contains arbitrarily large structures, the formula ϕ is invariant. We show that Q = Q(ϕ).

Assume first that α ∈ Q(ϕ), i.e., A(α) |=L(C)inv (ϕ0 ∧ ϕ). Then, by invariance of ϕ, we have
A(α) |=L(C)inv ϕ and thus α ∈ Q. Conversely, assume that α ∈ Q. Then A(α) |=L(C)inv ϕ. As α ∈ TAUT,
in order to get A(α) |=L(C)inv (ϕ0 ∧ ϕ)

(
and hence, α ∈ Q(ϕ)

)
it suffices to show that (ϕ0 ∧ ϕ) is

≤ |A(α)|-invariant. So let B be a τ -structure with |B| ≤ |A(α)|. If B 6|=L(C)inv ϕ, then, by invariance of ϕ,
we have (B, <B) 6|=L(C) (ϕ0 ∧ ϕ) for all orderings <B on B; if B |=L(C)inv ϕ, then B ∼= A(β) for some
β ∈ Q ⊆ TAUT. Hence, (B, <B) |=L(C) (ϕ0 ∧ ϕ) for all orderings <B on B.

Conversely fix ϕ ∈ L(C)inv[τ]. By (8), we have Q(ϕ) ⊆ TAUT. By assumption, L(C)inv is a C′-
bounded logic for C. In particular, L(C)inv is a logic for C and hence we have Q(ϕ) ∈ C. As L(C)inv is
C′-bounded, the algorithm A for the satisfaction relation (cf. Definition 3.1(b)) restricted to ϕ0 ∧ ϕ yields
an algorithm of type C′ accepting Q(ϕ).

Hence, the classes Q(ϕ) where ϕ ranges over all L(C)inv[τ]-sentences yield the listing witnessing
LIST(C, TAUT, C′). 2

The order-invariant first-order logic FOinv. By the methods used in [4] one can show that DTCinv
already is a L-bounded logic for L if there is an algorithm deciding |=FOinv , which for fixed first-order
sentence ϕ requires logarithmic space. We shall prove this result in the final version of this paper.

4. Listings, optimal proof systems, and almost optimal algorithms

In [16] Sadowski shows that the existence of listings of the P-subsets of TAUT by P-machines is equivalent
to the existence of p-optimal proof systems for TAUT, and hence (by [13]) equivalent to the existence of
almost optimal algorithms for TAUT. An extension of this result to other Q (instead of TAUT) are derived
in [2]. Here we prove the corresponding results for L instead of P. We already state the result, even though
we haven’t introduced all concepts appearing in it so far.

Theorem 4.1. For Q ⊆ Σ∗ with padding the following are equivalent:

(a) Q has a space optimal logspace proof system.

(b) Q has an almost space optimal algorithm.

(c) LIST(L, Q, L).

For the reader familiar with the results of the previous section, we state a consequence of this result and
of Corollary 3.9(a).

9

Corollary 4.2. DTCinv is an L-bounded logic for L if and only if there is a space optimal logspace propo-
sitional proof system (that is a space optimal logspace proof system for TAUT).

Corollary 4.3. Let Q ⊆ Σ∗ with padding. If Q has an almost space optimal algorithm, then it has an
almost optimal algorithm.

Proof: One can generalize the proof of the result mentioned at the beginning of this section and show that

Q has an almost optimal algorithm ⇐⇒ LIST(P, Q, P).

As LIST(L, Q, L) implies LIST(P, Q, P) by Proposition 2.3 (a), our claim follows by Theorem 4.1. 2

Let A be a deterministic algorithm. For every x ∈ Σ∗ let tA(x) be the number of steps of the run of A
on input x. Similarly, we denote by sM(x) the space required by M on x. If M on x does not stop, then
tM(x) =∞, even though sM(x) may be finite.

For every x ∈ Σ∗ the number of configurations of A on input x is bounded by

|x| · 2O(sA(x)). (9)

Hence, if sA(x)) ≥ O(log |x|), we may assume that

tA(x) ≤ |x| · 2O(sA(x)) (10)

and if A outputs a string A(x) on input x, that

|A(x)| ≤ |x| · 2O(sA(x)). (11)

In fact, at every step of the run of A on an input x, we record the space s and the time t the algorithm A
has used so far. For some appropriate constant c ∈ N if

t > |x| · 2c·s,

then the algorithm A must be in some configuration it has already been before. Hence A will run forever
and we can stop it and let it reject. To store such s and t, we only need additional space

O
(
log |x|+ sA(x)

)
.

4.1. Almost space optimal algorithms and listings. In this part we prove a first implication contained
in Theorem 4.1, namely the implication (b)⇒ (c). An algorithm deciding Q is almost space optimal if no
other algorithm saves, compared with it, superlogarithmic space; more precisely:

Definition 4.4. A deterministic algorithm A deciding Q is almost space optimal for Q if for every deter-
ministic algorithm B which decides Q there is a d ∈ N such that for all x ∈ Q

sA(x) ≤ d · (sB(x) + log |x|)

(note that nothing is required of the relationship between sA(x) and sB(x) for x /∈ Q).

Proposition 4.5. Let Q ⊆ Σ∗. If there is an almost space optimal algorithm for Q, then LIST(L, Q, L).

Proof: Let A be an almost space optimal algorithm for Q. For every d ∈ N, let A(d) be the algorithm A
restricted to space d · log n, that is, A(d) on input x simulates A on input x but rejects if the simulation has
to exceed space d · log |x|. Clearly,

(a) L(A(d)) is an L-subset of Q for every d ∈ N;

moreover, we show

(b) for every L-subset X of Q there is a d ∈ N with X ⊆ L(A(d)).

10

In fact, let B be a deterministic algorithm deciding X and requiring space O(log n). Then the following
algorithm C decides Q: On input x, in parallel it simulates A and B on input x; if B stops first and accepts,
then C accepts, otherwise it answers as A. Note that there is c ∈ N such that sC(x) ≤ c · log |x| for x ∈ X .

Then, by the almost space optimality of A there is a d ∈ N with

sA(x) ≤ d · (sC(x) + log |x|)

for all x ∈ Q and thus for all x ∈ X

sA(x) ≤ d · (c + 1) · log |x|.

Therefore, X ⊆ L(A(d · (c + 1))).
We fix an effective enumeration D1, D2, . . . of all logspace deterministic Turing machines. Then, by

(a) and (b), (Di(A(j))i,j≥1 is a listing of the L-subsets of L, where Di(A(j)) on input x, first simulates
A(j) and if this algorithm accepts, then it simulates Di on input x and answers accordingly. 2

4.2. Listings and space optimal logspace proof systems. We start by generalizing the notions of
proof system and p-optimal proof systems to the logspace case and then prove implication (c) ⇒ (a) of
Theorem 4.1.

Definition 4.6. (1) A logspace proof system for Q is a surjective function P : Σ∗ → Q computable in
logarithmic space.

We often tacitly identify a logspace proof system P with an algorithm witnessing its logspace com-
putability.

(2) Let P, P ′ : Σ∗ → Q be logspace proof systems for Q. We say that P logspace simulates or `-
simulates P ′ if there exists a logspace computable function g : Σ∗ → Σ∗ such that for every w ∈ Σ∗

P (g(w)) = P ′(w).

(3) A logspace proof system for Q is space optimal if it `-simulates every logspace proof system for Q.

Recall [6] that a proof system for Q is a surjective function P : Σ∗ → Q computable in polynomial
time and that a proof system P is p-optimal if for every proof system P ′ there is a function g as in (2) of
the previous definition but now computable in polynomial time. Of course, every space optimal logspace
proof system for Q is a p-optimal proof system for Q.

Most natural proof systems are logspace. Moreover, for every proof system P we get a logspace proof
system P ′ defined by

P ′(w) :=

{
P (w1), if w = 〈w1, c1〉, where c1 is the computation of P on w1

y0, otherwise,

where y0 is a fixed element of Q. However, the transition from P to P ′ may destroy its space optimality.
For the reader familiar with Frege systems we mention that any two Frege systems over the same set of
propositional connectives `-simulate each other.

We turn to the main result of this part.

Proposition 4.7. Assume Q is nonempty and has a padding function. If LIST(L, Q, L), then Q has a space
optimal logspace proof system.

Proof: Fix q0 ∈ Q and let L be a listing of the L-subsets of Q by L-machines. We say that v ∈ Σ∗ is a
proof string if it has the form

v = 〈D, w, y, c, D′, c′, c′′〉,

where

11

(S1) D is a deterministic Turing machine that on input w outputs y by the computation c;

(S2) The (partial) computation c′ of L lists D′;

(S3) D′ accepts pad(y, w) by the computation c′′.

Clearly we can decide in logarithmic space whether a string v ∈ Σ∗ is a proof string. Moreover, if v is a
proof string, then y ∈ Q (as L(D′) ⊆ Q and D′ accepts pad(y, w)). Therefore the function P defined on
Σ∗ by

P (v) :=

{
y, if v is a proof string and y is its third component
q0, otherwise

is computable in logspace and has a subset of Q as range. So, P is a logspace proof system for Q, if we
can show that every y ∈ Q is in its range: As {pad(y, y)} is an L-subset of Q, a machine D′ accepting
{pad(y, y)} is listed by L, say, by the computation c′. Then P (v) = y for

v = 〈Did, y, y, c, D′, c′, c′′〉

where Did is a machine that on input w outputs w, the string c is its computation on input y, and c′′ is the
computation of D′accepting pad(y, y).

It remains to show that P is space optimal. For this purpose let P ′ : Σ∗ → Q be a logspace proof
system for Q. Then,

Graph(P ′) :=
{

pad(y, w) | y, w ∈ Σ∗ and P ′(w) = y
}

is an L-subset of Q. Hence, there is a computation c′ of L listing a machine D′ that decides Graph(P). We
define the function g : Σ∗ → Σ∗ by

g(w) := 〈P ′, w, P ′(w), c, D′, c′, c′′〉,

where c is the computation of P ′ on w and c′′ is the computation of D′ on pad(y, w). It is easy to check
that g(w) is a proof string with

P (g(w)) = P ′(w).

As g is computable in logspace, this finishes the proof. 2

4.3. Space optimal proof systems and almost space optimal algorithms. In this part we show the
following result, which together with Proposition 4.5 and Proposition 4.7 yields Theorem 4.1.

Proposition 4.8. If Q has a space optimal logspace proof system, then it has an almost space optimal
algorithm.

For the proof of this proposition, we need the following result, which is the space-analogue of a theorem
for P due to Levin [14]. We give a proof of this space-analogue in Section 5.

Definition 4.9. Let f : Σ∗ → Σ∗ be a function. An algorithm A inverts f if for every x in the range of f
the algorithm A computes some w with f(w) = x. For x not in the range of f the algorithm A can behave
arbitrarily.

By the next result, for any algorithm F computing a function f there is an inverter A, which is optimal
with respect to the space required by the computation of F(A(y)).

Theorem 4.10. Let f : Σ∗ → Σ∗ be a function that can be computed by an algorithm F. There exists an
algorithm O such that:

(a) O inverts f and sO(y) = ∞ for every input y, which is not in the range of f (in particular, the
algorithm O does not stop on y not in the range);

12

(b) for every algorithm I inverting f there is an a ∈ N such that for every y in the range of f we have

sO(y) ≤ a ·
(
log |y|+ sI(y) + log |I(y)|+ sF(I(y))

)
.

Proof of Proposition 4.8: Let P : Σ∗ → Q be a space optimal logspace proof system for Q and fix y0 ∈ Q.
We define a function f : Σ∗ → Σ∗ by

f(〈A, y, c, B, c′〉) := y

if

(F1) A is a deterministic algorithm that accepts y ∈ Σ∗ by the computation c;

(F2) B is a deterministic algorithm that on input (y, c) computes a string w with P (w) = y; moreover, c′

is the computation of B on input (y, c).

Otherwise, we set f(w) := y0. It is easy to verify that the range of f is Q, in particular, (F2) guarantees
that it is a subset of Q. Moreover there is an algorithm F that computes the function f in logarithmic space.

By Theorem 4.10, we have an optimal space inverter O for f such that for every algorithm I which
inverts f and for every y ∈ Q we have

sO(y) ≤ O
(
log |y|+ sI(y) + log |I(y)|+ sF(I(y))

)
≤ O

(
log |y|+ sI(y) + log (|I(y)|)

)
, (12)

where the second inequality holds as F is a logspace algorithm; for y /∈ Q we have sO(y) =∞.
Let Q be any algorithm deciding Q. We claim that the following algorithm S is an almost space optimal

algorithm deciding Q.

S(x)

1. `← 1

2. simulate Q and the optimal inverter O on y in parallel using space at most `

3. if both simulations exceed space `, then `← ` + 1 and goto 2

4. if Q halts, then output accordingly

5. if O halts, then accept.

Clearly, S decides Q and for y ∈ Q we have

sS(y) ≤ O(sO(y)). (13)

We claim that S is almost space optimal. For this purpose let A be any algorithm that decides Q. We get a
logspace proof system PA for Q by setting

PA(w) :=

{
y, if w = 〈y, c〉 and the algorithm A accepts y by the computation c;
y0, otherwise.

Since P is a space optimal logspace proof system for Q, there is a logspace algorithm B such that for every
y ∈ Q accepted by A with computation c,

B on input 〈y, c〉 computes a string w ∈ Σ∗ such that P (w) = PA(〈y, c〉) = y.

Using A and B we define the following inverter I of the function f :

I(y)

1. Simulate the algorithm A on y

2. if A rejects y, then do not halt

3. if A accepts y with computation c

4. then output 〈A, y, c, B, c′〉, where c′ is the computation of B on 〈y, c〉.

13

Let y ∈ Q. Then, as B is logspace computable, we have

sI(y) ≤ O(sA(y)) + O(log |〈y, c〉|)
= O(sA(y)) + O

(
log (|y| · 2O(sA(y)))

)
(by (9))

= O(sA(y)) + O(log |y|),

and hence by (11)
|I(y)| ≤ |y|O(1) · 2O(sA(y)).

Moreover by the optimality of the inverter O, i.e., by (12),

sO(y) ≤ O
(
log |y|+ sI(y) + log (|I(y)|)

)
= O(sA(y) + log |y|).

Finally, by (13), we get the inequality witnessing the almost space optimality of S

sS(y) ≤ O(sA(y) + log |y|). 2

4.4. Some variants. In Section 2 we introduced the concept of LIST(C, Q, C′) for various choices of C
and C′. So far, in this section we only have considered the case C = C′ = L. For some other choices,
Theorem 4.1 survives if the corresponding concepts of optimality are defined in the appropriate way. Here
we only mention one result.

A nondeterministic algorithm A accepting Q is almost space optimal for Q if for every nondeterministic
algorithm B which decides Q there is a d ∈ N such that for all x ∈ Q

sA(x) ≤ d · (sB(x) + log |x|).

Theorem 4.11. Assume that Q has padding. Then

LIST(NL, Q, NL) ⇐⇒ Q has a nondeterministic almost space optimal algorithm.

Proof: The direction from right to left is obtained along the lines of the proof of Proposition 4.5. Now let L
a listing witnessing that LIST(NL, Q, NL). It should be clear that the following nondeterministic algorithm
O accepts Q.

O(x)
// x ∈ Σ∗ an instance for Q

1. guess an i ∈ N and compute the ith machine Mi listed by L
2. guess a d ∈ N
3. simulate Mi on pad(x, x01d) and output accordingly.

We show that O is nondeterministic almost space optimal. To that end, let A be a nondeterministic algo-
rithm accepting Q. We consider the following subset of Q.

LOG(A) :=
{

pad(x, x01d) | d ∈ N and the algorithm A accepts x using space at most log d.
}

Using the properties of a padding function it is easy to show that LOG(A) ∈ NL. Therefore, there exists
an i0 ∈ N such that the i0th machine Mi0 listed by L accepts LOG(A) in space O(log n); in particular,

sMi0
(pad(x, x01d)) ≤ O

(
log |pad(x, x01d)|

)
= O

(
log (|x|O(1) + dO(1))

)
= O

(
log |x|+ log d

)
. (14)

The first equality holds as pad is computable in logspace and hence, in polynomial time.
Let x ∈ Q. We consider the run of the algorithm O on input x, where it guesses i0 (in Line 1) and

2sA(x)(in Line 3). This choices show that

sO(x) ≤ O
(
c + sA(x) + log |x|+ log

∣∣pad(x, x01d)
∣∣ + sMi0

(pad(x, x01d))
)
, (15)

where c counts the space for guessing i0 and for computing the machine Mi0 . By (14) and (15) we conclude
that

sO(x) ≤ O(sA(x) + log |x|). 2

14

Corollary 4.12. Let Q ⊆ Σ∗ with padding. If Q has a nondeterministic almost space optimal algorithm,
then it has a nondeterministic almost optimal algorithm.

Proof: One can generalize the proof in [16] of a result for TAUT and show that

Q has a nondeterministic almost optimal algorithm ⇐⇒ LIST(NP, Q, NP).

Now the claim follows from the previous theorem using Proposition 2.3 (b). 2

5. Proof of the space version of Levin’s Theorem.

So, in this section we prove Theorem 4.10. We start by introducing a notation.
Let A and A′ be algorithms computing (partial) functions f and f ′ from Σ∗ → Σ∗. By A; A′ we

denote an algorithm that computes the function f ′ ◦ f , i.e., x 7→ f ′(f(x)). Using the well-known trick of
complexity theory, where one does not store the full intermediate string f(x), one can choose A; A′ in such
a way that

sA;A′(x) = O
(
sA(x) + log |A(x)|+ sA′(A(x))

)
(16)

Proof of Theorem 4.10: Let f : Σ∗ → Σ∗ be a function that can be computed by an algorithm F. Let O be
the following program

O(x)

1. k ← 0

2. k ← k + 1

3. for every program W ∈ Σ∗ with |W; F| ≤ k do
4. simulate W; F on input x using at most k − |W; F| space

5. if the simulation outputs x

6. i.e., W computes a string w with f(w) = x

7. then simulate W on x (outputting the w) and halt

8. goto 2.

Then, O inverts f and sO(y) = ∞ for every input y, which is not in the range of f ; hence, O satisfies (a)
in Theorem 4.10. We turn to (b) and let I be any algorithm inverting f . There is c ∈ N such that the space
required to simulate the algorithm I; F on input x is

≤ c + log |I; F|+ log |x|+ sI;F(x). (17)

Clearly, we get an upper bound on the space that O requires on input x if we assume that k in Line 2 of O
gets a value such that |I; F| ≤ k and the simulation of I; F on input x can be performed with space at most
k − |W; F|. Hence, we have

sO(x) ≤ |I; F|+ c + log |I; F|+ log |x|+ sI;F(x) (by (17))

≤ 2 · |I; F|+ c + log |x|+ O
(
sI(x) + log |I(x)|+ sF(I(x))

)
(by (16))

= O
(
log |x|+ sI(x) + log |I(x)|+ sF(I(x))

)
. 2

References

[1] D. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer
Systems and Science 41(3): 274-306, 1990.

[2] O. Beyersdorff and Z. Sadowski. Characterizing the existence of optimal proof systems and complete
sets for promise classes. In Proceedings of the 4th Computer Science Symposium in Russia (CSR’09),
Lecture Notes in Computer Science 5675, pages 47–58, 2009.

15

[3] Y. Chen and J. Flum. A logic for PTIME and a parameterized halting problem. In Proceedings of
the 24th IEEE Symposium on Logic in Computer Science (LICS’09), pages 397–406, 2009.

[4] Y. Chen and J. Flum. On slicewise monotone parameterized problems and optimal proof systems for
TAUT. In Proceedings of Computer Science Logic (CSL’10), Lecture Notes in Computer Science
6247, pages 200–214, 2010.

[5] Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In Proceedings of the
37th International Colloquium on Automata, Languages and Programming (ICALP’10, Track B),
Lecture Notes in Computer Science 6199, pages 321–332, 2010.

[6] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of
Symbolic Logic, 44:36–50, 1979.

[7] Y. Gurevich. Logic and the challenge of computer science. In Current Trends in Theoretical Com-
puter Science, Computer Science Press, 1–57, 1988.

[8] J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete languages
for UP. Theoretical Computer Science 58 , 129–142, 1988.

[9] N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–
104, 1986.

[10] N. Immerman. Languages that capture complexit classes. SIAM Journal on Computing, 16: 770–
778, 1987.

[11] N. Immerman. Nondeterministic space is closed under complement. SIAM Journal on Computing,
17: 935–938, 1988.

[12] W. Kowakczyk. Some connections between presentability of complexity classes and the power of
formal systems of reasonning. In Proceedings of Mathematical Foundations of Computer Science,
(MFCS’88), pages 364–369, 1988.

[13] J. Krajı́c̆ek and P. Pudlák. Propositional proof systems, the consistency of first order theories and
the complexity of computations. The Journal of Symbolic Logic, 54:1063–1088, 1989.

[14] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265-266, 1973.
In Russian; English translation in: B.A.Trakhtenbrot. A survey of Russian approaches to perebor
(brute-force search) algorithms. Annals of the History of Computing, 6(4):384-400, 1984.

[15] A. Nash, J. Remmel, and V. Vianu. PTIME queries revisited. In Proceedings of the 10th Interna-
tional Conference on Database Theory (ICDT’05), T. Eiter and L. Libkin (eds.), Lecture Notes in
Computer Science 3363, 274–288, 2005.

[16] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets. Theoretical
Computer Science, 288(1):181–193, 2002.

[17] M.Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM Sympo-
sium on Theory of Computing (STOC’82), pages 137–146, 1982.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

