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Abstract

Algebraic independence is an advanced notion in commutative algebra that
generalizes independence of linear polynomials to higher degree. Polynomials
{f1, . . . , fm} ⊂ F[x1, . . . , xn] are called algebraically independent if there is no
non-zero polynomial F such that F (f1, . . . , fm) = 0. The transcendence degree,
trdeg{f1, . . . , fm}, is the maximal number r of algebraically independent polyno-
mials in the set. In this paper we design blackbox and efficient linear maps ϕ

that reduce the number of variables from n to r but maintain trdeg{ϕ(fi)}i = r,
assuming fi’s sparse and small r. We apply these fundamental maps to solve
several cases of blackbox identity testing:

1. Given a polynomial-degree circuit C and sparse polynomials f1, . . . , fm
with trdeg r, we can test blackbox D := C(f1, . . . , fm) for zeroness in
poly(size(D))r time.

2. Define a ΣΠΣΠδ(k, s, n) circuit C to be of the form
∑k

i=1

∏s
j=1 fi,j, where

fi,j are sparse n-variate polynomials of degree at most δ. For k = 2 we give

a poly(δsn)δ
2

time blackbox identity test.

3. For a general depth-4 circuit we define a notion of rank. Assuming there
is a rank bound R for minimal simple ΣΠΣΠδ(k, s, n) identities, we give
a poly(δsnR)Rkδ2 time blackbox identity test for ΣΠΣΠδ(k, s, n) circuits.
This partially generalizes the state of the art of depth-3 to depth-4 circuits.

The notion of trdeg works best with large or zero characteristic, but we also give
versions of our results for arbitrary fields.

Keywords: Algebraic independence, transcendence degree, arithmetic circuits,
polynomial identity testing, blackbox algorithms, depth-4 circuits.
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1 Introduction

Polynomial identity testing (PIT) is the problem of checking whether a given n-variate
arithmetic circuit computes the zero polynomial in F[x1, . . . , xn]. It is a central ques-
tion in complexity theory as circuits model computation and PIT leads us to a better
understanding of circuits. There are several classical randomized algorithms known
[DL78, Sch80, Zip79, CK00, LV98, AB03] that solve PIT. The basic Schwartz-Zippel
test is: given a circuit C(x1, . . . , xn), check C(a) = 0 for a random a ∈ F

n
. Finding a

deterministic polynomial time test, however, has been more difficult and is currently
open. Derandomization of PIT is well motivated by a host of algorithmic applica-
tions, eg. bipartite matching [Lov79] and matrix completion [Lov89], and connections
to sought-after super-polynomial lower bounds [HS80, KI04]. Especially, blackbox PIT
(i.e. circuit C is given as a blackbox and we could only make oracle queries) has di-
rect connections to lower bounds for the permanent [Agr05, Agr06]. Clearly, finding a
blackbox PIT test for a family of circuits F boils down to efficiently designing a hitting
set H ⊂ F

n
such that: given a nonzero C ∈ F , there exists an a ∈ H that hits C, i.e.

C(a) 6= 0.
The attempts to solve blackbox PIT have focused on restricted circuit families. A

natural restriction is constant depth. Agrawal & Vinay [AV08] showed that a blackbox
PIT algorithm for depth-4 circuits would (almost) solve PIT for general circuits (and
prove exponential circuit lower bounds for permanent). The currently known blackbox
PIT algorithms work only for further restricted depth-3 and depth-4 circuits. The case
of bounded top fanin depth-3 circuits has received great attention and has blackbox PIT
algorithms [DS06, KS07, KS08, SS, KS09, SS10, SS11]. The analogous case for depth-4
circuits is open. However, with the additional restriction of multilinearity on all the
multiplication gates, there is a blackbox PIT algorithm [KMSV10, SV11]. The latter
is somewhat subsumed by the PIT algorithms for constant-read multilinear formulas
[AvMV10]. To save space we would not go into the rich history of PIT and instead
refer to the surveys [Sax09, SY10].

A recurring theme in the blackbox PIT research on depth-3 circuits has been that of
rank. If we consider a ΣΠΣ(k, d, n) circuit C =

∑k

i=1

∏d

j=1 ℓi,j, where ℓi,j are linear forms
in F[x1, . . . , xn], then rk(C) is defined to be the linear rank of the set of forms {ℓi,j}i,j
each viewed as a vector in Fn. This raises the natural question: Is there a generalized
notion of rank for depth-4 circuits as well, and more importantly, one that is useful
in blackbox PIT? We answer this question affirmatively in this paper. Our notion of
rank is via transcendence degree (short, trdeg), which is a basic notion in commutative
algebra. To show that this notion applies to PIT requires relatively advanced algebra
and new tools that we build.

Consider polynomials {f1, . . . , fm} in F[x1, . . . , xn]. They are called algebraically
independent (over F) if there is no nonzero polynomial F ∈ F[y1, . . . , ym] such that
F (f1, . . . , fm) = 0. When those polynomials are algebraically dependent then such an F
exists and is called the annihilating polynomial of f1, . . . , fm. The transcendence degree,
trdeg{f1, . . . , fm}, is the maximal number r of algebraically independent polynomials
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in the set {f1, . . . , fm}. Though intuitive, it is nontrivial to prove that r is at most n
[Mor96]. The notion of trdeg has appeared in complexity theory in several contexts.
Kalorkoti [Kal85] used trdeg to prove an Ω(n3) formula size lower bound for n × n
determinant. In the works [DGW09, DGRV11] studying the entropy of polynomial
mappings (f1, . . . , fm) : Fn → Fm, trdeg is a natural measure of entropy when the field
has large or zero characteristic. It also appears implicitly in [Dvi09] while constructing
extractors for varieties. Finally, the complexity of the annihilating polynomial is studied
in [Kay09]. However, our work is the first to study trdeg in the context of PIT.

1.1 Our main results

Our first result shows that a general arithmetic circuit is sensitive to the trdeg of its
input.

Theorem 1. Let C be an m-variate circuit. Let f1, . . . , fm be ℓ-sparse, δ-degree, n-
variate polynomials with trdeg r. Suppose we have oracle access to the n-variate d-
degree circuit C ′ := C(f1, . . . , fm). There is a blackbox poly(size(C ′) · dℓδ)r time test to
check C ′ = 0 (assuming a zero or larger than δr characteristic).

We also give an algorithm that works for all fields but has a worse time com-
plexity. Note that the above theorem seems nontrivial even for a constant m, say
C ′ = C(f1, f2, f3), as the output of C ′ may not be sparse and fi’s are of arbitrary
degree and arity. In such a case r is constant too and the theorem gives a polynomial
time test. Another example, where r is constant but both m and n are variable, is:
fi := (xi

1 + x2
2 + · · · + x2

n)xi
n for i ∈ [m]. (Hint: r ≤ 3.)

Our next two main results concern depth-4 circuits. By ΣΠΣΠδ(k, s, n) we denote
circuits (over a field F) of the form

C :=

k
∑

i=1

s
∏

j=1

fi,j, (1)

where fi,j’s are sparse n-variate polynomials of maximal degree δ. Note that when δ = 1
this notation agrees with that of a ΣΠΣ circuit. Currently, the PIT methods are not
even strong enough to study ΣΠΣΠδ(k, s, n) circuits with both top fanin k and bottom
fanin δ bounded. It is in this spectrum that we make exciting progress.

Theorem 2. Let C be a ΣΠΣΠδ(2, s, n) circuit over an arbitrary field. There is a
blackbox poly(δsn)δ

2

time test to check C = 0.

Simple, minimal and rank Finally, we define a notion of rank for depth-4 cir-
cuits and show its usefulness. For a circuit C, as in (1), we define its rank, rk(C) :=
trdeg{fi,j | i ∈ [k], j ∈ [s]}. Define Ti :=

∏s

j=1 fi,j, for all i ∈ [k], to be the multi-
plication terms of C. We call C simple if {Ti | i ∈ [k]} are coprime polynomials. We
call C minimal if there is no I ( [k] such that

∑

i∈I Ti = 0. Define Rδ(k, s) to be the
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smallest r such that: any ΣΠΣΠδ(k, s, n) circuit C that is simple, minimal and zero
has rk(C) < r.

Theorem 3. Let r := Rδ(k, s) and the characteristic be zero or larger than δr. There
is a blackbox poly(δrsn)rkδ

2

time identity test for ΣΠΣΠδ(k, s, n) circuits.

We give a lower bound of Ω(δk log s) on Rδ(k, s) and conjecture an upper bound
(better than the trivial ks).

1.2 Organization and our approach

A priori it is not clear whether the problem of deciding algebraic independence of given
polynomials {f1, . . . , fm}, over a field F, is even computable. Perron [Per27] proved that
for m = (n+ 1) and any field, the annihilating polynomial has degree only exponential
in n. We generalize this to any m in Sect. 2.1, hence, deciding algebraic independence
(over any field) is computable. When the characteristic is zero or large, there is a more
efficient criterion due to Jacobi (Sect. 2.2). For using trdeg in PIT we would need to
relate it to the Krull dimension of algebras (Sect. 2.3).

The central concept that we develop is that of a faithful homomorphism. This
is a linear map ϕ from R := F[x1, . . . , xn] to F[z1, . . . , zr] such that for polynomials
f1, . . . , fm ∈ R of trdeg r, the images ϕ(f1), . . . , ϕ(fm) are also of trdeg r. Additionally,
to be useful, ϕ should be constructible in a blackbox and efficient way. We give such
constructions in Sects. 3.1 and 3.2. The proofs here use Perron’s and Jacobi’s criterion,
but require new techniques as well. The reason why such a ϕ is useful in PIT is because
it preserves the nonzeroness of the circuit C(f1, . . . , fm) (Corollary 13). We prove this
by an elegant application of Krull’s principal ideal theorem.

Once the fundamental machinery is set up, we prove Theorem 1 by designing a
hitting set. The zero or large characteristic case is handled in Sect. 4.1. The arbitrary
characteristic case is in Sect. 4.2.

Finally, we apply the faithful homomorphisms to depth-4 circuits. The proof of
Theorem 2 is provided in Sect. 5.2. The rank-based hitting set is constructed in Sect.
5.3 proving Theorem 3. The full proofs tend to be extremely technical and have been
moved to the appendix.

2 Preliminaries: Perron, Jacobi & Krull

Let n ∈ Z+ and let K be a field of characteristic ch(K). Throughout this paper,
K[x] = K[x1, . . . , xn] is a polynomial ring in n variables over K. K denotes the
algebraic closure of the field. We denote the multiplicative group of units of an algebra
A by A∗. We use the notation [n] := {1, . . . , n}. For 0 ≤ r ≤ n,

(

[n]
r

)

denotes the set of
r-subsets of [n].

4



2.1 Perron’s criterion (arbitrary field)

Let f1, . . . , fm ∈ K[x] be polynomials. When we want to emphasize the base field
with the transcendence degree, we would use the notation trdegK{f1, . . . , fm}. It is
interesting to note that transcendence degree is invariant to algebraic field extensions,
i.e. trdegK{f1, . . . , fm} is the same as trdegK{f1, . . . , fm} (Lemma 27). The name
transcendence degree stems from field theory. The transcendence degree of a field
extension L/K, denoted by trdeg(L/K), is the cardinality of any transcendence basis for
L/K (for more information on transcendental extensions, see [Mor96, Chap. 19]). For
L = K(f1, . . . , fm), we have trdegK{f1, . . . , fm} = trdeg(L/K) (cf. [Mor96, Theorem
19.14]). Since trdeg(K(x)/K) = n, we obtain 0 ≤ trdegK{f1, . . . , fm} ≤ n.

Algebraic independence over K strongly resembles K-linear independence. In fact,
algebraic independence makes a finite subset {f1, . . . , fm} ⊂ K[x] into a matroid (a
generalization of vector space, cf. [Oxl06, Sect. 6.7]).

An effective criterion for algebraic independence can be obtained by a degree bound
for annihilating polynomials. The following theorem provides such a bound for the case
of n + 1 polynomials in n variables.

Theorem 4 (Perron’s theorem). [P lo05, Theorem 1.1] Let fi ∈ K[x] be a polyno-
mial of degree δi ≥ 1, for i ∈ [n + 1]. Then there exists a non-zero polynomial
F ∈ K[y1, . . . , yn+1] such that F (f1, . . . , fn+1) = 0 and deg(F ) ≤ (

∏

i δi)/mini{δi}.

In the following corollary we give a degree bound in the general situation, where
more variables than polynomials are allowed. Moreover, the bound is in terms of the
trdeg of the polynomials instead of the number of variables. We hereby improve [Kay09,
Theorem 11] and generalize it to arbitrary characteristic. The proof uses a result from
Sect. 3 and is given in Appendix A.1.

Corollary 5 (Degree bound for annihilating polynomials). Let f1, . . . , fm ∈ K[x] be
algebraically dependent polynomials of maximal degree δ and trdeg r. Then there exists a
non-zero polynomial F ∈ K[y1, . . . , ym] of degree at most δr such that F (f1, . . . , fm) = 0.

Proof sketch. In Lemma 14 we construct a homomorphism (by first principles) that
reduces the number of variables to r and preserves the trdeg. We can then invoke
Perron’s theorem on r + 1 of the polynomials.

Remark. The bound in Corollary 5 is tight. To see this, let n ≥ 2, let δ ≥ 1 and
define the polynomials, f1 := x1, f2 := x2 − xδ

1, . . . , fn := xn − xδ
n−1, fn+1 := xδ

n in
K[x]. Then trdeg{f1, . . . , fn+1} = n and every annihilating polynomial of f1, . . . , fn+1

has degree at least δn.

2.2 Jacobi’s criterion (large or zero characteristic)

In large or zero characteristic, the well-known Jacobian criterion yields a more efficient
criterion for algebraic independence.
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For i ∈ [n], we denote the i-th formal partial derivative of a polynomial f ∈ K[x]
by ∂xi

f . Now let f1, . . . , fm ∈ K[x]. Then

Jx(f1, . . . , fm) :=
(

∂xj
fi
)

i,j
=







∂x1
f1 · · · ∂xn

f1
...

...
∂x1

fm · · · ∂xn
fm






∈ K[x]m×n

is called the Jacobian matrix of f1, . . . , fm. Its matrix-rank over the function field is of
great interest.

Theorem 6 (Jacobian criterion). Let f1, . . . , fm ∈ K[x] be polynomials of degree at
most δ and trdeg r. Assume that ch(K) = 0 or ch(K) > δr. Then rkL Jx(f1, . . . , fm) =
trdegK{f1, . . . , fm}, where L = K(x).

A proof of the Jacobian criterion in characteristic 0 appears, for example, in [ER93]
and the case of large prime characteristic was dealt with in [DGW09]. By virtue of
Theorem 4 our proof could tolerate a slightly smaller characteristic. For the reader’s
convenience, a full proof is given in Appendix A.2. We isolate the following special case
of Theorem 6, because it holds in arbitrary characteristic.

Lemma 7. Let f1, . . . , fm ∈ K[x]. Then trdegK{f1, . . . , fm} ≥ rkL Jx(f1, . . . , fm),
where L = K(x).

2.3 Krull dimension of affine algebras

In this section, we want to highlight the connection between transcendence degree and
the Krull dimension of affine algebras. This will enable us to use Krull’s principal ideal
theorem which is stated below.

In this paper, a K-algebra A is always a commutative ring containing K as a subring.
The most important example of a K-algebra is K[x]. Let A,B be K-algebras. A map
A → B is called a K-algebra homomorphism if it is a ring homomorphism that fixes K
element-wise.

We want to extend the definition of algebraic independence to algebras (whose
elements may not be the usual polynomials any more). Let a1, . . . , am ∈ A and consider
the K-algebra homomorphism

ρ : K[y] → A, F 7→ F (a1, . . . , am),

where K[y] = K[y1, . . . , ym]. If ker(ρ) = {0}, then {a1, . . . , am} is called algebraically
independent over K. If ker(ρ) 6= {0}, then {a1, . . . , am} is called algebraically dependent
over K. For a subset S ⊆ A, we define the transcendence degree of S over K by an
obvious supremum:

trdegK(S) := sup
{

|T | | T ⊆ S is finite and algebraically independent
}

.
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The image of K[y] under ρ is the subalgebra of A generated by a1, . . . , am and is denoted
by K[a1, . . . , am]. An algebra of this form is called an affine K-algebra, and it is called
an affine K-domain if it is an integral domain.

The Krull dimension of A, denoted by dim(A), is defined as the supremum over all
r ≥ 0 for which there is a chain p0 ( p1 ( · · · ( pr of prime ideals pi ⊂ A. It measures
how far A is from a field.

Theorem 8 (Dimension and trdeg). Let A = K[a1, . . . , am] be an affine K-algebra.
Then dim(A) = trdegK(A) = trdegK{a1, . . . , am}.

Proof. Cf. [Kem11, Theorem 5.9 and Proposition 5.10]. Also, the integral domain case
is in the standard text [Mat89, Theorem 5.6].

The following corollary is a simple consequence of Theorem 8. It shows that ho-
momorphisms cannot increase the dimension of affine algebras. The proof is given in
Appendix A.3.

Corollary 9. Let A,B be K-algebras and let ϕ : A → B be a K-algebra homomorphism.
If A is an affine algebra, then so is ϕ(A) and we have dim(ϕ(A)) ≤ dim(A). If, in
addition, ϕ is injective, then dim(ϕ(A)) = dim(A).

In the next section we will need the following version of Krull’s principal ideal
theorem.

Theorem 10 (Krull’s Hauptidealsatz). Let A be an affine K-domain and let a ∈
A \ (A∗ ∪ {0}). Then dim(A/〈a〉) = dim(A) − 1.

Proof. Cf. [Eis95, Corollary 13.11] or [Mat89, Theorem 13.5].

3 Faithful homomorphisms: Reducing the variables

Let f1, . . . , fm ∈ K[x] be polynomials and let r := trdeg{f1, . . . , fm}. Intuitively, r
variables should suffice to define f1, . . . , fm without changing their algebraic relations.
So let K[z] = K[z1, . . . , zr] be a polynomial ring with 1 ≤ r ≤ n. We want to find
a homomorphism K[x] → K[z] that preserves the transcendence degree of f1, . . . , fm.
First we give this property a name.

Definition 11. Let ϕ : K[x] → K[z] be a K-algebra homomorphism. We say ϕ is
faithful to {f1, . . . , fm} if trdeg{ϕ(f1), . . . , ϕ(fm)} = trdeg{f1, . . . , fm}.

The following theorem shows that faithful homomorphisms are useful for us.

Theorem 12 (Faithful is useful). Let A = K[f1, . . . , fm] ⊆ K[x]. Then ϕ is faithful to
{f1, . . . , fm} if and only if ϕ|A : A → K[z] is injective (iff A ∼= K[ϕ(f1), . . . , ϕ(fm)]).
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Proof. We denote ϕA = ϕ|A and r = trdeg{f1, . . . , fm}. If ϕA is injective, then

r = dim(A) = dim(ϕA(A)) = trdeg{ϕ(f1), . . . , ϕ(fm)}

by Theorem 8 and Corollary 9. Thus ϕ is faithful to {f1, . . . , fm}.
Conversely, let ϕ be faithful to {f1, . . . , fm}. Then dim(ϕA(A)) = r. Now assume

for the sake of contradiction that ϕA is not injective. Then there exists an f ∈ A \ {0}
such that ϕA(f) = 0. We have f /∈ K, because ϕ fixes K element-wise, and hence
f /∈ A∗. Since A is an affine domain, Theorem 10 implies dim(A/〈f〉) = r − 1. Since
f ∈ ker(ϕA), the K-algebra homomorphism

ϕA : A/〈f〉 → K[z], a + 〈f〉 7→ ϕA(a)

is well-defined and ϕA factors as ϕA = ϕA ◦ η, where η : A → A/〈f〉 is the canonical
surjection. But then Corollary 9 implies

r = dim(ϕA(A)) = dim(ϕA(η(A))) ≤ dim(η(A)) = dim(A/〈f〉) = r − 1,

a contradiction. It follows that ϕA is injective.
When ϕA is injective, clearly we have A ∼= ϕA(A) = K[ϕ(f1), . . . , ϕ(fm)].

Corollary 13. Let C be an m-variate circuit over K. Let ϕ be faithful to {f1, . . . , fm}
⊂ K[x]. Then, C(f1, . . . , fm) = 0 iff C(ϕ(f1), . . . , ϕ(fm)) = 0.

Proof. Note that C(f1, . . . , fm) resp. C(ϕ(f1), . . . , ϕ(fm)) are elements in the algebras
K[f1, . . . , fm] resp. K[ϕ(f1), . . . , ϕ(fm)]. Since ϕ is an isomorphism between these two
algebras, the corollary is evident.

3.1 A Kronecker-inspired map (arbitrary characteristic)

The following lemma shows that even linear faithful homomorphisms exist for all sub-
sets of polynomials (provided K is large enough, for eg. move to K or a large enough
field extension [AL86]). It is a generalization of [Kay09, Claim 11.1] to arbitrary char-
acteristic. The proof is given in Appendix B.1.

Lemma 14 (Existence). Let K be an infinite field and let f1, . . . , fm ∈ K[x] be polyno-
mials of trdeg r. Then there exists a linear K-algebra homomorphism ϕ : K[x] → K[z]
which is faithful to {f1, . . . , fm}.

Proof sketch. We prove this by first principles. The proof is by identifying r variables
from {x1, . . . , xn} that we leave free and the rest n−r variables we fix to generic elements
from K. Using annihilating polynomials we could show that this map preserves the
trdeg.
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Below we want to make this lemma effective. This will again be accomplished by
substituting constants for all but r of the variables x1, . . . , xn. We define a parametrized
homomorphism Φ in three steps. First, we decide which variables we want to keep and
map them to z1, . . . , zr. To the remaining variables we apply a Kronecker substitution
using a new variable t, i.e. we map the i-th variable to tD

i

(for a large D). In the
second step, the exponents of t will be reduced modulo some number. Finally, a single
constant will be substituted for t.

Let I = {j1, . . . , jr} ∈
(

[n]
r

)

be an index set and let [n] \ I = {jr+1, . . . , jn} be its
complement such that j1 < · · · < jr and jr+1 < · · · < jn. Let D ≥ 2 and define the
K-algebra homomorphism

ΦI,D : K[x] → K[t, z], xji 7→

{

zi, for i = 1, . . . , r,

tD
i−r

, for i = r + 1, . . . , n.

Now let p ≥ 1. For an integer a ∈ Z, we denote by ⌊a⌋p the integer b ∈ Z satisfying
0 ≤ b < p and a = b (mod p). We define the K-algebra homomorphism

ΦI,D,p : K[x] → K[t, z], xji 7→

{

zi, for i = 1, . . . , r,

t⌊D
i−r⌋p , for i = r + 1, . . . , n.

Note that, for f ∈ K[x], ΦI,D,p(f) is a representative of the residue class ΦI,D(f)
(mod 〈tp − 1〉K[t,z]). Finally let c ∈ K and define the K-algebra homomorphism

ΦI,D,p,c : K[x] → K[z], f 7→
(

ΦI,D,p(f)
)

(c, z).

The following lemma bounds the number of bad choices for the parameters p and c. It
is proven in Appendix B.1.

Lemma 15 (Φ is faithful). Let f1, . . . , fm ∈ K[x] be polynomials of degree at most δ
and trdeg at most r. Let D > δr+1. Then there exist an index set I ∈

(

[n]
r

)

and a prime

p ≤ (n + δr)8δ
r+1

(log2 D)2 + 1 such that any subset of K of size δrrp contains c such
that ΦI,D,p,c is faithful to {f1, . . . , fm}.

Proof sketch. We identify a maximal I ⊆ [n] such that for the field L := K(xi | i /∈ I),
trdegL{f1, . . . , fm} = trdegK{f1, . . . , fm}. Now xi, for i ∈ I, is algebraic over the field
L(f1, . . . , fm). This gives us annihilating polynomials whose degrees we could bound
by Corollary 5, and hence their sparsities. By sparse PIT tricks we get a bound on the
‘good’ p and c.

In large or zero characteristic, a more efficient version of this lemma can be given
(for the same homomorphism Φ). The reason is that we can work with the Jacobian
criterion instead of the degree bound for annihilating polynomials. However, we omit
the statement of this result here, because we can give a more holistic construction in
that case. This will be presented in the following section.
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3.2 A Vandermonde-inspired map (large or zero characteris-

tic)

To prove Theorem 3, we will need a homomorphism that is faithful to several sets of
polynomials simultaneously. The homomorphism Φ constructed in the previous section
does not meet this requirement, because its definition depends on a fixed subset of
the variables x1, . . . , xn. In this section we will devise a construction, that treats the
variables x1, . . . , xn in a uniform manner. It is inspired by the Vandermonde matrix,
i.e. ((tij))i,j.

We define a parametrized homomorphism Ψ in three steps. Let K[z] = K[z0, . . . , zr],
where 1 ≤ r ≤ n. Let D1, D2 ≥ 2 and let D = (D1, D2). Define the K-algebra
homomorphism

ΨD : K[x] → K[t, z], xi 7→ tD
i
1 + tD

i
2z0 +

r
∑

j=1

ti(n+1)jzj ,

where i = 1, . . . , n. This map (linear in the z’s) should be thought of as a variable
reduction from n to r + 1. The coefficients of z1, . . . , zr bear resemblance to a row
of a Vandermonde matrix, while that of z0 (and the constant coefficient) resembles
Kronecker substitution. This definition is carefully tuned so that Ψ finally preserves
both the trdeg (proven here) and gcd of polynomials (proven in Sect. 5.2).

Next let p ≥ 1 and define the K-algebra homomorphism

ΨD,p : K[x] → K[t, z], xi 7→ t⌊D
i
1⌋p + t⌊D

i
2⌋pz0 +

r
∑

j=1

t⌊i(n+1)j⌋pzj ,

where i = 1, . . . , n. Note that, for f ∈ K[x], ΨD,p(f) is a representative of the residue
class ΨD(f) (mod 〈tp−1〉K[t,z]). Finally let c ∈ K and define the K-algebra homomor-
phism

ΨD,p,c : K[x] → K[z], f 7→
(

ΨD,p(f)
)

(c, z).

The following lemma bounds the number of bad choices for the parameters p and c.
The proof, which is given in Appendix B.2, uses the Jacobian criterion, therefore the
lemma has a restriction on ch(K).

Lemma 16 (Ψ is faithful). Let f1, . . . , fm ∈ K[x] be polynomials of sparsity at most
ℓ, degree at most δ and trdeg at most r. Assume that ch(K) = 0 or ch(K) > δr. Let
D = (D1, D2) such that D1 ≥ max{δr + 1, (n + 1)r+1} and D2 ≥ 2. Then there exists
a prime p ≤ (2nrℓ)2(r+1)(log2D1)

2 + 1 such that any subset of K of size δrp contains c
such that ΨD,p,c is faithful to {f1, . . . , fm}.

Proof sketch. We study the action of ΨD on the Jacobian determinant. Because of the
chain rule of partial derivatives, this leads us to a product of two determinants, which
we expand using the Cauchy-Binet formula and estimate its sparsity. By sparse PIT
tricks we get a bound on the ‘good’ p and c.
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By trying larger p and c, we can find a Ψ that is faithful to several subsets of
polynomials simultaneously. This is an advantage of Ψ over Φ, in addition to being
more efficiently constructible.

4 Circuits with sparse inputs of low transcendence

degree (proving Theorem 1)

We can now proceed with the first PIT application of faithful homomorphisms. We
consider arithmetic circuits of the form C(f1, . . . , fm), where C is a circuit comput-
ing a polynomial in K[y] = K[y1, . . . , ym] and f1, . . . , fm are subcircuits computing
polynomials in K[x]. Thus, C(f1, . . . , fm) computes a polynomial in the subalgebra
K[f1, . . . , fm].

Let C(f1, . . . , fm) be of maximal degree d, and let f1, . . . , fm be of maximal degree
δ, maximal sparsity ℓ and maximal transcendence degree r. First, we use a faithful
homomorphism to transform C(f1, . . . , fm) into an r-variate circuit. Then, a hitting
set for r-variate degree-d polynomials is used, given by the following version of the
Schwartz-Zippel lemma.

Lemma 17 (Schwartz-Zippel). Let H ⊂ K be a subset of size d + 1. Then H = Hr is
a hitting set for {f ∈ K[z1, . . . , zr] | deg(f) ≤ d}.

Proof. Cf. [Alo99, Lemma 2.1].

4.1 A hitting set (large or zero characteristic)

We use the map Ψ from Sect. 3.2. This hitting set construction is efficient for r constant
and ℓ, d polynomial in the input size.

Let n, d, r, δ, ℓ ≥ 1 and let K[z] = K[z0, z1, . . . , zr]. We introduce the following
parameters.

1. Define D = (D1, D2) by D1 := (2δn)r+1 and D2 := 2.

2. Define pmax := (2nrℓ)2(r+1)⌈log2 D1⌉
2 + 1.

3. Pick arbitrary H1, H2 ⊂ K of sizes δrpmax resp. d + 1.

Denote Ψ
(i)
D,p,c := ΨD,p,c(xi) ∈ K[z] for i = 1, . . . , n and define the subset

Hd,r,δ,ℓ =
{

(

Ψ
(1)
D,p,c(a), . . . ,Ψ

(n)
D,p,c(a)

) ∣

∣ p ∈ [pmax], c ∈ H1, a ∈ Hr+1
2

}

⊂ K
n
.

The following theorem shows that, over a large or zero characteristic, this is a hitting
set for the class of circuits under consideration. A proof is given in Appendix C.1.

Theorem 18. Assume that ch(K) = 0 or ch(K) > δr. Then Hd,r,δ,ℓ is a hitting set for
the class of degree-d circuits with inputs being ℓ-sparse, degree-δ subcircuits of trdeg at
most r. It can be constructed in poly(drδℓn)r time.
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4.2 A hitting set (arbitrary characteristic)

We use the map Φ from Sect. 3.1. This hitting set construction is efficient for δ, r
constants and d polynomial in the input size.

Let n, d, r, δ ≥ 1 and let K[z] = K[z1, . . . , zr]. We introduce the following parame-
ters.

1. Define D := δr+1 + 1.

2. Define pmax := (n + δr)8δ
r+1

⌈log2D⌉2 + 1.

3. Pick arbitrary H1, H2 ⊂ K of sizes δrrpmax resp. d + 1.

Denote Φ
(i)
I,D,p,c := ΦI,D,p,c(xi) ∈ K[z] for i = 1, . . . , n and define the subset

Hd,r,δ =
{

(

Φ
(1)
I,D,p,c(a), . . . ,Φ

(n)
I,D,p,c(a)

) ∣

∣ I ∈
(

[n]
r

)

, p ∈ [pmax], c ∈ H1, a ∈ Hr
2

}

⊂ K
n
.

The following theorem shows that this is a hitting set for the class of circuits under
consideration. A proof is given in Appendix C.2.

Theorem 19. The set Hd,r,δ is a hitting set for the class of degree-d circuits with inputs
being degree-δ subcircuits of transcendence degree at most r. It can be constructed in
poly(drδn)rδ

r+1

time.

5 Depth-4 circuits with bounded top and bottom

fanin

The second PIT application of faithful homomorphisms is for ΣΠΣΠδ(k, s, n) circuits.
Our hitting set construction is efficient when the top fanin k and the bottom fanin δ
are both bounded. Except for top fanin 2, our hitting set will be conditional in the
sense that its efficiency depends on a good rank upper bound for depth-4 identities.

5.1 Gcd, simple parts and the rank bounds

Let C =
∑k

i=1

∏s

j=1 fi,j be a ΣΠΣΠδ(k, s, n) circuit, as defined in Sect. 1.1. Note that
the parameters bound the circuit degree, deg(C) ≤ δs. We define an S(·) operator as:

S(C) :=
{

fi,j | i ∈ [k] and j ∈ [s]
}

⊂ K[x].

It gives the set of sparse polynomials of C (wlog we assume them all to be nonzero).
The following definitions are natural generalizations of the corresponding concepts for
depth-3 circuits. Recall Ti :=

∏

j fi,j, for i ∈ [k], are the multiplication terms of C. The
gcd part of C is defined as gcd(C) := gcd(T1, . . . , Tk) (we fix a unique representative
among the associated gcds). The simple part of C is defined as sim(C) := C/ gcd(C) ∈
ΣΠΣΠδ(k, s, n). For a subset I ⊆ [k] we denote CI :=

∑

i∈I Ti.

12



Recall that if C is simple then gcd(C) = 1 and if it is minimal then CI 6= 0 for all
non-empty I ( [k]. Also, recall that rk(C) is trdegK S(C), and that Rδ(k, s) strictly
upper bounds the rank of any minimal and simple ΣΠΣΠδ(k, s, n) identity. Clearly,
Rδ(k, s) is at most | S(C)| ≤ ks (note: S(C) cannot all be independent in an identity).
On the other hand, we could prove a lower bound on Rδ(k, s) by constructing identities.

From the simple and minimal ΣΠΣ identities constructed in [SS], we obtain the lower
bound R1(k, s) = Ω(k) if ch(K) = 0, and R1(k, s) = Ω(k logp s) if ch(K) = p > 0. These
identities can be lifted to ΣΠΣΠδ(k, s, n) identities by replacing each variable xi by a
product xi,1 · · ·xi,δ of new variables. These examples demonstrate: Rδ(k, s) = Ω(δk) if
ch(K) = 0, and Rδ(k, s) = Ω(δk logp s) if ch(K) = p > 0. This leads us to the following
natural conjecture.

Conjecture 20. We conjecture

Rδ(k, s) =

{

poly(δk), if ch(K) = 0,

poly(δk log s), otherwise.

The following lemma is a vast generalization of [KS08, Theorem 3.4] to depth-4
circuits. It suggests how a bound for Rδ(k, s) can be used to construct a hitting set for
ΣΠΣΠδ(k, s, n) circuits. The ϕ in the statement below should be thought of as a linear
map that reduces the number of variables from n to Rδ(k, s) + 1.

Lemma 21 (Rank is useful). Let C be a ΣΠΣΠδ(k, s, n) circuit, let r := Rδ(k, s) and
let ϕ : K[x] → K[z] = K[z0, z1, . . . , zr] be a linear K-algebra homomorphism that, for
all I ⊆ [k], satisfies:

1. ϕ(sim(CI)) = sim(ϕ(CI)), and

2. rk(ϕ(sim(CI))) ≥ min
{

rk(sim(CI)), Rδ(k, s)
}

.

Then C = 0 if and only if ϕ(C) = 0.

Proof. If C = 0, then clearly ϕ(C) = 0. Conversely, let ϕ(C) = 0. Let I ⊆ [k] be a
non-empty subset such that ϕ(CI) is a minimal circuit computing the zero polynomial.
Then, by assumption (1.), ϕ(sim(CI)) = sim(ϕ(CI)) ∈ ΣΠΣΠδ(k, s, n) is a minimal
and simple circuit computing the zero polynomial. Hence, rk(ϕ(sim(CI))) < Rδ(k, s).
By assumption (2.), this implies rk(ϕ(sim(CI))) = rk(sim(CI)), thus ϕ is faithful to
S(sim(CI)). Theorem 12 yields sim(CI) = 0, hence CI = 0. Since ϕ(C) is the sum of
zero and minimal circuits ϕ(CI) for some I ⊆ [k], we obtain C = 0 as required.

5.2 Preserving the simple part (towards Theorem 2)

The following lemma shows that Ψ meets condition (1.) of Lemma 21. The proof is
given in Appendix D.1. This is also the heart of PIT when k = 2. The actual hitting
set, though, we provide in the next subsection.
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Lemma 22 (Ψ preserves the simple part). Let C be a ΣΠΣΠδ(k, s, n) circuit. Let
D1 ≥ 2δ2 + 1, let D1 ≥ D2 ≥ δ + 1 and let D = (D1, D2). Then there exists a prime
p ≤ (2ksnδ2)8δ

2+2(log2D1)
2 + 1 such that any subset S ⊂ K of size 2δ4k2s2p contains

c satisfying ΨD,p,c(sim(C)) = sim(ΨD,p,c(C)).

Proof sketch. For any coprime fi, fj ∈ S(C) we look at their images under Ψ. We view
Ψ(fi) and Ψ(fj) as univariates wrt z0 and fix z1 = · · · = zr = 0. If we could keep these
two univariates monic (before the fixing) and their resultants nonzero (after the fixing),
then the coprimality of Ψ(fi) and Ψ(fj) would be ensured. Both those requirements
are fulfilled by estimating the sparsity and using sparse PIT tricks.

5.3 A hitting set (proving Theorems 2 & 3)

Armed with Lemmas 21 and 22 we could now complete the construction of the hit-
ting set for ΣΠΣΠδ(k, s, n) circuits using the faithful homomorphism Ψ with the right
parameters.

Let n, δ, k, s ≥ 1 and let r = Rδ(k, s). We introduce the following parameters. They
are blown up so that they support 2k applications (one for each I ⊂ [k]) of Lemmas 16
and 22.

1. Define D = (D1, D2) by D1 := (2δn)2r and D2 := δ + 1.

2. Define pmax := 22(k+1) · (2krsnδ2)8δ
2+4δr⌈log2D1⌉

2 + 1.

3. Pick arbitrary H1, H2 ⊂ K of sizes 2k+2k2rs2δ4pmax resp. δs + 1.

Denote Ψ
(i)
D,p,c := ΨD,p,c(xi) ∈ K[z] for i = 1, . . . , n and define the subset

Hδ,k,s =
{

(

Ψ
(1)
D,p,c(a), . . . ,Ψ

(n)
D,p,c(a)

) ∣

∣ p ∈ [pmax], c ∈ H1, a ∈ Hr+1
2

}

⊂ K
n
.

The following theorem shows that, in large or zero characteristic, this is a hitting set
for ΣΠΣΠδ(k, s, n) circuits.

Theorem 23. Assume that ch(K) = 0 or ch(K) > δr. Then Hδ,k,s is a hitting set for
ΣΠΣΠδ(k, s, n) circuits. It can be constructed in poly(δrsn)δ

2kr time.

Since trivially Rδ(2, s) = 1, we obtain an explicit hitting set for the top fanin 2
case. Moreover, in this case we can also eliminate the dependence on the characteristic
(because Lemma 22 is field independent).

Corollary 24. Let K be of arbitrary characteristic. Then Hδ,2,s is a hitting set for
ΣΠΣΠδ(2, s, n) circuits. It can be constructed in poly(δsn)δ

2

time.

A proof of the theorem and the corollary can be found in Appendix D.2.
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6 Conclusion

The notion of rank has been quite useful in depth-3 PIT. In this work we give the
first generalization of it to depth-4 circuits. We used trdeg and developed fundamental
maps – the faithful homomorphisms – that preserve trdeg of sparse polynomials in a
blackbox and efficient way (assuming a small trdeg). Crucially, we showed that faithful
homomorphisms preserve the nonzeroness of circuits.

Our work raises several open questions. The faithful homomorphism construction
over a small characteristic has restricted efficiency, in particular, it is interesting only
when the sparse polynomials have very low degree. Could Lemma 15 be improved to
handle larger δ? In general, the classical methods stop short of dealing with small
characteristic because the “geometric” Jacobian criterion is not there. We have given
some new tools to tackle that, for eg., Corollary 5 and Lemmas 14 and 15. But more
tools are needed, for eg. a homomorphism like that of Lemma 16 for arbitrary fields.

Currently, we do not know a better upper bound for Rδ(k, s) other than ks. For
δ = 1, it is just the rank of depth-3 identities, which is known to be O(k2 log s) (O(k2)
over R) [SS10]. Even for δ = 2 we leave the rank question open. We conjecture
R2(k, s) = Ok(log s) (generally, Conjecture 20). Our hope is that understanding these
small δ identities should give us more potent tools to attack depth-4 PIT in generality.
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A Proofs for Sect. 2: Preliminaries

A.1 Proofs for Sect. 2.1: Perron’s criterion

For the proof of Corollary 5 we will need three well-known lemmas. The first one is
about resultants. For more information about resultants, see [CLO97].

Lemma 25 (Resultant). Let f, g ∈ K[x] such that degxi
(f) > 0 and degxi

(g) > 0
for some i ∈ [n]. Then resxi

(f, g) = 0 if and only if f and g have a common factor
h ∈ K[x] with degxi

(h) > 0.

Proof. Cf. [CLO97, Chap. 3, §6, Proposition 1].

The following lemma identifies a situation where annihilating polynomials are unique
up to a factor in K∗.

Lemma 26 (Unique annihilating polynomials). Let f1, . . . , fm ∈ K[x] contain precisely
m − 1 algebraically independent polynomials and let I ⊆ K[y1, . . . , ym] be the ideal of
algebraic relations among f1, . . . , fm. Then I is principal.

Proof. We follow the instructions of [vdE00, Exercise 3.2.7]. Assume that f1, . . . , fm−1

are algebraically independent and let F1, F2 ∈ K[y1, . . . , ym] be non-zero irreducible
polynomials satisfying Fi(f1, . . . , fm) = 0 for i = 1, 2. It suffices to show that F1 = cF2

for some c ∈ K∗.
For this, view F1, F2 as elements of R[ym], where R = K[y1, . . . , ym−1], and consider

the ym-resultant g := resym(F1, F2) ∈ R. By [CLO97, Chap. 3, §5, Proposition 9], there
exist g1, g2 ∈ R[ym] such that g = g1F1 + g2F2. We have

g(f1, . . . , fm−1) = g1(f1, . . . , fm) · F1(f1, . . . , fm) + g2(f1, . . . , fm) · F2(f1, . . . , fm)

= 0.

Since f1, . . . , fm−1 are algebraically independent, it follows that g = 0. By Lemma
25, F1, F2 have a non-trivial common factor in R[ym]. Since F1, F2 are irreducible, we
obtain F1 = cF2 for some c ∈ K∗, as required.

The following lemma contains a useful fact about annihilating polynomials and
algebraic field extensions (cf. [Kay09, Claim 7.2] for a similar statement).

Lemma 27 (Going to a field extension). Let f1, . . . , fm ∈ K[x] and let L/K be an
algebraic field extension. If there exists a non-zero polynomial F ∈ L[y] = L[y1, . . . , ym]
such that F (f1, . . . , fm) = 0, then there exists a non-zero polynomial G ∈ K[y] such
that G(f1, . . . , fm) = 0 and deg(G) ≤ deg(F ). In particular, f1, . . . , fm are algebraically
independent over K if and only if they are algebraically independent over L.
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Proof. Let F ∈ L[y] be a non-zero polynomial such that F (f1, . . . , fm) = 0. Denote
by c1, . . . , cℓ ∈ L the non-zero coefficients of F . Replacing L by K(c1, . . . , cℓ), we may
assume that L/K is algebraic and finitely generated (as a field) over K. By [Lan02,
Chapter V, §1, Proposition 1.6], this implies that [L : K] =: d < ∞. Let b1, . . . , bd ∈ L
be a K-basis of L. Then we can write F as

F = F1 · b1 + · · · + Fd · bd

for some F1, . . . , Fd ∈ K[y], not all zero, such that deg(Fi) ≤ deg(F ) for all i = 1, . . . , d.
Substituting f1, . . . , fm, we obtain

0 = F (f1, . . . , fm) = F1(f1, . . . , fm) · b1 + · · · + Fd(f1, . . . , fm) · bd.

The K-linear independence of b1, . . . , bd implies that all coefficients of

Fi(f1, . . . , fm) ∈ K[x]

are zero for i = 1, . . . , d. (Here we use that the indeterminates x1, . . . , xn are L-linearly
independent, because L/K is algebraic.) Therefore, some non-zero Fi yields a G ∈ K[y]
with the desired properties.

Corollary 5. Let f1, . . . , fm ∈ K[x] be algebraically dependent polynomials of maxi-
mal degree δ and trdeg r. Then there exists a non-zero polynomial F ∈ K[y1, . . . , ym]
of degree at most δr such that F (f1, . . . , fm) = 0.

Proof of Corollary 5. By Lemma 27, we may assume wlog that K is infinite. Fur-
thermore, we may assume that m = r + 1 and f1, . . . , fr are algebraically indepen-
dent. Let F ∈ K[y] = K[y1, . . . , yr+1] be a non-zero irreducible polynomial such that
F (f1, . . . , fr+1) = 0. By Lemma 14, there exists a linear K-algebra homomorphism

ϕ : K[x] → K[z] = K[z1, . . . , zr]

which is faithful to {f1, . . . , fr+1}. Set gi := ϕ(fi) ∈ K[z] for i = 1, . . . , r + 1. Then
g1, . . . , gr+1 are of degree at most δ and by Theorem 4 there exists a non-zero polynomial
G ∈ K[y] such that G(g1, . . . , gr+1) = 0 and deg(G) ≤ δr. But since

F (g1, . . . , gr+1) = F (ϕ(f1), . . . , ϕ(fr+1)) = ϕ(F (f1, . . . , fr+1)) = 0,

Lemma 26 implies that F divides G. Hence, deg(F ) ≤ deg(G) ≤ δr.

A.2 Proofs for Sect. 2.2: Jacobi’s criterion

In the proof of the Jacobian criterion we will make use of the following facts about
partial derivatives. Let f ∈ K[x]. First assume that ch(K) = 0. Then, for i ∈ [n], we
have

∂xi
f = 0 if and only if f ∈ K[x1, . . . , xi−1, xi+1, . . . , xn].
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Therefore, we have ∂xi
(f) = 0 for all i = 1, . . . , n if and only if f = 0. Now assume

ch(K) = p > 0. Then, for i ∈ [n], we have

∂xi
f = 0 if and only if f ∈ K[x1, . . . , xi−1, x

p
i , xi+1, . . . , xn].

Hence, ∂xi
f = 0 for all i = 1, . . . , n if and only if f ∈ K[xp

1, . . . , x
p
n]. If, in addition, K is

a perfect field (in characteristic p this means that every element of K is a p-th power),
then we have ∂xi

f = 0 for all i = 1, . . . , n if and only if f = gp for some g ∈ K[x]. An
example of a perfect field is the algebraic closure K of K.

Now let K be an arbitrary field, let f1, . . . , fm ∈ K[x] and let F1, . . . , Fs ∈ K[y].
Then, by the chain rule, we have

Jx(F1(f1, . . . , fm), . . . , Fs(f1, . . . , fm))

=
(

Jy(F1, . . . , Fs)
)

(f1, . . . , fm) · Jx(f1, . . . , fm).

Now we are prepared to proceed with the proofs.

Lemma 7. Let f1, . . . , fm ∈ K[x]. Then trdegK{f1, . . . , fm} ≥ rkL Jx(f1, . . . , fm),
where L = K(x).

Proof of Lemma 7. Let r = rkL Jx(f1, . . . , fm). We may assume that the first r rows
of J(f1, . . . , fm) are L-linearly independent. Assume, for the sake of contradiction,
that f1, . . . , fr are algebraically dependent. Choose a non-zero polynomial F ∈ K[y] =
K[y1, . . . , yr] of minimal degree such that F (f1, . . . , fr) = 0. Differentiating with respect
to x1, . . . , xn using the chain rule yields the vector-matrix equation

(

(∂y1F )(f1, . . . , fr), . . . , (∂yrF )(f1, . . . , fr)
)

·







∂x1
f1 · · · ∂xn

f1
...

...
∂x1

fr · · · ∂xn
fr






= 0.

Since this matrix has rank r over L, it follows that (∂yiF )(f1, . . . , fr) = 0 for all i =
1, . . . , r. Since the degree of F was chosen to be minimal, it follows that ∂yiF = 0 for all
i = 1, . . . , r. If ch(K) = 0, this implies F = 0, a contradiction. If ch(K) = p > 0, this
implies F ∈ K[yp1, . . . , y

p
r ]. Since K is perfect and F 6= 0, there is a non-zero G ∈ K[y]

such that F = Gp. From

0 = F (f1, . . . , fr) = G(f1, . . . , fr)
p

wee see that G(f1, . . . , fr) = 0. By Lemma 27, there exists a non-zero G′ ∈ K[y] such
that G′(f1, . . . , fr) = 0 and deg(G′) ≤ deg(G) < deg(F ). This contradicts the choice
of F . Therefore, f1, . . . , fr are algebraically independent, hence trdeg({f1, . . . , fm}) ≥
r.

Theorem 6. Let f1, . . . , fm ∈ K[x] be polynomials of degree at most δ and trdeg r.
Assume that ch(K) = 0 or ch(K) > δr. Then rkL Jx(f1, . . . , fm) = trdegK{f1, . . . , fm},
where L = K(x).
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Proof of Theorem 6. Let r = trdeg{f1, . . . , fm}. By Lemma 7, we have

r ≥ rkL J(f1, . . . , fm),

so it remains to show the converse inequality.
After renumbering f1, . . . , fm and x1, . . . , xn, we may assume that the polyno-

mials f1, . . . , fr, xr+1, . . . , xn are algebraically independent. Consequently, for i =
1, . . . , n, there exist non-zero polynomials Fi ∈ K[y0, . . . , yn] of minimal degree such
that degy0

(Fi) > 0 and

Fi(xi, f1, . . . , fr, xr+1, . . . , xn) = 0. (2)

By Theorem 4 (with (n− r + 1) of the δi’s being 1), we have deg(Fi) ≤ δr. Hence, by
the assumptions on ch(K), we have ∂y0Fi 6= 0. Since the degree of Fi was chosen to be
minimal, we have

(∂y0Fi)(xi, f1, . . . , fr, xr+1, . . . , xn) 6= 0.

Denote
Gi,j := (∂yjFi)(xi, f1, . . . , fr, xr+1, . . . , xn)

for j = 0, . . . , n. Differentiating equation (2) with respect to xk using the chain rule
yields

Gi,0 · δi,k +
r

∑

j=1

Gi,j · ∂xk
fj +

n
∑

j=r+1

Gi,j · δj,k = 0

for k = 1, . . . , n. Since Gi,0 6= 0, this can be rewritten as

r
∑

j=1

−Gi,j

Gi,0
· ∂xk

fj +

n
∑

j=r+1

−Gi,j

Gi,0
· δj,k = δi,k.

This shows that the block diagonal matrix



















∂x1
f1 · · · ∂xr

f1
...

...
∂x1

fr · · · ∂xr
fr

1
. . .

1



















∈ Ln×n

is invertible. Therefore, the first r rows of J(f1, . . . , fm) are L-linearly independent and
hence r ≤ rkL J(f1, . . . , fm).
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A.3 Proofs for Sect. 2.3: Krull dimension

Corollary 9. Let A,B be K-algebras and let ϕ : A → B be a K-algebra homomor-
phism. If A is an affine algebra, then so is ϕ(A) and we have dim(ϕ(A)) ≤ dim(A). If,
in addition, ϕ is injective, then dim(ϕ(A)) = dim(A).

Proof of Corollary 9. Since A is an affine algebra, there exist a1, . . . , am ∈ A such that
A = K[a1, . . . , am]. Then ϕ(A) = K[ϕ(a1), . . . , ϕ(am)] is finitely generated as a K-
algebra as well.

Now assume for the sake of contradiction that d := dim(ϕ(A)) > dim(A). By
Theorem 8, there exist a1, . . . , ad ∈ A such that ϕ(a1), . . . , ϕ(ad) are algebraically inde-
pendent. Since d > dim(A), the elements a1, . . . , ad are algebraically dependent. Hence,
there exists a non-zero polynomial F ∈ K[y1, . . . , yd] such that F (a1, . . . , ad) = 0. It
follows that

0 = ϕ(F (a1, . . . , ad)) = F (ϕ(a1), . . . , ϕ(ad))

and this implies that ϕ(a1), . . . , ϕ(ad) are algebraically dependent, a contradiction.
Therefore, dim(ϕ(A)) ≤ dim(A).

Now let ϕ be injective, let d := dim(A) and let a1, . . . , ad ∈ A be algebraically
independent. Assume for the sake of contradiction that ϕ(a1), . . . , ϕ(ad) are alge-
braically dependent. Then there exists a non-zero polynomial F ∈ K[y1, . . . , yd] such
that F (ϕ(a1), . . . , ϕ(ad)) = 0. From

0 = F (ϕ(a1), . . . , ϕ(ad)) = ϕ(F (a1, . . . , ad))

we see that F (a1, . . . , ad) = 0, because ϕ is injective. But this means that a1, . . . , ad
are algebraically dependent, a contradiction. Thus dim(ϕ(A)) ≥ dim(A).

B Proofs for Sect. 3: Faithful homomorphisms

Let P denote the set of prime numbers and sp(f) denote the sparsity of a polynomial
f .

In the proofs of Lemmas 15, 16 and 22 we will use the following well-known facts.

Lemma 28 (Sparse PIT). Let ℓ ≥ 1 and d ≥ 2. Let R be a commutative ring and let
f ∈ R[t] be a non-zero polynomial of sparsity at most ℓ and degree at most d. Then
there are at most ℓ · log2(d) − 1 prime numbers p such that f = 0 (mod 〈tp − 1〉R[t]).

Proof. Cf. [BHLV09, Lemma 13] and note that the given proof also works for polyno-
mials over a ring (instead of a field).

Lemma 29 (Primes). Let r ∈ R≥2. Then the interval [1, r2 + 1] contains at least ⌈r⌉
prime numbers.

Proof. Cf. [Pap95, Claim on p. 478].
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B.1 Proofs for Sect. 3.1: A Kronecker-inspired map

Lemma 14. Let K be an infinite field and let f1, . . . , fm ∈ K[x] be polynomials of
trdeg r. Then there exists a linear K-algebra homomorphism ϕ : K[x] → K[z] which
is faithful to {f1, . . . , fm}.

Proof of Lemma 14. After renumbering f1, . . . , fm and x1, . . . , xn, we may assume that
f1, . . . , fr, xr+1, . . . , xn are algebraically independent. Consequently, for i = 1, . . . , r,
there exists a non-zero polynomial Gi ∈ K[y0, y1, . . . , yn] such that degy0

(Gi) > 0 and

Gi(xi, f1, . . . , fr, xr+1, . . . , xn) = 0.

Denote by gi ∈ K[y1, . . . , yn] the (non-zero) leading coefficient of Gi as a polyno-
mial in y0 with coefficients in K[y1, . . . , yn]. The algebraic independence of f1, . . . , fr,
xr+1, . . . , xn implies

gi(f1, . . . , fr, xr+1, . . . , xn) 6= 0.

Since K is infinite, there exist cr+1, . . . , cn ∈ K such that

(gi(f1, . . . , fr, xr+1, . . . , xn))(x1, . . . , xr, cr+1, . . . , cn) 6= 0

for all i = 1, . . . , r. Now define the K-algebra homomorphism

ϕ : K[x] → K[z], xi 7→

{

zi, if 1 ≤ i ≤ r,

ci, otherwise.

Then, by the choice of cr+1, . . . , cn, we have

Gi(y0, ϕ(f1), . . . , ϕ(fr), cr+1, . . . , cn) 6= 0

and
Gi(zi, ϕ(f1), . . . , ϕ(fr), cr+1, . . . , cn) = 0

for i = 1, . . . , r. This shows that zi is algebraically dependent on ϕ(f1), . . . , ϕ(fr) for
i = 1, . . . , r. It follows that

trdeg{ϕ(f1), . . . , ϕ(fm)} = r = trdeg{f1, . . . , fm},

hence ϕ is faithful to {f1, . . . , fm}.

Lemma 15. Let f1, . . . , fm ∈ K[x] be polynomials of degree at most δ and trdeg
at most r. Let D > δr+1. Then there exist an index set I ∈

(

[n]
r

)

and a prime

p ≤ (n + δr)8δ
r+1

(log2D)2 + 1 such that any subset of K of size δrrp contains c such
that ΦI,D,p,c is faithful to {f1, . . . , fm}.
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Proof of Lemma 15. We may assume wlog that trdeg{f1, . . . , fm} = r and, after renum-
bering f1, . . . , fm, that

f1, . . . , fr, xjr+1
, . . . , xjn

are algebraically independent for some jr+1, . . . , jn ∈ [n] with jr+1 < · · · < jn. Denote
the complement [n] \ {jr+1, . . . , jn} by I = {j1, . . . , jr}, where j1 < · · · < jr. By Corol-
lary 5, there exists a non-zero polynomial Gi ∈ K[y0, y1, . . . , yn] such that deg(Gi) ≤ δr,
degy0

(Gi) > 0 and
Gi(xji , f1, . . . , fr, xjr+1

, . . . , xjn) = 0

for i = 1, . . . , r. Denote by gi ∈ K[y1, . . . , yn] the (non-zero) leading coefficient of Gi

as a polynomial y0 with coefficients in K[y1, . . . , yn]. The algebraic independence of
f1, . . . , fr, xjr+1

, . . . , xjn implies

gi(f1, . . . , fr, xjr+1
, . . . , xjn) 6= 0.

We have
deg

(

gi(f1, . . . , fr, xjr+1
, . . . , xjn)

)

≤ δr+1 < D.

Therefore, the polynomial

hi := gi(ΦI,D(f1), . . . ,ΦI,D(fr),ΦI,D(xjr+1
), . . . ,ΦI,D(xjn)) ∈ K[t, z]

is non-zero (this is the classical Kronecker substitution: D is so large that the monomials
remain separated). We have

degt(hi) ≤ δr+1 · (D + D2 + · · · + Dn−r) ≤ Dn+1.

Also, the sparsity of hi (short, sp) can be bounded as:

sp(hi) = sp
(

gi(f1, . . . , fr, xjr+1
, . . . , xjn)

)

≤ sp(gi) · max{sp(f1), . . . , sp(fr)}
deg(gi)

≤

(

n + δr

δr

)

·

(

n + δ

δ

)δr

≤ (n + δr)δ
r

· (n + δ)δ
r+1

.

Let Bi ⊆ P be the set of all primes p satisfying hi = 0 (mod 〈tp − 1〉K[t,z]). Then

|Bi| < (n+ 1)(n+ δr)δ
r

(n+ δ)δ
r+1

log2D by Lemma 28. Finally set B := B1 ∪ · · · ∪Br.
Then

|B| < r(n + 1)(n + δr)δ
r

(n + δ)δ
r+1

log2D ≤ (n + δr)4δ
r+1

log2D.

Now pick a suitable prime p ∈ P \ B (by Lemma 29). Let i ∈ [r]. Then hi 6= 0
(mod 〈tp − 1〉K[t,z]). Define

h
(p)
i := gi(ΦI,D,p(f1), . . . ,ΦI,D,p(fr),ΦI,D,p(xjr+1

), . . . ,ΦI,D,p(xjn)) ∈ K[t, z].

25



Since h
(p)
i = hi 6= 0 (mod 〈tp − 1〉K[t,z]), we have h

(p)
i 6= 0. Let Si ⊂ K be the set

of all c ∈ K such that h
(p)
i (c, z) = 0. Then |Si| ≤ degt(h

(p)
i ) < δrp. Finally set

S := S1 ∪ · · · ∪ Sr. Then |S| < rδrp.
Now let i ∈ [r] and c ∈ K \ S. Then

Gi

(

y0,ΦI,D,p,c(f1), . . . ,ΦI,D,p,c(fr), c
⌊D1⌋p , . . . , c⌊D

n−r⌋p
)

6= 0,

because h
(p)
i (c, z) 6= 0, and

Gi

(

zi,ΦI,D,p,c(f1), . . . ,ΦI,D,p,c(fr), c
⌊D1⌋p , . . . , c⌊D

n−r⌋p
)

= 0.

This shows that zi is algebraically dependent on ΦI,D,p,c(f1), . . . ,ΦI,D,p,c(fr) for i =
1, . . . , r. It follows that

trdeg{ΦI,D,p,c(f1), . . . ,ΦI,D,p,c(fm)} = r = trdeg{f1, . . . , fm}

for all c ∈ K \ S.

B.2 Proofs for Section 3.2: A Vandermonde-inspired map

Lemma 16. Let f1, . . . , fm ∈ K[x] be polynomials of sparsity at most ℓ, degree at
most δ and trdeg at most r. Assume that ch(K) = 0 or ch(K) > δr. Let D = (D1, D2)
such that D1 ≥ max{δr + 1, (n + 1)r+1} and D2 ≥ 2. Then there exists a prime
p ≤ (2nrℓ)2(r+1)(log2D1)

2 +1 such that any subset of K of size δrp contains c such that
ΨD,p,c is faithful to {f1, . . . , fm}.

Proof of Lemma 16. Let s := trdeg{f1, . . . , fm} ≤ r and let i1, . . . , is ∈ [m] such that
fi1 , . . . , fis are algebraically independent. By the chain rule, we have

Jz1,...,zs(ΨD(fi1), . . . ,ΨD(fis))

=
(

Jx(fi1 , . . . , fis)
)

(ΨD(x1), . . . ,ΨD(xn)) · Jz1,...,zs(ΨD(x1), . . . ,ΨD(xn)). (3)

We introduce some notation. Define the polynomial

f ′ := det Jz1,...,zs(ΨD(fi1), . . . ,ΨD(fis)) ∈ K[t, z]

and set f := f ′(t, 0, . . . , 0) ∈ K[t]. For an index set I = {j1, . . . , js} ∈
(

[n]
s

)

with
j1 < · · · < js, denote

g′I :=
(

det Jxj1
,...,xjs

(fi1, . . . , fis)
)

(ΨD(x1), . . . ,ΨD(xn)) ∈ K[t, z]

and
h′
I := det Jz1,...,zs(ΨD(xj1), . . . ,ΨD(xjs)) ∈ K[t, z],
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and set gI := g′I(t, 0 . . . , 0) ∈ K[t] and hI := h′
I(t, 0, . . . , 0) ∈ K[t]. Applying the

Cauchy-Binet formula (cf. [Zen93]) to (3) and substituting (t, 0, . . . , 0) for (t, z0, . . . , zr),
we obtain

f =
∑

I∈I

gI · hI , (4)

where I := {I ∈
(

[n]
s

)

| gI 6= 0}. We want to prove that f 6= 0. It suffices to show that
there is a unique I ∈ I for which deg(gI · hI) is maximal.

First we show that I 6= ∅. Since fi1, . . . , fis are algebraically independent, there
exists I = {j1, . . . , js} ∈

(

[n]
s

)

with j1 < · · · < js such that

det Jxj1
,...,xjs

(fi1 , . . . , fis) 6= 0

by Theorem 6. We have

deg
(

det Jxj1
,...,xjs

(fi1 , . . . , fis)
)

≤ δs ≤ δr.

Since D ≥ δr+ 1, it follows that gI 6= 0 (this is the classical Kronecker substitution: D
is so large that the monomials remain separated), hence I ∈ I.

Next we want to show that hI 6= 0 and deg(hI) < D for all I ∈
(

[n]
s

)

, and we

want to show that deg(hI) 6= deg(hI′) for all I, I ′ ∈
(

[n]
s

)

with I 6= I ′. To this end, let

I = {j1, . . . , js} ∈
(

[n]
s

)

with j1 < · · · < js. Then

hI = det







tj1(n+1)1 · · · tj1(n+1)s

...
...

tjs(n+1)1 · · · tjs(n+1)s






=

∑

σ∈Ss

sgn(σ) · tdσ ,

where Ss denotes the symmetric group on {1, . . . , s} and

dσ := j1(n + 1)σ(1) + · · · + js(n + 1)σ(s) ∈ N.

It is not hard to show that did > dσ for all σ ∈ Ss \ {id}. This implies hI 6= 0 and

deg(hI) = j1(n + 1)1 + · · · + js(n + 1)s < (n + 1)s+1 ≤ (n + 1)r+1 ≤ D.

From the degree formula it is not hard to deduce that deg(hI) 6= deg(hI′) for all I, I ′ ∈
(

[n]
s

)

with I 6= I ′.
Now denote by Imax ⊆ I the set of all I ∈ I such that deg(gI) is maximal. Let

I ∈ Imax and let I ′ ∈ I \ Imax. Observe that, by construction, we have deg(gI) −
deg(gI′) ≥ D. Since deg(hI′) < D, it follows that

deg(gI · hI) ≥ deg(gI) ≥ deg(gI′) + D > deg(gI′) + deg(hI′) = deg(gI′ · hI′).

Therefore, the summands in (4) of maximal degree have an index set in Imax.
Finally, let I ∈ Imax be the unique index set such that deg(hI) is maximal. Then

gI ·hI is the unique summand in (4) of maximal degree. This implies f 6= 0, as required.
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By (4), we have

sp(f) ≤

(

n

s

)

· (s! · ℓs) · s! ≤ (nsℓ)s ≤ (nrℓ)r

and

deg(f) ≤ rδ · (D1 + D2
1 + · · · + Dn

1 ) + (n + 1)r+1 ≤ Dn+1
1 + D1 ≤ Dn+2

1 .

Let B ⊆ P be the set of all primes p satisfying f = 0 (mod 〈tp − 1〉K[t]). Then

|B| < (n + 2)(nrℓ)r log2D1 ≤ (2nrℓ)r+1 log2D1

by Lemma 28.
Now pick a suitable prime p ∈ P\B (by Lemma 29). Then f 6= 0 (mod 〈tp−1〉K[t]).

This implies f ′ 6= 0 (mod 〈tp − 1〉K[t,z]). Define

f (p) := det Jz1,...,zs(ΨD,p(fi1), . . . ,ΨD,p(fis)) ∈ K[t, z].

Since f (p) = f ′ 6= 0 (mod 〈tp − 1〉K[t,z]), we have f (p) 6= 0. Let S ⊂ K be the set of all
c ∈ K such that f (p)(c, z) = 0. Then |S| ≤ degt(f

(p)) < δsp ≤ δrp. Now let c ∈ K \ S.
Then

det Jz1,...,zs(ΨD,p,c(fi1), . . . ,ΨD,p,c(fis)) = f (p)(c, z) 6= 0.

By Theorem 6, this means that ΨD,p,c(fi1), . . . ,ΨD,p,c(fis) are algebraically independent,
hence

trdeg{ΨD,p,c(f1), . . . ,ΨD,p,c(fm)} = s = trdeg{f1, . . . , fm}

for all c ∈ K \ S.

C Proofs for Sect. 4: Proving Theorem 1

C.1 Proofs for Sect. 4.1: A hitting set

Theorem 18. Assume that ch(K) = 0 or ch(K) > δr. Then Hd,r,δ,ℓ is a hitting set for
the class of degree-d circuits with inputs being ℓ-sparse, degree-δ subcircuits of trdeg
at most r. It can be constructed in poly(drδℓn)r time.

Proof of Theorem 18. Let C(f1, . . . , fm) be a non-zero circuit of degree at most d with
subcircuits f1, . . . , fm of sparsity at most ℓ, degree at most δ and trdeg at most r. By
the choice of parameters, Lemma 16 implies that there exist a prime p ∈ [pmax] and an
element c ∈ H1 such that ΨD,p,c is faithful to {f1, . . . , fm}. Hence, by Theorem 12,

ΨD,p,c(C(f1, . . . , fm)) = C(ΨD,p,c(f1), . . . ,ΨD,p,c(fm))

is a non-zero circuit with at most r + 1 variables and of degree at most d. Now
the first assertion follows from Lemma 17. The second assertion is obvious from the
construction.
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C.2 Proofs for Sect. 4.2: Arbitrary characteristic

Theorem 19. The set Hd,r,δ is a hitting set for the class of degree-d circuits with inputs
being degree-δ subcircuits of transcendence degree at most r. It can be constructed in
poly(drδn)rδ

r+1

time.

Proof of Theorem 19. Let C(f1, . . . , fm) be a non-zero circuit of degree at most d with
subcircuits f1, . . . , fm of degree at most δ and trdeg at most r. By the choice of
parameters, Lemma 15 implies that there exist an index set I ∈

(

[n]
r

)

, a prime p ∈ [pmax]
and an element c ∈ H1 such that ΦI,D,p,c is faithful to {f1, . . . , fm}. Hence, by Theorem
12,

ΦI,D,p,c(C(f1, . . . , fm)) = C(ΦI,D,p,c(f1), . . . ,ΦI,D,p,c(fm))

is a non-zero circuit with at most r variables and of degree at most d. Now the first
assertion follows from Lemma 17. The second assertion is obvious from the construction.

D Proofs for Sect. 5: Depth-4 circuits

D.1 Proofs for Sect. 5.2: Preserving the simple part

Lemma 22. Let C be a ΣΠΣΠδ(k, s, n) circuit. Let D1 ≥ 2δ2 + 1, let D1 ≥ D2 ≥
δ + 1 and let D = (D1, D2). Then there exists a prime p ≤ (2ksnδ2)8δ

2+2(log2 D1)
2

+1 such that any subset S ⊂ K of size 2δ4k2s2p contains c satisfying ΨD,p,c(sim(C))
= sim(ΨD,p,c(C)).

Proof of Lemma 22. Let f1, . . . , fm ∈ K[x] be the non-constant irreducible factors of
the polynomials in S(C). Then m ≤ ksδ and we have

deg(fi) ≤ δ and sp(fi) ≤

(

n + δ

δ

)

≤ (n + δ)δ

for all i = 1, . . . , m.
First we make the following observation. If ϕ : K[x] → K[z] is a K-algebra homo-

morphism such that

1. ϕ(fi) is non-constant, for all i = 1, . . . , m, and

2. gcd(fi, fj) = 1 implies gcd(ϕ(fi), ϕ(fj)) = 1, for all 1 ≤ i < j ≤ m,

then ϕ(sim(C)) = sim(ϕ(C)). To satisfy the first condition we will ensure that the
images of f1, . . . , fm under Ψ are monic in z0. This will also facilitate our task of
meeting the second condition. Here we will use resultants with respect to z0 to preserve
coprimality.

So let i ∈ [m] and define

gi := fi
(

tD
1
2 , . . . , tD

n
2

)

∈ K[t].
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Since deg(fi) < D2, we have gi 6= 0 (Kronecker substitution). We have

deg(gi) ≤ δ · (D2 + D2
2 + · · · + Dn

2 ) ≤ Dn+1
2

and sp(gi) = sp(fi) ≤ (n + δ)δ. Let B1,i ⊆ P be the set of all primes p satisfying gi = 0
(mod 〈tp − 1〉K[t]). Then |B1,i| < (n + 1)(n + δ)δ log2D2 by Lemma 28. Finally, set
B1 := B1,1 ∪ · · · ∪ B1,m. Then

|B1| ≤ m(n + 1)(n + δ)δ log2D2 ≤ ksδ(n + 1)(n + δ)δ log2D2.

Now let i ∈ [m] and define

hi := fi
(

x1 + tD
1
2z0, . . . , xn + tD

n
2 z0

)

∈ K[t, z0,x].

Then the leading term of hi as a polynomial in z0 is gi. In particular, hi 6= 0. We have

sp(hi) ≤ 2δ · sp(fi) ≤ 2δ(n + δ)δ.

Now let i, j ∈ [m] with i < j such that gcd(fi, fj) = 1. Then gcd(hi, hj) = 1,
because the map:

K(t, z0)[x] → K(t, z0)[x], xi 7→ xi + tD
i
2z0 (i = 1, . . . , n)

is a K(t, z0)-algebra automorphism. This implies resz0(hi, hj) 6= 0. We have

deg
x

(

resz0(hi, hj)
)

≤ 2δ2 < D1,

therefore the polynomial

hi,j := resz0
(

(ΨD(fi))(t, z0, 0, . . . , 0), (ΨD(fi))(t, z0, 0, . . . , 0)
)

∈ K[t, z0]

is non-zero (Kronecker substitution). We have

degt(hi,j) ≤ 2δ2 · (D1 + D2
1 + · · · + Dn

1 ) ≤ Dn+1
1

(using D1 ≥ D2) and

sp(hi,j) ≤ max{sp(hi), sp(hj)}
2δ ≤ 22δ2(n + δ)2δ

2

.

Let B2,i,j ⊆ P be the set of all primes p satisfying hi,j 6= 0 (mod 〈tp − 1〉K[t,z0]). Then

|B2,i,j| < (n+ 1)22δ2(n+ δ)2δ
2

log2D1 by Lemma 28. Finally, set B2 :=
⋃

i,j B2,i,j, where
the union is over all i, j ∈ [m] with i < j such that gcd(fi, fj) = 1. Then

|B2| <
1
2
m2(n + 1)22δ2(n + δ)2δ

2

log2D1

≤ 1
2
(ksδ)2(n + 1)22δ2(n + δ)2δ

2

log2D1.
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Ultimately, set B := B1 ∪B2. Then

|B| ≤ 2 |B2| < (ksδ)2(n + 1)22δ2(n + δ)2δ
2

log2D1

≤ (2ksnδ2)4δ
2+1 log2D1.

Now pick a suitable prime p ∈ P \ B (by Lemma 29). First, let i ∈ [m]. Since
p /∈ B1, we have gi 6= 0 (mod 〈tp − 1〉K[t]). Define

g
(p)
i := fi

(

t⌊D
1
2⌋p, . . . , t⌊D

n
2 ⌋p

)

∈ K[t].

Since g
(p)
i = gi 6= 0 (mod 〈tp − 1〉K[t]), we have g

(p)
i 6= 0. Let S1,i ⊂ K be the set

of all c ∈ K such that g
(p)
i (c) = 0. Then |S1,i| ≤ deg(g

(p)
i ) < δp. Finally, set S1 :=

S1,1 ∪ · · · ∪ S1,m. Then |S1| < mδp ≤ ksδ2p. Now let i, j ∈ [m] with i < j such that
gcd(fi, fj) = 1. Since p /∈ B2, we have hi,j 6= 0 (mod 〈tp − 1〉K[t,z0]). Define

h
(p)
i,j := resz0

(

(ΨD,p(fi))(t, z0, 0, . . . , 0), (ΨD,p(fi))(t, z0, 0, . . . , 0)
)

∈ K[t, z0].

Since h
(p)
i,j = hi,j 6= 0 (mod 〈tp − 1〉K[t,z0]), we have h

(p)
i,j 6= 0. Let S2,i,j ⊂ K be the set

of all c ∈ K such that h
(p)
i,j (c, z0) = 0. Then |S2,i,j| ≤ degt(h

(p)
i,j ) < 2δ2p. Finally set

S2 :=
⋃

i,j S2,i,j, where the union is over all i, j ∈ [m] with i < j such that gcd(fi, fj) = 1.

Then |S2| <
1
2
m2 · 2δ2p ≤ δ4k2s2p. Ultimately, set S := S1 ∪ S2. Then |S| < 2δ4k2s2p.

Let i ∈ [m]. Then ΨD,p,c(fi) is monic in z0 for all c ∈ K \S. Now let i, j ∈ [m] with
i < j such that gcd(fi, fj) = 1. Then
(

resz0(ΨD,p,c(fi),ΨD,p,c(fj))
)

(z0, 0, . . . , 0)

= resz0
(

(ΨD,p,c(fi))(z0, 0, . . . , 0), (ΨD,p,c(fi))(z0, 0, . . . , 0)
)

= h
(p)
i,j (c, z0) 6= 0

for all c ∈ K \ S. Thus, resz0(ΨD,p,c(fi),ΨD,p,c(fj)) 6= 0 and by Lemma 25 it follows
that gcd(ΨD,p,c(fi),ΨD,p,c(fj)) = 1 for all c ∈ K \ S.

D.2 Proofs for Sect. 5.3: A hitting set

Theorem 23. Assume that ch(K) = 0 or ch(K) > δr. Then Hδ,k,s is a hitting set for
ΣΠΣΠδ(k, s, n) circuits. It can be constructed in poly(δrsn)δ

2kr time.

Proof of Theorem 23. Let C ∈ ΣΠΣΠδ(k, s, n) be a non-zero circuit. First, let us show
by a loose estimation that our parameters afford 2k applications of Lemmas 16 and 22
(one for each S(CI) resp. CI , for all I ⊆ [k]). The number of ‘bad’ primes by the proofs
of these lemmas are at most:

2k·(2nr(n + δ)δ)r+1 log2D1 + 2k · (2ksnδ2)4δ
2+1 log2D1

< 2k · (2nr · 2nδ)δ(r+1) log2D1 + 2k · (2ksnδ2)4δ
2+1 log2D1

< 2k · (2nrδ)2δ(r+1) log2D1 + 2k · (2ksnδ2)4δ
2+1 log2D1

< 2k+1 · (2krsnδ2)4δ
2+2δr log2 D1.
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Thus, the set [pmax] would have a ‘good’ prime p (by Lemma 29). Next comes the
estimate on the number of ‘bad’ c:

2kδrp + 2k · (2δ4k2s2p) < 2k+2k2rs2δ4p.

Thus, Lemma 16 and Lemma 22 imply that there exist a prime p ∈ [pmax] and an
element c ∈ H1 such that, for all I ⊆ [k], we have

1. ΨD,p,c(sim(CI)) = sim(ΨD,p,c(CI)), and

2. ΨD,p,c is faithful to some subset {f1, . . . , fm} ⊆ S(sim(CI)) of transcendence de-
gree min{rk(sim(CI)), r}.

Hence, by Lemma 21, ΨD,p,c(C) is a non-zero circuit with at most r + 1 variables and
of degree at most δs. Now the first assertion follows from Lemma 17. The second
assertion is obvious from the construction.

Corollary 24. Let K be of arbitrary characteristic. Then Hδ,2,s is a hitting set for
ΣΠΣΠδ(2, s, n) circuits. It can be constructed in poly(δsn)δ

2

time.

Proof of Corollary 24. First observe Rδ(2, s) = 1. Since Ψ sends non-constant sparse
polynomials of a circuit to non-constant polynomials (see the proof of Lemma 22), it is
faithful to sets of transcendence degree 1. Hence we do not need to invoke Lemma 16
(where the dependence on the characteristic came from).
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